SOME STUDIES IN FUZZY HEMIRINGS

TRAANAr s 3 TR
S Y T
A T 2
QUAID-I-AZAM UNIVERSITY

ISLAMABAD

By

Rukhshanda Anjum

Department of Mathematics
Quaid-i-Azam University
Islamabad, Pakistan
April 2011

"



SOME STUDIES IN FUZZY HEMIRINGS

~-‘-:“-.;:.‘ : ' _.T‘.,i.. )
.j{ _’/‘;\ r lr"'.‘\‘. ": 5 ';‘.‘I- -
QUAID-I-AZAM UNIVERSITY
[~

ISLAMABAD

By
Rukhshanda Anjum

SUPERVISED BY
DR. Muhammad Shabir

Department of Mathematics
Quaid-i-Azam University
Islamabad, Pakistan
April 2011



SOME STUDIES IN FUZZY HEMIRINGS

By

Rukhshanda Anjum

A Thesis Submitted in the Partial Fulfillment of the requirement for the
Degree of

DOCTOR OF PHILOSOPHY

In
Mathematics

Department of Mathematics
Quaid-i-Azam University
Islamabad, Pakistan
April 2011



SOME STUDIES IN FUZZY HEMIRINGS
by
RUKHSHANDA ANJUM

Certificate

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

We accept this thesis as conforming to the required standard.

’/@é 2 / f (w,/,, =
Prof. Dr. Muhammad Ayub Dr. Muhammad Shabir
(Chairman) (Supervisor)

Prof. Karamat H. Dar
(External Examiner)

Department of Mathematics
Quaid-i-Azam University, Islamabad
Pakistan
April 2011



Dedicated to

My Parents
My Husband
&

My Daughter
(Zahabia)



Contents

0L Benowisdemmil o ;i vs s 5ann thv et d b C YR e iii
0.2 Introduction . . . - - « v o o5 v o0 m v m siemie e 5w e e s e e iv
03 Chaptei-wisoBEHAY « o . o « 35 « v v v vmee e v v oo &« o0& 6w v
1 Preliminaries 3
1.1 Definitionsand Notations . ; . i ;i i civmaisnsosswnss 1
1.2 THGRISY 5 & o et e ik e 0 0 1 20 el e et oot e 5 ) o A 2
13 MECIOBUER . & 6 o ebh W e R RS W Y R A 4
L4 BrlBsire: o o s emad i st s s i S REERAST RS 5 A 5 E AR 4
1.5 h-quasi-ideals and h-bi-ideals [46] . . . . . ... ............. 4
1:6; PUZBWEUREBES + woniiwoobeto s w0 6 5w % & @ 0 e e S W B 6
1.0 Puggyidedln: i o5 ce e i Lo v e VRS TS E R ETNE S 508 b 6
1.8 h-product of fuzzy subsets: . . ., ... ... ... ... ... ... 9
1.9 h-intrinsic product of fuzzy subsets . . . : : i i csav i e e s e 9
1.10 Fuzzy h-bi-ideals and fuzzy h-quasi-ideals [46] . . . . .. ... ..... 10
1.11 h-hemiregular and k-regular hemirings . . . . .. . ... ... ..... 11
1.12° h-intra-hemiregular hemirings . . . . . . . . . . ... .. ... .. .. 14
LI3 Primeh-ideals : : - ziunmvssnisvsissasusmsnsss sy 15
2 Characterizations of hemirings by the properties of their k-ideals 16
21 Fuzzyk-ideals . . . . . . . . .. . i ittt e e e e e e 16
2.2 k-product of fuzzy sUbSELS . i-covoviv v v v 58w s s e e o e e s 18
23 Ydempotent k-jdesls .. .o v oo iissan v ann Ealioenid i 25
24 Pomek-1deall, o . « o rimmmsemem a6 v s ow o s s k8 s b 29
2.5 Semiprime l-idesls < . ¢ cocnsinare s s s @ s 3w e e 6w 34
28 PrimedOpeckitil : 2.\ s s vmss s e s sadnean s i s 36
3 Characterizations of hemirings by the properties of their h-ideals 42
3.1 h-intrinsic product of fuzzy subsets . . . .. . ... ... ... ... .. 42
32 Idempotent hddenls . ... sasvwmane e w w8 & % e s & b 44
33 Priteliides)s . caissinsata s e v s en G aREE s 49
g4 Semiprime h-ideals . . .+ . . . v b e e s e oy g e 54
3.5 Prime Spectrum . . . . . . . L. L e e e e e 67



CONTENTS ii
4 Right k-weakly regular hemirings 61
4.1 Right k-weakly regular hemirings . . . . . ... ............. 61
4.2 Prime and Fuzzy prime right k-ideals . . . . . ... ........... 65
4.3 Right pute EIdBElS  « « 5 5w e w w8 w8 s 6 8 e E 6 71
44 Purelyprimek-ideals. . . .. ..o i s i e e 74
5 Right h-weakly regular hemirings 76
5.1 Right h-weakly regular hemirings . . . . ... .............. 76
5.2 Prime and Fuzzy prime right heideals . . . . . . ... ... ... 80
53 Rightpuwe h-adeals ; ¢ & 5 s 2 w s smuemas of o w g 8 &5 i abeis o 85
§4 Purelyprimefsideals: < s s cv s aawivises 8o s 6§ 8 A el s 89
6 k-regular and k-intra-regular hemirings 91
B KoIABETEAlEI v b a0 s e 91
62 %-regular BemiEings ; o « v oox v 5w w s amiaie B 8 e e ¥ e e e R 98
6.3 k-intra-regular hemirings . . . . . .. ... ... o ol n s e 105
7 Prime k-bi-ideals in hemirings 112
7.1 Right k-weakly regular hemirings . . . . .. ... ... ......... 112
7.2 Prime and semiprime k-bi-ideals . . ... .......... .. .. .. 115
8 Prime h-bi-ideals in hemirings 128
8.1 Right h-weakly regular hemirings . . . . .. ... ... .. ... ... 128
8.2 Prime and semiprime h-bi-ideals . . . ... ............... 131



Acknowledgment iii

0.1 Acknowledgment

All prays to Almighty Allah, the beneficent, the most merciful and most compassion-
ate, the creator of the universe, who bestowed His blessings upon me and gave me the
strength to utilize the best of my abilities to complete this research work. 1 offer my
humblest and sincerest words of thanks to Holy Prophet Muhammad (Peace Be Upon
Him) Who is, forever, a torch of guidance and knowledge for humanity.

I would like to express deep sense of gratitude and appreciation to my supervisor
Dr. M. Shabir, during my studies at the Quaid-i-Azam University Islamabad, for
his invaluable suggestions, positive criticism, stimulating ideas, extreme patience and
fruitful discussions to improve the quality of my work. This dissertation would not
_have been possible without the kind support, the trenchant critiques and the creative
abilities of my supervisor. In spite of his extremely busy schedule he always uses to take
his precious time for me. In short, he proved to be a perfect model of professionalism,
understanding and commitment to the subject. My thanks go to Professor W. A.
Dudek for his kind comments and constructive discussions.

I express my gratitude and honor to Prof. M. Ayub, chairman Department of
Mathematics Quaid-i-Azam University Islamabad for providing an ideal atmosphere
of study and research in the department.

I would like to express my appreciation and gratitude to Higher Education Com-
mission of Pakistan for financial support during my research time.

I acknowledge with sincere thanks the help, the prayers, the encouragement and
moral support extended by Parents. I am thankful to my husband without his support.
it was not possible to complete this work. I hope he will not mind all my neglects,
which occurred during my research work. I am very much indebted to my daughter
Zahabia for her love and affection.

My heartiest acknowledgment are for my colleagues and friends who in one way or
Lhe other helped me in completing my thesis.

Rukhshanda Anjum



Introduction iv

0.2 Introduction

There are many concepts of universal algebra generalizing associative ring (R,+,.).
Some of them, in particular, nearrings and several kinds of semirings, have been proven
very useful. Nearrings arise from rings by canceling either the axiom of left or those
of right distributivity. The second type of these algebras (R,+-,.) called semirings (
and sometimes halfrings), share the same properties as a ring except that (R,+) is
assumed to be a semigroup rather than an abelian group.

The notion of semiring was introduced by Vandiver in 1934 [42]|. Semirings, ordered
semirings and hemirings have been found useful for solving problems in different areas
of applied mathematics and information sciences, since the structure of a semiring
provides an algebraic framework for modeling and studying the key factors in these
applied areas. They play an important role in studying optimization theory, graph
theory, theory of discrete event dynamical systems, matrices, determinants, automata
theory, formal languages and so on (see [8, 9, 17, 20, 40, 43]).

The theory of fuzzy sets, proposed by Zadeh [47] in 1965, has provided a use-
ful mathematical tool for describing the behavior of systems that are too complex
or ill-defined to admit precise mathematical analysis by classical methods and tools.
Extensive applications of fuzzy set theory have been found in various fields such as arti-
ficial intelligence, computer science, control engineering, expert systems, management
science, operations research, pattern recognition, robotics and others.

It was soon arise a natural question concerning a relation between fuzzy sets
and algebraic systems. The study of the fuzzy algebraic structures has started in
the pioneering paper of Rosenfeld [38] in 1971. He introduced the notion of fuzzy
groups and showed that many results in groups can be extended to develop the the-
ory of fuzzy groups in an elementary manner. After that the literature of various
fuzzy algebraic concepts has been developing rapidly. Many authors fuzzified certain
standard concepts and results on rings and modules. Investigations of fuzzy semi-
rings were initiated in [5]. The relationship between the fuzzy sets and semirings
(hemirings) has been considered by Dutta, Baik, Ghosh, Jun, Kim, Zhan and others
[7, 14, 15, 18, 19, 25, 26, 29, 50].

Ideals play an important role in the structure theory of hemirings and are useful for
many purposes. But they do not coincide with usual ring ideals. For this reason many
results in ring theory have no analogues in semirings using only ideals. Henriksen
defined [23] a more restricted class of ideals in semirings, which is called class of
k-ideals, with the property that if the semiring R is the ring then a complex in R
is a k-ideal if and only if it is a ring ideal. A still more restricted class of ideals in
hemirings has been given by lizuka [24]. However, a definition of ideal in any additively
commutative semiring R can be given which coincides with Iizuka's definition provided
R is a hemiring, and it is called h-ideal. La Torre [32] investigated h-ideals and k-ideals
in hemirings in an effort to obtain analogues of familiar ring theorems. Fuzzy h-ideals
and fuzzy k-ideals are studied in [6, 7, 26, 27, 34, 35, 46, 49].
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0.3 Chapter-wise study

This thesis consists of eight chapters. Throughout this thesis, R will denote a hemiring,
unless otherwise stated.

Chapter one, which is of introductory nature, provides basic definitions and results,
which are needed for the subsequent chapters.

In Chapter two, we give the basic properties of k-product and k-sum of two fuzzy
subsets and then characterize hemiring by the properties of k-ideals and by the prop-
erties of fuzzy k-ideals. In this chapter we give the primeness and semiprimeness of
k-ideals and primeness and semiprimeness of fuzzy k-ideals.

In chapter three, we give some basic properties of h-intrinsic product and h-sum
of two fuzzy subsets and then characterize hemiring by the properties of h-ideals and
also by the properties of fuzzy h-ideals. In this chapter we give the primeness and
semiprimeness of h-ideals and fuzzy h-ideals. In this chapter also the space of prime
h-ideals and of fuzzy h-prime h-ideals is topologized.

In chapter four we define right k-weakly regular hemirings, which are generalization
of k-regular hemirings. We characterize hemirings by the properties of their right k-
ideals and by the properties of their fuzzy right k-ideals.

In chapter five, we characterize those hemirings for which each right Ah-ideal is
idempotent. We also characterize those hemirings for which each fuzzy right h-ideal is
idempotent. We have given the concept of right pure h-ideals, purely prime h-ideals,
fuzzy right pure h-ideals and fuzzy purely prime h-ideals and characterize hemirings
by these ideals.

In chapter six, we introduce the concepts of fuzzy k-bi-ideals and fuzzy k-quasi-
ideals of hemirings. We characterize different classes of hemirings by the properties of
k-bi-ideals and k-quasi-ideals.

In the chapter seven, we define prime, strongly prime and semiprime k-bi-ideals
of a hemiring. We also define their fuzzy versions and characterize hemirings by the
properties of these k-bi-ideals.

In the chapter eight, we define prime, strongly prime and semiprime h-bi-ideals
of a hemiring. We also define their fuzzy versions and characterize hemirings by the
properties of these h-bi-ideals.



Chapter 1
Preliminaries

The aim of this chapter is to provide the essential definitions and preliminaries results,
concerning hemirings which are useful for our subsequent chapters. For undefined
terms and notations, we refer to [20] and [21].

1.1 Definitions and Notations

A semiring is an algebraic system (R, -}, -) consisting of a non-empty set Il together
with two binary operations called “addition” and “multiplication” (denoted in the
usual manner) such that (R, +) and (R, ) are semigroups and the following distributive

laws:
a-(b+c)=a-b+a-c, and (b+c)-a=b-atc-a

are satisfied for all a,b,¢c € R.

A semiring (R, +, ) is called a hemiring if (R, ) is a commutative semigroup and
R contains an absorbing zero, 0, i.e., an element 0 € R such that a4+ 0=04+a=a
and a-0=0-a=0 for all a € R.

By the identity of a hemiring (R, +, ) we mean an element 1 € R (if it exists) such
that 1-a=a-1=afor alla € R.

A hemiring (R, +,-) with commutative semigroup (R, ) is called commutative.

1. All rings are hemirings.

2. Let Ny be the set of whole numbers, then N, is a commutative hemiring with
identity under the ordinary addition and multiplication of numbers.

3. Let R* be the set of all non-negative real numbers, then R* is a commuta-
tive hemiring with identity under the ordinary addition and multiplication of

numbers.
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4. The set R = {0,a,1} with the following two operations:

is a commutative hemiring.

ay; a2

azy a2
with identity under the usual addition and multiplication of matrices.

5. The set of all 2 x 2 matrices with entries from N, is a hemiring

6. The set R = {0,1,2,3} with the following Cayley tables:

+10]1(2]3 0j1]2|3
ojo0f112]|3 ojojofojo
111]1]12]3 1({011]1(1
2 1212|2]3 2{(0(1]1]1
J |3(313]2 Jloj1]141

is a commutative hemiring.

1.2 Ideals

A non-empty subset I of a hemiring R is called a left (right) ideal of R if (i) a+be I
and (ii) ra € I (ar € I) for all a,b € I, r € R. Obviously 0 € I in any left (right) ideal
I of R.

A non-empty subset A of a hemiring R is called an ideal of R if it is both a left
and a right ideal of R.

Let A and B be two non-empty subsets of a hemiring (R, +,) then the sum and
product of A and B are defined as

A+B = {a+b:a€Aandbe B}
AB = {Eﬁm-ua.-b,':a»,'EAand b;‘GB}.

Definition 1 A left (right) ideal A of a hemiring R is called a left (right) k-ideal of
R if for anya,b€ A and z € R fromz+a=10b it follows z € A.

It is not necessary that every left (right) ideal of R is a left (right) k-ideal of R.



1. Preliminaries 3

Example 2 Let & = {0,a,b} be a set with addition (+) end multiplication (') as
follows: .

Then R is a hemiring. Let A = {0,b} is an ideal of R but it is not a k-ideal of R,
since a+b=>bbut a¢ A

Definition 3 A left (right) ideal I of a hemiring R is called a left (right) h-ideal of
R if for any a,b € I and z,y € R fromz +a+y =b+y it follows z € I.

It is not necessary that every left (right) ideal of R is a left (right) h-ideal of H.

Example 4 Let R = {0,a,b} be a set with addition (+) and multiplication (-) as
follows:

Then R is a hemiring. Let A = {0, b} is an ideal of R but it is not an h-ideal of R,

sincea+0+b=0+bbuta¢ A
Every left (right) h-ideal is a left (right) k-ideal but the converse is not true.

Example 5 Consider the semiring R = {0,1,a,b,c} defined by the following tables:

+10 1 a b ¢ 0 1 a b ¢
010 1 a b ¢ 0(f0 0 0 0 O
140 b 1 & 1 100 1 a b ¢
ala 1 a b a al0 a a a c¢
blb a b 1 b blO & & 1 e
ele 1 a & e e & e e 0

Ideals of R are {0}, {0,c}, {0,a,c} and R. {0,c} is a k-ideal but not an h-ideal
because a + ¢+ b=0+b but a ¢ {0,c}.

Lemma 6 The intersection of any collection of left (right) h-ideals in a hemiring R
is also a left (right) h-ideal of R.

Lemma 7 The intersection of any family of left (right) k-ideals of a hemiring R is a
left (right) k-ideal of R.



1. Preliminaries 4

1.3 h-closure
By h-closure of a non-empty subset A of a hemiring R we mean the set
A={z€eR|z+a+y=b+y forsomea,be A ye R}.

It is clear that if A is a left (right) ideal of R, then A is the smallest left (right)
h-ideal of R containing A. So, A = A for all left (right) h-ideals of R. Obviously
A = A for each non-empty A C R. Also AC B for all AC BC R.

Lemma 8 [49] AB = A B for any subsets A, B of a hemiring R.

Lemma 9 [{9] If A and B are, respectively, right and left h-ideals of a hemiring R,

then
AB C AN B.

Definition 10 A subset A in a hemiring R is called h-idempotent if A = AZ.

1.4 k-closure
By k-closure of a non-empty subset A of a hemiring R we mean the set
~~
A ={z€eR:z+a=0> forsomea,bec A}.

~
It is clear that if A is a left (right) ideal of R, then A is the smallest left (right)
=
k-ideal of R containing A. So, A = A for all left (right) k-ideals of R. Obviously
=
~~ =
A = A for each non-empty subset A of R. If A, B are subsets of R such that
e P e e
ACB,then A C B Also AB= A B .
Lemma 11 [39] If A and B are, respectively, right and left k-ideals of a hemiring R,
then
AB C AnB.

AN
Definition 12 A subset A in a hemiring R is called k-idempotent if A = A? .

1.5 h-quasi-ideals and h-bi-ideals [46]

A non-empty subset A in a hemiring R is called an h-quasi-ideal of R if A is closed
under addition, RANAR C Aand z+a+y = b+y implies x € A for all 2,y € R
and a,be A.
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A non-empty subset A in a hemiring R is called an h-bi-ideal of R if A is closed
under addition and multiplication, ARA C A and = + a+y = b+ y implies = € A for
all z,y € R and a,b € A.

Proposition 13 [46] Every quasi-ideal of a hemiring R is a bi-ideal of R.

The converse is not true in general. Example 16 shows that AB is not a quasi-ideal
but a bi-ideal of R.

Lemma 14 [4{6] For any left (right) h-ideal, h-bi-ideal or h-quasi-ideal A of hemiring
R, we have A = A.

Note that every left h-ideal (right h-ideal, h-bi-ideal, h-quasi-ideal) of a hemiring
R is a left ideal ( resp. right ideal, bi-ideal, quasi-ideal) of R but the converse is not
true. Every left (right) h-ideal of R is an h-quasi-ideal of R and every h-quasi-ideal of
R is an h-bi-ideal of R but the converse is not true.

ay; a2

az a2
usual addition and multiplication of matrices, where a;j € No, No 15 the set of all non-

Example 15 [46] The set R of all 2 x 2 matrices is a hemiring with
e . ; a 0

negalive integers. Consider the set Q of all matrices of the form 8 @ (a € No).

Bvidently Q is an h-quasi-ideal of R but not a left (right) h-ideal of R.

Example 16 [46] Let N and R denote the sets of all positive integers and posi-

0
tive real numbers respectively. The set R of of all matrices of the form : )
c

0
a,b € R*, c € N) together with o is a hemiring with respect to the usual ad-
00 !

0

dition and multiplication of matrices. Let A, B be the sets of all matrices
c

(a,beR* ce N,a<b) togetherwith(g g)nnd(p :)(p,qEIR"',kEN,3<q)
q

together with g g , respectively. It is easy to show that A and B are right h-ideal

and left h-ideal of R, respectively. Now the product AB is an h-bi-ideal of R but il is
not an h-quasi-ideal of R. Indeed, the element

(3= ED)-GDED)E)

belongs to the intersection R (AB)N(AB) R, but it is not an element of AB. Hence
R(AB)N(AB)R € RL.
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1.6 Fuzzy subsets

Let X be a non-emply set. By a fuzzy subset p of X we mean a membership function
p: X —[0,1]. Imp denotes the set of all values of p. A fuzzy subset p: X — [0,1] is
non-empty if there exists at least one = € X such that p(z) > 0. For any fuzzy subsets
A and ;2 of X we define

ASp = Az) < p(w),

(AA p)(z) = Mz) A p(z) = min{A(z), u(z)},

(AV 1) () = A=) V () = max{A(z), p(x))
for all z € X.

More generally, if {A; : 2 € I} is a collection of fuzzy subsets of X, then by the
mtersection and the union of this collection we mean fuzzy subsets

(AX)@) = A M) = inf (i),

el el
(V /\f) (z) = V Ai(z) = sup {Xi(=)},
iel iel el

respectively.

Definition 17 Let A be a non-empty subset of a hemiring R. Then a fuzzy set x4

defined by
(z) 1 ifzeA
xalz) =
4 (0 otherwise

is called the characteristic function of A.

1.7 TFuzzy ideals

A fuzzy subset )\ of a semiring R is called a fuzzy left (right) ideal of R if for all
a,b € R we have

(1) Afa+b) 2> Aa) A A(b),
(2) A(ab) = A(b), (Aab) = A(a)).
Note that A(0) > A(z) for all z € R.

Definition 18 A fuzzy left (right) ideal X of a hemiring R is called a fuzzy left (right)
k-ideal if x +y =z — A(z) > My) AA(2) for all z,y,z € R.
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Example 19 [7] Every fuzzy ideal of a ring R is a fuzzy k-ideal.

Example 20 [7] Let p be a fuzzy subset of the hemiring N,, where N, is the set of
whole numbers defined by

0.3 if z is odd
1(z) =< 0.5 if z is non-zero even
1 ife=0

Then pt is a fuzzy k-ideal of N,.

Example 21 Letl pu be a fuzzy subset of the hemiring N, where N, is the set of whole
numbers defined by

1 if7<z2
plz)=<¢ 05 if5<z<7
0 if0<z<H

Then it is easy to show that yu is a fuzzy ideal of N, but not a fuzzy k-ideal of No.

Definition 22 [26] A fuzzy left (right) ideal ) of a hemiring R 1s called a fuzzy left
(right) h-ideal if z +a+y=b+y=> Az) 2 Aa) AA(b) for alla,b,z,y € R.

Example 23 All fuzzy ideals of a ring are fuzzy h-ideals.

Example 24 The fuzzy subset

1 ifn is even,
i) = { 0.2 otherwise,
defined on the set N,, where N, is the set of whole numbers, is a fuzzy left h-ideal of
the hemiring (N, +,-).

Properties of fuzzy sets defined on an algebraic system 2 = (X, F), where F is a
family of operations (also partial) defined on X, can be characterized by the corre-
sponding properties of some subsets of X. Namely, as it is proved in [30] the following

Transfer Principle holds.

Lemma 25 [30] A fuzzy set X defined on 2 has the property P if and only if all
non-empty level subsets U(A;t) = {x € X | A(z) > t} have the property P.
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For example, a fuzzy set A of a hemiring K is a fuzzy left ideal if and only if each
non-empty subset U(A;1) is a left ideal of R. Similarly, a fuzzy set A in a hemiring R
is a fuzzy left h-ideal of R if and only if each non-empty subset U(A;t) is a left h-ideal
of K.

Proposition 26 [26/ Let A be a non-empty subset of a hemiring R. Then a fuzzy set

A4 defined by
t ifzeAd

s otherwise

Aa(z) = {
where 0 < s <t <1, is a fuzzy left h-ideal of R if and only if A is a left h-ideal of R.

Corollary 27 Let A be a non-empty subset of a hemiring R. Then the characteristic
function x4 of A is a fuzzy left (right) h-ideal of R if and only if A is a left (right)
h-ideal of R.

Example 28 Consider the semiring R = {0,1,a,b,c} defined by the following tables:

+10 1 a b c 0 1 a b e
010 1 a b ¢ 010 0 0 0 O
113 & 1 & 1 110 1 a b ¢
ala 1 a b a g|0 a &8 a ¢
blb a b 1 b b10 b a 1 e
tle 1 a b e c|0 ¢ ¢ ¢ 0

Ideals of R are {0},{0,¢}, {0,a,c} and R. The h-ideals of R are {0,a,c} and R.
Define A : R — [0, 1] such that A (0) = A(c) = 0.8, A(a) = 0.6, A(b) = A(1) =0.5

then

R if t € (0, .5]
{0,a,¢} if te(.5,.6]
{0} if t € (.6,.8]
¢ if t € (.8,1]

{0},{0,¢},{0,a,¢} and R are ideals of R. So, U (A, t) is ideal of R. This implies
that X is a fuzzy ideal of R, but X is not fuzzy h-ideal of R.

U(\t) =

Proposition 29 Let A, B be non-empty subsets of a hemiring R. Then fuzzy sets
A, Ap defined by

AA(I):{t fze A Ag(x)={t ifzeB

s otherwise s otherwise

where 0 < s <t <1, then
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(1) AC B« A < A,

(2) A AAB = AanB-

Proof. Let A C B. For z € A we have Ag(z) =t = Ag(z). If z ¢ A, then
A(z) = s < Ag(z). So, Ay < Ap. Conversely, if Ay < Ap, then for all z € A we
obtain t = Ay(z) < Ag(x). Thus Ag(z) = ¢, i.e., z € B. Consequently, A C B. This
proves (1).

To prove (2) let z € ANB. Then z € A, 2 € B and Ag(z) AAg(z) =t = Aang(z).
Ifz ¢ AN B, then A(z) = s or Ag(z) = 5. So, As(z) A Ap(z) = 5 = A anp(x), which
completes the proof. m

1.8 h-product of fuzzy subsets:

Definition 30 [26)Let A and p be fuzzy subsets of a hemiring R. Then the h-product
of A and p is defined by

sup (A(a1) A A(az) Ap(br) Ap(bz))
(Nop ) (z) = { =tardytu=agbyty
0 if = is not expressed as = + a1by +y = agby + 9.

One can prove that if A and p are fuzzy left (right) h-ideals in a hemiring R, then
so is A A ji. Moreover, if ) is a fuzzy right h-ideal and p is a fuzzy left h-ideal of R
then Aoy p < AA p.

1.9 h-intrinsic product of fuzzy subsets

Generalizing the concept of h-product of two fuzzy subsets of R in [46] the following

h-intrinsic product of two fuzzy subsets y and v on R is defined by

n
((a3) Aw(t5))

1

(popv)(z) = sup ( /\ (1(ai) A v(bi)) A /

" T !
x4 Y agbit== znjbsz 1=1 2
=1 i=1

m L) b
and (p @p v)(x) =0 if 2 cannot be expressed as x + ) aibi +z = ) a;b; + 2.
i=1 =1

Proposition 31 [46] Let p, v, w, A be fuzzy subsets on R. Then

(1) p<wand v < A= pOpv <wG A
(2) x4 ©nxp = xAE for characteristic functions of subsets A, B of R.

Definition 32 A fuzzy subset p in a hemiring R is called idempotent if pp = p Oy p.
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1.10 Fuzzy h-bi-ideals and fuzzy h-quasi-ideals [46]

A fuzzy subset A of a hemiring R is called a fuzzy h-bi-ideal if for all a,b,z,y,z € R
we have

(1) Mz +y) > A(z) A (y)

(2) Azy) 2 A(z) A A (y)

(3) A(zyz) > A(z) A A(2)

() z+a+z=b+z= A(x) > Ma) A D).

A fuzzy subset A of a hemiring R is called a fuzzy h-quasi-ideal if for all a, b, z,y, z €
It we have

(1) Az +y) 2 A=) AA(y),

(2) (AOn xR) A (xp O A) < A,

3) z+a+z=b+z= A(z) > Ma) A Ab).

Example 33 [46] The set N, of whole numbers is a hemaring with respect to the usual
addition and multiplication. Let r,s € [0,1] be such that v < s. Define a fuzzy subset
woan Ny by

#(G)={ s if a€(3),
i

otherwise

for all @ € N,. Then p is both a fuzzy h-bi-ideal and a fuzzy h-quasi-ideal of N,.
Lemma 34 [{6] Let R be a hemiring and A C R. Then the following conditions hold:

(1) Ais a fuzzy h-bi-ideal of R if and only if all non-empty level subsets U (u;t)
are h-bi-ideal of R.

(2) A is a fuzzy h-quasi-ideal of R if and only if all non-empty level subsets U (y;t)
are quasi-bi-ideal of R.

Lemma 35 [{6] Let R be a hemiring and A C R. Then the following conditions hold:

(1) Ais aleft (resp. right) h-ideal of R if and only if x4 is a fuzzy left (resp. right)
h-ideal of R.

(2) A is an h-bi-ideal of R if and only if x4 is a fuzzy h-bi-ideal of R.

(3) A is an h-quasi-ideal of R if and only if x4 is a fuzzy h-quasi-ideal of R.

Lemma 36 [{6] A fuzzy subset pu in a hemiring R is a fuzzy left (vesp. right) h-ideal
of R if and only if for all z,y,a,b,z € R, we have
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(1) plz+y) 2 plz) Ap(y)
(2) Xp On e < pu (resp. pOpxg < p)
B)z+at+z=b+z= p(z)> pa)Ap(b).

Lemma 37 [46] Let jv and v be fuzzy right h-ideal and fuzzy left h-ideal of a hemiring
R, respectively. Then p A v is a fuzzy h-quasi-ideal of R.

Lemma 38 [46] Any fuzzy h-quasi-ideal of a hemiring R is a fuzzy h-bi-ideal of R.

1.11 h-hemiregular and k-regular hemirings

Definition 39 Let (R, +,:) be a hemiring, then an element z € R is called reqular if
there exists an element y € R such that z = zyz.

If every element of R is regular then R is called regular.
A hemiring R is called fully idempotent if each ideal of R is idempotent.

Theorem 40 [3] A hemiring (R, +,) ts regular if and only if INJ = IJ for every
right ideal I and left ideal J of R.

Definition 41 [1, 39] A hemiring R is said to be k-regular if for each a € R, there

exist z,y € R such that a + aza = aya.
It is obvious that every regular hemiring is a k-regular.

Theorem 42 [39] A hemiring R is k-regular if and only if for any right k-ideal A
and any left k-ideal B, we have

S
B =AnNnB.

Definition 43 [{9] A hemiring R is said to be h-hemiregular if for each a € R, there
exist x,y, z € R such that a + aza + z = aya + z.

It is obvious that every regular hemiring is an h-hemiregular. Also every k-regular
hemiring is an h-hemiregular but the converse is not true. Example 46 is an h-
hemiregular but not k-regular.

Theorem 44 [{9] A hemiring R is h-hemiregular if and only if for any right h-ideal
A and any left h-ideal B, we have

AB=ANB
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Theorem 45 [49] A hemiring R s h-hemiregular if and only if for any fuzzy right
h-ideal i1 and any fuzzy left h-ideal v, we have

ROV =nAv.

Example 46 [{6] Let R = {0,a,b,c} be a hemiring with addition ” 4" and multipli-
cation” - " defined by the following table:

Then R is h-hemiregular hemiring.

Example 47 Let R = {0,z,1} be a hemiring with addition ™ +" and multiplication
"M defined by the following table:

Then R is k-regular hemiring.
Lemma 48 [{6] Let R be a hemiring. Then the following assertions are equivalent:

(1) R is h-hemiregular
(2) B = BRB for every h-bi-ideal B of R
(3) @ = QRQ for every h-quasi-ideal Q of R.

Lemma 49 [{6] Let R be a hemiring. Then the following assertions are equivalent:

(1) R is h-hemiregular.
(2) p < pOR Xg On 1 for every fuzzy h-bi-ideal p of R.
(3) 1 < t©n xp On p for every fuzzy h-quasi-ideal p of R.

Theorem 50 [46] Let R be a hemiring. Then the following assertions are equivalent:

(1) R is h-hemiregular.

(2) pAv < Gy v Op pfor every fuzzy h-bi-ideal p and every fuzzy h-ideal v of R.

(3) pAv < O, v O p for every fuzzy h-quasi-ideal p and every fuzzy h-ideal v
of R.
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Corollary 51 [{6] Let R be a hemiring. Then the following assertions are equivalent:

(1) R is h-hemiregular.
(2) BN A = BAB for every h-bi-ideal B and every h-ideal A of R.
(3) @N A = QAQ for every h-quasi-ideal Q and every h-ideal A of R.

Theorem 52 [{6] Let R be a hemiring. Then the following assertions are equivalent:

(1) R is h-hemiregular.

(2) pAv < p©y v for every fuzzy h-bi-ideal 1 and every fuzzy left h-ideal v of R.

(3) pAv < pGy, v for every fuzzy h-quasi-ideal p and every fuzzy left h-ideal v of
R.

(4) pAv < pOy v for every fuzzy right h-ideal p and every fuzzy h-bi-ideal v of R.

(5) p Av € p @y v for every fuzzy right h-ideal 2 and every fuzzy h-quasi-ideal v
of R.

(6) pAvAwW < pOR Oy w for every fuzzy right h-ideal u, every fuzzy h-bi-ideal
v and every fuzzy left h-ideal w of R.

(7) pAvAw < pepvopw for every fuzzy right h-ideal p, every fuzzy h-quasi-ideal
v and every fuzzy left h-ideal w of R.

Corollary 53 [{6] Let R be a hemiring then the following conditions are equivalent:

(1) R is h-hemiregular.

(2) BNC € BC for every h-bi-ideal B and every left h-ideal C.

(3) QN C C QC for every h-quasi-ideal @ and every left h-ideal C.

(4) AN B C AB for every right h-ideal A and for every h-bi-ideal 1 of R.

(5) AN Q € AQ for every right h-ideal A and for every h-quasi-ideal @ of R.

(6) ANBNC C ABC for every right h-ideal A, every h-bi-ideal B and every left
h-ideal C of H.

(7) ANQ N C € AQC for every right h-ideal A, every h-quasi-ideal @ and every
left h-ideal C of R.

Lemma 54 [/6] A hemiring R s h-hemiregular if and only if every right and left
h-ideals of R are idempotent and for any right h-ideal A and any left h-ideal B of R,
the set AB is an h-quasi-ideal of R.

Theorem 55 [{6] A hemiring R is h-hemiregular if and only if the fuzzy right and
fuzzy left h-ideals of R are idempotent and for any fuzzy right h-ideal it and fuzzy left
h-ideal v of R, the sel ;0 Oy v is a fuzzy h-quasi-ideal of R.
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1.12 h-intra-hemiregular hemirings

Definition 56 A hemiring R is said to be intra-reqular if x € Ra’R, thatl is, = =

mn a1 J
3 v, for some ri,v; € R.
=1

Definition 57 [{6] A hemiring R is said to be h-intra hemiregular if for each x € R
r m L ’ '
there exist a.',a;,bj,bj,z € R such that z + ) a;z%hi + 2 = ) a;a%b; + 2.
=1 §=1
Also we can define its equivalent definitions (1) z € Rz?R, Vz € R, (2) A C RA?R,

VA C R.
In the case of rings the h-intra-hemiregularity coincides with the intra-regularitry

of rings.

Example 58 [46] Let R = {0,a,b,c} be a hemiring with addition” +" and multipli-
catton " - " defined by the following lable:

Then R is h-intra-hemiregular hemiring.

Example 59 [46] The set N of all non-negative integers with usual addition ™ +" and
multiplication ™ - is a hemiring, but it is not h-hemiregular and h-intra-hemiregular

m
hemiring. Indeed 2 € N can not be writlen as 2+4-2a2-+z = 20’24z or 2+ 3 a;2%bi+z =
i=1
n ' 4 ' ’
,§ aj2zbj + z for all a;, a;,bj,b;,2 € N.

Lemma 60 [{6] Let R be a hemiring then the following conditions are equivalent.

(1) R is h-intra-hemiregular.
(2) An B C AB for every left h-ideal A and every right h-ideal B of R.

Lemma 61 [{6] Let R be a hemiring then the following conditions are equivalent.

(1) R is h-intra-hemiregular.
(2) pAv < py v for every fuzay left h-ideal p and every fuzzy right h-ideal v of
R.

Theorem 62 [{6] Let R be a hemiring then the following conditions are equivalent.
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(1) R is h-intra-hemiregular.
(2) p2(z) = p (=?) for all fuzzy h-ideal i of R and z € R.

Lemma 63 [{6] Let R be a hemiring then the following conditions are equivalent:

(1) R is both h-hemiregular and h-intra-hemiregular.
(2) B = B? for every h-bi-ideal B of R.
(3) Q = Q2 for every h-quasi-ideal Q of R.

Theorem 64 [46] Let R be a hemiring then the following conditions are equivalent:

(1) R is both h-hemiregular and h-intra-hemiregular.
(2) p ©p pp = p for each fuzzy h-bi-ideal p of R.
(3) p Gp p= p for each fuzzy h-quasi-ideal p of R.

Theorem 65 [{6] Let R be a hemiring then the following conditions are equivalent:

(1) R is both h-hemiregular and h-intra-hemiregular.

(2) pAv < p@p v for all fuzzy h-bi-ideals p, v of R.

(3) pAv < pey v for fuzzy h-bi-ideal p and h-quasi-ideal » of .
(4) p A v < py v for fuzzy h-quasi-ideal p and h-bi-ideal v of R.
(5) pAv < pey v for all fuzzy h-quasi-ideals p, v of R.

1.13 Prime h-ideals

Definition 66 [49] An h-ideal P of R is called prime if P # R and for any h-ideals
A, B of R from AB C P it follows AC P or B C P.

Definition 67 [{9] A fuzzy left (right) h-ideal £ of a hemiring R is said to be prime
if € is a non-constant function and for any two fuzzy left (right) h-ideals v of R,
poy v CE implies ft C € or v CE.

Example 68 [}9] The fuzzy subset

1 ifn is even,

u(m) = { 0.2 otherwise,

defined on the set N, of whole numbers is a prime fuzzy h-ideal of the hemiring
(Nﬂl +, ) .



Chapter 2

Characterizations of hemirings
by the properties of their k-ideals

In 23] Henriksen defined a more restricted class of ideals in semirings, which is called
the class of k-ideals. These ideals have the property that if the semiring I is a ring
then a subset of R is a k-ideal if and only if it is a ring ideal. Fuzzy k-ideals are studied
in [6, 7, 15, 19]. In this chapter we characterize those hemirings for which each k-ideal
is idempotent and also those hemirings for which each fuzzy k-ideal is idempotent.

2.1 Fuzzy k-ideals

Recall that a fuzzy subset A of a hemiring R is called a fuzzy left (right) k-ideal of R
if it satisfies the following conditions.

(1) Mz +9) > A(2) AA(©)

(2) Alzy) 2 A(y) (A(zy) 2 A(2))

B)z+y=2z=A(z) > MNy)AANz), forall z,y,z € R.

If A is a fuzzy subset of Rand ¢ € [0, 1], then the subset U (\;t) = {z € R: A(z) >t}
is called the level subset of A.

Proposition 69 Let A be a non-empty subset of a hemiring R. Then a fuzzy subsel

A of R defined by
t fzeA

s otherwise

M(z) = {

where 0 < s <t <1, is a fuzzy left (right) k-ideal of R if and only if A is a left (vight)
k-ideal of R.

Proof, Straightforward. =

16
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Proposition 70 A fuzzy subset )\ of a hemiring R s a fuzzy left (right) k-ideal of R
if and only if each non-empty level subset of R is a left (right) k-ideal of R.

Proof. Suppose that A is a fuzzy left k-ideal of R and t € (0, 1] such that U (A; t) #
¢. Let a,b € U (A;t), then A(a) > t and A(b) > t. As A(a+b) > A(a) A A(b), so
A(a+b) > . Hence a +b € U(At). For r € R, A(ra) > A(a) so A(ra) > t. This
implies ra € U (A;t). Hence U (A;t) is a left ideal of R. Now let z 4 a = b for some
a,b € U(A;t), then A(a) > ¢ and A(b) > t. Since A(z) > A(a) A A(b), so A(z) > t.
Hence x € U (A;t). Thus U (A;t) is a left k-ideal of R.

Conversely, assume that each non-empty subset U (A;t) of R is a left k-ideal of
R. Let a,b € R be such that A(a+b) < A(a) A A(b). Take t € (0,1] such that
AMa+b) <t < A(a)AAX(b), then a,b € U(Xt) but a+b¢ U()t), a contradiction.
Hence A(a+b) > A(a) A A (D).

Similarly we can show that A (ab) > A (b).

Let z,y,z € R be such that = 4y = z. If possible let A (z) < A(y) A A (2). Take
t € (0,1] such that A(z) <t < A(y) AX(z), then y,z € U(A;t) but = ¢ U (A;t), a
contradiction. Hence A(z) > A(y) A A(z). Thus A is a fuzzy left k-ideal of R. =

Example 71 The set R = {0,1,2,3} with operations of addition and mulliplication
giwen by the following Cayley tables

+(0]11]12]3 0f1]12]3
0]0)112(3 01010(0|D
1 (111123 | GO N A
212|223 2(0(1(1]1
3 13|3(3]2 3(0]1]1(1

is a hemiring. Ideals in R are {0}, {0,1}, {0,1,2}, {0,1,2,3}. All ideals are k-ideals.
Let ty,t2,t3,t4 € (0,1 such that ¢; > 12 > t3 > 4.
Define A : R = [0,1] by A(0) =t;, A(1) =12, A(2) =t3 and A(3) =14

Then
{0,1,2,3} if t <ty

{0,1,2}  if ta<t<ts

Unt)=4  {0,1} if t3<t<t
{0} if o<t <ty
& if t>14

Thus by Proposition 70, A is a fuzzy k-ideal of R.
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2.2 k-product of fuzzy subsets

In this section we define k-product and k-sum of fuzzy subsets of a hemiring R. This
product and sum has the property that if A and p are fuzzy left (right) A-ideals of R,
then A ¢ 2 and A 4 p are fuzzy left (right) k-ideals of R

Definition 72 The k-product of two fuzzy subsets p and v of R 15 defined by
m m
A\ .u(ai)] AN U(bi)] A

V =1 j=]

m n -]
43 abi=3 ab, A #(a3)
i=1 i=1 j=1 =1

Il

(1 O v)(x)

n
t

m
0 ifz can not be expressed as  + Zaibg = a;bj.
i=1 j=1

and (p O v)(x)

By direct calculations we obtain the following Proposition.
Proposition 73 Let p,v,w, A be fuzzy subsets of R. If p < w and v < A, then
Bk v < w O A
Lemma 74 Let R be a hemiring and A,B C R. Then x; O xp = x,AAg

= LA
Proof. Let z € R. If z € AB, then xﬁ () =1and z + ) pigi = Y, p;q; for
=1

i=]

some p,-,p;- € A and g¢;, q;- € B. Thus we have

[/\ m(a‘)lf\[/\ xp(bi)]A

(x4 @k xg) (2) = \ i=1 i=1
o1 8 o= 55 (A xala) M/\ X (b))
=1 §=1 J =1
/\ A(Pr)l"l/\ xa (@))A

/\ xa(;)] A I/\ x5(a;)]

A.B

Ifz¢ ﬁ, then ATB‘ = 0. If possible, let (x4 ®k xg) (z) # 0. Then
(A xalaa)] ATA xa(®)]A

(x4 Ok xg) (x) = V = ' o ' # 0.
243 abim 3> o8 [A XA(“j)]/\[/\ xp(b;)]
i=1 =t 17 j=1 =1
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Hence there exist p;, q:, p;,q; € R such that

m n
z+ ) PG = ) P
i=1 J=1

and - .
(A xa @) A LA x5 (2]
i e #0,
(A xa®)I AL x8(2))]
j=1 j=1
that is

xa (P0) = xa(p;) = x5 (@) = xplg;) =1,

' . =
hence p;,p; € A and ¢i,q; € B, and so z € AB which is a contradiction. Thus we
have (x4 Ok xp) (z) = 0 = x,~ (2).
Hence in any case, we have (x4 Ok xpg) (%) = xﬁ (z). =

Theorem 75 If A, p are fuzzy k-ideals of R, then XA O p is a fuzzy k-ideal of It and
AC b < AA .

Proof. Let A, i be fuzzy k-ideals of R. Let z,y € R, then
@] | A ue] o

(A Ok p)(z) = Fx
] /=\ H(bj)]

«<
'>= E>3

[, ]
-+
™
&
£
1
™
=]

o
Ly
I

and [

(A Ok p)(y) = V

P q ot
ut ) adi=3] qd;
k=1 =1

Thus _
R x| a[ A wea]
(A Ok p)(=) A (A O p)(y) = \V/ T
z+élnibi=i“;"; | jélA(aj)} Jél #(b )}
L/_\ A(Ck) A [i\l r(di) | A

A V

q
v+ ﬁ cx d&='): cpdy
=1

] e
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B m 1 [ m
| A x| A | A we]
=] 3 _l':]
n [
V /\ Aay) | A /\ u[b A
x+‘§"_l,| agb; Z“: ajb F+k)5 Ctdk=fi cpdy kAl ’\(ck) A /\ H(dk) A
= = =] =] bt L
[A ,\(q)] A uid)

Since for each expression z + E aib; = ): b and y + Z Ccrdy = E ¢,d; we have

i=]

=1

z+y+2ab,+ Zc,gdk— Ea_?bj+2c,d;,soweha.ve
k=1

(A Ok p)(z) A (A Ok p)(y) <

Vv

z+y+ Eu:l el!l='i] E:f:
= (A0 p)(z +y)-

Similarly,(A O p)(z) = V

<

<

L1 L T
4+ E tl.'bi= Z “jbj
7 =]

V

m n I
4+ Y aib= E“ihj
i=1 =1

V

L oy
k=1 i=1 =

= (A G p)(z1).

Analogously we can verify that (A O p)(rz) > (A @k p)(z) for all 7,z € R. This
means that A @y p is a fuzzy ideal of R.
To prove that = 4+ a = b implies (A @y p)(z) > (A @k p)(a) A (A Ok p1)(b), observe

‘H'Z“‘b' Za:b.? and b-l-zckdk--z Cqlly,

together with o 4 a = b, gives x | a + Z aib; = b+ ): a;b;. Thus

that

j=1

A A(aj)} A [/\ ;L(b)

A Acal-)] A A s

|

A Aeo)] A [AI )|

’/;\1 ,\(a,.)] A [/:\1 y(b;r)]

[ [k{z\l A{gk)] . L‘=]

r
A plhie)| A

[/:\1 N, )] A LZ.\ (ki)

=] =]

n m
T+ Za;b;» =b+ Za,-b,-

[A Aes)| A [)’\ ufa)| A
A x| a | A ut

(2.1)
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and, conscqucnl ly,

ﬂ:-{-zabj+ )_,(‘Ldk—b'f‘ Zbkdl+zub
i=

P-‘]w:

Cytdy + Ea,

aib; + Z%q
1 q=1

@+ Za_._,bJ + Zchdg Za,b, + Z (2.2)

i=1

1

)
Il

D"]S

T

Therefore

Now, we have

i}——n\l ,\(ai)] g igl ,u(bi)} .

M'E’, a‘b“=’{§1ﬂ;b} A ,\(a.;)} A ’:R p(b;)]
j=1 i=1

Lp '\(Ck)] A LK p(dy) | A

(A Ok p)(a) A (A Ok p1)(b) =

>
<
' ' &=
Il }-n'"-

b+ Z': ckd';‘={: c;d; ,\(Cl}:l A [A ﬂ-(d')
m ] 'm
( [ [.-i\: M| A | A ,@,-)1 "0
A NG| A | A uE)| A
= V i I
n-i-[}::‘:. n;b.-:JI::] oL, Haﬁu "‘""ﬁi ! k/\ Aer) [ A k/\] n(ri:.) A
=] =, _q
A ] n A

9 [Axwﬂ [ A ntw] A

..—.+§1 g.h.=t‘z::l g¢hy [l/=\1 Mo ] LQ! )
= (A Ok p)(z)
Thus (A p)(a) A (A O p)(b) < (X Ok p)(z). Hence (A O ) is a fuzzy k-ideal of
R.
By simple calculations we can prove that AGg p < AAp. =

IA

Corollary 76 If A s fuzzy right k-ideal of R and p a fuzzy left k-ideals of R, then
AOkp < AAp.

Definition 77 The k-sum X+ p of fuzzy subsets X and p of R is defined by

(A +x p) (z) = sup [Aa1) A Maz) A p(br) A p(b2)]
x+(ay-+by)=(az4-ba)



2. Characterizations of hemirings by the properties of their k-ideals 22

where x,a;, b],ag, by € R.
Theorem 78 The k-sum of fuzzy k-ideals of R is also a fuzzy k-ideal of R.
Proof. Let A, p be fuzzy k-ideals of R. Then for z,y,r € R we have

(A +i p) () A (A +r 1) (y) = V [A@1) A Aaz) A p(by) A ﬂ(bz)l]

z4(ay+by )=(az+b2)

A [ \V/ [A(a) A A(ah) A p(b)) A (b))
v+ (a4, )=(ah+b5)

V ( Aa1) A A(az) A p(by) A p(b2)A )
Aa}) A Alah) A u(By) A p(bh)

=+ (ay + ) = (az + ba)
v+ (aj + b)) = (af + by)

v ( AMai +a}) A Mag + ah)A )

<
sslss st ¢ AL ER)ANE- )
v+ (a) + b)) = (a} + b))
(z+y)+(cy+dy )=(ca+d2)
= (A+kp) (z+y).
Similarly,
(A p)(z) = V [A(a1) A Alaz) A u(by) A p(b2))

z+(ay+b1)=(az-+b2)
V [Mray) A Mrag) A p(rby) A p(rby))
z--(ay+b1)=(az+b)
< V [Alay) A Mag) A (b)) A p(b3)]
ra(af +b))=(af+t})
= (A i p)(rz).

Analogously, we can verify (A 45 p)(z) < (A4, p)(zr). This proves that (A 4 u)
is a fuzzy ideal of H.

Now we show that x + a = b implies (A +x p)(z) > (A +x p)(a) A (A +, p2)(b). For
this let a + (ay + b1) = (az + b2) and b+ (¢; + d1) = (¢z2 + dg) Then,

IA

z+a+(c +dp) =(c2 + da)

whence

z+a+ (e +dy)+ (ap +by) = (ca+da) + (ay + by)
and

z 4+ (a+ay +b1) + (a1 +dy) = (e2 + d2) + (a1 + by).
Then

@+ (ag + ba) + (1 +dy) = (c2 + dp) + (a1 + by).
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Thus
z+ (az +e1)+ (b +dy) = (a1 + ) + (b + da).

Therefore
(At i) (2) A (A 1) (B) = [ \ [Aar) A Aaz) A p(by) A #(bz)]]

a+(ay+by)=(az+b2)

A [ \Y [Ale1) A Mez) A p(dr) A #(dz)]‘
b-(cy+dy )=(ca-tdz)
,\(al) A /\(02) A ,u.(bl)

" V A(B2) A Mer) A A(e2)
a+ (ay +b1) = (a2 + b2) Apldy) A plda)
b+ (e1 +dy) = (e2 +da)
2 V ('\(324-61)/\)\(&14*02)/\)
3 b Y o i i (ba + di) A p(by +dy)
b+ (e +di) = (c2 4+ dz)
< Vo M@ AM) A p(t) Ap()]
z+(a’+b' )=(a" +b")
= (A +k p)().

Thus A+ o is a fuzzy k-ideal of R. w

Theorem 79 If i is a fuzzy subset of a hemiring R, then the following are equivalent:

(a) p satisfies (1) p(z+y) > min{p(z),p(y)} and
(2) z+a=b= p(z) > min{x(a),u(b)}
(b) p+ep<p
Proof. (a) = (b) Let = € R, then
(i p) (x) = V [#(@1) A p(az) A p(br) A p(b2)]
z-+(ay-+b1)=(az-+bz)
< V [1#(ar + az) A u(by +b2)] (by (1))
x4(ay by )=(az +bz)
< p(=) (by (2)
Thus g+ p < .
(b) = (a) First we show that p(0) > p(z) for all z € R.
pO 2 (e 0=\ [u(@r) Aplaz) A (i) A u(ba)]
0-+(ay-+b1)=(az-+b2)
>p(z)Ap(z)Ap(z)Ap(z) because 0+ z+ax =2+
= p(z).
Thus p£(0) > p(z) for all z € R.
Now

p(z+y) > (p+ep) (z+y)
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- V [1(a1) A p(az) A p(br) A p(bz)]
aty+(ay -+ )=(az+bs)
> p(0)A p(0)A p(z)Ap(y) because x4y +0+0=z+y

= p(x) A pu(y) (because i (0) > pu(z) for all z € R).
Again

v

(2 5 ) ()
V [1(ar) A plaz) A p(br) A pe(ba)]

x(ay by )=(az+bs)

p(z)

Ifz+a=0>bthen 24+a+0=>b+0 and so

because 1 (0) > p(x) ) .

p(z) 2 p(a) Ap(0) A p(b) A p(0) = p(a) A pu(b) ( forallz € R

Lemma 80 A fuzzy subset ju in a hemiring R. is a fuzzy left (right) k-ideal if and only
if

(1) p+pp < pand

(2) xpOkn<p (nOkxp < p)

Proof. Let p be a fuzzy left k-ideal of R. By Theorem 79, u satisfies (1). Now we
prove condition (2). Let z € R. If (XR Ok i) (z) = 0, then (XR Ok pt) (:t:) < (u) (z).

Otherwise, there exist elements a;, b;, a J, b € R such that z+4 Z a;b; = Z a; b Then
=1

we have
A XR(“I) A #(b)
(xr Ok ) (z) = \/ = i
I+§:1 n-b.'=j);1 ,;,,; A XR(“ J A A p(b; )]
=V |[Auea] A [/_\ (¥ )”
z+‘§ a¢ ﬁé at - -

IA
<

el ]

IA
<

(_El aibi) A p( _21 ﬂ;b})]
= J=

:+E aibi= }: n'f B
< V (@) = p(z).

z-l-}: a; .—E aj j

=1
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This implies that g O p < p.

Conversely, assume that the given conditions hold. In order to show that yu is a
fuzzy left k-ideal of R it is sufficient to show that the condition e (zy) > p(y) holds.
Let z,y € R. Then we have

A ntad] a| R oo
1(zy) 2 (xp Ok p) (zy) = V 3
IL“"E aibi= Z a; b

,&"‘“}"J A L/:\l .U(b})]

since zy + Oy = zy, so p(zy) > pu(y) and 50 Ju is a fuzzy left k-ideal of R. =
Now we prove a characterization of k-regular hemirings.

Theorem 81 A hemiring R is k-reqular if and only if for any fuzzy right k-ideal p
and any fuzzy lefl k-ideal v of R we have pOp v = p A v.

Proof. Let R be a k-regular hemiring and p,» be fuzzy right k-ideal and fuzzy
left. k-ideal of R, respectively. Then by Lemma 80, we have p Ok v < p O xg < nt
and pOr v < xp Or v < v. Thus p Ok v < pAv. To show the converse inclusion, let
x € R. Since R is k-regular, so there exist a,a' € R such that z + zaz = za'z. Then
we have

‘ p(a;)l A {/\ v(b)| A

i=1

(1 O v)(x) = \/ = .
x4 }'i a;bi= ): “} /\ J‘(a;):l A [A "'(b;)}
§=1

> min {p.(:m) (za’), v (:r)} > min{p(z),v (@)} = (pArv)(z).
This implies that O v > p A v. Therefore pp O v = p A v.
Conversely, let C, D be any right k-ideal and left k-ideal of R, respectively. Then
the characteristic functions x¢, xp of C, D are fuzzy right k-ideal and fuzzy left k-ideal
of R, respectively. Now, by the assumption and Lemma 74, we have

X = Xc Ok Xp = Xc N XD = Xonp-
cD "
’.A-\ - . .
So, CD = Cn D. Hence by Theorem 42, R is k-regular hemiring. =

2.3 Idempotent k-ideals

From Theorem 42 it follows that in a k-regular hemiring every k-ideal A is k-idempotent,
—

that is AA = A. On the other hand, in such hemirings we have A ©x A = A for all

fuzzy k-ideals A, Fuzzy k-ideal with this property will be called k-idempotent.
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Proposition 82 The follouing statements are equivalent for a hemiring R:
1. Each k-ideal of R is idempotent.
9. ANB=AP for each pairof k-ideals A, B'of B.
3. z€ m for every = € RH.
4. X C m for every non empty subset X of R.
5. A= m for every k-ideal A of R.
If R is commutative, then the above assertions are equivalent to
6. R is k-regular,

Proof. (1) = (2) Assume that each k-ideal of R is idempotent and A, B are k-
ideals of R. By Lemma 11, AB C AN B. Since AN B is a k-ideal of R, so by (1)
ANB={ANB)ANB) C AB. Thus ANB = AB.

(2) = (1) Obvious.

(1) = (i!) Let z € R. The smallest k-ideal containing = has the form o> =

Rz + 2R + Rz R + Noz, where N, is the set of whole numbers. By hypothesis < z > =
f_A_'\

Thus z € (Rz + zR + RzR + Nez)(Rz +zR + RzR + No:rq)‘ C ’RTHAR.TR C m
(3) = (4) This is obvious.

(4) = (b) Let A be a k-ideal of R. Then

T= AC RARARC_:’ZEQ’-:;\:A. Hence A = RARAR.

(5) = (1) This is obvious.

If % is commutative then by Theorem 42, (2) 4> (3). =

Proposition 83 The following statements are equivalent for a hemiring R.

1. Each fuzzy k-ideal of R is idempotent.

2. Ak = A A pufor all fuzzy k-ideals of R.
If R is commutative, then the above assertions are equivalent to

3. R is k-regular.
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Proof. (1) = (2) Let A and p be fuzzy k-ideals of R. By Proposition 73, (A A
1) Ok (AA p) <A@y p. Since A A pis a fuzzy k-ideal of R, so by hypothesis A A p is
idempotent. Thus AA g = (AAp) Ok (AAp) € A@g . By Theorem 75, AOg 1 < AA 1.
Thus A Gy je= A A .

(2) = (1) Obvious.

If R is commutative then by Theorem 81, (2) < (3). =

Theorem 84 Let R be a hemiring with identity 1, then the following assertions are

equivalent:
1. Each k-ideal of R is idempotent.
2. AnB= :‘-{F for each pair of k-ideals A, B of R.
3. Bach fuzzy k-ideal of R is idempotent.

4. N @O = XA p for all fuzzy k-ideals of R.

Proof. (1) & (2) By Proposition 82.
(3) « (4) By Proposition 83.
P
(1) = (3) Let = € R. The smallest k-ideal of R containing = has the form Rz R. By
f_%

v N gy pmm—Ne—
hypothesis, we have RzR = (RzR)(RzR) = RzRRzR. Thus @ € RzR = RzRRxR,
this implies

m n

T+ Z rirsiu;rt; = Z r;zs;u;:rt;
i=1 i=1

for some 7y, si, Ui, ti, r;, s},u},t} € R.

As MNz) < Mrizs;) and A(z) < Mu;zt;) for each i € {1,2,...m}, so

AMz) < /\ AMrizs;) and Az) < /\(wzt,-).
i=1 i=1

Therefore Az) < [/\ A(rimsi)] A [igl(mmt;)J.

Similarly A(z) < 7\ A(r}zs})] A [;\ z\(u;a:t})J.
=1 j=1
Therefore ; i
Az) < {_A A(ri:r:Se)] A [A(w:cts) A [R ,\(r}m;)J A [ \ A(u}mt})}
1=1 i=1 J=1

| [7{ Mrizss)| A Z\l(u,-:zt;)]/\

= =]
=]

< V -

x-l-z r.':ami:h:jgl TiEs Uty

i=1

;\ )«(r;:::s;-) A R A(u;-xt;)]
7=1 1=1
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= (A @k A)(=).
Hence A < A @ A. By Theorem 75, A@ A < A Thus AGOp A = A.
(3) = (1) Let A be a k-ideal of R, then the characteristic function x4 of A is a

=~
fuzzy k-ideal of R. Hence by hypothesis x4 = x4 Ok X4 = Xﬁ. Thus A= AA. =

Theorem 85 If each k-ideal of R is idempotent, then the collection of all k-ideals of
R s a complete Brouwerian latlice.

Proof. Let L be the collection of all k-ideals of R, then Ly is a poset under
the inclusion of sets. It is not difficult to see that L is a complete lattice under the
operations LJ, N defined as AU B = m and ANB=AnNB.

We now show that Lp is a Brouwerian lattice, that is, for any A, B € L, the set
Lr(A,B)={I € Lr|ANI C B} contains a greatest element.

By Zorn's Lemma the set Lp(A, B) contains a maximal element M. Since each

~ —~—
k-ideal of R is idempotent, so AI = ANI C B and AM = AnNM C B. Thus
,—J\——.—.\

—— ~= ~
Al +A~M‘ C B. Consequently, A +AMCc B =B.
g Pt S
Since [ + M = IUM € Lg, for every = € I + M there exist 11,19 € I, my,mp € M
such that & +1; + my = 12 + my. Thus

dx + diy + dmy = dip + dmg

f_“\—\
for any d € D € Li. As diy,dip € DI, dmy,dmg € DM, we have dx € DI + DM,
/_M'—-\

ety et e I Ay ——
which implies D(I + M) € DI+ DM € DI + DM € B. Hence D(I+ M) C B.

r————
o N ety : ——
This means that DN (I + M) = D(I+ M) C B, ie., I+ M € Lr(A,B), whence
~ ,-——-?
T+ M = M because M is maximal in Lr(A,B). Therefore IC I CI4+M=M
for every I € Lg(A,B). =

Corollary 86 If each k-ideal of R is idempotent, then the lattice Lr of all k-ideals of
R s distributive.

Proof. Each complete Brouwerian lattice is distributive (cf. [11], 11.11). =
Theorem 87 FEach fuzzy k-ideal of R is idempolent if and only if the set of all fuzzy

k-ideals of R (ordered by <) forms a distributive lattice under the k-sum and k-product
of fuzzy k-ideals with A Gy pp= A A p.

Proof. Suppose that each fuzzy k-ideal of R is idempotent. Then by Proposition
83, AOp = AA p. Let FLi be the collection of all fuzzy k-ideals of R. Then FLg
is a lattice (ordered by <) under the k-sum and k-product of fuzzy k-ideals.
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We show that (A ©p 0) 4+, gt = (A +x p) O (0 4k ) for all \,pu,6 € FLi. Let
= € R, then
(A Ok 6) +i 2) (2) = ((A A 8) +& ) (2)

= \/ [(AA8)(a1) A (AAB)(az) A p(br) A j(bs)]
z4-(ny by )=(az+b)
- \V [Ma1) A Aaz) A p(br) A p(bz) A 8(ar) A 8(az)]

z+(ay+b)=(az-+b2)

V [\(a1) A Aaz) A u(by) A #(bz)l]

z+(ay+by)=(az+bz)

A V [6(a1) A 6(az) A (i) A #(5‘2)]}
xd-(ay by )=(az+ba)
= (A i 1) (x) A (8 +x p)(z)
= [(A +x ) A (8 +5 p)] (=)
= ((A & 1) Ok (6 +x 1)) (2).
So, FLp is a distributive lattice.
The converse is obvious. ®

1l

2.4 Prime k-ideals

A proper (left, right) k-ideal P of R is called prime if for any (left, right) k-ideals A,
Bof R, AB C P implies A C Por B C P. A proper (left, right) k-ideal P of R is
called irreducible if for any (left, right) k-ideals A, B of R, AN B = P implies A = P
or B = P. By analogy a non-constant fuzzy k-ideal § of R is called prime (in the first
sense) if for any fuzzy k-ideals A, p of R, A ®p p < & implies A < § or p < 4, and
irreducible if AA =6 implies A =6 or p=94.

Theorem 88 A left (right) k-ideal P of a hemiring R with identity is prime if and
only if for all a,b € R from aRb C P it followsa € P orb e P.

Proof. Assume that P is a prime left k-ideal of R and aRb C P for some a,b € R.
A A
Obviously, A = Ra and B = Rb are left k-ideals of R generated by a and b,

e I o S i O i ~ =
respectively, So, AB C AB = Ra Rb = RaRb C RP C P, and consequently
ACPooBCP.IfACP,thenae P. If BC P, then be P.
The converse is obvious. =

Corollary 89 A k-ideal P of a hemiring R with identity is prime if and only if for
all a,b € R from aRb C P it followsa € P orbe P.
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Corollary 90 A k-ideal P of a commutative hemiring R with identity s prime if and
only if for all a,b € R from ab € P it followsa € P orb e P.

The result expressed by Corollary 89, suggests the following definition of prime

fuzzy k-ideals,

Definition 91 A non-constant fuzzy k-ideal § of R is called prime (in the second
sense) if for all t € [0,1] and a,b € R the following condition is satisfied:

if §(azb) > t for every = € R then §(a) >t or §(b) > t.

In other words, a non-constant fuzzy k-ideal § is prime if from the fact that azb €
U(d;t) for every = € R it follows a € U(d;t) or b € U(6;t). It is clear that any fuzzy
k-ideal is prime in the first sense is prime in the second sense. The converse is not

frue.

Example 92 In an ordinary hemiring of natural numbers the set of even nwmbers

forms a k-ideal. A fuzzy set

1 i n=0,
dn)=<( 05 if n=2k#0,
0.3 if n=2k+1

is a fuzzy k-ideal of this hemiring. It is prime in the second sense but it is not prime

in the first sense.

Theorem 93 A non-constant fuzzy k-ideal 6 of a hemiring R with identity is prime
i the second sense if and only if each its non-empty proper level set U(d;1) is a prime
k-ideal of R.

Proof. Suppose 4 is a prime fuzzy k-ideal of R in the second sense and let U(4; t)
be its arbitrary proper level set, i.e., # # U(4;t) # R. If aRb C U(4;1), then §(azb) > t
for every =z € R. Hence d(a) > t or §(b) > t, i.e., a € U(6;t) or b € U(d;t), which, by
Corollary 89, means that U(4;t) is a prime k-ideal of R.

To prove the converse, consider a non-constant fuzzy k-ideal § of R. If it is not
prime then there exist a,b € R such that §(azb) > t for all z € R, but d(a) < t and
8(b) < t. Thus, aRb C U(d;t), but a ¢ U(;t) and b ¢ U(6;t). Therefore U(4;t) is not
prime, which is a contradiction. Hence § is a prime fuzzy k-ideal in the second sense.
]

Corollary 94 The fuzzy set Ay defined in Proposition 69, is a prime fuzzy k-ideal of
R (with identity) in the second sense if and only if A is a prime k-ideal of R.
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In view of the Transfer Principle the second definition of prime fuzzy k-ideal is

better. Therefore fuzzy k-ideals which are prime in the first sense will be called k-

prime.

Proposition 95 A non-constant fuzzy k-ideal § of a commutative hemiring R with
identity s prime if and only if 6(ab) = d(a) V §(b) for all a,b € R.

Proof. Let ¢ be a non-constant fuzzy k-ideal of a commutative hemiring R with
identity. If §(ab) = t, then for every x € R, we have d(azb) = §(zab) > d(x)Vd(ab) > t.
Thus 6(azb) > t for every z € R, which implies §(a) > t or §(b) > t. If §(a) > ¢, then
t = d(ab) > d(a) > t, whence d(ab) = 6(a). If §(b) > t, then, as in the previous case,
d(ab) = &(b). So, é(ab) = d(a) v 4(b).

Conversely, assume that §(ab) = d(a) vV §(b) for all a,b € R. If §(azb) > t for every
z € R, then replacing = by the identity of R, we obtain §(ab) > t. Thus é(a)Va(b) > t,
i.e.,, 6(a) > t or §(b) > t, which means that § is prime. ®

Theorem 96 Every proper k-ideal of a hemiring R is contained in some proper irre-
ducible k-ideal of R.

Proof. Let P be a proper k-ideal of R such that a ¢ P. Let {FP,|a € A} be
a family of all proper k-ideals of R containing P and not containing a. By Zorn’s
Lemma, this family contains a maximal element, say M. This maximal element is an
irreducible k-ideal. Indeed, let M = P3N Ps for some k-ideals Pg, Ps of R. If M is a
proper subset of Pg and Fj, then, according to the maximality of M, we have a € Py
and a € Ps. Hence a € Pg N P; = M, which is impossible. Thus, either M = Fg or
M=PF; m

Theorem 97 If all k-ideals of R are idempotent, then a k-ideal P of R is irreducible
if and only if it is prime.

Proof. Assume that all k-ideals of R are idempotent. Let P be an irreducible
k-ideal of R. If AB C P for some k-ideals A, B of R, then by Proposition 82, ANB =
A AN ——

AB C P = P. Thus (ANB)+ P = P. Since Ly is a distributive lattice, so
P=(ANB)+ P = (A+ P)Nn(B + P). So either A+ P= P or B+ P = P, that is
either AC Por BC P.
Conversely, if a k-ideal P is prime and AN B = P for some A, B € Lpg, then
=
ABC AB = ANB=P. Thus AC Por BC P. But PC A and P C B. Hence
A=PorB=P. m

Corollary 98 Let R be a hemiring in which all k-ideals are idempotent. Then each
proper k-ideal of R s contained in some proper prime k-ideal,
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Theorem 99 Let R be a hemiring in which all fuzzy k-ideals are wdempotent. Then
a fuzzy k-ideal of R 1s irreducible if and only if it is k-prime.

Proof. Assume that all fuzzy k-ideals of R are idempotent and let § be an arbitrary
irreducible fuzzy k-ideal of R. We prove that it is k-prime. If A ©p 0 < & for some
fuzzy k-ideals A, 1 of R then also A A p < 4. Since the set FLp of all fuzzy k-ideals
of R is a distributive lattice, we have & = (A A p) +1 § = (A +x 6) A (p 4+ 0). Thus
A4 d =40 or g+, d=4. This implies A < ¢ or o < 4. Hence § is k-prime.

Conversely, if § is a k-prime fuzzy k-ideal of R and AAp = § for some A, p € FLR,
then A @y = d, which implies A < § or p < 4. Since d = A A p1, so we have also d < A
and § < g, Thus A =6 or = 4. So, § is irreducible. =

Theorem 100 The following assertions for a hemiring R are equivalent:

(1) Each k-ideal of R is idempotent.

(2) Each proper k-ideal P of R is the intersection of all prime k-ideals of R which
contain P.

Proof. (1) = (2) Let P be a proper k-ideal of R and let { P, | @ € A} be the family
of all prime Ak-ideals of R which contain P. Theorem 96, guarantees the existence of
such ideals. Clearly P C NaeaPa- If a ¢ P then by Theorem 96, there exists an
irreducible k-ideal P, such that P C P, and a ¢ F,. By Theorem 97, F, is prime. So
there exists a prime k-ideal P, such that a ¢ F, and P C F,. Hence NP, C P. Thus
P =NF,,

(2) = (1) Assume that each k-ideal of R is the intersection of all prime k-ideals of
R which contain it. Let A be a k-ideal of R. If’::l? = R, then we have A = R, which

= =
means that A is idempotent. If A? # R, then A? is a proper k-ideal of R and so it
= 5
is the intersection of all prime k-ideals of R containing A% . Let A? = NF,. Then
A=
A? C P, for each a. Since P, is prime, we have A C P,. Thus A C NP, = A?. But

~~ AN
A CA Hence A= A?. =

Lemma 101 Let R be a hemiring in which each fuzzy k-ideal is idempotent. If A is
a fuzzy k-ideal of R with A(a) = a, where a is any element of R and o € (0,1], then
there exists an irreducible k-prime fuzzy k-ideal § of R such that A < § and §(a) = a.

Proof. Let A be an arbitrary fuzzy k-ideal of R and a € R be fixed. Consider the
following collection of fuzzy k-ideals of R

B = {p|p(a) = Aa), A< p}.
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B is non-empty since A € B. Let F be a totally ordered subset of B containing A, say
F={li|ieT}.
We claim that \/ A; is a fuzzy k-ideal of R.
i€l
For any =,y € R, we have

(ﬂ\a/: ,\.-) (z) A (,-\e/; A,-) (w)= (il/’ A.-(..-—.)) A (,-g, A,-(y))

=V (A=) A A(»)

i,Jel

g \Z () V A=) A (aly) V A3 (0))
i

< \éI(Mw+y)VAJ(~'ﬂ+y))

< Va4 = (V3 @)
el iel

Similarly (-};/: A,—) (z)= :‘!.' Ai(z) < ig{ Ai(zr) = (1}5(’ A.-) (zr)
d (V A;) (z) < (.—}!1 A,‘) (rz) for all z,r € R.

iel
Thus V A; is a fuzzy ideal.
iel
Now, let z 4+ a = b, where z,a,b € R. Then

(1)5/)' l\‘) (a) i (lg' A') (b) = (I!f Ai(m)) i (J\E/I(Aj(b))

=V (Xia) A A;(0))
(Ai(a) v Aj(a)) A (Ai(b) v Az(b))
< -\é: (Ai(@) V Aj(z))

< V) = (V) @.

et

Thus \/ A; is a fuzzy k-ideal of R. Clearly A < V Ai and (V Ai)(a) = Ma) = a.
361
Thus \/ A is the least upper bound of . Hence by Zorn s lemma there exists a fuzzy

el
k-ideal § of R which is maximal with respect to the property that A < 4 and d(a) = a.

We will show that § is an irreducible fuzzy k-ideal of R. Let § = 8; A 62, where
81,489 are fuzzy k-ideals of R. Then § < §; and § < dg. We claim that either § = §; or
0 = 69. Suppose § # 6; and d # d2. Since é is maximal with respect to the property
that §(a) = « and since § S §; and § $ 47, so §;(a) # a and d3(e) # a. Hence
a = 6(a) = (6; A d2)(a) = di(a) A d2(a) # a, which is impossible. Hence § = d§; or
d = d3. Thus 4 is an irreducible fuzzy k-ideal of K. By Theorem 99, § is k-prime. =

Theorem 102 Fach fuzzy k-ideal of R is idempotent if and only if each fuzzy k-ideal
of R is the intersection of those k-prime fuzzy k-ideals of R which contain it.
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Proof. Suppose each fuzzy k-ideal of R is idempotent. Let A be a fuzzy k-ideal of
R and let {\, | € A} be the family of all k-prime fuzzy k-ideals of R which contain
A. Obviously N < A A.. We now show that A A, < A. Let a be an arbitrary

el acA
element of R. Then, by Lemma 101, there exists an irreducible k-prime fuzzy k-ideal
d such that A\ < 6 and A a) = d(a). Hence §d € {Aq]@ € A} and A Aa < 4. So,

aEA
/\ Aa(a) < 8(a) = Ma). Thus /\ Aa < A. Therefore A Ao = A.
aEA aEA
Conversely, assume that each fuzzy k-ideal of R is the intersection of those k-prime
[uzzy k-ideals of R which contain it. Let A be a fuzzy k-ideal of i then Ay A is also
a [uzzy k-ideal of R, so
Ak A= A A, where A, are k-prime fuzzy k-ideals of R. Thus each A, contains

aEA
At A, and hence A. So A < A Ay = A@ A, but A@ A < A always. Hence A = A@g A.
aEA
"

2.5 Semiprime k-ideals

Definition 103 A proper (left, right) k-ideal A of R is called semiprime if for any
(left, right) k-ideal B of R, B?> C A implies B C A. Similarly, a non-constant fuzzy
k-ideal A of R is called semiprime if for any fuzzy k-ideal § of R, § & 6 < A implies
d< A

Theorem 104 A (left, right) k-ideal P of a hemiring R with identily is semiprime if
and only if for every a € R from aRa C P it follows a € P.

Proof. Proof is similar to the proof of Theorem 88. =

Corollary 105 A k-ideal P of a commutative hemiring R with identity is semiprime
if and only if for all a € R from a® € P it follows a € P.

Theorem 106 The following assertions for a hemiring R are equivalent:

(1) Each k-ideal of R is idempotent.

(2) Each k-ideal of R is semiprime.

Proof. Suppose that each k—ldea.l of R is idempotent. I..et A, B be k-ideals of R
such that B? C A. Then ra c A" = A. By hypothesis B = B ,s0 B C A. Hence
A is semiprime.

Conversely, assume that each k-ideal of R is semiprime. Let A be a k-ideal of R,

2 . : 2 2
then A® is a k-ideal of R. Also A2 C A?. Hence by hypothesis A C A%. But
~— —~—
A? C A always. Hence A= A?. m
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Theorem 107 Each fuzzy k-ideal of R s idempotent if and only if each fuzzy k-ideal

of R is semiprime.

Proof. For any fuzzy k-ideal \ of R we have A ®p A < A. If each fuzzy k-ideal of
R is semiprime, then A @p A < A A implies A < A @ A. Hence A @ A = A,

The converse is obvious. =

Theorem 104, suggest the following definition of semiprime fuzzy k-ideals.

Definition 108 A non-constant fuzzy k-ideal § of R is called semiprime ( in the
second sense) if for all t € [0,1] and a € R the following condition ts satisfied:

if 8(aza) > t for every = € R then d(a) > 1.

Theorem 109 A nen-constant fuzzy k-ideal & of R is semaprime in the second sense
if and only if each its proper non-empty level set U(d;1) is a semiprime k-ideal of R.

Proof. Proof is similar to the proof of Theorem 93 =

Corollary 110 A fuzzy set A4 defined in Proposition 69 is a semiprime fuzzy k-ideal
of R in the second sense if and only if A is a semiprime k-ideal of R.

In view of the Transfer Principle the second definition of semiprime fuzzy k-ideal
is better. Therefore [uzzy k-ideals which are semiprime in the first sense should be

called k-semiprime.

Proposition 111 A non-constant fuzzy k-ideal § of a commutative hemiring R with

identity is semiprime if and only if §(a%) = d(a) for every a € R.

Proof. Proof is similar to the proof of Proposition 95. =
Every fuzzy k-prime k-ideal is fuzzy k-semiprime k-ideal but the converse is not

true.

Example 112 Consider the hemiring R = {0,a,b, ¢} defined by the following tables:

+]10 a b ¢ 0 a b ¢
0[0 a b c 00 0 0 0O
ala b ¢ a al0 a b ¢
blb ¢ a b b0 b b ¢
ele a b e el|Q e ¢ «
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This hemiring has two k-ideals {0, c} and R. Obviously these k-ideals are idempo-
tent.

For any fuzzy ideal A of R and any = € R we have A(0) > A(z) > Ma). Indeed,
A0) = A(0z) > M=a) = M=za) > A(e). This together with A(a) = A(b+ b) > A(b) A
A(b) = A(b) implies A(a) = A(b). Consequently, A(c) = A(a +b) > A(a) A A(b) = A(b).
Therefore A(0) > A(¢) > A(b) = A(a) for every fuzzy k-ideal of this hemiring.

Now we prove that each fuzzy k-ideal of R is idempotent. Since A G A < A always,
so we have to show that A G A > A. Obviously, for every z € R we have

x+i§1 aibg =‘fé:1 n.; b;. pet
> sup [Me) A M) ANC) AN = Ae) A Ad) A ) AN).
sted=c'd’

Aok A)@) =  sup A (@) A A(B)) A J_/Sl (Maj) A Atb}))}

So, z+cd = ¢/d’ implies (A@k A)(x) > Ae) AMd) AN ) AXNd'). Hence 0400 = 00
implies (A ¢, A)(0) > A(0). Similarly a + bb = be implies (A G A)(a) > A(b) A A(c) =
A(b) = Ma), b+ aa = be implies (A G A)(b) > Ma) A A(b) A AM(c) = A(b). Analogously,
from ¢+ 00 = ce it follows (A 9k A)(e) = MO) A A(e) = A(e). This proves that
(A @r A)(z) > A=) for every z € R. Therefore A @ A = A for every fuzzy k-ideal of
R, which, by Theorem 106, means that each fuzzy k-ideal of R is semiprime.

Consider the following three fuzzy sets:

A0) = Me) =08, A(a)=Ab) =04,
1(0) = p(e) = 0.6, p(a) = pu(b) = 0.5,
§(0) = d(c) = 0.7, d(a)=d(b) = 0.45.

These three fuzzy sets are idempotent fuzzy k-ideals. Since all fuzzy k-ideal of this
hemiring are idempotent, by Proposition 82, we have A@gp = AAp. Thus (A@kp)(0) =
(A Ok p)(c) = 0.6 and (A @ p)(a) = (A Ok 12)(b) = 0.4. So, A ®k p < & but neither
A < dnor p <46, that is 4 is not a k-prime fuzzy k-ideal.

2.6 Prime Spectrum

Let R be a hemiring in which each k-ideal is idempotent. Let £(R) be the lattice of all
k-ideals of R and P(R) be the set of all proper prime k-ideals of R. For each k-ideal
I of R define 0y = {J € P(R): I ¢ J} and S(P(R)) = {6 : I € L(R)}.

Theorem 113 The set S (P(R)) forms a topology on the set P(R).

Proof. Since 0(gy = {J € P(R): {0} € J} = ¢, where ¢ is the usual empty set,
because 0 belongs to each k-ideal. So empty set belongs to & (P(R)).



2. Characterizations of hemirings by the properties of their k-ideals 37

Also 8g = {J € P(R): R¢ J} = P(R), because P(R) is the set of all proper
prime k-ideals of R. Thus P(R) belongs to S (P(R)).

Suppose 0;,,0;, € S (P(R)) where I} and I3 are in L(R). Then

0, Nb, ={JeP(R): Iy £ J and Iz € J}. Since each k-ideal of R is idempotent
so I1Ip = Iy N Ip. Thus 07, N6Op, = O1,n1,- So Or, N0y, belongs to I (P(R)).

Let {01 };c5; be an arbitrary family of members of G (P(R)). Then

ignﬂ!‘ = itLeJn{JE P(R): ;£ J}={Je€P(R):3l€Nsothat ;} £ J} =

g:?n"" where ignff is the k-ideal generated by iéJnI,-.

Hence S (P(R)) is a topology on P(R). m

Definition 114 A fuzzy k-ideal ju of a hemiring R is said to be normal if there exists
z € R such that p(x) = 1. If p is a normal fuzzy k-ideal of R, then p(0) = 1, hence
i is normal if and only if ;1 (0) = 1.

Theorem 115 A fuzzy subset § of a hemiring R is a k-prime fuzzy left (right) k-ideal
of R if and only of

(i) 6°={z€ R:4(zx)=4(0)} is a prime left (right) k-ideal of R.

(i2) Imd = {d(x) : z € R} contains exactly two elements

(iii) 6(0) = 1.

Proof. Let 6 be a k-prime fuzzy left k-ideal.

(1) Infact §° is a prime left k-ideal, because for z,y € §°, § (x +y) > 6 (z) Ad (y) =
6 (0) implies that = 4y € 6°. Also for each z € R and y € 6°, 6 (zy) = d(y) = 6(0)
implies that xy € ¢°. Now for a,b € 6° and @ € R, = + a = b. Since § is fuzzy left
k-ideal so d (z) > d(a) A d(b) = 6(0), implies that d(x) > 4(0) and 6 (z) < 4(0)
always hold, so 6 (z) = § (0) implies that z € ¢°. Hence 6° is a left k-ideal of R.

Let A, B be left k-ideals of R such that ﬁ C 46°, then x4, xp, the characteristic
function of A, B, are fuzzy left k-ideals of R, such that

XA Ok XB = X < Xo°
AB

Let us define
§(0) ifze A d(0) ifze B
= = d
Xa () 0 otherwise x5 (7) { 0 otherwise =

_Jé(0) ifzed®

M= 5 " lumiia

then x4 < 4, implies that x4 < d or xz < 4, since d is k-prime.

Thus x4 < xgo or xg < xso- Hence A C §° or B C 6°. Thus 6° is a prime left
k-ideal of R.
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(ii) Suppose that Iméd contains more than two elements. Then there exist two
elements a,b € R\&° such that & (a) # & (b). We assume that d (a) < d(b). Since §
is a fuzzy left k-ideal and b ¢ §°, it follows that § (a) < &(b) < 4(0). So there exist
r,t € [0,1] such that

da)<r<d(b)<t<d(0) (2.3)

Let v and w be fuzzy left k-ideals defined by p = rx(,) and v = tx,, where
X(a)s X() are characteristic functions of ideals generated by a and b, respectively. Then,

m n 4 !
for any = € R, which cannot be expressed in the form z + 7 a;b; = 3 a;b; , where
i=1 Jj=1

a,-,a; € (a) and b;, b_;- € (b), we have (p ® v)(z) = 0. Otherwise
Rsted] [ Rve]
po@= s
x4+ ﬁ mb;=f: c;b; /\ f"(“’})] A I:A V(b;)}
=1 j=1

=1 ] j'—”l

m T '
Since 6 is a fuzzy left k-ideal, from z + Y ajbi = ) a}bj it follows that
: =

i=1

§(z)> 8 (i a.-b.-) A ()“: a;b;) > 6 (aibi) A8 (a36;) > 5(5) A5 (B;) 27
i=] j=1

So, pgr < 4§, implies that u < 6 or ¥ < § because § is a k-prime fuzzy left k-ideal.
Therefore p(a) = r < d(a) or v(b) =t < §(b) which contradicts to 2.3. Thus, Imé
contains exactly two elements.

(#1¢) Suppose that 6 (0) # 1. Then, according to (ii), Imé = {a, A}, where 0 < a <
f < 1. Since §(0) =46(0-2) > 6(z) for all z € R, we have § (0) = 3. Thus

if %
fa)=q £ D€
a  otherwise.
Consider, for fixed a € §° and b € R\§°, two fuzzy subsets
¢t if i
el me(.a), sud il t if z€ (b)),
0 otherwise. 0 otherwise.
where0<a<r<f<t<l
It is clear that u and v are fuzzy k-ideals of R.

If = does not satisfy the equality = -+ ﬁ aib; = f: a;b;- , where a,-,a._;- € (a) and
i=1 j=1
b;, b:,- € (b), then we have (; G v)(z) = 0. Otherwise
A P-(ﬂi)] A [/\ V(b:')] A
(O v)(z) = V '=nl '=i =rAt=m
Tt A MG )] ' [/\ "“’}’]

e o j=1 F=1
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By (i) 6° is a prime left k-ideal of R. If a.g,a; € (a), then a.-,u; € 0° because
a € 6° and (a) C 6°. This implies 2 € §°, Thus 6 () = f > r = (u®k v)(z). Therefore,
pOrv <6 But p(a) =t >f =46(a) and v(b) = r > a = §(b), which gives p £ §
and v £ 4. This contradicts to the assumption that & is k-prime fuzzy left k-ideal of
R. Hence 6 (0) = 1.

Conversely, assume that the above conditions are satisfied. Then 6 (0) = 1 and
Imé = {@,1} for some 0 < a < 1. Moreover, § (z-+y) > d(z) Ad(y) for z,y € R
because if § (@ + y) < § () Ad (y) then & (z) = d (y) = 1, that is, z,y € §°, implies that
z+y € §° implies that d (z + y) = 1, which is impossible. Similarly § (zy) > § (y) since
d (y) = 1 implies zy € §°, whence § (zy) = 1. This means that § is a fuzzy left ideal of
R.Ifz+a = bfor z,a,b € R then d (z) > § (a)Ad (b) because if 6 (z) < & (a) Ad (b) then
d(a) = d(b) = 1, that is, a,b € §°, implies that z € §° implies that § (z) = 1, which
is impossible. Hence § is a fuzzy left k-ideal. ¢ is prime. Let p,r be two fuzzy left
k-ideals of R such that p®rv < é, and pu £ § and v £ 6. Assume that p(c) > 6 (c) and
v (d) > 6§ (d) for some ¢,d € R. It is possible only in the case when § (¢) = § (d) = a, i.e.
when ¢, d ¢ §°. Since §° is prime, then there exists r € R such that crd ¢ 6°. Otherwise,

e, AP oot
cld C §°, whence (Re) (Rd) C §°. So, (Rc) (Rd) € 6° = 46°, because §° is a left k-
N,
AN AN A AN
ideal of R. Moreover, (Re) (Rd) C (Re) (Rd) = (Re) (Rd). Thus (Re) (Rd) C 6°, and
i, — ey Y i

consequently (Rec) C 6° or (Rd) C §° In the first case (c) (c) C (Re) C 6°, whence
~— =

(e) €46° So,ce (e) € (c) C4° This is contradiction. Also the second case yields a
contradiction.

Let a = crd. Then § (a) = a. Thus, by the assumption

(11 ®k v) (a) < 6(a) = (2.4)

Obviously a + e¢rd = 2¢rd. Thus a + (¢) (rd) = (2¢) (rd) . Therefore for a = crd we

have o -
A p(ai)} A [/\ u(bi)] A
$=1 i=1

(n ok v)(a) = V n n ]

e Fo= g | [\ B A A V)
i= =1

j=1 j=1
>p(e)Ap(2e) Av(rd) > u(c) Av(d) > a,
since i (¢) > e and v (d) > a.
This contradicts 2.4. Hence for any fuzzy left k-ideals jo and v of R, p Op v < 4§

implies j¢ < § or v < §. This completes the proof. =

Corollary 116 Fvery k-prime fuzzy k-ideal of a hemiring is normal.
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Let R be a hemiring in which each fuzzy k-ideal is idempotent, L the lattice
of fuzzy normal k-ideals of R and 7 Pg the set of all proper fuzzy k-prime k-ideals
of R. For any fuzzy normal k-ideal A of R, we define fy = {j € FPg: A & p} and
T(FPR) = {0x: A€ Lp}.

A fuzzy k-ideal A of R is called proper if A # IR, where R is the fuzzy k-ideal of R
defined by R(z) =1, Vz € R.

Theorem 117 The set 7 (F Pg) forms a topology on the set F Pg.

Proof. (1) 0p = {,u. € FPr:d ;é ,u} = ¢, where ¢ is the usual empty set and
@ is the characteristic function of k-ideal {0}. This follows since each k-prime fuzzy
k-ideal of R is normal. Thus the empty subset belongs to 7 (F Pg).

(2) O = {p. € FPp:R % ,u;} = FPg. This is true, since FPg is the set of proper
k-prime fuzzy k-ideals of R. So g = F Pg is an element of 7 (FPg).

(3) Let 951'0.52 €ET (.FPH) with 8,482 € Lg.

Then

05, N 05, = {,u € FPr: 8y £ pand b2 £ ;;}

Since each fuzzy k-ideal of R is idempotent, this implies §162 = §; A d2. Thus
05, 05, = { € FPy: 8y f pand b3 # u} = Osins
(4) Let us consider an arbitrary family {d;},., of fuzzy k-ideals of R. Since
Uier9s, = Uier {p € FPg:d; $_ ;1} = {;z € FPg:3's k € I so that §; ;é ;:}

Note that

(Z 5,—) () = \/ {81 (a1) A 62 (az) A ....61 (br) A b2 (b) A ...}

el z4aytagt...=by+ba+....

where ay,ag,...by, by, .... € R and only a finite number of the als and b.s are not zero.
Since 6; (0) = 1, therefore we are considering the infimum of a finite number of terms
because 1's are effectively not being considered. Now, if for some & € I, dj $_ Jt, then
there exists z € R such that §y (z) > p(z). Consider the particular expression for &
in which ag = z, by = 0 and a; = b; = 0 for all i # k. We see that d; (z) is an element
of the set whose supremum is defined to be (Z o 6;) (z).

Thus (Em ai) (z) > 6k (z) > p(z). This implies (z;ier 6.—) (z) > p(z) that is

Zasr 8i é £
Hence d g i for some k € I implies Z.E: ;i ,‘1‘5 L.
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Conversely, suppose thal Ztel d; ;iE 4 then there exists an element @ € R such thal

(S ) (2) > e (2)

This means that
\/ {81 (a1) A b (ag) A ....81 (br) A G2 (b2) A ...} > ().
xta)tazt....=by4bgt....
Now, if all the elements of the set (whose supremum we are taking) are individually

less than are equal to u(z), then we have

(Zég) (z) = v {61 (ay) A dg (ag) A ....01 (by) Ada(b2) A ...}

i€l zdaytagt...=by+ba-t....
< p(z)
which does not agree with what we have assumed. Thus, there is at least one element

of the set ( whose supremum we are taking), say,
b (a’,) A b2 (a;) A.....b1 (b}) A b3 (b’,) Ao > p(z)

(= +a'1 + a’z O b’I +bf2 + .... being the corresponding breakup of z, where only
a finite number of a}s and b}s are not zero.)
Thus,

and
Iy (“‘1) A g (a;) S H (b;) A iy (b;) Asassss = fly (m;,) where p € |

So, dp (:c;,) > fy (:z:;,) it follows that d,, g u for some p € I.

Hence E._E’ d; ;é st implies that 6, % it for some p € I.

Hence the two statements (i) 3. d; g p and (i7) op i pt for some p € I are
equivalent.

Hence

Uier0s; = Uier {# € FPp:d; ;ﬁ_#} = Ujer {# €FPr:Yy 0 # #} =05 .
ierl

because, 3, d; is also a fuzzy k-ideal of R .

Thus, Uierfs, € 7 (F Pr).

Hence it follows that 7 (¥ Pg) forms a topology on the set 7Pp. =



Chapter 3

Characterizations of hemirings
by the properties of their h-ideals

In [3], J.Ahsan studied those hemirings for which each ideal is idempotent. In (5]
those hemirings are studied for which each fuzzy ideal is idempotent. In this chapter
we characterize hemirings in which each h-ideal is idempotent. We also characterize

hemirings for which each fuzzy h-ideal is idempotent.

3.1 h-intrinsic product of fuzzy subsets

Recall that the h-intrinsic product of two fuzzy subsets p and v on R is
m

sup (/\ ((ai) A (b)) A /\ (H{a;-) A u(b;))
=1

m n bt .
Tk Foaibita= Fa b4z =1
i=1 I=1

(1 O v) ()

m n
and (p®pv)(z) = 0if zcan not be expressed as = + Za,-bg +z= Za}b} + z.
=1 J=1
Theorem 118 If A and p are fuzzy h-ideals of R, then so is A @y p. Moreover,
AOpp < AA .
Proof. Let A and p be fuzzy h-ideals of R. Let z,y € R, then

m n

Gonm@ = s (A (Ma)Aub)) A A (Mag) An(t;) )
z4-i§agbi+z=‘}:lu;b;+z =1 i=1
and
P q y .
(Aon w)(y) = sup (A (o) Autdi)) A A (M) A puldy) )
y-l-k}":lng-l-z‘: lc:d;+z' k=1 =1

42
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Thus

A on )z +y) = sup ( A (Mes) Al fa)) A /\ (Ae) A ()

- LT §=
z+y+ Y eafutz=3 6, fi+=
=1 t=1

( / ;'n\ (z\(a,)/\p.(b,)/\ \)
:?‘I
A (MapauE)A
2 sup sup 3;
z+i§ﬂf5e+a=§‘,lu;b;+: y+kélckdk+z'=l§::d:+,' L,—\ (A(ck)l\ ,u(dk))
\ | Alenna) )

- sup (A (Ma) M) A A (M) A tt))

z+§“ibi+"=iﬂ;b}+; i=
i=1 i=1
q 3 ;
A sup ( A (Aex) A p(di)) A A (Me) A #(d:))
v+k§f:lchd*+z' )ic,d 2! k=1 I=1
= (A On p)(z) A erm):

Similarly,
P q " ;
(A ©n p)(zr) = sup ( A (Mgx) A p(hie)) A A ('\(91)/\.“(":))
=r+k§:igkh,,+;=tég:h:+: o b
2 sup ( (Mai) A p(bir)) A f\ ()\(a ) A p(b r))
:;+‘):'_::Iu(b iz= Zu b +z =1
> sup (A (ai) A o) A /\ (Maj) A ()
::+‘}::1u.-b{+zv=j§|ﬂ;b;+, =1
= (A oy p)(x)

Analogously we can verify that (A @ p)(rz) > (A Op p)(z) for all r € R. This
means that A @, p is a fuzzy ideal of R.

To prove that z 4 a +y = b+ y implies (A G p)(z) = (A ©n p)(@) A (A O p)(b),
observe that

1 P
a+Za‘b +z1-—z itz and b+ Y cpdi 2=y cidg 2z,  (31)
J=1 k=1 q=1

together with z 4 a +y = b+ y, gives

m+a+(za;b +z)+y= b+(zaab,+zx) +y.

i=1 =1
Thus,

I+Za_?bj+zl+y b+2a.b,+zl+y
Jj=1 i=]
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and, consequently,

L 1 m
z+ ) b+ (Y adi+zm)+z1+y=0+4+ () cd+22) + Y aibi+ 21+ y
j=1 k=1 k=1 =1
7 e " i
=) Cdg+ 22+ ) aibi+ 2z +y
q=1 i=1
m P ' '
=Y aibi+ ) cpdy + 22+ 21 +y.
IS =

Therefore,

:1:+Z bJ-!-Z:c;_d,,—l—zg—}z; +y= Za,b +Zchq+zz +z1 +v. (3.2)
k=1 i=1 =1

Now, in view of (3.1) and (3.2), we have
R 0@ e

(A On p)(a) A (A ©Op p)(b) = sup
u+‘)2¢ih+t=_g::;b;+z A /\ (A(a )/\p(b ))]

A o osup (’Z\ (Aex) A pldi)) A '/_?\1 (M) A pa( d;))
b+~)._:,lckd,. +z'=l§1c;d" gzt =
( ([ Rpeamue)r )
A (M@ A @)
= sup sup L
a+.};,]mb(+== Ea‘,b +3 b+ké“lckdg+:’=!éc:d: +2' kzl(f\(Ck)/\ h(dk)) A
\ | AGepnn) )
< ow (AGanma)a R (xenue))
z+ Z gahstz= Z gtz a
=(Ac n w)().

Thus (AG©k ) (@) A(AOK 1) (b) < (A©pp)(z). This completes the proof that (A, )
is a fuzzy h-ideal of R.
By simple calculations we can prove that A©y p < AAp. m

3.2 Idempotent h-ideals

The concept of h-hemiregular of a hemiring was introduced in [49] as a generalization of
the concept of regular semiring. From results proved in [49] (see Theorem 44) it follows
that in an h-hemiregular hemiring every h-ideal A is h-idempotent, that is AA = A.
On the other hand, Theorem 45 implies that in such hemirings we have A O A = A
for all fuzzy h-ideals A. Fuzzy h-ideals with this property is called h-idempotent.
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Proposition 119 The following siatements are equivalent:

1. Each h-ideal of R is h-idempotent.

2. AN B = AB for each pair A, B of h-ideals of R.
3. z € RzRzR for every = € R.

4. A C RARAR for every non-empty A C R.

5. A= RARAR for every h-ideal A of R.

Proof. Indeed, by Lemma 9, AB C AN B for all h-ideals A, B of R. Since AN B
is an h-ideal of R, (1) implies ANB = (AN B)(AN B) C AB. Thus ANB = AB. So,
(1) implies (2). The converse implication is obvious.

It is clear that the smallest h-ideal of R containing € R has the form

(z) = (z) = Rz + zR + RaR + Sz,

where Sz is a finite sum of z's. If (1) holds, then {z) = (z) (z) = (z)(z). Consequently,

z=0+4+2 € Rz +zH+ RzR+ Sz
= (Rz +zR+ RzR+ Sz)(Rz + zR+ RzR + Sz) C RzeRRzR C RxRzR

for every x € R. So, (1) implies (3). Clearly (3) implies (4). If (4) holds, then for
every h-ideal A of R we have A = A C RARAR C AA C A = A, which proves (5).
The implication (5) = (1) is obvious. m

As a consequence of the above result and Theorem 44 we obtain the following

characterization of h-hemiregularity of commutative hemirings.

Corollary 120 A commutative hemiring is h-hemiregular if and only if all its h-ideals

are h-idempotent.
Proposition 121 The following statements are equivalent:

1. BEach fuzzy h-ideal of R is idempotent.
2. A@n = A A pfor all fuzzy h-ideals A, p of R.

Proof. Let A and p be fuzzy h-ideals of R. Since AA p is a fuzzy h-ideal of R such
that AA pu < A and A A p < p, Proposition 31 implies (A A g) Op (A A p) < A Oy .
So, if A A pis an idempotent fuzzy h-ideal, then A A pp < A Oy, 1, which together with
Theorem 118 gives A G pt = A A pr. This means that (1) implies (2). The converse
implication is obvious. m

Comparing this Proposition with Theorem 45 we obtain
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Corollary 122 A commutative hemiring s h-hemiregular if and only if all ils fuzzy
h-ideals are idempotent, or equivalently, if and only if A @y pr = A A p holds for all its
fuzzy h-ideals A, .

Theorem 123 For hemirings with identily the following stalements are equivalent:

1. Each h-ideal of R is h-idempotent.
2. AN B = AB for each pair A, B of h-ideals of R.
3. Bach fuzzy h-ideal of R is idempotent.

4. A©p pe= A A p for all fuzzy h-ideals A, u of R.

Proof. (1) « (2) by Proposition 119, (3) <> (4) by Proposition 121. To prove
that (1) and (3) are equivalent observe that the smallest h-ideal containing = € R
has the form RzR. Its h-closure RzR is an h-ideal. Since, by (1), all h-ideals of
R are h-idempotent, we have Rzi = (RzR)(RzR) = R:L'RR:'R (Lelmna. 8). Thus
z € RzR = R:J:RR::R implies z + Y} rizsjuit; +2 =Y 0T :.':.9‘,':.-.th‘1 + z, for some
r,,sl,u,,t,, sj, “ J,z € R. But, by Theorem 118, for every fuzzy h-ideal of R we
have A ¢y A 5 A. Now

(/\(r,-msi) A z\(u.-:r:tg)).

~3

Mz) = A(z) A A(z) <
1

-
I

Also

Az) = Alz) A Mz /“\ ()\[r ms ) A XM u .zt ))
j=

-

Therefore

Az) < L}jl (Alrizss) A A(u.-ztg))] A [

e,
==

(s ,\(u;n;;)]

_Z\l rizsi) A A(ui:rt,-)]]

S sup z '
::+'E“l rizsiuicli4z= f: r;.::s;u;t;J—: A .Al (A(rjxsj) A )t('uj:t:tj ])J
i= = o
= (A Op A)(z).

Hence A < Ay, A, which proves A @, A = A. So, (1) implies (3).

Conversely, according to Proposition 26, the characteristic function x4 of any h-
ideal A of R is a fuzzy h-ideal of R. If it is idempotent, then x4 = x4 On X4 = Xa7
(Proposition 31). Thus A = AA and so (3) implies (1). =

Now we define the h-sum of fuzzy subsets of a hemiring A.
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Definition 124 The h-sum A -y, p of fuzzy subsets A and p of R is defined by

(A ) () = sup (Ma1) A Aaz) A br) A si(ba) ),
z4(ay+by ) 4z=(az+ba)+=

where z,ay,by,a9,ba, 2 € R.
Theorem 125 The h-sum of fuzzy h-ideals of R is a fuzzy h-ideal of R.

Proof. Let A, o be fuzzy h-ideals of R, Then for z,y € R we have

(A-kn 1)(@) A (A1 1) (y) = sup (Ma1) A A(az) A (vr) A (b))
zt-(ay 40y ) z=(az+by)+=

A sup (Mai) A Mag) A u(th) A (th)
w(a) kb )-F2'=(ah+by)+2'

Alay) A A(az2)

Ap(by) A (b

— I :) I r)
I+‘ﬂ1+b;)+z=(“,+{”’+z AA(E])AA(GQ)
y+(af + b)) + 2" = (aj + by) + 2 Ap(by) A p(b5)

May + a}) A Mag + ay)A )
p(by + by) A bz + )

IA

sup
z+(ar+b)+z=(0o24b2)+=
4 (0] +0) + 2 = (ah + ) 4+
< sup [Aler) A Mez) A p(dr) A pe(dp)]
(z40) +{er+edy ) 42" =(ca +dg) 42"
= (f\ +n p) (x4 y).
Similarly,
(A4 p1)(x) = sup (Ma1) A Maz) A () A (i)
z(ay +by )+-z=(az+b3) +=

< sup (,\(ml) A XNrag) A p(rby) A ;;(rbz))
z4(ay+by ) +2=(az+by)+=

< sup (Ma) A A(@§) A (W) A ()
ra4(a) +b) )+-2"=(ag +-by)4+-="

= (v p)lra).
Analogously (A 44 p)(z) < (A 44 p)(zr). This proves that (A4 p) is a fuzzy ideal
of R.
Now we show that z+a+ 2z = b+ z implies (A 45 p)(x) > (A4 i) (@) A (N 44 12) (D).
For this let a + (a; 4 b1) + 21 = (ag + b2) + z1 and b+ (¢; +dy) + 22 = (c2 + d2) + 22.
Then,

a+(ca+dy+ 2z2) + (a1 + by +21) = (a2 + by + 1) + (b+ 1 + di + 22),
whence

a+ (ay + c2) + (by + dz) + (21 + 22) = b+ (a2 + ¢1) + (b2 + dy) + (21 + 22) .
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Consequently

a+(ay +c2) + (b +d2) + (21 + 224+ 2) = b+ 2+ (ag + 1) + (ba + dy) + (21 + 22)
and
a+(ar+c)+ (b +da)+(z1+z+2z)=z+atz+(ag+c1)+(ba+dy) + (21 + 22).
Thus
z+(ag +e1)+ (b2 +di)+ (21 + 22+ 2+ a) = (a1 + 2)+ (b1 + d2) + (21 + 22 + 2+ a),
e, z+ (' + )+ 2 = (a" + V") + 2’ for some o', ¥,a", V" € R. Terefore

(A +n 1) (@)A(A 44 p) (b) = sup (1\(01) A Aaz) A p(by) A #(52)))
a+(ay+by )+z1=(ag+b2)+=1

A ( sup ()"(cl) A Aez) A p(dy) A Jl(da)))
b

+(ey+dy ) dza=(ca+da) -tz
Aar) A Maz) A p(by) A p(b2)A

= sup
o oy 4 8i) 21 = (o 4 bs) 11 ( Aler) A Mez) A p(dy) A p(d) )
b4 (1 +dy) + 22 = (c2 +da) + 22

IA

sup
a4 (ay +by)+2zy = (ag + b)) + 24
b4 () +dy) 422 = (c2 4 d2) + 22
< sup [A(@’) A A(@") A ju(t') A (b))
z4(a'+b ) +2'=(a” +b")+2'
= (A +n p) ().
Thus A4y p is a fuzzy h-ideal of R. =

Alay +ez) AAX(az+cr) A
i (b1 + dg) A p(bg + dy)

Theorem 126 If all h-ideals of R are h-idempotent, then the collection of all h-ideals
of R forms a compleie Brouwerian lattice.

Proof. The collection L of all h-ideals of R is a poset under the inclusion of sets.
It is not difficult to see that Lg is a complete lattice under operations LJ, M defined as
AUB=A+Band ANB=ANB.

We show that Lp is a Brouwerian lattice, that is, for any A, B € Lg, the set
Lr(A,B)={Il € Lr|ANI C B} contains a greatest element.

By Zorn’s Lemma the set Lg(A, B) contains a maximal element M. Since each
h-ideal of R is h-idempotent, AT = ANJ € B and AM = AN M C B (Proposition
119). Thus AT + AM C B. Consequently, AT + AM C B = B.

Since T+ M = IIUM € L, for every = € T + M there exist iy,i3 € I, my,mg € M
and z € I such that = + 1) +my 4 z = 19 +my + z. Thus

dx + diy + dmy 4 dz = dis + dms + dz
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for any d € D € Lp. As diy,dip € DI, dmy,dmy € DM, dz € R, we have
dz € DI + DM, which implies D (I+M) C DI+DM C DI+ DM € B. Hence
D (T+M) C B. This means that DN (T+M) = D(T+ M) C B, ie, T+ M €
Lp(A,B), whence I + M = M because M is maximal in Lg(A, B). Therefore I C
ICT+M=M forevery I € Lp(A,B). =

Corollary 127 If all h-ideals of R are idempotent, then the latiice L 1s distribulive.
Proof. Each complete Brouwerian lattice is distributive (cf. [11], 11.11). =

Theorem 128 FEach fuzzy h-ideal of R is h-idempotent if and only if the set of all
Juzzy h-ideals of R (ordered by <) forms a distributive lattice under the h-sum and
h-intrinsic product of fuzzy h-ideals with X Op pp= A A .

Proof. Assume that all fuzzy h-ideals of R are idempotent. Then AGp = AA p
(Proposition 121) and, as it is not difficult to see, the set FLp of all fuzzy h-ideals of R
(ordered by <) is a lattice under the h-sum and h-intrinsic product of fuzzy h-ideals.

We show that (A Gy 6) 44 o = (A +n i) ©On (6 +4 ) for all Ay, 6 € FLR. Indeed,
for any = € R we have

((A ©n 8) +n p) (z) = ((AA )+ p) (2)

B - (AA8)(a1) A (A A 8)(az) ]
- (ay +by)+2=(ag tby) 4= Ap(br) A p(bz)
_ i [ Aar) A Maz) A p(Bi)A }
z+(ar+br)+z=(az+bo)+z | A(b2) A d(ar) A d(az)

- sup [Aa1) A Aaz) A p(br) A p(bz)]
z-+(ay+by ) +z=(az+b2) +=
A sup [8(ay) A d(ag) A ju(by) A pe(ba))

x4 (ay by ) 4z=(az+b2)+=
= (A +n p)(@) A (6 +n p)(z)
= [(A+n 1) A (8 +n p)] ()
= ((A +n ) On (6 +4 p)) (z).So, FLp is a distributive lattice.
The converse statement is a consequence of Proposition 121. =

3.3 Prime h-ideals

An h-ideal P of R is called prime if P # R and for any h-ideals A, B of R from
AB C P it follows A C P or B C P, and irreducible if P # R and AN B = P implies
A =P or B = P. By analogy a non-constant fuzzy h-ideal § of R is called prime (in
the first sense) if for any fuzzy h-ideals A, j of R from A ®p p2 < 6 it follows A < § or
it < 4, and wrreducible if AA p = d implies A = 6 or pp = 4.
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Theorem 129 A left (right) h-ideal P of R s prime if and only if for all a,b € R
Jrom aRb C P it followsa € P or b e P.

Proof. Assume that P is a prime left h-ideal of R and aRb C P for some a,b € R.
Obviously, A = Ra and B = Rb are left h-ideals of R. So, AB C AB = Ra Rb =
RaRb € RP C P, and consequently A C P or B C P. Let (z) be a left h-ideal
generated by = € R. If A C P, then (@) C Ra = A C P, whencea € P. If B C P,
then (b) C Rb= B C P, whence b € P,

The converse is obvious. m

Corollary 130 An h-ideal P of R is prime if and only if for alla,b € R fromaRb C P
it follows a € P orbe P.

Corollary 131 An h-ideal P of a commutative hemiring R with identity is prime if
and only f for all a,b € R from ab € P it follows a € P orb € P.

The result expressed by Corollary 130 suggest the following definition of prime
fuzzy h-ideals.

Definition 132 A non-constant fuzzy h-ideal 6 of R is called prime (in the second
sense) if for all t € [0,1] and a,b € R the following condition is satisfied:
if 8(azb) > t for every x € R then 6(a) > t or 6(b) > t.

In other words, a non-constant fuzzy h-ideal § is prime if from the fact that azb €
U(8;t) for every @ € R it follows a € U(d;t) or b € U(d;1). It is clear that any fuzzy
h-ideal is prime in the first sense is prime in the second sense. The converse is not

true.

Example 133 In an ordinary hemiring of natural numbers the set of even numbers

forms an h-ideal. A fuzzy set

1 if =0,
6(n)=< 08 if n=2k+#0,
04 if n=2k+1

is a fuzzy h-ideal of this hemiring. It is prime in the second sense but i is not prime
wm the first sense.

Theorem 134 A non-constant fuzzy h-ideal § of R is prime in the second sense if
and only if each ils proper level set U(d;t) is a prime h-ideal of R.
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Proof. Let a fuzzy h-ideal 4 of R be prime in the second sense and let U(4;t) be
its arbitrary proper level set, i.e., W # U(d;t) # R. If aRb C U(6;1), then d(azb) >t
for every @ € R. Hence d(a) > t or §(b) > t, i.e., a € U(;t) or b € U(d;t), which, by
Corollary 130, means that U(4;t) is a prime h-ideal of R.

To prove the converse consider a non-constant fuzzy h-ideal 6 of R. If it is not
prime then there exists a,b € R such that d(azb) > t for all z € R, but §(a) < t and
d(b) < t. Thus, aRb C U(6;t), but a ¢ U(d;t) and b & U(;t). Therefore U(d;t) is not
prime which is a contradiction. Hence § is prime. =

Corollary 135 A fuzzy set Ay defined in Proposition 26 ts a prime fuzzy h-ideal of
R if and only if A 1s a prime h-ideal of R.

In view of the Transfer Principle (Lemma 25) the second definition of prime fuzzy
h-ideals is better. Therefore fuzzy h-ideals which are prime in the first sense will be
called h-prime.

Proposition 136 A non-constant fuzzy h-ideal § of a commutative hemiring R with
identity is prime if and only if 8(ab) = &(a) v §(b) for all a,b € R.

Proof. Let § be a non-constant fuzzy h-ideal of a commutative hemiring R with
identity. If §(ab) = t, then, for every z € R, we have §(azxb) = §(zab) > §(z)Vvd(ab) > L.
Thus 6(axb) > t for every x € R, which implies §(a) > t or d(b) > t. If 6(a) > {, then
t = d(ab) > d(a) > t, whence é(ab) = d(a). If 6(b) > t, then, as in the previous case,
§(ab) = 8(b). So, 8(ab) = é(a) v 6(b).

Conversely, assume that d(ab) = d(a) v &(b) for all a,b € R. If 6(axb) > t for every
z € R, then, replacing in this inequality = by the identity of R, we obtain d(ab) > {.
Thus 6(a) v §(b) > t, ie., 6(a) > ¢t or §(b) > t, which means that fuzzy h-ideal § is

prime. m
Theorem 137 Ewvery proper h-ideal is contained in some proper irreducible h-ideal.

Proof. Let P be a proper h-ideal of R and let {P,|a € A} be a family of all
proper h-ideals of R containing P. By Zorn's Lemma, for any fixed a ¢ P, the family
of h-ideals P, such that P C F, and a ¢ P, contains a maximal element M. This
maximal element is an irreducible h-ideal. Indeed, let M = Pz N P; for some h-ideals
of R. If M is a proper subset of Py and Fj, then, according to the maximality of M,
we have a € P and a € P5. Hence a € PgN Ps = M, which is impossible. Thus,
either M =Pgor M = F;. m

Theorem 138 If all h-ideals of R are h-idempotent, then an h-ideal P of R is irre-
ducible if and only if it is h-prime.



3. Characterizations of hemirings by the properties of their h-ideals 52

Proof. Assume that all h-ideals of R are h-idempotent. Let P be a fixed irreducible
h-ideal. If AB C P for some h-ideals A, B of R, then ANB = AB C P = P, by
Proposition 119. Thus (ANB)+ P = P. Since Lg is a distributive lattice, P =
(ANB)+ P = (A+ P)N(B + P). Soeither A+ P = P or B+ P = P, that is, either
ACPorBCP.

Conversely, if an h-ideal P is prime and AN B = P for some A, B € Lpg, then
ABCAB=ANB =P Thus ACPor BC P. But PC A and P C B. Hence
A=PorB=P =

Corollary 139 In hemirings in which all h-ideals are h-idempotent each proper h-
ideal is contained in some proper prime h-ideal.

Theorem 140 In hemirings i which all fuzzy h-ideals are idempotent a fuzzy h-ideal
1s irreducible if and only if it is h-prime.

Proof. Suppose all fuzzy h-ideals of R are idempotent and let d be an arbitrary
irreducible fuzzy h-ideal of R. We prove that it is prime. If A ¢y, g < § for some fuzzy
h-ideals A, p2 of R, then also AA p < 4. Since the set FLp of all fuzzy h-ideals of R is
a distributive lattice (Theorem 128) we have § = (AA p) +4 6 = (A +4 ) A (jt +4 0).
Thus A+, 6 = 6 or p+, 8 = . But < is a lattice order, so A < § or p < §. This
proves that a fuzzy h-ideal d is h-prime.

Conversely, if § is an h-prime fuzzy h-ideal of R and AA i = 6 for some A, p € F LR,
then Ay, o= &, which implies A < § or # < 4. Since < is a lattice order and § = AAp
we have d < A and 6 < p. Thus A= d or p= 4. So, § is irreducible. =

Theorem 141 The following assertions for a hemiring R are equivalent:

(1) Each h-ideal of R is h-idempotent.

(2) Each proper h-ideal P of R is the intersection of all h-prime h-ideals of R
which contain P.

Proof. Let P be a proper h-ideal of R and let {P,|a € A} be the family of all
h-prime h-ideals of R containing P. Clearly P C NaeaPa- By Zorn's Lemma, for any
fixed a ¢ P, the family of h-ideals F, such that P C P, and a ¢ P, contains a maximal
element M,. We will show that this maximal element is an irreducible h-ideal. Let
My = KN L. If My is a proper subset of K and L, then, according to the maximality
of My, we have a € I and a € L. Hence a € K N L = M,, which is impossible. Thus,
either M, = K or M, = L. By Theorem 138, M, is a prime h-ideal. So there exists an
h-prime h-ideal M, such that a ¢ M, and P C M,. Hence NP,y C P. Thus P = NF,.

Assume that each h-ideal of R is the intersection of all h-prime h-ideals of R which
contain it. Let A be an h-ideal of R. If AZ = R, then, by Lemma 9, we have A = R,
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which means such h-ideal is h-idempotent. If A% # R, then A? is a proper h-ideal of R
and so it, is the intersection of all h-prime h-ideals of R containing A. Let A% = NF,.
Then A? C P, for each . Since P, is prime, we have A C P,. Thus A C NP, = AZ,
But A% C A for every h-ideal. Hence A= A?. m

Lemma 142 Let R be a hemiring in which each fuzzy h-ideal s idempotent. If X is
a fuzzy h-ideal of R with Ma) = «, where a is any element of R and o € [0,1], then
there exists an irreducible h-prime fuzzy h-ideal § of R such that A < § and 6(a) = a.

Proof. Let A be an arbitrary fuzzy h-ideal of R and let a € R be fixed. Consider
the following collection of fuzzy h-ideals of i

B = {p|p(a) = Ma), A< p}-

B is non-empty since A € B. Let F be a totally ordered subset of B containing
A say F = {Ai|i € I}. Obviously A\; V \; € F for any Ai,A; € F. So, for example,
(M) VAj(z)) A (Ni(w) VAi(Y) < Ai(z+y)VAj(z+y) for any A, A; € F and 7,y € R.
We claim that \/ ); is a fuzzy h-ideal of R.
ie]
For any x,y € R, we have

(VA (@) A (V 2)@) = (V A=) A (V Aiw)
ef iel 1] Jjel
V; (M) A X))

V(@) v A @) A (i) v A ))
2

. V, (Ailz+y) vV Aj(z +v))

1,]€

V )t;'(:r -+ y) = ( V /\i)(:li -+ y) . Simi]arly
el €]

(v Ai) () = V Aiz) € V di(zr) = (V Ai) (zr)

I

A IA

IA

i€l i€l icl i€l
and
(V2)(@) < (V 2)(rz)
il iel
for all z,7 € R. Thus V A is a fuzzy ideal.

el
Now, let z +a+ z = b+ z, where a, b,z € R. Then

(V2@ A (VA = (V Aif@) AV (A(0)
iel = el JEI
=V (Xia) A (b))
igel

< V(i@ v (@) A (i) v 4i(0)))

ijel
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<V(A{:r )V Aj(z )<v,\ (z)= (VA)(m)

This means that \/ A is a fuzzy h-ideal of R Clearly ,\ < V Aiand (V A)(a) =
i€l el iel
AMa) = a. Thus V Ai is the least upper bound of . Hence by Zorn's lemma there

exists a fuzzy h-i(i‘é;l d of R which is maximal with respect to the property that A < ¢
and §(a) = a.

We will show that § is an irreducible fuzzy h-ideal of R. Let 6 = §; A §2, where 65,
&y are fuzzy h-ideals of R. Then § < §; and § < §, since FLp is a lattice, We claim
that either § = é; or § = d3. Suppose § # §; and § # d7. Since § is maximal with
respect to the property that §(a) = o and since § < 6, and § S d2, so d;(a) # « and
d2(a) # a. Hence a = §(a) = (8; A 62)(a) = d1(a) A d2(a) # a, which is impossible.
Hence § = d; or § = d3. Thus 4 is an irreducible fuzzy h-ideal of R. By Theorem 140,
it is also h-prime. =

Theorem 143 FEach fuzzy h-ideal of R s idempotent if and only if each fuzzy h-ideal
of R is the intersection of those h-prime fuzzy h-ideals of R which contain it.

Proof. Suppose each fuzzy h-ideal of R is idempotent. Let A be a [uzzy h-ideal of
R and let {\, | @ € A} be the family of all h-prime fuzzy h-ideals of R which contain A.

Obviously A < A Aq. We now show that A A, < A. Let @ be an arbitrary element
aelh ach
of R. Then, according to Lemma 142, there exists an irreducible and h-prime fuzzy

h-ideal § such that A < § and A(a) = d(a). Hence § € {Aa|a € A} and A Ay < 4.
aCA
So, f\ Aa(a) < d(a) = A(a). Thus /\ Aa € A. Therefore /\ Ao = A
Conversely, assume that each fuzzy h-ideal of I is the 1ntersectlon of those h-prime

fuzzy h-ideals of R which contain it. Let A be a fuzzy h-ideal of R then A (9 A is also

fuzzy h-ideal of R, so A@y A= A A, where ), are h-prime fuzzy h-ideals of R. Thus
acl
each A, contains A®p A, and hence A\. So A < A Ap = A@p A, but A®, A < A always.
ach
Hence A\=A@p A m

3.4 Semiprime h-ideals

Definition 144 An h-ideal A of R is called semiprime if A # R and for any h-ideal
B of R, B* C A implies B C A. Similarly, a non-constant fuzzy h-ideal A\ of R is
called semiprime if for any fuzzy h-ideal 6 of R, 6 O 0 < X implies 6 < A.

Obviously, each h-prime h-ideal is semiprime. Each h-prime fuzzy h-ideal is semi-
prime. The converse is not true (see Example 150).
Using the same method as in the proof of Theorem 129 we can prove
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Theorem 145 A (left, right) h-ideal P of R is semiprime if and only if for every
a € R fromaRa C P it follows a € P.

Corollary 146 An h-ideal P of a commutative hemiring R with identity is semiprime
if and only if for all a € R from a® € P it follows a € P.

Theorem 147 The following assertions for a hemiring R are equivalent:

(1) Each h-ideal of R is h-idempotent.

(2) Each h-ideal of R is semiprime.

Proof. Suppose that each h-ideal of R is idempotent. Let A, B be h-ideals of R
such that B C A. Thus B? C A = A. By hypothesis B = B2, so B C A. Hence A is
semiprime.

Conversely, assume that each h-ideal of R is semiprime. Let A be an h-ideal of
R. Then A? is also an h-ideal of R. Also A2 C A2, Hence by hypothesis A C AZ. But
AZ C A always. Hence A = A%. =

Theorem 148 Fach fuzzy h-ideal of R is idempotent if and only if each fuzzy h-ideal
of R is semiprime.

Proof. For any h-ideal of R we have A ¢, A < A (Theorem 118). If each h-ideal
of R is semiprime, then A©p A < A&y, A implies A < A ©p A. Hence A @) A = A

The converse is obvious. =

Below we present two examples of hemirings in which all fuzzy h-ideals are semi-

prime.

Example 149 Consider the set R = {0,a,1} with the follounng two operations:

Then (H,+,-) is a commutative hemiring with identity. It has only one proper
ideal {0,a}. This ideal is not an h-ideal. The only h-ideal of R is {0,a,1}, which is
clearly h-idempotent.

Since 0 = O0a = a0 = 01 = 10, for any fuzzy ideal A of this hemiring we have
A(0) 2 AMa) and A(0) > A(1) and A(e) = A(1a) > A(1). Thus A(0) > A(a) > A(1). If
A is a fuzzy h-ideal, then 140+ 1= 0+ 1 implies A(1) > A(0) A A(0) = A(0), which
proves that each fuzzy h-ideal of this hemiring is a constant function. So, A ©®p A = A
for each fuzzy h-ideal A of R. This, by Theorem 148, means that each fuzzy h-ideal of

R is semiprime.
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Example 150 Now, consider the hemaring R = {0,a,b,c} defined by the following

tables:

+{0 a b ¢ 0 a b e
010 a b i 0j0 0 0 0
ala b ¢ a al0 a b ¢
blb ¢ a b b0 b b e
cle a b ¢ c|l0 ¢ b ¢

This hemiring has only one h-ideal A = R. Obviously this h-ideal is h-idempotent.

For any fuzzy ideal A of R and any = € R we have A(0) > A(z) > AMa). Indeed,
A0) = AM0z) > Mz) = Mzxa) > Ma). This together with A(a) = A(b+b) > A(b) A
Ab) = A(b) implies A(a) = A(b). Consequently, A(c) = Aa + b) > A(a) A A(b) = A(b).
Therefore A(0) > A(c) > A(b) = A(a). Moreover, if A is a fuzzy h-ideal, then ¢+0+a =
0 + a, which implies A(c) > A(0) A A(0) = A(0). Thus A(0) = A(e) > A(b) = Aa) for
every fuzzy h-ideal of this hemiring.

Now we prove that each fuzzy h-ideal of R is idempotent. Since A©p A < A always,
s0 we have to show that A @, A > A. Obviously, for every z € I we have

m n i1 j=1
x4+ Y oibita=3 ajbidz
i=

i=1

> sup (AMe) A A(d) A M) A X)) = Ae) AMd) AXC) A M.
pfcdtz=cd +=z
So, x + ed + z = dd' + z implies (A @p A)(x) > A(e) A A(d) A A() A A(d'). Hence
0400+ z = 00+ z implies (A ®x A)(0) > A(0). Similarly a + bb+ z = bec + z
implies (A ©Ox A)(a) > A(b) A Ac) = A(b) = A(a), b+ aa+ z = be+ z implies (A ©Op
A)(b) > Aa) A A(b) A A(e) = A(b). Analogously, from ¢+ 00 + z = cc + z it follows
(Aon A)(c) > A(0) A A(c) = A(e). This proves that (A Gx A)(z) = A(z) for every = € R.
Therefore A A = A for every fuzzy h-ideal of R, which, by Theorem 148, means that
each fuzzy h-ideal of R is semiprime.
Consider the following three fuzzy sets:

(Aon A)(x) = sup (A (@) AXB) A A (M) A X))

A0) = AMe) = 0.8, Aa) = A(b) =04,
p(0) = p(c) = 0.6, p(a) = pu(b) = 0.5,
8(0) = 6(c) = 0.7, d(a) = 8(b) = 0.45.

These three fuzzy sets are idempotent fuzzy h-ideals. Since all fuzzy h-ideal of this
hemiring are idempotent, by Proposition 121, we have A ®p t = A A pr. Thus (A O
1)(0) = (A Op p)(c) = 0.6 and (A & p)(a) = (A Gy p)(b) = 0.4. So, Ay p < 6 but
neither A < 4 nor p < §, that is § is not an h-prime fuzzy h-ideal.

Theorem 145 suggest the following definition of semiprime fuzzy h-ideals.
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Definition 151 A non-constant fuzzy h-ideal & of R is called semuprime (in the second
sense) if for all t € [0,1] and a € R the following condition is satisfied:

if 8(aza) > t for every = € R then é(a) > t.

In other words, a non-constant fuzzy h-ideal ¢ is semiprime if from the fact that
aza € U(4;t) for every x € R it follows a € U(d;t). It is clear that any fuzzy h-ideal
semiprime in the first sense is semiprime in the second sense. The converse is not true

(see Example 133).

Theorem 152 A non-constant fuzzy h-ideal § of R is semiprime in the second sense
if and only if each its proper level set U(d;t) is a semiprime h-ideal of R.

The proof is analogous to the proof of Theorem 134.

Corollary 153 A fuzzy sel Mg defined in Proposition 26 is a semaprime fuzzy h-ideal
of R if and only if A is a semiprime h-ideal of R.

In view of the Transfer Principle (Lemma 25) the second definition of semiprime
fuzzy h-ideals is better. Therefore fuzzy h-ideals which are prime in the first sense

should be called h-semiprime.

Proposition 154 A non-constant fuzzy h-ideal § of a commutative hemiring R with

identity is semiprime if and only if 6(a®) = é(a) for every a € R.

Proof. The proof is similar to the proof of Proposition 136. =

3.5 Prime Spectrum

Let R be a hemiring in which each h-ideal is idempotent. Let L£(R) be the lattice of all
h-ideals of R and P(R) be the set of all proper prime h-ideals of R. For each h-ideal
I of R define 0y = {J € P(R): I ¢ J} and S (P(R)) = {0 : I € L(R)}.

Theorem 155 The set 3 (P(R)) forms a topology on the set P(R).

Proof. Since f(q) = {J € P(R) : {0} ¢ J} = ¢, where ¢ is the usual empty set,
because 0 belongs to each h-ideal. So empty set belongs to S (P(R)).

Also g = {J e P(R): RZ J} = P(R), because P(R) is the set of all proper
prime h-ideals of R. Thus P(R) belongs to 3 (P(R)).

Suppose 0;,,0, € S (P(R)) where Iy and Iz are in £(R). Then

0,N0p, ={JeP(R):1; £ J and I € J}. Since each h-ideal of R is idempotent
so I1Iy = Iy N Iy. Thus a1, N8, = 0,1, So O, N Ay, belongs to E}'('P(R)).
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Let {0}, },c5; be an arbitrary family of members of & (P(R)). Then

Uy,

Y Y AJEPR): i T} ={J € P(R): 3 € Qso that [ { J}

= Oyxr
ien

where _;)_."nIg is the h-ideal generated by _gnf.-.
] L
Hence S (P(R)) is a topology on P(R). m

Definition 156 [{9) A fuzzy h-ideal i1 of a hemiring R is said to be normal if there
exists z € R such that p(z) = 1. If it s a normal fuzzy h-ideal of R, then p(0) = 1,
hence p is normal if and only if 1 (0) = 1.

Theorem 157 [49] A fuzzy subsct A of a hemiring R is an h-prime fuzzy h-ideal of
R if and only if

(i) A= {z € R:Az)=A(0)} is a prime h-ideal of R.
(#7) ImA = {M=z) : z € R} contains exactly two elements
(#42) A(0) = 1.

Corollary 158 [49] Every h-prime fuzzy h-ideal of a hemiring is normal.

Let R be a hemiring in which each fuzzy h-ideal is idempotent, Lp the lattice
of fuzzy normal h-ideals of R and F Pg the set of all proper fuzzy h-prime h-ideals
of R. For any fuzzy normal h-ideal A of R, we define 6y = {p € FPr: A £ p} and
7(FPRr) = {0, : A € Lg)-

A fuzzy h-ideal X of R is called proper if A # IR, where IR is the fuzzy h-ideal of R
defined by R (z) =1, Vz € I.

Theorem 159 The set 7 (FPg) forms a topology on the set F Pg.

Proof. (1) 0s = {p. € FPp:® ¢ ,u} — ¢, where ¢ is the usual empty set and
® is the characteristic function of h-ideal {0}. This follows since each h-prime fuzzy
h-ideal of R is normal. Thus the empty subset belongs to 7 (FFPg).

(2) Og = {,u € FPr:R ;§ ,u} = FPg. This is true, since F Pg is the set of proper
h-prime fuzzy h-ideals of R. So fg = F Pg is an element of 7 (¥ Pg).

(3) Let 5, 05, € T (FPg) with 8y, 82 € L.

Then

05, NOs, = {,ue FPg: o ,i(:n and 4z ?{_ ;s}

Since each fuzzy h-ideal of R is idempotent, this implies §;d = §; A d2. Thus

05, A Os, = {,u € FPp:b ;E pt and d ,i_ p} = 05,8,
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(4) Let us consider an arbitrary family {6;},, of fuzzy h-ideals of R. Since
Uierfs; = Ujer {,u € FPgr:é; g ﬂ.} = {p, € FPg:3s k € I so that 6 é p}

Note that

(Zﬁi) (z) = \V {01 (a1) A 02 (az) A ....01 (b1) A bz (ba) A ...}
i€l T4ay+agt...=by by k...

where ay,az,...by, by, .... € R and only a finite number of the a}s and b}s are not zero.
Since §; (0) = 1, therefore we are considering the infimum of a finite number of terms
because 1's are effectively not being considered. Now, if for some k € I, dj $_ i, then
there exists @z € I such that dj () > p(x). Consider the particular expression for X
in which ay = z, by = 0 and a; = b; = 0 for all i # k. We see that d (x) is an element

%) @)

Thus (E‘EI 6,-) (z) > 6k (z) > p(z). This implies (Zig 6.-) (x) > p(x) that is
ZIEI' di ?{— s

Hence d; é it for some k € I implies Em d; ;é I

Conversely, suppose thal Z‘,E, d; g i then there exists an element @ € It such that

(Trer 8) (@) > ().

This means Lhat

of the set whose supremum is defined to be (Z

\V {61 (a1) A b2 (ag) A ....51 (b1) A d2 (b2) A ...} > ju(z).
r4aytagd....Fz=by byt 42

Now, if all the elements of the set (whose supremum we are taking) are individually

less than are equal to p(x), then we have

ztaytag+....4z=by +ba+... 4z
< p(z)

el

(Zﬁi) () = V {61 (a1) Ada(az) A....01 (b1) Ad2 (b2) A ...}

which does not agree with what we have assumed. Thus, there is at least one element,

of the set ( whose supremum we are taking), say,
d) (“;) A dp (a;) Noisisanidiy (b;) A b (b;) Noviviss > p(x)

( &4 ay +ag+ ... = by + by +.... being the corresponding breakup of z, where only

a finite number of ajs and bs are not zero.)
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Thus,
61 (01) A B2 (a2) Aot (87) A2 (B) Ao
> p(z) 2 1y (“;) A g (a;) A iy (b’l) A g (b;) ) S

- b1 (a1) A b (ag) Aot (81) A 82 (B) A e = 8y ()

and
1y (a;) A py (a;) e 1y (b;) A g (b;) Nossicei = (I;,) where p € 1

So, &y (:r;,) > pp (9:;,) it follows that d,, ;?:f Ju for some p € I.

Hence 3., di ;{_ ¢ implies that 4§, ;@ p for some p € I.

Hence the two statements (i) E‘_E , O ;ﬁ p and (i1) dop ;{_ j for some p € I are
equivalent.

Hence

Uierfs;, = Uier {;-‘. € FPg: d; ;— ,U.} = Ujer {;.-'. € FPp: ZJ,- ;é ﬂ.} = BEaE: 0
el

because, 3 d; is also a fuzzy h-ideal of R .

Thus, Ujer8s, € 7 (FPr).

Hence it follows that 7 (F Pg) forms a topology on the set 7 FPp. =



Chapter 4

Right k-weakly regular hemirings

Generalizing the concept of k-regular hemiring we define right k-weakly regular hemir-
ing. We characterize right k-weakly regular hemirings by the properties of their right
k-ideals and fuzzy right k-ideals. We also define right pure k-ideal and right pure fuzzy
k-ideals of R and prove that a hemiring R is right k-weakly regular if and only if each
k-ideal of R is right pure if and only if each fuzzy k-ideal of R is right pure.

4.1 Right k-weakly regular hemirings

Definition 160 A hemiring R is called vight (left) k-weakly regular hemiring if for
— r—-"—a
each x € R, z € (zR)* | res. z € (Rz)? |.
T m
That is for each z € R we have ry, s;, tj, pj € R such that z+ ) arizs; = ) at;ap;
i=1 j=1
n m
z+ Yy rizsiz =y tjzpjz |. Thus each k-regular hemiring with 1 is right k-weakly

i=1 j=1
regular but the converse is not true. However for a commutative hemiring both the

concepts coincide.

Proposition 161 The following statements are equivalent for a hemiring R with iden-

tity :
1. R is right k-weakly regular hemiring.

2. All right. k-ideals of R are k-idempotent (A right k-ideal B of R is k-idempotent
if B2 =B).

3. BA = Bn A for all right k-ideals B and two-sided k-ideals A of R.

61
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Proof. (1) = (2) Let R be a right k-weakly regular hemiring and B be a right
=

k-ideal of R. Clearly B? C B.
o —
Let = € B. Since R is right k-weakly regular, so ¢ € (wR)“2 where xR is the right

A
ideal of 1 generated by = and so zR is the right k-ideal of R generated by x. Thus
zRR C B, this implies

Thus

N
So, B? = B.
(2) = (3) Let B be a right k-ideal of R and A a two-sided k-ideal of R, then by

-
Lemma 11, BA € Bn A. To prove the reverse inclusion, let z € BN A and zR
and RxzR are right ideal and two-sided ideal of R generated by z, respectively. Thus
zR C B and RzR C A.

s e,
b e T s R it TR irrtine= M =ity e B = S iy T o’
rexRC zR = zR zR =zRxzR=(zR)(zR)=z(RzR) C zA C BA

~
Hence BN A gﬁaud so BNA= BA.
(3) = (1) Let z € R and RzR and 2R be the two-sided ideal and right ideal of R
generated by z, respectively. Then
A Sty
P T S i R e T o
z € RN RzR C =R NRzR = 2R RazR=zRRzR = zR*zR = (zR)*.
Hence R is right k-weakly regular hemiring. =
Theorem 162 For a hemiring R with 1, the following assertions are equivalent:
1. R is right k-weakly regular hemiring.

2. All fuzzy right k-ideals of R are k-idempotent (A fuzzy right k-ideal A of R is
k-idempotent if A@g A= A).

3. MOk pr = A A p for all fuzzy right k-ideals A and all fuzzy two-sided k-ideals g of
R.

Proof. (1) = (2) Let A be a fuzzy right k-ideal of R, then we have A O A < A
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For the reverse inclusion, let € K. Since R is right k-weakly regular so there

exist s;, t,‘,sl- t. € R such that

b e
T+ Z zsat; = Zzs;-mt;.
i=1 j=1
Hence -
A(z) = A=) A Mz) < /\ (A(msi) A A(=zty)) -
i=1
Also .
Mz) = Mz) AM) < A\ (Mas)) AAt)) .-
J=1
Therefore

Mz) < [:1 (AM(zs:i) A )«(:t:t,-))] A L{:\] (,\(zs;.) A A(m}))}
A s A(zz.-»]

< V R ' ,
I+§:1:,'.ﬂi =jgl ::8;1‘!; A j{__\l (A(:ESJ-) A A(If.j))}

= (Ao A)(z).

Hence A < A Gy A, which proves A O A = A,

(2) == (3) Let A and p be fuzzy right and two sided k-ideal of R, respectively. Then

A A pis a fuzzy right k-ideal of R. By Corollary 76 A O £ < A A . By hypothesis,
AAp)=AAp) O (AAR) S Ak p

Hence A O p = A A 1.

(3) = (1) Let B be a right k-ideal of R and A be a two-sided k-ideal of I, then
the characteristic functions x5 and x4 of B and A are fuzzy right and fuzzy two-sided
k-ideals of R, repectively. Hence by the hypothesis and Propositions 29 and Lemma

74, we have
XBOkXa=XpNXa = Xﬁ=XBnA = ’E‘T:BF‘A-
Thus by Proposition 161, R is right k-weakly regular hemiring. =
Theorem 163 For a hemiring R with 1, the following assertions are equivalent:

1. R is right k-weakly regular hemiring.

2. All right k-ideals of R are k-idempotent.



4. Right k-weakly regular hemirings 64

~
3. BA = Bn A for all right k-ideals B and two-sided k-ideals A of R.
4. All fuzzy right k-ideals of R are k-idempotent.

5. Mg p = AA p for all fuzzy right k-ideals A and all fuzzy two-sided k-ideals p of
R.

If R is commutative, then the above assertions are equivalent to

6. R is k-regular.

Proof. (1) < (2) < (3) by Proposition 161.
(1) <> (4) ¢ (5) by Theorem 162.
Finally If R is commutative, then by Theorem 42, (1) < (6). =

Theorem 164 The collection of all k-ideals of a right k-weakly regular hemiring R

forms a complete distributive laittice.

Proof. Let Li be the collection of all k-ideals of right k-weakly regular hemiring
R, then Lp is a poset under the inclusion of sets. It is not difficult to see that Ly is a
complete lattice under the operations U, M defined as ALUB = m and ANB = ANB.

We now show that Lz is a Brouwerian lattice, that is, for any A, B € Ly, the set
Lr(A,B)={I € Lg|ANI C B} contains a greatest element.

By Zorn's Lemma the set Lr(A, B) contains a maximal element M. Since R is

X ~ = P i,
right k-weakly regular hemiring , so Al = ANIC B and AM = ANM C B. Thus
Sy

AN AN S S
Al +AM C B. Consequently, AT + AMC B =B.

Since T+ M = IUM € Ly, forevery xz € I + M there exist 11,19 € I, my,my € M
such that z + i) + my = 12 + my. Thus

dx + diy + dm = dip + dmgy

,—_A_—\
forany d € D € Lg. As diy,diz € DI, dmy,dmys € DM, we have dz € DI + DM,
’_A_ﬂ

|

—— e e, g, iy s,
which implies D(I+M) CDI+DMC DI +DM C B. Hence D (I+M) =

ey
This means that D n (I+ ﬁa) =) (I-i- M) C B,ie., I+ Me Lr(A, B), whence

m = M because M is maximal in Lr(A, B). Therefore I C f?\ ClI+M=M
for every I € Lr(A, B). Each complete Brouwerian lattice is distributive (cf. [11],
11.11). Hence L is complete distributive lattice. m

The following example shows that if the collection of all k-ideals of a hemiring R
is a distributive lattice then R is not necessarily a right k-weakly regular hemiring.
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Example 165 Consider the hemiring R = {0,a,b} with the following operations

+10|a]|b Ola|b
0 (0]al|b 0jo0f(0]o0
a alal|b 01010
b bbb bL{0O|O]|b

The k-ideals of R are {0}, {0,a} and R. Since {0} C {0,a} C R. So the collection
of k-ideals is a distributive lattice but R is not right k-weakly regular hemiring.

Theorem 166 If R is a right k-weakly regular hemiring, then the set Fig of all fuzzy
k-ideals of R (ordered by <) is a distributive lattice.

Proof. The set ¥FEp of all fuzzy k-ideals of R (ordered by <) is clearly a lattice
under the k-sum and intersection of fuzzy k-ideals. Now we show that FEpg is a
distributive lattice, that is for any fuzzy k-ideals A, p1,§ of R we have (AA6) 4+ p =
(A+p)A(6+p).

For any z € R

[(AAS) + 1) () = (Mé)(alJA(A/\a)(az)AJ

x-(ay+by )=(az4+b3) [ (P") {bl) A (lu') (bz)
{ Aar) A (a2) A (br) A ]
e t(artb)=(ag+by) | 1 (b2) Ad(a1) Ad(az)
[A(a2) A A (az) A g (B1) A e (B2)] A l
rh(ag+by)=(az+b2) | [0(@1) Ad(az) Ap(br) A p(be))

= V (A (ay) Ah(az)/\u(bl)/\;l(b:!)])
z+(ay by )=(az+ba)

A vV [6 (a1) A b (az) A (1) A e (b2)]
x-+(ay+by )=(az+b2)
=A+p) (@) A +p) (@) =[A+u) A0 +p)(z). w

4.2 Prime and Fuzzy prime right k-ideals

Definition 167 A right k-ideal P of a hemiring R 1s called k-prime (k-semiprime)
right k-ideal of R if for any right k-ideals A, B of R,

ABCP=ACPorBCP (A°CP=ACP).

P is called a k-irreducible (k-strongly irreducible) right k-ideal of R if for any right
k-ideals A, B of R

ANB=P=A=PorB=P (ANBCP=ACPorBCP).
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A fuzzy right k-ideal p of a hemiring R is called a fuzzy k-prime (k-semiprime) right
k-ideal of R if for any fuzzy k-right ideals A, § of R,

Apd<p=A<por d<pu (A A<pu=A<yu).

e is called a fuzzy k-irrveducible (k-strongly irreducible) if for any fuzzy right k-ideals
Adof R,

Mé=p=2A=pord=p A< pu=> A< pord <p).

Lemma 168 (a) Every k-prime right k-ideal (fuzzy k-prime right k-ideal) of a hemir-
ing R is a k-semiprime vight k-ideal (fuzzy k-semiprime right k-ideal) of R.

(b) Intersection of k-prime right k-ideals (fuzzy k-prime right k-ideals) of R is
k-semiprime right k-ideal (fuzzy k-semiprime right k-ideal) of R.
Proof. Straightforward. =

Theorem 169 Let R be a right k-weakly regular hemiring. Then each proper right
k-ideal of R 1s the intersection of right k-irreducible k-ideals which contain it.

Proof. Let I be a proper right k-ideal of R and let {I, : @ € A} be a family of right
k-irreducible k-ideals of R which contain I. Clearly / C Naealn. Supposea ¢ I. Then
by Zorn’s Lemma there exists a right k-ideal Iy such that I is maximal with respect
to the property I C Iz and a ¢ Ig. We will show that Ig is k-irreducible. Let A, B be
right k-ideals of R such that Iy = BN A. Suppose Iz C B and Iz C A. Then by the
maximality of Ig, we have a € B and a € A. But this implies a € B N A = I, which
is a contradiction. Hence either Iz = B or Ig = A. So there exists a k-irreducible
k-ideal Iz such that a ¢ Ig and I C Ig. Hence Nl C I. Thus I =nNl,. =

Proposition 170 Let R be a right k-weakly regular hemiring. If A is a fuzzy right
k-ideal of R with X(a) = «, where a is any element of R and o € (0,1], then there
ezists a fuzzy k-irreducible right k-ideal § of R such that A < ¢ and d (a) = «.

Proof. Let X = {y: p is a fuzzy right k-ideal of R, jt(a) = a and A < p}. Then
X # ¢, since A € X. Let F be a totally ordered subset of X, say F = {\i:i € I}.

We claim that \/ A; is a fuzzy right k-ideal of R. For any z,r € R, we have
i€l

(V) @ =vou@n < Vo = (V) @)

Let =,y € R, consider
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(va)@a(va) o= (Vo) a (v A,(y))

= Y (i (z)) A A; (y)]
|

“<Z

I

h.<: \...{

V (Ai (=) AAj (%))

V (3 @)% )]

where X = max {Ai, A}, note that Af' €{hi:iel}
<V[v[iee)|

=V[¥@+ v)]

L
<Vt = (VA) @)
1 1
Now, let 2 4 a = b where z,0,b € R. Then

(V) (@ (va)@=(vo (an) A (gw (®)
=v[(ven@) an e

J-'

V(A‘ Y AN (b))]
<V _v (¥ (@ AN (b))]

where /\" max {A;, Aj } , note that z\J € {Aiziel}
<V [V( (z )] because X is a fuzzy k-ideal

IA
w.<

i
!-..{

=[] syn@i= (Vi) @
iJ i i
Thus \/ A is a fuzzy right k-ideal of R. Clearly A < \/ A;and \/ A; (@) =/ (Ai(a)) =
' i i i
c. Thus \} Ai is the Lu.b of 7. Hence by Zorn's lemma there exists a fuzzy right k-ideal

d of R wl‘:ich is maximal with respect to the property that A < 4 and 6 (a) = a.

We will show that § is fuzzy k-irreducible right k-ideal of R. Let § = §; Ay, where
01,02 are fuzzy right k-ideals of R. Thus § < é; and 6 < d2. We claim that either
d = 0y or d = d,. Suppose § # §; and § # ;. Since § is maximal with respect to the
property that 6 (a) = o and since § S 6, and d S dg, s0 6; (@) # « and 3 (a) # a.
Hence a = § (a) = (d; A d2) (a) = (1) (a) A (d2) (a) # a, which is impossible. Hence
§ = &) or § = 02. Thus 4 is fuzzy k-irreducible right k-ideal of . =

Theorem 171 Every fuzzy right k-ideal of a hemiring R s the intersection of all
Juzzy k-irreducible right k-ideals of R which contain .
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Proof. Let A be the fuzzy right k-ideal of R and let {A\, : @ € A} be the family

of all fuzzy k-irreducible right k-ideals of R which contain A. Obviously A < /\ g
acA

We show that /\ Ao £ A Let a be any element of R, then by Proposition 170, there

ach
exists a fuzzy k-irreducible right k-ideal Ag such that A < Ag and A (a) = Ag (a). Hence

Ag € {Aa: @€ A}. Hence A\ Mo < Ag 50 A\ Xa(a) € Ag(a) = A(a) = A da <A
a€A acA acl
Hence /\ Aa= 0
aeh

Theorem 172 The following assertions for a hemiring R with 1 are equivalent:
1. R is right k-weakly regular hemiring.
2. Each right k-ideal of R is k-semiprime right k-ideal of R.

Proof. (1) = (2) Suppose every right k-ideal is idempotent. Let I,.J be right
=

P
k-ideals of R, such that J2 C I. Thus J? C I . By Proposition 161, J = J? | so
J C I. Hence I is a k-semiprime right k-ideal of R.

(2) =» (1) Assume that each right k-ideal of R is k-semiprime. Let I be right k-
=

=

ideal of R. Then I? is also a right k-ideal of R and I? C I? . Hence by hypothesis
A~ = ~=

Ic I*.But ¥ ClI always. Hence [ = [ . Thus by Proposition 161, R is right

k-weakly regular hemiring. =
Theorem 173 The following assertions for a hemiring R with 1 are equivalent:
1. R is right k-weakly regular hemiring,.

2. All fuzzy right k-ideals of R are k-idempotent ( A fuzzy right k-ideal A of R is
idempotent if Ay A=A ).

3. AOg = AN for all fuzzy right k-ideals A and all fuzzy two-sided k-ideals p of
R.

4. Each fuzzy right k-ideal of R is a fuzzy k-semiprime right k-ideal of R.

Proof. (1) <= (2) <= (3) by Theorem 162

(2) = (4) Let é be any fuzzy right k-ideal of R then A A < §, where A is a fuzzy
right k-ideal of R. By (2) A@x A= A, so A < 4. Thus 4§ is a fuzzy k-semiprime right
k-ideal of R.

(4) = (2) Let é be any fuzzy right k-ideal of R then § O d is also a fuzzy right
k-ideal of R and so by (4) d © 4 is a fuzzy k-semiprime right k-ideal of R. As
SO <IOpd=>0<0Odbut §@pd <dalvays. SodOrd=46. =
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Theorem 174 If every right k-ideal of a hemiring R is k-prime right k-ideal then R
15 right k-weakly regular hemiring and the set of k-ideals of R is totally ordered.

Proof. Suppose R is a hemiring in which each right k-ideal is prime right k-
P =
ideal. Let A be a right k-ideal of R then A? is a right k-ideal of R. As A? C A?
P i —~— =
= AC A?. But A? C A always. Hence A= A%. Thus R is right k-weakly regular
hemiring,.
Let A, B be any k-ideals of R then AB C AN B. As AN B is a k-ideal of R, so a
k-prime right k-ideal. Thus either A C AN B or B C AN B. That is either A C B
or BCA =m

Theorem 175 If R is right k-weakly regular hemiring and the set of all right k-ideals
of R is totally ordered then every right k-ideal of R is a k-prime right k-ideal of R.

Proof. Let A, B, C be right k-ideals of R such that AB C C. Since the set of all

right, k-ideals of R is totally ordered, so we have A C Bor B C A. If A C B then
= ¥ o S ]

A= AACAB CC. f BC Athen B= BB C AB C C. Thus C is a k-prime right

k-ideal. m

Theorem 176 If every fuzzy right k-ideal of a hemiring R is fuzzy k-prime rvight k-
tdeal then R is right k-weakly regular hemiring and the set of fuzzy k-ideals of R 1is
totally ordered.

Proof. Suppose R is a hemiring in which each fuzzy right k-ideal is fuzzy prime
right k-ideal. Let A be a fuzzy right k-ideal of R then A ) A is also a fuzzy right
k-ideal of . As A A <A@ A = A <A@k A But A A < A always. Hence
A=Ak A Thus R is right k-weakly regular hemiring.

Let A, jt be any fuzzy k-ideals of R then A@g it < AA . As AA pis a fuzzy k-ideal
of R so a fuzzy k-prime right k-ideal. Thus either A < AApor p < AA p. That is
either A<porp<A m

Theorem 177 If R is right k-weakly regular hemiring and the set of all fuzzy right
k-ideals of R 1s totally ordered then every fuzzy right k-ideal of R is a fuzzy k-prime
right k-ideal of R.

Proof. Let A, i1, v be fuzzy right k-ideals of R such that A Ok p < ». Since the set
of all fuzzy right k-ideals of R is totally ordered, so we have A< por p < A If A<
then A=A A< Ao p<w. Hp<Athen p=pOprp < AOg pp < v. Thus v is a
fuzzy k-prime right k-ideal. =
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Example 178 Consider the set R = {0,z,1} in which the "sup”(V) and "inf" (A)
are defined by the chains 0 < 1 <z and 0 < z < 1. On the set R, define + =V and
+=A. Then (R,+,-) is a hemiring with the following tables:

The right ideals of R are {0}, {0,z},{0,2,1}. The right k-ideals of R are {0}
{0, 2,1}, which are idempotent. Obviously each right k-ideal of R is k-prime

In order to examine the right fuzzy k-ideals of R, we observe the following facts
concerning K.

Fact 1.

Let A: R = [0,1] be a fuzzy subset of R. Then A is a fuzzy right ideal of R if and
only if A(0) 2 A(z) > A(1).

Proof. Suppose A : R = [0,1] is a fuzzy right ideal of R. Since 0 =z-0=1-0
50 A(0) > A(z) and A(0) > A(1). Also A(z) = A(1-2) > A(1). Thus A(0) > A(z) >
A(1).

Conversely, suppose that A : B = [0,1] is a fuzzy subset of R such that A (0) >
A(z) > A(1). By the definition of “4+” defined on R, we have m +m = m or m’ for
every m,m € R, and certainly A (m)A\ (m.') < A(m) and A (m)AA (m') <A (m').
Thus A (m + m’) > A(m)AA (nf). By the definition of “” defined on R, it is easy
to verify that A (ma) > A (m) for all m,a in R. Hence A is a fuzzy right ideal of K. =

Fact 2.

Let A : R = [0,1] be a fuzzy subset of R. Then A is a fuzzy right k-ideal of R if
and only if A(0) > A(z) = A(1).

Proof. Suppose A : R = [0,1] is a fuzzy right k-ideal of R. Then by the Fact
1A(0) > A(z) > A(1). Since 14+ 2z = z, so A(1) > A(z) AA(x) = A(x). Thus
A(0) > A(z) = A(1).

Conversely, suppose that A : R = [0,1] is a fuzzy subset of R such that A(0) >
A(z) = A(1) then by the Fact 1, A is a fuzzy right ideal of R.

Ifz+a=0>foraba e Rthen A(z) > A(a) AA(b). So A is a fuzzy right k-ideal
of B. =

Obviously R is right k-weakly regular hemiring. But each fuzzy right k-ideal of R
is not k-prime. Because A, i, v defined by A(0) = 0.8, A(z) = A(1) = 0.6, u(0) = 0.9,
w(z) = p(1) = 0.5 and v(0) = 0.85, v(z) = (1) = 0.55 are fuzzy k-ideals of R such
that A O i < v but neither A < v nor p < v.
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4.3 Right pure k-ideals

In this section we define right pure k-ideals of a hemiring R and also right pure fuzzy

k-ideals of R. We prove that a two-sided k-ideal I of a hemiring R is right pure if and
~ =

only if for every right k-ideal A of i, we have ANIT = AI.

Definition 179 A k-ideal I of a hemiring R is called right pure if for each z € I,
s
x € al , that is for each x € I there exist y,z € I such that x + xy = xz.

=~
Lemma 180 A k-ideal I of a hemiring R is right pure if and only if ANI = AI for
every right k-ideal A of R.

Proof. Suppose that I is a right pure k-ideal of R and A is a right k-ideal of R.
Then

AT CANL

AN S
Let a € ANI, then a € A and a € I. Since I is right pure so a € al C Al.

~ = ~ =
Thus AN C AI. Hence ANT = Al.
Conversely, assume that AN T = AI for every right k-ideal A of R. Let z € I.
. . . - ’_M_\
Take A, the principal right k-ideal generated by z, that is, A = 2R + Nyz, where
e — e

P i =R
No = {0,1,2,....}. By hypothesis ANI= Al = (zR+ Noz) I
—AN—— AN =
=(zR+Noz)IC zI . Soz € zI.
Hence I is a right pure k-ideal of R. =

Definition 181 A fuzzy k-ideal A of a hemiring R is called right pure fuzzy k-ideal of
Raf pAX= pOp A for every fuzzy right k-ideal p of R.

Proposition 182 Let A be a non-empty subset of a hemiring R. Then x4, the char-
acteristic function of A, is right pure fuzzy k-ideal of R if and only if A is right pure
k-ideal of R.

Proof. Let A be a right pure k-ideal of R. Then x, is a fuzzy k-ideal of R. To
prove that y, is right pure we have to show that for any fuzzy right k-ideal pu of R,
RAXA= Gy xa. Now if z ¢ A, then

(1A xa) (€) = (@) A xa () = 0 < (1 On x4) (2)-

For the case z € A, as A is right pure k-ideal of R, so there exist a,b € A, such
that z + za = zb.

As z,a,b € A, this implies x4 () = x4 (a) = x4 (b) = 1.

Now,
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(1O xp) () = V .{\] [1lai) A xa(b:)] A ,/\1 [u(a}) A xA(b})”
:+§a.-b.-=jz:;1u;b; N P
> min [ (z) A x4 (a) A p(z) A xq (B)]
2 min (g (2) A x4 (2) A p(2) A xa ()]
2 p(z) A xa(z) = (nAxa) (2).
So, in both the cases 1 O x4 = 1A x4- But O x4 < A x4 is always true.
Thus, tAxs =1t O Xa-
So, x4 is right pure fuzzy k-ideal of R.
Conversely, let x4 be a right pure fuzzy k-ideal of R. Then A is a k-ideal of R. Let
B be a right k-ideal of R, then xp is a fuzzy right k-ideal of R. Hence by hypothesis

X8 OkXA = XBAXA= Xpna- By Lemma 74, xp O x4 = X’E:?' This implies that
N
BN A= BA. Therefore A is a right pure k-ideal of R. =

Proposition 183 The intersection of right pure k-ideals of R is a right pure k-ideal
of R.

Proof. Let A, B be right pure k-ideals of R and I be any right k-ideal of . Then
~~
INAnNB)=(INA)NB=(IA)NB because A is right pure
o N
= (IA)B because B is right pure and ( /A ) is a right k-ideal

Ay, ey e N,
Hence AN B is a right pure k-ideal of B. =

Proposition 184 Lel Ay, Ay be right pure fuzzy k-ideals of R, then so is Ay A Ap.

Proof. Let Ay and A be right pure fuzzy k-ideals of R then A A Az is a fuzzy
k-ideal of R. We have to show that, for any fuzzy right k-ideal p of R, @ (A1 A A2) =
1A (A1 A Ag).

Since Mg is right pure fuzzy k-ideal of It so it follows that Ay g Ao = Ay A Ag.

Hence

1Ok (A1 Ok Az) = p GOk (M1 A Ag).
Also,
A (A AX) = (A M)A N2
= (O A1) AAXz  since A is right pure
= (g A1) Ok Az since p @ Ay is a fuzzy right k-ideal of R
= p O (M O Az).
Thus
A (AL A X2) = @k (A1 A Ag).
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Proposition 185 The following statements are equivalent for a hemiring R with iden-

tity :
1. R is right k-weakly regular hemiring.
2. All right k-ideals of R are k-idempotent (A right k-ideal B of R is k-idempotent
it B = B).
3. Every k-ideal of R is right pure.

Proof. (1) < (2) By Proposition 161.
(1) = (3) Let R be a right k-weakly regular hemiring. Let I and A be k-ideal and

AN
right k-ideal of R, respectively. Then ANI = AI.
Thus by Lemma 180, A is right pure.
(3) == (1) Let I be a k-ideal of R and A a right k-ideal of R, then by hypothesis

=
I is right pure and so ANI = AI. Thus by Proposition 161, R is right k-weakly

regular hemiring,

Proposition 186 The following assertions are equivalent for a hemiring R with iden-

tity:
1. R is right k-weakly regular hemiring.
2. All right k-ideals of R are k-idempotent.
3. Every k-ideal of R is right pure.
4. All fuzzy right k-ideals of R are k-idempotent.
5. Every fuzzy k-ideal of R is right pure.
If R is commutative, then the above assertions are equivalent to
6. R is k-regular,

Proof. (1) < (2) ¢ (3) by Proposition 185.

(1) 45 (4) by Theorem 162.

(4) = (5) Let A and p be fuzzy right and two sided k-ideals of R, respectively.
Then AAp is a fuzzy right k-ideal of R. By Corollary 76, A®k ¢ < AAp. By hypothesis,

(AA ) =(AA ) Ok (AAp) € A0 p.

Hence A @ ;1 = A A pr. Thus p is right pure.
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(8) = (1) Let B be a right k-ideal of R and A be a two-sided k-ideal of R then
the characteristic functions xp and x 4 of B and A are fuzzy right and fuzzy two-sided
k-ideals of R, repectively. Hence by hypothesis

S
XBOhXA=XBAXA = x,ﬂzxﬂnﬁ = BA=BnA.

Thus by Proposition 161, R is right k-weakly regular hemiring.
Finally If R is commutative then by Theorem 81, (1) 4> (6). =

4.4 Purely prime k-ideals

In this section we define purely prime k-ideals and purely prime fuzzy k-ideals of a
hemiring and study some basic properties of these ideals.

Definition 187 A proper right pure k-ideal I of a hemiring R is called purely prime
if for any right pure k-ideals A,B of R, ANBCI=ACIorBCI.

=
If A, B are right pure k-ideals of R then AN B = AB. Thus the above definition
e
is equivalent to AB CI==AC/lorBCI.

Definition 188 A proper right pure k-ideal i of a hemiring R is called purely prime
if for any right pure fuzzy k-ideals \,6 of R, ANO<p=> A< pord<p.

If A,d are right pure fuzzy k-ideals of R, then AAJ§ = A @ 6. Thus the above
definition is equivalent to A d < p= A< pord < pu.

Proposition 189 Let R be a right k-weakly reqular hemiring with 1 and I be a k-ideal
of R. Then the following assertions are equivalent:

1. For k-ideals A, Bof R, ANB=I=A=IorB=1.

2. ANBCI=AClIorBCl.

Proof. (1) = (2) Suppose A, B are k-ideals of R such that AN B C I. Then
by Theorem 164, I = (ANB)+1 = (A+1)N(B+1I). Hence by the hypothesis

i — Y i
I=(A+DNorI=(B+1I)ie, ACIorBCI.

(2) = (1) Suppose A, B are k-ideals of R such that AN B = I. Then I C A and
I € B. On the other hand by hypothesis ACITor BCI. Thus A=]lorB=1. =m

Proposition 190 Let R be a right k-weakly regular hemiring. Then any proper right
pure k-ideal of R is conlained in a purely prime k-ideal of R.
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Proof. Let I be a proper right pure k-ideal of a right k-weakly regular hemiring
R and a € R such that a ¢ I. Consider the set

X = {Jp : Jp is a proper right pure k-ideal of R such that I C J, and a ¢ J,,}.

Then X # ¢ because I € X. By Zorn's Lemma this family contains a maximal
element, say M. This maximal element is purely prime. Indeed, let AN B = M for
some right pure k-ideals A, B of R. If A, B both properly contains M, then by the
maximality of M, a € A and a € B. Thus a € AN B = M, which is a contradiction.
Hence either A=M orB=M. m

Proposition 191 Lel R be a right k-weakly regular hemiring. Then each proper right
pure k-ideal is the intersection of all purely prime k-ideals of R which contain it.

Proof. Proof is similar to the proof of Theorem 169. =

Proposition 192 Let R be a right k-weakly regular hemiring. If A is a right pure
fuzzy k-ideal of R with A (a) =t where a € R and t € (0,1], then there exisls a purely
prime fuzzy k-ideal p of R such that A < p and p(a) = t.

Proof. The proof is similar to the proof of Proposition 170. =

Proposition 193 Let R be a right k-weakly regular hemiring. Then each proper fuzzy
right pure k-ideal is the intersection of all purely prime fuzzy k-ideals of R which
contain il.

Proof. Proof is similar to the proof of Theorem 171. =



Chapter 5
Right h-weakly regular hemirings

In this chapter we define right h-weakly regular hemirings and characterize these hemir-
ings by the properties of their right h-ideals and fuzzy right h-ideals.

5.1 Right h-weakly regular hemirings

Definition 194 A hemiring R is called right (left) h-weakly reqular hemaring if for
eachz € R, z € (:r:R)E ( res. T € (R:c)g).

n
That is for each € R we have 7i,s;,t,pj,z € R such that = + Sarias; +

=1

T n m
z = Y ztjzpj + 2z |z+ Lrizsig+ 2= ) tjzpiz + z). Thus each h-hemiregular
hemiring with identity is right h-weakly regular but the converse is not true. However

for a commutative hemiring both the concepts coincide.
Proposition 195 The following statements are equivalent for a hemiring R with iden-
Luty:

1. R is right h-weakly regular.

2. All right h-ideals of R are h-idempotent (A right h-ideal B of 1 is h-idempotent
if B2 = B).
3. BA = Bn A for all right h-ideals B and two-sided h-ideals A of R.
Proof. (1) = (2) Let R be a right h-weakly regular hemiring and B be a right
h-ideal of R. Clearly B2 C B.
Let & € B. Since R is right h-weakly regular, so z € (zR)* where zR is the right

ideal of R generated by = and so xR is the right h-ideal of R generated by x. Thus
xR C B, this implies

76
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z € (zR) (zR) C BB = B2

Thus B C B2, So, B? =B,

(2) = (3) Let B be a right h-ideal of R and A be a two-sided h-ideal of R. Then
by Lemma 9, BA € BN A. To prove the reverse inclusion, let z € BN A and zR and
Rz R are the right ideal and two-sided ideal of R generated by x, respectively., Thus
zR C B and RzR C A. Now

€ zRC aR=aR zR = zRxR = (zR) (xR) = = (RzR) C zA C BA.

Hence BNAC BA andso BN A= BA.
(3) = (1) Let z € R and RzR and zR be the two-sided ideal and right ideal of R
generated by x, repectively. Then

z € zRNRzR C zRNRzR = 2R RzR = xRRzR = xR%zR = (zR}i.
Hence R is right h-weakly regular hemiring. =
Theorem 196 The following assertions are equivalent for a hemiring R with identity:

1. R is right h-weakly regular hemiring.

2. All fuzzy right h-ideals of Rt are h- idempotent (A fuzzy right h-ideal A of R is
idempotent if A ¢y A = A).

3. A@p pp= AN pfor all fuzzy right h-ideals A and all fuzzy two-sided h-ideals . of
R.

Proof. (1) = (2) Let A be a fuzzy right h-ideal of R, then we have A ©;, A < A.
For the reverse inclusion, let * € R. Since R is right h-weakly regular, so there
exist s;, t,-,s;, t},z € R such that

m mn
T+ Zla:saxt; +z= Zz.s;zt; + z.
i= i=1

Hence
AMz) = Mz) A M=) € N\ (M@s0) A A(zts) .

i=1

Also

M) = Mz) A M=) < A\ (A(J:s; )A ,\(xz;)) .

J=1
Therefore
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AMz) < [/=\1 (A(zsi) A ,\(n,-))] A [:1 (,\(m;) A /\(J:f.;))}
R (3zs) A Xt
<

x+§:l xsia:t;+x=J£:lzs;zt;+: A J/z\] ('\(Is.f) A A(Itj))jl
= (A ©n A)(z).
Hence A < A®Op A Thus A@Op A = A,
(2) = (3) Let A and p be fuzzy right and two sided h-ideals of R, respectively.
Then A A i is a fuzzy right h-ideal of R and A & g < A A p is always true. By
hiypothesis,

AAp)=AAp) O (AAP) S AOnp

Hence Awp e = A A p.

(3) = (1) Let B be a right h-ideal of R and A be a two-sided h-ideal of R. Then
the characteristic functions y gz and x4 of B and A are fuzzy right and fuzzy two-sided
h-ideal of R, repectively. Hence by hypothesis, Propositions 31 and 29,

XBOhXA=XBAXA = XBA = XBna = BA=BnA.
Thus by Proposition 195, R is right h-weakly regular hemiring. =
Theorem 197 The following assertions are equivalent for a hemiring R with identity:
1. R is right h-weakly regular hemiring.
2. All right h-ideals of R are h-idempotent.
3. BA = Bn A for all right h-ideals B and two-sided h-ideals A of R.

4, All fuzzy right h-ideals of R are h-idempotent.

5. A@p = XA pu for all fuzzy right h-ideals A and all fuzzy two-sided h-ideals p of
R.

If R is commutative, then the above assertions are equivalent to
6. R is h-hemiregular.

Proof. (1) & (2) ¢ (3) by Proposition 195.
(1) 4> (4) 4> (5) by Theorem 196.
Finally If R is commutative, then by Theorem 45, (1) <> (6). =
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Theorem 198 If R is right h-weakly reqular hemiring, then the collection of all h-

ideals forms a complele Brovwerian lattice.

Proof. The collection Lg of all h-ideals of right h-weakly regular hemiring R is a
poset under the inclusion of sets. It is not difficult to see that Lp is a complete lattice
under the operations L, (1 defined as ALUB = A+ B and AN B = AN B.

We show that Lg is a Brouwerian lattice, that is, for any A, B € Lp, the set
Lr(A,B)={I € Lgr|ANI C B} contains a greatest element.

By Zorn’s Lemma the set Lz(A, B) contains a maximal element M. Since R is
right h-weakly regular hemiring, so AT = ANI C B and AM = ANM C B. Thus
AT 4+ AM C B. Consequently, AT + AM C B = B.

Since T+ M = IUM € Lp, for every z € T+ M there exist 1,13 € I, mj,mg € M
and z € R such that z + 1y +my + 2z =13 +my + z. Thus

dz 4 diy + dmy + dz = dig + dmg + dz

for any d € D € Lyi. As diy,disg € DI, dmy,dme € DM, dz € R, we have
dz € DI+ DM, which implies D (T+ M) € DI + DM C DI+ DM C B. Hence
D (I'+ M) C B. This means that D n (I+M) =D(I+M)C B, ie, T+Me
Lp(A, B), whence T+ M = M because M is maximal in Lp(A, B). Therefore I C
TCT+M=M forevery I € Lp(A,B). =

Corollary 199 If R is vight h-weakly regular hemiring, then the lattice L is distrib-

utive.

Proof. Each complete Brouwerian lattice is distributive (cf. [11], 11.11). =
The following example shows that if the collection of all h-ideals of a hemiring R
is a distributive lattice then R is not necessarily a right h-weakly regular hemiring.

Example 200 Consider the hemiring R = {0,a,b} with the following operations

+|10]alb Ola]|b
0 [0]al|b 0({010
a |lalalb 0100
b lb|b|b Lb10|0]b

The ideals of R are {0},{0,a},{0,b} and R. Only R itself is an h-ideal of R.
The collection of h-ideals is a distributive lattice but R is not right h-weakly regular
hemiring, since {0, a,b} is not h-idempotent.

Theorem 201 If R is right h-weakly reqular hemiring, then the sel ¥t g of all fuzzy
h-ideals of R. (ordered by <) is a distributive latlice.
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Proof. The set ¥l g of all fuzzy h-ideals of R (ordered by <) is clearly a lattice
under the h-sum and intersection of fuzzy h-ideals. Now we show that ¥FEkp is a
distributive lattice, that is for any fuzzy h-ideals A, i, 6 of R we have (AAJ) + p =
(A4 p2) A (6 + p).

For any = € R,

(A A 8) + p) (z) = (’\AJ)(ﬂl)A('\Aé)(ﬂz)/\]

=+tn.+b1J+\z/={a=+b=J+z [ (12) (b1) A (12) (b2)

[ Aar) A A(az) A g (b1) A ]
x4 (ar+by)+z=(az+ba)+z p(b2) A (“1) A6 (a2)

[ ['\(ﬂl)/\f\(ﬂe)/\ﬂ(bl)/\#(ba)lf\]
sh(ay+by) +z=(ag tba)+z | [0(a1) Ad(az) A p(by) A p(b2)]

(A(a1) A A(az) A (b1) A (bzﬂ)

w-t-(ay by )42=(ag4ba)-+2

A V [6 (al)/\f’(ﬂz)f\#(bl)/\ﬂ(bz)l)
z4(ay+by )+ z=(ag+ba )+ =
= (A+p) (z) A (8 + p) (z)

=[A+p) A+ p))(z). =

5.2 Prime and Fuzzy prime right h-ideals

Definition 202 A right h-ideal P of a hemiring R is called h-prime (h-semiprime)
right h-ideal of R if for any right h-ideals A, B of R,

ABCP=>ACPorBCP (A°CP=ACP).

P is called an h-irreducible (h-strongly irreducible) right h-ideal of R il for any
right h-ideals A, B of R

ANB=P=A=PoB=P (ANBCP=>ACPox BCP).

A fuzzy right h-ideal p of a hemiring R is called a fuzzy h-prime (h-semiprime) right
h-ideal of R if for any fuzzy right h-ideals A, ¢ of R,

AOpd<p=2A<pord<p (AOpA<pu=>A<yp).

je is called a fuzzy h-irreducible (h-strongly irreducible) if for any fuzzy right h-ideals
Adof R,

ANd=p=A=pord=p (AANS<p=A<pord<u).

Lemma 203 (a) Every h-prime right h-ideal (fuzzy h-prime right h-ideal) of a hemir-
ing R is an h-semiprime right h-ideal (fuzzy h-semiprime right h-ideal) of R.
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(b) The intersection of h-prime right h-ideal (fuzzy h-prime right h-ideal) of R is
an hi-semiprime right hi-ideal (fuzzy h-semiprime right hi-ideal)ol R.
Proof. Straightforward. =

Theorem 204 Let R be a right h-weakly regular hemiring. Then each proper right

h-ideal of R is the intersection of right h-irreducible h-ideals which contain il.

Proof. Let I be a proper right h-ideal of / and let {I, : @ € A} be a family of right
h-irreducible h-ideals of R which contain I. Clearly I C Naepln. Suppose a ¢ I. Then
by Zorn's Lemma there exists a right h-ideal Ig such that Ig is maximal with respect
to the property I C Ig and a ¢ Ig. We will show that Ig is h-irreducible. Let A, B be
right h-ideals of R such that Iy = BN A. Suppose Ig C B and Ig C A. Then by the
maximality of I, we have a € B and a € A. But this implies a € BN A = Ig, which
is a contradiction. Hence either Is = B or Iz = A. So there exists an h-irreducible
h-ideal Iz such that a ¢ Ig and I C Ig. Hence NIy C I. Thus I =Nl,. =

Proposition 205 Let R be a right h-weakly regular hemiring. If A is a fuzzy right
h-ideal of R with X(a) = a, where a is any element of R and o € (0, 1], then there
exists a fuzzy h-irreducible right h-ideal § of R such that A < § and 6 (a) =

Proof. Let X = {u: p is a fuzzy right h-ideal of R, pt(a) = @ and A < pu}. Then
X # ¢, since A € X. Let F be a totally ordered subset of X, say F = {\;i:i € I}. We

claim that \/ A; is a fuzzy right h-ideal of R. For any z,r € R, we have
ic]

(V) @ =Y u@) <Y outen = (V) @0

1

Let =,y € R, consider

() () = (v )(v wn)
~v[vouEnan )
yfyocamso

v (Af- SIS

L%

where A = max {\;, \;}, note that M € {);:i€ I}

<V |V

i

v[Af<z+y]
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<Viute )= (VA) @+0)
Now, let x +a+ z = b+ z where 2,a,b,z € R. 'f'hen

(V) @a (y SICE (\_/ . @) 1 (g(f\jwn)

=v|(vouan) ax (b)]

&
V[Vt a0

V(¥ @ N )]

where }.f = max {A;, A}, note that A € {\; :i € I}
< V V (A’f (::))] because A'? is a fuzzy right h-ideal

Il

IA
w.<

=V @] <vinEl= (Va) @.
Thus V Ai is a fuzzy right h—;deal ofR C!early A< V Ai and V Ai(a) = V (Xi(a)) =
a. Thus V A; is the Lu.b of . Hence by Zorn's lemma t.here e}usts a fuzzy rlght h-ideal

dof R wh‘ich is maximal with respect to the property that A < d and 6 (a) = o

We will show that § is fuzzy h-irreducible right h-ideal of R. Let § = d; Adg, where
41,67 are fuzzy right h-ideals of R. Thus § < §; and § < §,. We claim that either
0 = 0y or § = 6y. Suppose § # §, and § # d;. Since § is maximal with respect to the
property that 4 (a) = a and since § S 6; and § S d2, so d; (a) # a and d3 (a) # a.
Hence a = § (a) = (8; A d2) (@) = (81) (a) A (82) (a) # @, which is impossible. Hence
d = d; or § = dg. Thus § is fuzzy h-irreducible right h-ideal of R. =

Theorem 206 Every fuzzy right h-ideal of a hemiring R is the inlersection of all
Juzzy h-irreducible right h-ideals of R which coniain it.

Proof. Let A be the fuzzy right h-ideal of R and let {\, : @ € A} be the family

of all fuzzy h-irreducible right h-ideals of R which contain A. Obviously A < /\ Ao
aEA
We now show that /\ Aa < A. Let a be any element of R, then by Proposition 205,

acA
there exists a fuzzy h-irreducible right h-ideal Ag such that A < Ag and A (a) = Ag (a).

Hence A\g € {Aa:a € A} and so /\ Aa € Ag. Thus /\ Aa(a) < Ag(a) = A(a)
ath a€A
=¥ A Aa < A. Hence /\,\,_.,:A. =
a€A acA

Theorem 207 The following assertions for a hemiring R are equivalent:

1. R is right h-weakly regular hemiring.
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2. Each right h-ideal of R is h-semiprime right h-ideal of R.

Proof. (1) = (2) Suppose R is right h-weakly regular hemiring. Let 7, .J be right
h-ideals of R, such that J2 C I = J2 C I. By Theorem 197, J = JZ, so J C I. Hence
1 is an h-semiprime right h-ideal of R.

(2) = (1) Assume that each right h-ideal of R is h-semiprime. Let I be a right
h-ideal of R. Then 12 is also a right h-ideal of R. Also I2 C T2. Hence by hypothesis
I C T2, But I? C I always. Hence I = I2. Thus by Theorem 197, R is right h-weakly
regular hemiring, =

Theorem 208 The following assertions for a hemiring R with identity are equivalent:

1. R is right h-weakly regular hemiring.

2. All fuzzy right h-ideals of R are h- idempotent (A fuzzy right h-ideal X of R is
idempotent if A oy A = A)

3. MGy o= A A p for all fuzzy right h-ideals A and all fuzzy two-sided h-ideals p of
R.

4. Bach fuzzy right h-ideal of R is a fuzzy h-semiprime right h-ideal of R.

Proof. (1) «» (2) & (3) Theorem 196.

(2) = (4) Let & be any fuzzy right h-ideal of R, then A, A < 4, where A is a fuzzy
right h-ideal of R . By (2) A@p A= A, s0 A < 4. Thus 6 is a fuzzy h-semiprime right
h-ideal of R.

(4) = (2) Let d be any fuzzy right h-ideal of R, then § @y 4 is also a fuzzy right
h-ideal of R and so by (4) & <), 6 is a fuzzy h-semiprime right h-ideal of R. As
SORé<Epd=>6<5Opdbut diy,d <6 always, SodoOpd=46. m

Theorem 209 If every right h-ideal of a hemiring R is h-prime right h-ideal then R
15 right h-weakly regular hemiring and the set of h-ideals of R is totally ordered.

Proof. Suppose R is a hemiring in which each right h-ideal is prime right h-ideal.
Let A be a right h-ideal of R then A? is a right h-ideal of R. As A2 C A% = A C A2
But A2 C A always. Hence A = A2, Thus R is right h-weakly regular hemiring.

Let A, B be any h-ideals of R then AB C An B. As AN B is an h-ideal of R, so
an h-prime right h-ideal. Thus either AC ANB or B C AN B. That is either A C B
or BCA =

Theorem 210 If R is right h-weakly regular hemiring and the set of all right h-ideals
of R is totally ordered then every right h-ideal of R is an h-prime right h-ideal of R.
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Proof. Let A, B, C be right h-ideals of R such that AB C (. Since the set of all
right h-ideals of R is totally ordered, so we have A C Bor B C A. If A C B then
A=AACABCC. If BC Athen B= BB C AB C C. Thus C is an h-prime right
h-ideal. m

Theorem 211 If every fuzzy right h-ideal of a hemiring R is fuzzy h-prime right h-
ideal, then R is right h-weakly regular hemiring and the set of fuzzy h-ideals of R is
totally ordered.

Proof. Suppose R is a hemiring in which each fuzzy right h-ideal is fuzzy prime
right h-ideal. Let A be a fuzzy right h-ideal of R then A ® A is also a fuzzy right
h-ideal of R. As Aap A < Ao A= A< Aep A, But A @y A < A always. Hence
A= A@p A Thus R is right h-weakly regular hemiring.

Let A, p be any fuzzy h-ideals of R then A Gp pp < AA p. As AA pis a fuzzy right
h-ideal of R so a fuzzy h-prime right h-ideal. Thus either A < AA por p < AA .
That is either A< porp< . =

Theorem 212 If R is a right h-weakly reqular hemiring and the set of all fuzzy right
h-ideals of R is totally ordered then every fuzzy right h-ideal of R is a fuzzy h-prime
right h-ideal of K.

Proof. Let A, u, v be fuzzy right h-ideals of R such that A @ p < v. Since the set
of all fuzzy right h-ideals of R is tolally ordered, we have A < por p < A. IfA < p
then A= Aep A< Appu<wv. Up<Athen p=pOppu<A@pp<v. Thusvisa
fuzzy h-prime right h-ideal. =

Example 213 Consider the set R = {0,2,1} in which the "sup”(V) and "inf" (A)
are defined by the chains 0 <1 <z and 0 <z < 1. On the set R, define + = V and
-=A. Then (R,+,-) is a hemiring with the following tables:

The right ideals of R are {0}, {0, z}, {0, z,1}. The only right h-ideal of R is {0, z, 1},
which is idempotent. Obviously R is right h-weakly regular hemiring and {0, z,1} is
h-prime and thus h-semiprime.

In order to examine the right fuzzy h-ideals of R, we observe the following facts

concerning R.
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Fact 1.

Let A: R — [0,1] be a fuzzy subset of R. Then A is a fuzzy right ideal of R if and
only if A(0) > A(z) > A(1).

Proof. Suppose A : R — [0,1] is a fuzzy right ideal of R, Since0 =x-0=1-0
so A(0) > A(z) and A(0) > A(1). Also A(z)=A(1-z)> A(1). Thus A(0) > A(z) >
A(1).

Conversely, suppose that A : R — [0,1] is a fuzzy subset of R such that A (0) >
A(z) = A(1). By the definition of + defined on R, we have m + m' = m or m’ for
every m,m’ € R, and certainly A (m)AA (m’) < A(m)and A (m)AX (m') <A (m') ;
Thus A (m + m’) >A(m)AA (m') . By the definition of - defined on R, it is easy to
verify that X (ma) > A(m) for all m,a in R. Hence A is a fuzzy right ideal of R, =

Fact 2.

Let A : R — [0,1] be a fuzzy subset of R. Then A is a fuzzy right h-ideal of R if
and only if A(0) = A(z) = A(1).

Proof. Suppose A : R — [0,1] is a fuzzy right h-ideal of R. Then by the Fact 1
A(0) > A(x) > A(1). Since 14+0+1=0+1,50 A(1) 2 A(0) AA(0) = A(0). Thus
A(0) = A(z) = A(1).

Conversely, suppose that A : R — [0,1] is a fuzzy subset of R such that A(0) =
A(z) = A(1) then by the Fact 1, A is a fuzzy right ideal of R.

Ifa+a+z=>b+zforabzz¢€ Rthen A(z) = A(a) AA(b). So A is a fuzay right
h-ideal of R. =

Fact 3.

All fuzzy right h-ideal of R in the above example are idempotent.

Proof. Since each z € R can be expressed as = + a1b) + z = agbg + z for some
ay,by, ay, bz, z € R and each fuzzy right h-ideal of R is a constant function, so A@pA = A
for each fuzzy right h-ideal of R. m

Thus each fuzzy right h-ideal of R is fuzzy h-semiprime. Also each fuzzy right
h-ideal of R is fuzzy h-prime. Because AGiy o= AApand AOppu < v =AAp < v. As
each fuzzy h-ideal is constant so either AAp=Aor AAp= . Thus A < vor p<v.

5.3 Right pure h-ideals

In this section we define right pure h-ideals of a hemiring R and also right pure fuzzy
h-ideals of hemiring K. We prove that every two-sided h-ideal I of a hemiring R is
right pure if and only if for every right h-ideal A of R, we have AN I = Al

Definition 214 An h-ideal I of a hemiring R is called right pure if for each z € I,
z € z1, that is for each x € I there exista,b € I and z € R such that z+za+z = wb+z.
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Example 215 Consider the hemirimng R = {0.a,b} with the following operations

The only h-ideal of R is R itself which is right pure.

Lemma 216 An h-ideal I of a hemiring R is right pure if and only if ANT = AT for
every right h-ideal A of R.

Proof. Suppose that I is a right pure h-ideal of R and A is a right h-ideal of R.
Then
ATC ANl

Let a € ANJ, then a € A and a € I. Since I is right pure so a € al C AI. Thus
ANIC Al Hence ANT = Al

Conversely, assume that A NI = AT for every right h-ideal A of R. Let z € I.
Take A, the principal right h-ideal generated by =z, that is, A = xR+ Nowz, where
No = {0,1,2,.....}. By hypothesis A NI = AT = (zR + Nox)I

= (zR+ Noz)I C zl. So z € zI.

Hence [ is a right pure h-ideal of . m

Definition 217 A fuzzy h-ideal A of a hemiring R is called right pure fuzzy h-ideal
of Rif p A X = Oy A for every fuzzy right h-ideal p of K.

Proposition 218 Let A be a non-empty subset of a hemiring R. Then x 4, the char-
acteristic function of A, is right pure fuzzy h-ideal of R if and only if A is right pure
h-ideal of R.

Proof. Let A be a right pure h-ideal of R. By Corollary 27, x4 is a fuzzy h-ideal
of A.

To prove that x, is right pure we have to show that for any fuzzy right h-ideal p
of R, p A x4 = Op x4. We know that g On x4 < A x4 is always true.

Now, if 2 ¢ A, then

(A xa) (@) = p(2) Axa (2) =0 < (rOn xa) ().

For the case z € A, as A is right pure h-ideal of R, so there exist a,b € A and
z€ R, such that s +za+z=ab+ 2
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As z,a,b € A, this implies x4 (z) = x4 (¢) = x4 (b) = 1.

Now,

(honxa) @ = sup | A lua) Axa®l A A [n(a}) A x,i(b;o]}
I+-§|a‘b‘+z=j§|n;b;+= y=1 5=1
> '/ minfu(2) Axa(a) Ap(@)Axa®)
z+tzatz=zbtz
2 min (i (2) A xa (2) A p(z) A xa (@)
2 () Axal(z)
= (1A xa)(z)
So, in both cases Gy x4 > A x4
Thus, LA x4 = 1t On Xa-
So, x4 is right pure fuzzy h-ideal of R.
Conversely, let x4 be right pure fuzzy h-ideal of R. Then by Corollary 27, A is an
h-ideal of R. Let I be a right h-ideal of R, then y; is a fuzzy right h-ideal of i. Hence
by hypothesis and Propositions 29 and 31,

XTA = X1 On XA = X7 A XA = XInA-
Thus TA = I N A. So A is right pure h-ideal of . w

Proposition 219 Let R be a hemiring then the intersection of right pure h-ideals of
R is a right pure h-ideal of R.

Proof. Let A, B be right pure h-ideals of R and I be any right h-ideal of . Then
IN(ANnB)=(INA)NB

= (TA)N B because A is right pure

= (TA)B because B is right pure and (74) is a right h-ideal

= (IA)B = I(AB) = I(AN B)
Hence AN B is a right pure h-ideal of R. =

Proposition 220 Let A\, Az be right pure fuzzy h-ideals of R, then so is Ay A Az.

Proof. Let A; and Mg be right pure fuzzy h-ideals of R. Then A\; A Az is a fuzzy
h-ideal of R. We have to show that, for any fuzzy right h-ideal pz of R, pOp (M A A2) =
1A (A1 A Ag).

Since Az is right pure fuzzy h-ideal of R so it follows that A\; ©p Az = Aj A Ag.

Hence

Ly (A] G Ag) = O (1\1 A )i.z) a

Also,
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RA(AAA)=(rAXN)AN
= (LOn A1) A X2 since A; is right pure
= (pOn M) On Az since pu Oy Ay is a fuzzy right h-ideal of R
= &y (A Op )iz) :
Thus
A (M /\Ag) = pu O (/\1 l\)tg).

Proposition 221 The following statements are equivalent for a hemiring R with iden-

tity :
1. R is right h-weakly regular hemiring.

2. All right h-ideals of R are h-idempotent (A right h-ideal B of R is h-idempotent
if B2 = B).

3. Every h-ideal of R is right pure.

Proof. (1) « (2) By Proposition 195.

(1) = (3) Let R be right h-weakly regular hemiring. Let I and A be h-ideal and
right h-ideal of R, respectively. Then AN I = AT

Thus by Lemma 216, A is right pure.

(3) = (1) Let I be an h-ideal of R and A a right h-ideal of R, then by hypothesis I
is right pure and so ANT = AI. Thus by Proposition 195, R is right h-weakly regular

hemiring. =

Theorem 222 The following statements are equivalent for a hemiring R with identity

1. R is right h-weakly regular hemiring.

2. All right h-ideals of R are h-idempotent.

3. Every h-ideal of R is right pure.

4. All fuzzy right h-ideals of R are h-idempotent.

5. Every fuzzy h-ideal of R is right pure.

If R is commutative, then the above assertions are equivalent to

6. R is h-hemiregular.
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Proof. (1) & (2) <> (3) by Proposition 221.

(1) < (4) by Theorem 196.

(4) =+ (5) Let A and p be fuzzy right and two sided h-ideals of R, respectively. Then
AApis a fuzzy right h-ideal of R. Also Aoppu < AOpxp < Aand AOpp < XpOpp < i
Thus A ¢y it < A A ji. By hypothesis,

AAp)=(AAp)Or(AAp) <AL p

Hence A ¢ip o= A A p. Thus A is right pure.

(5) =» (1) Let B be a right h-ideal of R and A a two-sided h-ideal of R then the
characteristic functions xp and x4 of B and A are fuzzy right and fuzzy two-sided
h-ideals of R, repectively. Hence by hypothesis

XBOrXA=XBAXA = Xga=Xsna = BA=BnA

Thus by Proposition 195, R is right h-weakly regular hemiring.
Finally If R is commutative, then by Theorem 45, (1) <> (6). =

Example 223 Consider the hemiring R = {0,a, b} with the following operations

R is right weakly regular hemiring, so each fuzzy h-ideal of R is right pure.

5.4 Purely prime h-ideals

In this section we define purely prime h-ideals and purely prime fuzzy h-ideals of a
hemiring R and study some basic properties of these ideals.

Definition 224 A proper right pure h-ideal I of a hemiring R is called purely prime
if for any right pure h-ideals A, B of R, ANBCI=ACIorBCI.

If A, B are right pure h-ideals of R then AN B = AB. Thus the above definition
is equivalent to ABCI=>ACJlorBCI.

Definition 225 A proper right pure h-ideal pi of a hemiring R is called purely prime
if for any right pure fuzzy h-ideals \,§ of R, \AA6 < p=A<pord <.
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If A, 6 are right pure fuzzy h-ideals of R, then AAJ = A ©p 0. Thus the above
definition is equivalent to A@pd < p =A< pord < .

Proposition 226 Let R be a right h-weakly regular hemiring with identily and I be
an h-ideal of R. Then the following assertions are equivalent:

1. For h-ideals A/ Bof R, ANB=I= A=1Ior B=1.
2. ANBCI=>AClorBCI.

Proof. (1) = (2) Suppose A, B are h-ideals of R such that AN B C I. Then by
Theorem 198, I = (AN B) + 1 = (A + 1) N (B + I). Hence by hypothesis I = (A +1)
or I =(B+1),ie,ACTorBCI.

(2) = (1) Suppose A, B are h-ideals of R such that ANB = 1. Then I C A and

I € B. On the other hand by hypothesis ACIor BCI. ThusA=JlorB=1. m

Proposition 227 Lel R be a right h-weakly regular hemiring. Then any proper right
pure h-ideal of R is contained in a purely prime h-ideal of R.

Proof. Let I be a proper right pure h-ideal of an h-weakly regular hemiring R
and a € R such that a ¢ I. Consider the set
X = {Jp: Jp is a proper right pure h-ideal of R such that 7 C J, and a ¢ J,}.

Then X # ¢ because I € X. By Zorn'’s Lemma this family contains a maximal
element, say M. This maximal element is purely prime. Indeed, let AN B = M for
some right pure h-ideals A, B of R. If A, B both properly contains M, then by the
maximality of M, a € A and a € B. Thusa € AN B = M, which is a contradiction.
Hence either A=MorB=M. m

Proposition 228 Let R be a right h-weakly regular hemiring. Then each proper right
pure h-ideal is the intersection of all purely prime h-ideals of R which contain it.

Proof. Proof is similar to the proof of Theorem 204. =

Proposition 229 Let K be a right h-weakly regular hemiring. If A is a right pure
fuzzy h-ideal of R with X (a) =t where a € R and t € [0,1], then there exists a purely
prime fuzzy h-ideal p of R such that A < p and p(a) = t.

Proof. The proof is similar to the proof of Proposition 205. =

Proposition 230 Let R be a right h-weakly reqular hemiring. Then each proper fuzzy
right pure h-ideal is the intersection of all purely prime fuzzy h-ideals of R which

contain .

Proof. Proof is similar to the proof of Theorem 206. =



Chapter 6

k-regular and k-intra-regular

hemirings

In this chapter we introduce the concepts of fuzzy k-bi-ideals and fuzzy k-quasi-ideals
of hemirings. We characterized different classes of hemirings by the properties of
k-bi-ideals and k-quasi-ideals.

6.1 k-quasi-ideals

A non-empty subset A of a hemiring R is called a k-quasi-ideal of R if A is closed
s

under addition, RAN AR C Aand z+a =bimpliesz € A for allz € R and a,b € A.

A non-empty subset A of a hemiring R is called a k-bi-ideal of R if A is closed

——
under addition and multiplication, ARA € A and z+a = bimpliesz € A forallz € R
and a,b € A.

Lemma 231 Every left (right) k-ideal of a hemiring R is a k-quasi-ideal of R and
every k-quasi-ideal of R is a k-bi-ideal of R.

Proof. Straightforward. =
The converse of the above Lemma does not hold as shown in the following examples.

Example 232 The set R of all 2 x 2 maltrices aadbondh F77 hemiring with usual
az; a2
addition and multiplication of matrices, where ajj € No, N, s the set of all non-
0
negative integers. Consider the set Q@ of all matrices of the form ( 5 0 (a € N,).
a

EBvidently Q is a k-quasi-ideal of R but not a left (right) k-ideal of R.

91
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Example 233 Let N* and RY denote the sets of all positive integers and positive real

numbers, respectively. The set R of of all matrices of the form : i (a,b € R,ceN)
e
; 0 B . 4 g ; i g i
together with 00 s a hemiring with respect to the usual addition and multiplica-

tion of matrices. Let A, B be the sets of all matrices : E (a,beR,c€ N,a<b)
c

00
respectively. It is easy to show that A and B are right k-ideal and left k-ideal of R,

respectively. Now the product AB 1s o k-bi-ideal of R but it s not a k-quasi-ideal of
R. Indeed, the element

(D-EOEDED-GDEDE

e Ny, g N,
belongs to the intersection R (AB) N (AB) R, but it is not an element of AB. Hence
P P B P
R(AB)N(AB)R € AB.

together with g g and [ P 3 (p,q € R,d € N,3 < q) together with g ﬂ),
q

Lemma 234 Let )y and @ be k-quasi-ideals of a hemiring R, then Q1 N Qg 5 a
k-quasi-ideal of R.

Proof. Straightforward. =

Corollary 235 If A is a left k-ideal and B 1s a right k-ideal of a hemiring R, then
AN B is a k-quasi-ideal of R.

Definition 236 A fuzzy subset A of a hemiring R is called a fuzzy k-bi-ideal of R if

for all z,y,z € R we have

L Az +y) > A(z) AX(y)
2. May) > M)A A (y)
3. Azyz) 2 A(z) A A (2)

4. z4+y=2z= Az) > My) A A2).
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Theorem 237 A fuzzy subsel p in a hemiring R is a fuzzy k-bi-ideal of R if and only
if

Lop4pp<p
2. ppp<p
3. O xp O b < .

Proof. Let p be a fuzzy k-bi-ideal of R. By Theorem 79, p satisfies (1).
Let 2 € R. If(p Dk J1) (3:) 0 then Gy < . Otherwise, there exist a;, by, ' b €

L} J!
R such that z 4 2 aib; = Z a‘bj. Then we have
=1
(poxp)(@)= [A ((ai) A (b)) A /\ [a) A w3 )]}
-+ zﬂ‘h Z

=1

< V /\ (12(aibs)] A /n\l [u(a}b})]]
|=l I=

T4 Z:n. b= E“, 5',

=1

< v Zu,b,) A ;t(z uJ!JJ)J
L mn,- = "a’b o ¥
+.')-_'-:‘1 o ,E:" :
<p(x).
Hence gt < .
Let € R. If (2 O xp Ok 1) (m) =0 l.hen Ok Xp O ¢ < . Otherwise, there

exist a,,b,,cf,j,,bJ € R such that z + Z a;b; = Z a, b Then we have
/\ [(1 Ok xR) (@) A p(bi)) A
(1 Ok xR Ok ) (2) = \V
e anea | A [0k @) Au))
i=1 =1 j=1 )
m P r ’
A V A ) A N\ w(<h) § An®| A
i=1 i f: ng=zr: c;nf; k=1 q=1
— =1 g=1
=+ ﬁ aibi= i f.l;b; n :
= j=1 /\ V {/\;t(m)/\/\p( “)} (b)
” a;+r§:1 e,f,:ulgl euls -
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= ¢ p -

/\ (1 cx) A o (B3)] A

V { A

i=1 n,-+zpjckdk=f:c;df, [;; A pe(bi )]
k=1 q=1

~3

Il

= V \
) a;biz_Z": a}b) i /\ [p (e)) A p (b;)] A
tl i /\ V =1

= o +Zcm E eufu A [F (";) Hi (b})]

L u=l \, u=l J "

d ! R
Since a; + Z cdy = }: cf and aj + Z etfi= Y, e.f, so,

k=1 =] u=1

aib; + E crdibi = Z d’b. and ajb3+ Ze;f;b = E e, fu
k=1

(1 Ok X % 1) (—"3) ) -

5 di= 'd
a +k§1ck & 3-_;15' &

>3

< V
:H-E aibi= Iﬂ: n;b;
=1

j=1 /\ V {p. (Zﬂfﬁb)f\i‘ (Ze;f; ;)}
= u}+§ e fi= Z':l eulu . o J

u=

Since p is a fuzzy k-bi-ideal of R, so

P r
i (aibi) = p (E ckdkb,-) A (Z L::Id;b.-) and
k=1
5
It (G;IJ;) > (Z e,-f;b;-) Ap (Ze fib )
i=1 u=]

Hence,

(1 Ok Xg O p) () < V [/\ [k (aibi)] A /"\ [ ( Jb:’)]]
:|:+§"_": a; E“: @ b;

1 J=1

V [ (ga,-b.-)m; (ga;b;)]

:-I-Eﬂlbi ): uj ’

i=1
< p(z).
Hence p G xg ok pt < e
Conversely, let z be a fuzzy subset of R. By Theorem 79, p satisfies pu(z +y) >
p(z) Ap(y) and & +y =2z = p(z) 2 Ay) A A(2)
Now
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w(zy) 2 (e Or xg) Ok 1) (Iy)n
I\ (1 @k xR) (@) A (b)) A
v I—I

i o [uu ok xr) (a) A (85)]

i=]

> (1 Ok XR) (0) A #(z) A (# Ok xr) (0) A p(y)
(since zy + 00 = 2y)

=V A\ e A xa(d) A A\ [1(e)) A xa(d)] | An() An(w)
0"'2‘: cidi= i:l c;d; ol =l
> 1(0) A (0) A u(z) A ply) ( since 0+00 = 00)

= p(z) A p(y)
Similarly we can show that p(zyz) > p(z) A p(z).
Hence p is a fuzzy k-bi-ideal of R. =

Definition 238 A fuzzy subset A of a hemiring R is called a fuzzy k-quasi-ideal if for
all z,y,2 € R we have

L Az +y) 2 Aa) AA(y),
2. (A xr) A(XpOkA) < A
. z4+y=2z= A(x) =2 Ay) A A(2).

Every fuzzy left (right) k-ideal of R is a fuzzy k-quasi-ideal of R and every fuzzy
k-quasi-ideal of A is a fuzzy k-bi-ideal of K. But the converse does not hold.

Theorem 239 A fuzzy subset A of a hemiring R s a fuzzy k-bi-ideal of R if and only
if each non-empty level subset U (A;t) of A is a k-bi-ideal of R.

Proof. Suppose A is a fuzzy k-bi-ideal of R and ¢ € (0, 1] such that U (A;t) # ¢.
Let a,b € U (A;t), then A(a) > t and A(b) > t. As A(a+b) > A(a) A A(b), so
Afa+b) > t. Hence a+b € U(A;t). Also, A(ab) > A(a) A A(b) so A(ab) > t. This
implies ab € U (A;t).

Let © € U (\;t) RU (A;t), then = + Ela irib; = Z ajrjbj, for a;, b;, a JJ:i € U (A;t)

; € R. Since X is a fuzzy k-bi-ideal of R 50 z\(ﬂ'?‘,‘b,‘) > Aai) AX(bi) >
m

t = airib; € U (\;t). Hence Y a;rib; € U (A;t). Similarly E u.JerJ € U (A;t). Hence
i=1 Jj=

and r.,r

x € U(At). Thus U (A t) RU (M t) CU(Mt).
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Now let =z + a = b for some a,b € U (A;t), then A(a) > ¢ and A(b) > ¢. Since
Afz) 2 Ala) AX(D), so A(z) > t. Hence z € U (A;t). Thus U (M;t) is a k-bi-ideal of
R.

Conversely, assume that each non-empty subset U (A1) of R is a k-bi-ideal of
R. Let a,b € R be such that A(a+b) < A(a) AA(b). Take t € (0,1] such that
AMa+0b) <t <A(a)AA(b), then a,b e U(A;t) but a+b ¢ U(A;t), a contradiction.
Hence A (a+b) > A(a) A A (b).

Similarly we can show that A (ab) > A (a) A A (b) and A (abc) > A(a) A A(c).

Let z,y,z € R be such that « +y = 2. If possible let A (z) < A(y) A A(2). Take
t € (0,1] such that A(z) <t < A(y) AA(z), then y,z € U (A;t) but o ¢ U();t), a
contradiction. Hence A (z) > A(y) A A(z). Thus A is a fuzzy k-bi-ideal of . =

Corollary 240 Let A be a non-empty subset of a hemiring R. Then A is a k-bi-ideal
of R if and only if the characteristic function x, of A s a fuzzy k-bi-ideal of R.

Theorem 241 A fuzzy subset X of a hemiring R 1s a fuzzy k-quasi-ideal of R if and
only if each non-empty level subset U (A;t) of A is a k-quasi-ideal of IR.

Proof. Suppose A is a fuzzy k-quasi-ideal of R and ¢ € (0, 1] such that U (A; t) # ¢.
Let a,b € U(A;t), then A(a) > ¢t and A(b) > t. As A(a+b) > A(a) A A(b), so
Ala+b) > 1. Hence a+b € U (At).

e, B e ——— e
Let z € U(/\ f)RﬂRU()\ t) then z E U(At)R and z € RU (A;t). Then z +

m
Youirg = ZU_,T' and x + Z VRS = th 91, for some v”u si,sl. € U(\t) and
= k=1 =1

1',-,1';,m,u1 € R. Now
A(z) 2 [(A Ok xgr) A (Xr Ok A)] ()
= (A g XR)(:")A(XR'JJ»/\ (z)

=V Pem@)n v peams()

T E Uirs= Z n;r; T+ )E Vg Sp= i: u:s:
i=1 k=1 I=1
>tAt=t
ey ey,

So, A(z) > t. Thus, z € U (A;t). Hence U (A;t) RNRU (A1) C U (A;t).

Now let © +a = b for some a,b € U ();t), then A(a) > t and A(b) > t. Since
A(z) > A(a) AX(D), so A(z) > t. Hence z € U (A;t). Thus U (A;t) is a k-quasi-ideal
of R.

Conversely, assume that each non-empty subset U (A;t) of R is a k-quasi-ideal
of R. Let a,b € R such that A(a+b) < A(a) A A(b). Take t € (0,1] such that
Ala+b) <t < Aa)AX(b), then a,b e U (A;t) but a+b ¢ U (M;t), a contradiction.
Hence A(a+b) > A(a) A X (D).
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Let = € R. If possible let A (z) < [(A @k xg) A (xg Ok A)] (2). Take t € (0,1] such
that A(z) < t < [(A @ xg) A (lR Ok A)] (J:) If [(A ©k xg) A (xR Ok /\)] (z) > t then

there exist expression forms z + Z ury = 2 u; rJ and z + Z UgSE = Z v;9,. Now,
=] j=1

(A Ok xg) (@) A (Xg Ok A) (z) = V [A (u:) AX (u;)]

z+ E U= Z l.t,l"j

i=1

o+ 5 woe= ol
Hence V [A (wi) A A )] t and
:+:§l u.r;-z t.lj )
\/ [A(sk )A A (s;)] > t, 50, M(ui) > :,A(u;) > t, A (sk) > 6, A (sj) >

a4
:c+f: vgs;,=}: v s,
k=1

t, that is, u;, u -'il..-’t € U (\;t). Since U (A; t) is a k-quasi-ideal of R, so Z wuir;, Z: u r €

i=1 Jj=1
e Ny
U (X t)R and E Vg Sk, zv,s( € RU(A;t). This implies © € U (X f) R and = €
k=1 =1

o e, ey | iy

RU (A;t). Hence = € U (Mt) RNRU (Mt) € U (A;t), and hence z € U (A;t), that
is A(z) > t, a contradiction. Hence (A xg) A (xg @k A) < A Let 2,3,z € R
such that = +y = 2. If possible let A(z) < A(y) A A(z). Take t € (0,1] such that
Az) <t < A(Y)AA(2), then y,z € U(A;t) but = ¢ U (M;t), a contradiction. Hence
A(z) 2 A(y) AA(2). Thus A is a fuzzy k-quasi-ideal of R. =

Corollary 242 Let A be a non-empty subset of a hemiring R. Then A is a k-quasi-
ideal of R if and only if the characteristic function x 4 of A is a fuzzy k-quasi-ideal of
R.

Proposition 243 The intersection of fuzzy k-quasi-ideals of a hemiring R is a fuzzy
k-quasi-ideal of R.

Proof. Let g, v be fuzzy k-quasi-ideals of hemiring R.
Let 2,y € R. Then

p@+y)Av(e+y) 2 [u(@) Ap@)Aly (@) Avy)
[n(z) Av(z)] Alp(w) Avy)] = (nAv)(2) AleAv) (v)

Il

(A V) (@ +y)
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Now let a,b,x € R such that z +a = b. Then

p(x) Av(z) > [nla) ApB)]Av(a) A (b))
[11(a) A v (@)] A1 (8) A v (B)] = (1A v) (@) A (1A v) (B)

(kA v) (2)

Also,

(1A V) Gk xp) Alxr Ok (kA V) = (LA V) Ok Xg) A (xR Ok (LA V)
A Av) O xp) A (Xr Ok (RAV))
< (9% xr) A (X Ok ¥) A (v Ok Xr) A (XR Ok 1)
= [(1 2% xr) A (Xr Ok W] A [(v Ok Xg) A (XR Ok V)]
< pAwv.

This completes the proof. =

Corollary 244 Lel pp and v be fuzzy right k-ideal and fuzzy left k-ideal of a hemiring
R, respectively. Then p A v is a fuzzy k-quasi-ideal of R.

6.2 k-regular hemirings
Theorem 245 Let R be a hemiring. Then the following assertions are equivalent:
1. Ris k-regular
e
2. B = BRB for every k-bi-ideal B of i
=N
3. @ = QRQ for every k-quasi-ideal of R.

Proof. (1) = (2) Let R be a k-regular hemiring and B be any k-bi-ideal of R. For
= € B there exist a,a’ € R such that & 4 zaz = za'z. Then zaz,za’'z € BRB and so

—~— —~—
2 € BRB. This implies B C BRB. On the other hand, since B is a k-bi-ideal of R,
we have'ggﬁ C B. Thus B =§§E.

(2) = (3) Straight forward.

(3) = (1) Let B and A be any right k-ideal and left k-ideal of R , respectively.
Then BN A is a k-quasi-ideal of R.

By the hypothesis we have

BNA=(BNA)R(BNA)C BRAC BA

~
Also, BA C BN A always.
=
So BA = BN A. Thus by Theorem 42 R is k-regular hemiring. =
Now we prove the fuzzy version of the above Theorem.
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Theorem 246 Let R be a hemiring. Then the following assertions are eguivalent:

1. R is k-regular.

2. < p Gy xp O p for every fuzzy k-bi-ideal p of R.

3. i < g xp G p for every fuzzy k-quasi-ideal p of R.

Proof. (1) = (2) Let R be a k-regular hemiring. Let z be any fuzzy k-bi-ideal of
R and z € R. Since R is k-regular, there exist a,a’ € R such that z + zaz = xa'z.
Thus we have

/\ (1 ©k xg) (@) A p(b:)] A

(B xrOkp) (@)= \/ = e
et Babem o, | AN [0k xR) (5) A p(8))
i=1 i=1 j=1 .

> (1 xg) (30) A (1 O xp) (wa’) A p ()

»

= V [ ?\ [1(ci)] A /“\ [u(c;)]} J
i, '

m n i=1 J==
za+ ) cidi= 4
i=1 =]

>

V /\ [(L)] A /\ [li(f_;)]} Ap(x)
/ o

[ = LS =]
=a'+ 32 lfi= 3 1] ['
J=

=l
2 [;z(mz) Ap (m'a:)] A [u (zaz) A p (:m' :t:)] A ()
because  + waz = za v implies za + (zaz)a = (ma‘m) a
and za' + (zaz)a = (:ca.’:.c) a

2 p(z) Ap () Ap(z)=p(z).
This implies that p < p Gp x g O .
(2) = (3) Straightforward.
(3) = (1) Let A, u be fuzzy right k-ideal and fuzzy left k-ideal of R, respectively.

Then A A pis a fuzzy k-quasi-ideal of R. Hence by hypothesis

AN < (AAR) Ok xr @k (AAR)
< ACkXp Ok p
< AGyp

But A®p e < AA p always. Hence A O 1= A A .
Thus by Theorem 81 R is k-regular hemiring. =
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Theorem 247 Let R be o hemiring. Then the following assertions are equivalent:

1. R is k-regular.

2. pAv < pog ey pfor every fuzzy k-bi-ideal i and every fuzzy k-ideal v of R.

3. pAv < ey v ey pfor every fuzzy k-quasi-ideal o and every fuzzy k-ideal v of
R.

Proof. (1) = (2) Let p and v be any fuzzy k-bi-ideal and fuzzy k-ideal of R,
respectively. For = € R, there exist a,a’ € R such that z + zaz = za'z. Thus we have
N\ (2 Ok v) (@) A (i)
(1 Ok v G ) (z) = \/ b ' ’
g, | A\ [ 0r0) ) At
i= ) j=

> (p Gk v) (za) A (p ey v) (:m') Ap(z)

V

mat f: eitdi= )’:I: c;n’j
=1

(e) Av(d) A \ [ A v(rrj)]}
1 1

i= j=

s

m n
A S V [/\ (@) Av(f A N [#(i;) A V(f_;)]} A p(z)
za' 435 Lfi=3, 01 - "
\ i=1 i=1
> (p(z) Av(aza) Av (a'm)] A [p(z) Av (a.m') Av (a’m’)] A ()
because z + zax = za = implies za + zaza = za'za
and za' + zaza' = za'za’
2 p(z) Av(z)Ap(z)Av(z)
= p(@) Av(z) = (pAv)(z)
This implies that p A v < p G v Oy .
(2) = (3) Straightforward.
(3) = (1) Let p be any fuzzy k-quasi-ideal of R. Since xp is a fuzzy k-ideal of R,
we have by hypothesis jt = p A xp < 1t O xg O pp. Therefore by Theorem 246, R is

k-regular. m

Corollary 248 Let R be a hemiring. Then the following assertions are equivalent:

1. R is k-regular.

gy
2. BN A= BAB for every k-bi-ideal B and every k-ideal A of R.
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——
3. QN A = QAQ for every k-quasi-ideal @ and every k-ideal A of R.

Proof. (1) = (2) Let B and A be any k-bi-ideal and any k-ideal of R, respectively.
Then the characteristic functions xg and x4 of B and A are fuzzy k-bi-ideal and fuzzy
k-ideal of R, respectively. Thus by Theorem 247, we have

XBnA = XBAXA S XB Ok Xga Ok Xp = x%
This implies that BN A C ﬁfi& On the other hand, since B and A are k-bi-ideal
and k-ideal of R, respectively, we have ’EE = m c ? = B3 and
ﬁﬁgﬁﬁg"ﬁ“:A. Thusmg BnA mdsoBﬂAzm.

(2) = (3) Straight forward.
(3) = (1) Let @ be any k-quasi-ideal of R. Since R is itself a k-ideal of R, we have

N~
Q= QnNR=QRQ. Therefore by Theorem 245 R is k-regular. =
Theorem 249 The following assertions are equivalent for a hemiring R:

1. R is k-regular.
2. pAv < o for every fuzzy k-bi-ideal p and every fuzzy left k-ideal v of R.

3. uAv < Gy v for every fuzzy k-quasi-ideal g and every fuzzy left k-ideal v of
R.

4. pAv < Gy v for every fuzzy right k-ideal p and every fuzzy k-bi-ideal v of R.

5 pAwv < pey v for every fuzzy right k-ideal p and every fuzzy k-quasi-ideal v of
R.

6. pAVAW < pogvEpw for every fuzzy right k-ideal p, every fuzzy k-bi-ideal v
and every fuzzy left k-ideal w of R.

7. pAVvAw < pOgvepw for every fuzzy right k-ideal pu, every fuzzy k-quasi-ideal
v and every fuzzy left k-ideal w of R.

Proof. (1) = (2) Let gz and v be any fuzzy k-bi-ideal and fuzzy left k-ideal of
R, respectively. Now let € R. Since R is k-regular, there exist a, a’ € R such that

'
2 + zax = xza 2. Then we have

(nOx v)(z) = V N\ lutai) AvB)] A A\ [p(n;) A v(b}J]
/ £1

m " 1=]1
=4+ Y aihi= 20}5}
4 )

i=1
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> pu(z) Av(az) Av (a‘x) > p(z)Av(z)=(pAv)(x)

This implies that p A v < pOp v,

(2) = (3) Straightforward.

(3) = (1) Let A and B be any right k-ideal and left k-ideal of R, respectively.
Then A is a k-quasi-ideal of R. The characteristic functions x4 and xpz of A and B
are fuzzy k-quasi-ideal and fuzzy left k-ideal of R, respectively. By the assumption we
have x4 Axp < x4 @k xg- This implies that, x 4ng < xﬁ that is ANB C ﬁ But

= F o)
AB C AN B always. Thus AB = AN B. Therefore by Theorem 42 R is k-regular.
Similarly we can prove that (1) < (4) < (5).
(1) = (6) Let p, v,w be any fuzzy right k-ideal, any fuzzy k-bi-ideal and any fuzzy
left k-ideal of R, respectively. Now let z € R. Since R is k-regular, there exist a,a’ € R
such that z 4 zaz = za'z. Then we have

/\ (12 O ) (@) Aw(by))
(LOkvEOpw) () = v i=1
1

w3 uibfi;l o}t /\J{\ [(F @k v) (a;) A w(bj)]

> (pen v) (z) Aw(az) Aw(a'z)

=V A litai) Avbid] & \ [(a) A vis))]

=l

o |i=t
:+‘§I a.-b.:j‘é_}l a;b;
Aw(az) A w(a'z)
> p(za) A p (:r:a') Av(z) Aw(az) Aw(a'z)
> plz) Av(z) Aw(z) = (pAvAw) ()

So, tAvAw < Ly v G w.

(6) =» (7) Straightforward.

(7) = (1) Let A and B be any right k-ideal and left k-ideal of R, respectively. The
characteristic functions x4 and xg of A and B are fuzzy right k-ideal and fuzzy left
k-ideal of R, respectively. Since xp is a fuzzy k-quasi-ideal of R, by assumption, we
have

XAAXRAXB S XA XROXB = XAnRnB = Xm

PN = o
This implies ANRNB C ARB. Thus ANB C AB . But ANB 2 AB is always
~=
true. Therefore ANB = AB . Hence R is k-regular m

Corollary 250 Let R be a hemiring then the following conditions are equivalent:

1. R is k-regular.
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e
2. BnC € BC for every k-bi-ideal B and every left k-ideal C'.
=
3. @NC € QC for every k-quasi-ideal ) and every left k-ideal C.
P
4. ANB C AB for every right k-ideal A and for every k-bi-ideal B of R.

~~
. AnQ@ C AQ for every right k-ideal A and for every k-quasi-ideal Q of R.

e

6. ANBNCC ABC for every right k-ideal A, every k-bi-ideal B and every left
k-ideal C of R.

7. ANQNC C AQ(E for every right k-ideal A, every k-quasi-ideal ) and every left
k-ideal C of R.

Proof. (1) = (2) Let B and C be any k-bi-ideal and left k-ideal of R, respectively.
Then characteristic functions yp and xo of B and C are fuzzy k-bi-ideal and fuzzy
left k-ideal of R, respectively. By Theorem 249, we have

XBnc = XBNXe £ XB Dk Xe = X
BC

P
This implies BNC C BC'.
(2) = (3) Straight forward.
(3) = (1) Let A and B be any right k-ideal and left k-ideal of R, respectively. As

= o
A is a k-quasi-ideal of . By the assumption ANB C AB . But AB C AN B always.

Therefore ANB = ?ﬁ? Hence R is k-regular.
Similarly we can show that (1) 43 (4) 4> (5) and (1) <> (6) <> (7). =

Lemma 251 A hemaring R s k-regular if and only if the right and left k-ideals of R

=
are idempotent and for any right k-ideal A and any left k-ideal B of R, the set AB 1is
a k-quasi-ideal of R.

Proof. Suppose R is k-regular hemiring. Let A and B be right k-ideal and left

.
k-ideal of R, respectively. Then we have A> C A = A. Let z € A. Since R is

k-regular, there exist a,a” € R such that z + zaz = za'z. Since A is right k-ideal of
A A

R, s0 za,za’ € A and so zaz,za'z € A% This implies = € A?, that is, A C A%,
=
Thus A = A? and so A is idempotent. Similarly, we can show that B is idempotent.
= e
Since R is k-regular we have ANB = AB. As AN B is k-quasi-ideal of R so AB is a
k-quasi-ideal of K.
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Conversely, let @ be a k-quasi-ideal of R. Then it is easy to check that Q + RQ is
a left ideal of 1. This implies m is a left k-ideal of R. Thus by the assumption,
we have N

QC Q+RQ—(Q+RQ)(Q+RQ) Q*+ QRQ + RQ* + RQRQ

CRQ-I—RQ+RQ+RQ RQ

That is Q C RQ. Similarly, we can show that Q C Z)AI-I\

Thus @ € RGNQR C Q. So Q = QRNEQ.

On the other hand, it is clear that ’6}? and ’I-ZA(:)\ are right k-ideal and left k-ideal

B R I Y W e
of R, respectively. Then, by the assumption, (QR) = QR, (RQ) = ﬁa and

e N,
the set (QR) (RQ) is a k-quasi-ideal of R Thus we have
s 2
Q=0RNTRG = (QR) n (7 ) - @R @R)N(RQ) (RQ)
£
=Q (RR) QRﬂ RQ (RRQ) = (QR) (RQ) RN R(QR) (RQ)

1

t—"'_\
= (QR) (RQ) RNR (QR)(RQ) QR)(RQ)RQR(QR (RQ)
N,

D paydirompne
C (QR)(RQ) = QRRQ = QRQ cQ
So, @ = QRQ and so R is k-regular. =

Theorem 252 A hemiring R is k-regular if and only if the fuzzy right and fuzzy left
k-ideals of R are idempotent and for any fuzzy right k-ideal o and fuzzy left k-ideal v
of R, p G v 15 a fuzzy k-quasi-ideal of R.

Proof. Let R be k-regular and p be a fuzzy right k-ideal of R. Then p O p <
1Ok Xp < e
Let & € R. Since R is k-regular, there exist a, a' € R such that z + zaz = za'z.

Then we have

neoem@ =\ A\ liGai) A (8] A /\ [ta) A (@)

a4 Ea.—b;: in;b; p=i =
=1 4=
> p(wa) A p(z) Ap (ra') > p(z).

This implies that (p ¢y ) > p. Hence p = p ) pt, so p is idempotent. Similarly
we can prove that every fuzzy left k-ideal of R is idempotent. Now let u and v be any
fuzzy right k-ideal and fuzzy left k-ideal of R, respectively. By Theorem 81, we have
& v = pAvand it follows from Corollary 244, that p @ 1 is a fuzzy k-quasi-ideal

of R.
Conversely, let A be a right k-ideal of R. Then x4, the characteristic function of
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A
A, is a fuzzy right k-ideal of R. And x4 = x4 Gk X4 = X~ implies that A = A%

2
that is, A is idempotent. Similarly we can show that left k—iﬁe&is of R are idempotent.
Now let A be a right ideal and B be a left k-ideal of R. Then x . = x4 Ok Xp is
AB

=
a fuzzy k-quasi-ideal of R, that is, AB is a k-quasi-ideal of R. Therefore by Lemma
251, R is k-regular. w

6.3 k-intra-regular hemirings

Definition 253 A hemiring R is said to be k-intra-regular if for each x € R, there

’ ' m il '
exists ai, a;,bj,b; € R such that x + 3 a;z?b; = Y aj:nzb;.
i=1 j=1

—— e Ny
Also we can define its equivalent definitions (1) = € Rz?R Vz € R, (2) A C RA’R

VAC R.
In the case of rings the k-intra-regularity coincides with the intra-regularitry of

rings.

Example 254 Let R be a hemiring defined by the following Caylay’s table:

Then R is k-intra-regular hemiring.

Example 255 The set N, of all non-negative integers with usual addition ™ +" and
maultiplication ™ - " is a hemiring, but it is not k-reqular and k-intra-reqular hemiring.
’ n LL ! !
Indeed 2 € N, can not be written as 2+ 2a2 = 202 or 2+ Y, 0;2%h; = 3 a;2%b; for
=1 i=1

all a;, ay, bj, b; € No.
Lemma 256 The following assertions are equivalent for a hemiring R:

1. R is k-intra-regular.

",
2. ANB C AB for every left k-ideal A and every right k-ideal B of R.
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Proof. (1) = (2) Let A and B be any left k-ideal and right k-ideal of R, respec-
tively. Since R is k-intra-regular, we have

g R S N e A
ANBC R(ANB)’R=(R(ANB))((AnB)R) C (RA) (BR) C AB .

——— ——,

(2) = (1) Let @ € R. Then it is easy to check that Rz + Nz and zR + Nz,

where N = {0,1,2,.....}, are the principal left k-ideal and principal right k-ideal of R
generated by z, respectively. By the hypothesis, we have

—  — - i ~ 7~ P,
z € Rz+NznNzR+ Nz C (Rz + Nz) (zR+ Nz)
= (R + Nz) (zR + Nz) = (RzzR) + (RaNz) + (NzaR) + (NzNz)
o N,
C (RzzR)

m n ' '
Thus we have z + Y a;a%b; = Y a.;:uzb; for some a;,a;,b;,b; € R. Thus R is
iﬂ] j:l

k-intra-regular. =
Lemma 257 Let R be a hemiring then the following conditions are equivalent.

1. R is k-intra-regular.

2. pAv < pey v for every fuzzy left k-ideal p and every fuzzy right k-ideal v of R.

Proof. (1) = (2) Let R be a k-intra-regular hemiring. Let p and v be any fuzzy
left k-ideal and fuzzy right k-ideal of R, respectively. Now let © € R. Since R is
k-intra-regular, there exist a;, a;, b;, b;- € R such that

m n

¢ '

T+ Za.-a:zb,- = E aj:.':ﬂbj
i=1 i=1

that is

z + i (aiz) (vbi) = Xn: (“;"") (’:b;)
i=1 =1

Then we have

m

(p o v)(z) = v /\ [(ai) A v(bi)] A /\ [;c(a;) A u(b;)]
:+‘§n(h=i§lu;b; o= =2

> R [ (@iz) A v (xb;)] A /?\ [ﬂ (“}I) Av (wb;)]
i=1

Jj=1
> p(x) Av(z) = (1A v) (x)
This implies that p A v < Gy v.
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(2) = (1) Let A, B be left k-ideal and right k-ideal of R, respectively. Then x4
and xp, the characteristic functions of A and B are fuzzy left k-ideal and fuzzy right
k-ideal of R, respectively. Now, by the hypothesis,

XAnB = XANXB £ XA Ok XB = X—-
AB

— =
Thus ANB C AB. So R is k-intra-regular. m
Theorem 258 The following conditions are equivalent for a hemiring R.

1. R is k-intra-regular.

2. For all x € R, p(z) = p (2?) for all fuzzy k-ideals p of R.

Proof. (1) = (2) Assume that R is k-intra-regular. Let p be a fuzzy k-ideal of R
and z € R. Since R is k-intra-regular, there exist a;,a;, b, b; € R such that

m mn
T+ Zu,-:czb,- = Za}wgb_}
i=1

i=1

Then we have

pl(z) 2 [;s (g asa:"‘bf)] A [;.:. (éjl a}x%})]

> (A (aia)] A [N i (a%) |
> p(2%) = p(zz) > p(z)
implies that u(z) = p (z%).
(2) = (1) Let z € R. Then Nz?+ Ra®+ 2R + Rz?R is the principal k-ideal
of R generated by z?, where N = {0,1,2,...}. Now, the characteristic function

e - _of N2? 4 R2? + 2R+ Ra?R is a fuzzy k-ideal of R.
Nz? + Rz? + 2R + Ra’R
Since

22 € Nz? + Ra® +22R + Rz’R,
we have

- ~ ‘(—'C)=x,_ *—2 ‘(32) =1,
Nz? + Ra® + 2°R + R2%R Nz? + Rz? + 2?R + Rz’R

X

' - ~ m n ’ 3
so x € Nz? + Rz? + 2?R + Rz’R. Thus we have z + . a;a%h; = Y a;z*b; for
i=1

i=1

some a;, a:, b, b; € R. Therefore R is k-intra-regular. =

Lemma 259 The following assertions are equivalent for a hemairing R:
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1. R is both k-regular and k-intra-regular.
A
2. B= B? for every k-bi-ideal B of R.

A~
3. Q= Q? for every k-quasi-ideal Q of R.

Proof. (1) = (2) Let R be both k-regular and k-intra-regular. Let B be a k-
iy B
bi-ideal of R and = € B. Then B?> C "B = B. Since R is both k-regular and

k-intra-regular, there exist elements py, pa, a;, a:-, b, b;- € R such that

T+ TP = TPeT

and
m n
r )
T+ Zu.-:z!bg = Zﬂjﬁzbj
i=1 j=1
so we have
TPLZ + TPITPT = TPRIPIT
and

IPRT - TPLTPRT = TPRTpPl
Adding zpyzpyx, zpyzpex on both sides of equation 6.1 we get
T+ ap1t + apy TP T A TP EPT = TPeT + TP TP T A TPy Epe®
Using equations 6.3 and 6.4, we get
& - TPTp) & + TPITP2T = TPRTPRT + TPITPIT

Now, multiply equation 6.2 by pyz from the right and by zp; from the left

m n
TpaTp T A TPg (Z a;zzbg) PIT = TPy Zaj:czbj ne,
J=1

multiply equation 6.2 by pox from the right and by zp; from the left

m n
EP1TPeE + TPy (Z n.'a:zbi) Pa® = TPy (Z “;‘zzb; P2z,

i=1 j=1

multiply equation 6.2 by paz from the right and by zp; from the left

m n
TPTP2T + TP2 (Z ﬂ-i-"‘:zbi) Pt = TPy Z a;-:i:gb;) Pat,
=] j=1

(6.1)

(6.2)

(6.3)

(6-4)

(6.5)

(6.6)

(6.7)

(6.8)
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multiply equation 6.2 by pyz from the right and by zp; from the left

=1 y=1

T IPIT + TPy (Za,:r b; ) mT = zp (Za a2b ) Piz. (6.9)

m

Adding 3 (appaie) (ehipie), 3 (apiose) (abipas), 3- (epaie) (abipas)

=1

m
and Z (zpyaiz) (xbipyz) on both sides of equation 6.5, we get

T + TPy T + Z (zpaeiz) (zbiprx) + zp1zP2T + Z.‘ (zpraiz) (zbipa)

i=1 i=1

+ E (zp2aiz) (zbipax) + Z (zpraiz) (zbiprz)

m
= TPxPeT + z (zpoaiz) (xbipaz) + Tpyaprx + 21 (zpraiz) (xbipiz)
=] i=

¥ ‘Z, (zpaaiz) (xbipy) + 2 (zpraiz) (zbipaz)
=1

Usmg equations 6.6, 6.7, ﬁ 8 6. 9
x -+ Z (:cpza -:c) (zb p;m) Z‘l (a:pla'-a:) (Ib"pg:t)

+ Z (zpaaiz) (zbipaz) + 2 (zpraiz) (zbip )

::l

: ng (Ipzajm) (mbfmx) * ;§1 (n:p;aj:c) (Ibfplm)

m m

+ Zl (zp2aiz) (zbipa) + Zl (zpraiz) (zbiprz)
- =

Since B is'a k:biddeal of B, so

Ji:l (nga}z) (zb}p;z) +§:l (:np;a;-:c) (zb}pgm) + ai (zpraiz) (zbipax)
m

E (zpyaix) (abiprz) € B?

o é (spaajz) (sbjpa) + él(”m“}z) (wbimre) +:Zi (zp20:7) (2bipyz)

EN

+ Y (zpraiz) (abipyz) € B?
=1

AN A
So we have z € B% andso BC B?.
A

Therefore B = B?.
(2) = (3) Straightforward.
(3) = (1) Let A, B be the left k-ideal and right k-ideal of R, respectively. Then

o N eee—
ANB is a k-quasi-ideal of R. By the assumption, we have BNA = (BN A)(BNA)C

A, —
BAC BN A =BnAand AnB={ANB)(ANB) C AB . Therefore R is both
k-regular and k-intra-regular. =
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Theorem 260 Let R be a hemaring. Then the following conditions are equivalent:
1. R is both k-regular and k-intra-regular.
2. p e o= pu for each fuzzy k-bi-ideal p of R.
3. @y pp= p for each fuzzy k-quasi-ideal p of R.

Proof. (1) =» (2) Let R be both k-regular and k-intra-regular hemiring. Let p be
a fuzzy k-bi-ideal of R and = € R. Then p®p p < p. Since R is both k-regular and
k-intra-regular, then there exist elements py, p2, a;, a;, b, b} € R such that

T+ Tp1x = TPT
and
m n
L '
T+ Z a;x’b; = Z a_fu:gb_,-
i=1 j=1

As prove;:l in the proof of Lemma 359 we have
z + ng (mpga;-a:) (mb}plm) + Jg, (a:pm;-x) (zb}mx)

m m
+ 21 (wpgaiz) (xbipax) + ; (zpraiz) (zbiprx)

= i (:Epga.;.‘l:) (:cb;»pgz) +J§:I (Ip;a}m) (::b;pl;::)

i=1
+ i (zpaaiz) (zbipaz) + i (zpya;z) (zhipy )
Thus, =
(n O p)(z) = V N\ liai) A p()] A J\ [,u_(a;.) A ,u(b;)]

ot £ aii= 3. ol I =
> (ngu;-:c) A (xb;p;:l:) Ap (:cpln;x) Ap (zb;pzz)
A (zp2aiz) A p(zbipez) A p(wpraiz) A p(zbiprz)
> ()
This implies that g < g oy pu.
Therefore p Gy pp = p.
(2) = (3) Straightforward.
(3) = (1) Let @ be any k-quasi-ideal of R. Then xg, the characteristic function

of @, is a fuzzy k-quasi-ideal of R. By the assumption xq = Xq ©k Xg = x,.,-? Thus

AN
Q = Q. Hence by Lemma 259, R is both k-regular and k-intra-regular. m

Theorem 261 Let Il be a hemiring then the following conditions are equivalent:
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1. R is both k-regular and k-intra-regular.

2. pAv < pEyw for all fuzzy k-bi-ideal i, v of R.

3. pAv < pey v for fuzzy k-bi-ideal p and k-quasi-ideal v of R.
4. pAv < oy v for fuzzy k-quasi-ideal ;¢ and k-bi-ideal v of K.
5. pAv < pey v for all fuzzy k-quasi-ideal p, v of R.

Proof. (1) = (2) Let p and v be fuzzy k-bi-ideals of R and z € R. Since R is both
k-regular and k-intra-regular, there exist elements pl,pg,a,-,a:-,bj, b; € R such that

T+ Tp1T = TPT

and

% Za,z b; = Za'zzb-

As proved in the proof of Lemma 259 we have.

-+ i (:t:pza'-..":) (zb’-plz) + zﬂ:l (mp;a}z) (zb;pz:r)

+E (zpaaiz) (whipax) + E (zpraiz) (zbip1x)

5 (emeie) (s + £ () (e

+ E: (zpaaiz) (wbipax) +

=
Thus we have

(o v)(z) = v /\ [1e(ai) A v(bi)] A /\ [,u ) A v(b; )]

m n i=1 j=1
a:+i§:'a;b; =j§|a; b;

3

('tplal-:n) (zbypyz)

m:

> (nga}a:) Av (mb;plz:) Ape (xpla;:r) Av (Ib;-;pg:c)
Ap(zpaaiz) A v (zbipex) A p(azpraiz) A v (zbipyz)
> (pAv)(z).
Hence pAv < p g v.
(2) = (3) = (5) and (2) = (4) = (5), since every fuzzy k-quasi-ideal of R is a
fuzzy k-bi-ideal of R.
(5) = (1) Let Q be any k-quasi-ideal of R. Then xq, the characteristic function
of @, is a fuzzy k-quasi-ideal of R. By the assumption

XQ =XQ NXo quoka=x,A2\-
@
2 2
So Q C Q*. Since Q@ O Q? always true, therefore Q = Q?. Hence R is both
k-regular and k-intra-regular. =



Chapter 7
Prime k-bi-ideals in hemirings

In this chapter we define prime, strongly prime and semiprime k-bi-ideals of a hemiring,.
We also define their fuzzy versions and characterize hemirings by the properties of these
k-bi-ideals.

Recall the following definitions.

A hemiring R is said to be k-regular if for each € R, there exist a,b € R such
that o 4 zaz = xbz.

A hemiring R is said to be k-intra-regular if for each z € R, there exist a;, af, b;, b €
R such that z + ﬁaﬂ:?a’i = i:tbjzzb}.

o

i=]

——
A hemiring R is said to be right k-weakly regular if for each = € R, = € (zR).

m n

That is for each = € R there exist a;, af, b;, b; € R such that z+ ) za;za; = _E]:l:bj:cb;-.
J=

i=1
7.1 Right k-weakly regular hemirings

In chapter 4 we characterized right k-weakly regular hemirings in terms of their right
k-ideals and fuzzy right k-ideals. In this section we characterize right k-weakly regular
hemirings in terms of k-bi-ideals and fuzzy k-bi-ideals.

Theorem 262 The following assertions are equivalent for a hemiring R with identity:
1. R is right k-weakly regular hemiring.
2. BNIC BI for every k-bi-ideal B and every k-ideal I of R.
=
3. QNI C QI for every k-quasi-ideal () and every k-ideal I of R.

Proof. (1) = (2) Let R be a right k-weakly regular hemiring and B, I are k-
bi-ideal and k-ideal of R, respectively. Let z € BnI. Then = € B and z € [I.

112
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Since R is right k-weakly regular hemiring, there exist a.,-,a‘;,bj,b_',- € R such that

m n m n
T+ ) waiza; = ) abjab. Since x € B and x € I, we have ) za;za} and ) zb;zb]
i=1 §=1 =1 J=1

m n ~~
are in BI. Thus from & + Y wajza; = Y wbjab) it follows that = € BI. Hence
i=1 =1

BnICBI.

(2) = (3) Obvious.

(3) = (1) Since every right k-ideal is a k-quasi-ideal, choose @ a right k-ideal of
R. Then by hypothesis QN1 C QI for every right k-ideal Q and every k-ideal I of
R. But ’6? C QN[ always holds. Hence QN1 = ’a? for every right k-ideal @ and
every k-ideal I of K. Thus by Proposition 161, R is right k-weakly regular hemiring.
B

Theorem 263 The folloﬁing assertions are equivalent for a hemiring R with identity:
1. R is right k-weakly regular hemiring.
2. AA p <A@y for every fuzzy k-bi-ideal A and every fuzzy k-ideal p of R.

3. AA p < Ay pfor every fuzzy k-quasi-ideal A and every fuzzy k-ideal p of K.

Proof. (1) = (2) Let R be a right k-weakly regular hemiring and ), u be fuzzy k-bi-
ideal and fuzzy k-ideal of R, respectively. Let z € R. Then there exist a;, a, bj, b;- €eR

m mn
such that 2 + ) za;za] = Y zb;zb|. Now
m

A O A ) A A (Me) A utd;-))]

=1 F=1

Coe@ =V

T4 f: cidi= i c;d;
=

v

A (@) Ataiza) A A (Mz) A H(bjﬂ’b}))}
= j=

i=1

= (A A p)(2).
(2) = (3) Obvious.
(3) = (1) Since every fuzzy right k-ideal is a fuzzy k-quasi-ideal of R, choose
A a fuzzy right k-ideal of R and p any fuzzy k-ideal of R. Then by hypothesis,
AA R S A©g . But AGy o < XA i always true. Thus A O g = A A p for every fuzzy
right k-ideal A and fuzzy k-ideal p of R. Hence by Theorem 162, R is right k-weakly
regular hemiring. =

> | A () Atz A A (A(z)/m(zn]
J:

Theorem 264 The following assertions are equivalent for a hemiring R with identity:
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1. R is right k-weakly regular hemiring.

—~
2. BnInJ C BlJ for every k-bi-ideal B, every k-ideal I and every right k-ideal
J of R.

=
3. @nInJ € QIJ for every k-quasi-ideal @, every k-ideal I and every right k-ideal
J of R.

Proof. (1) = (2) Let R be a right k-weakly regular hemiring and B, I, J are k-bi-
ideal, k-ideal and right k-ideal of R, respectively. Let z € BNINJ. Thenz € B,z € [
and x € J Since R is right. k-weakly regular hemjring, there exist a‘, aj, bj, U; € Rsuch

that z + Z:ra.:t.a = Zﬂ:b jab. Now za;za; + Zza,n:a ajral = Ezbij ‘ajza;. Since

=] =1

z € B, a;zajo; € I,za; € J and bjzbla; € I, we have Eza,xa ‘aizay, Ea:b,z:b'a.xa €
t—l g==]

BI1J. Thus za;iza; € BIJ. Similarly zb;zb; € B1J. Hence from z + E:::a,-:m; =
i=1

n —~—
3. xbjab; it follows that = € BIJ. This shows BN In.J C BIJ.
e
(2) = (3) Obvious.
(3) = (1) Since every right k-ideal is a k-quasi-ideal, choose @ a right k-ideal of
P
R and J = R. Then by hypothesis QNnInNnJ=QnNnINR=QnNnI CQRIRC QI.

But 'C?F C QNI always true. Hence QNI = 6}\ for every right k-ideal @ and every
k-ideal I of R. Thus by Proposition 161, R is right k-weakly regular hemiring. =

Theorem 265 The following assertions are equivalent for a hemiring R with identity:

1. R is right k-weakly regular hemiring.

2. AN A < AEyg i GO v for every fuzay k-bi-ideal A, every fuzzy k-ideal p and
every fuzzy right k-ideal v of R.

3. AApAY € XNOk p G v for every fuzzy k-quasi-ideal A, every fuzzy k-ideal pt and
every fuzzy right k-ideal v of R.

Proof. (1) = (2) Let R be a right k-weakly regular hemiring and A, p1, v be fuzzy
k-bi-ideal, fuzzy k-ideal and fuzzy right k- Ideal of R, respectwely Let =z € R. Then

there exist a;, aj, bj,V; € R such that z + Z:ra,’z:a = Zzb jzbt;. Now

i=1

A (A O m)(ci) A v(di))
AC ) o vl(z) =
[(A e ) o ) () V A /\ ((AU;“U) ¢; )A”(d’})

i I8 Ed
:r-l—‘_gl r:.d.-=.%,I cjdj j=1
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> [{\] (A Ok 1) (i) A v(zal)) A /\j ((r @k m)(abs) A u(:cb}))}
> ['_51 (O m)(zai) Av()) A A (A p)(zbs) A u(z))]

As o

(oxpaa) =\ {/\ (e A A A (X) ,u(d;))]

L

m n
Tai+ E: c.-d,-:jz c;d;

[/\ (M) A p(aizala:)) A /\ (A(:r) A u(bsat, a.))]

(because za; + E:m zala; = ): zhjal; a,)

i=1
> | A 0@ AnE) A A (@) A u(m))J = (AAW)()
1= =

Similarly (A O p)(zb;) 2 (A A p)(z).
Thus

(A @k p) Ok v](z) 2 /\ ((A G p)(wai) A v(z)) /\J/\l ((A Ok p)(bj) A v(z)) }

2 (A A p)(z) Av(z) = ((AA p) Av)(z)

(2) = (3) Obvious.

(3) = (1) Since every fuzzy right k-ideal is a fuzzy k-quasi-ideal of R, choose A a
fuzzy right k-ideal of R, p any fuzzy k-ideal and xp fuzzy right k-ideal of H. Then by
hypothesis AA = AApPAXR < ACk G Xp < A Ok . But A @k t < A A p always
true. Thus A Ok gz = A A p for every fuzzy right k-ideal A and fuzzy k-ideal u of R.
Hence by Theorem 162, R is right k-weakly regular hemiring. m

7.2 Prime and semiprime k-bi-ideals

In Chapter 6 many characterizations of k-regular, k-intra-regular and of both k-regular
and k-intra-regular hemirings are given. Here we give some more characterizations of
these hemirings.

N
Proposition 266 Let By and By be k-bi-ideals of a hemiring R. Then ByBj is a
k-bi-ideal of R.

N
Proof. Let By and By be k-bi-ideals of R and x,y € By By. Then

=1

n ’ m L
T+ ) aja; = ) bib; (7.1)
i=1



7. Prime k-bi-ideals in hemirings 116

and

P ' ki ’
y+ Z CgCy = !Z dyd, (7.2)
=1

for aj, bj, ¢y, d) € By, a,
Now

11 J’ dj £ Bt!

7 ' 2 ' m ' q '
z+y+ (E aia; + ), cgcg) = (E bib; + ):d;d;) g
i=1 g=1 j=1 =1

As (2,_10..:1 + 3= CoCy ) and (ZJ lb_,b +> L, d ) are in ByBy so x+y €
o
By Bs.

Multiplying the equation (7.1) by y we get

zy + ):‘,la; = 5_‘,1 bibjy (7.3)
= J=

Multiplying the equation (7.2) by Y i, aia; we get

As each term in the expression of (Zl_ aia ) (Zg_ CgCq ) is the form uga'-cgc;
where aj, ¢, € By and a,, g € By. Thus (u,a :._,,) ¢y € (B1RB1) By C By Bs. This im-
plies (2._ a;a ) ():g 1 Cg€ ) € B)Bj;. Similarly (Zi=,cga,~) (Zl=1 dy ,) € By Bs.

’ v ’ Le .

Hence from equation (7.4) we get 3.1, a,—a,-y € By By. Similarly E}":l biby € B1By.
o g
Thus from equation (7.3) we get a2y € B B;.

—
Hence B Bj is closed under addition and multiplication.
Now

A

i o 7 gy W S IR g
(3132) R (1'3132) = (B1B2) R(B1B2) C B1 B>

— e W —edhie |
Let z +a=b for some a,b € B1By,z € R. Then z € ByBy = B1B3.
—
Hence BBy is a k-bi-ideal of R. =

Proposition 267 Let A, ju be fuzzy k-bi-ideal of a hemiring R. Then A®y jt is a fuzzy
k-bi-ideal of R.

Proof. Let A, u be fuzzy k-bi-ideal of R and z,y € R. Then

(A O 1) () = vV A [Ma) Aw (o )]A A (A An (b )]]

n m =1
x+Ei=l ﬂ‘ﬂ:=zjnl bjbj -
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and

(A @ "’“’):Nz;:,c,ff:z;.«.«:[ A [Me) An(ch)] A A A df)’w(tﬂ)]}
(7.6)

where a;, bj,cg,dt,a,,b c J € R.

Now

Gouatn = vV [[Aoernumn|a|A (ebaun))|

z+y+ EE-I:= Zec.ﬁ "
( Ni=a [_A(ai)/\.u o A
5 o M) An (8

""ZL:""‘}:/:Z:; byb} IJ+Z:=1 c,}’f,:z::ld,d: {;_—_1 _A (cg) Ap c; . A
\ Nt M) e ()]
g e e an ()]
Ay+2:=l c,:{mz;’=l 2 [N;=1 [/\ (cg) A (c;)] AN, [A (di) A p (d;)]]
= (A Ok p)(z) A (A Or p)(y)-
To prove that z +a = b implies (A O p)(z) = (A @k p)(a) A (A Ok p1)(b), observe
that

P
u+Za.b, Zajbj and b+ Zchg—z o (7.7)

q=1
together with = + a = b, gives

m m
z+a+ Zaibi = b-!-Za,-b,-.
=] t=1
Thus,
n m
w4+ Y ab;=b+y  aib;

and, conscquent.ly,
T+ Za_,bj-!- Z codyg = b+ chdg-kza‘b;

i=1
= E Cytly + Z aib;
g=1 i=1
m 'p ' '
= ; ab; + :,;1 ¢qd,- Therefore,

@ + ZanJ + chdg - Za,b + E (7.8)

i=1
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Now, in view of equations (7.7) and (7.8), we have

A (e A ute)|

ot San=Faie, \ " A (A )]

(A& p1)(a) A (A g p)(b) =

p
A
o [/} (Mep) A u(dg))]
v Entamtat | A A () Autd)

I=1

([ A@)A@)A )
i=1

=V V A (apn )

P
“"”‘ﬁﬂibiﬂ Zn:ﬂ;b;. b+ icgd,: ic;d; QQI(A(CQ) A ﬂ(dy))/\
= 1=1 g=1 i=1 ” ‘ ,
\ \ A QEDnna) )

<V (Aecanumna R (xeiaue)
243 rahe=3 rihd - .

)
Now
(A Ok ) Ok (A @ p) = (A Cop e O A) @ pt
< (A Ok Xp Ok A) Ok 1
< AQ p
Also
(A Ok ) Ok X Ok (A Ok 1) = (A Ok (1 Ok Xg) Ok A) Ok 1
S(AOkXROkA) Ok p S AOk
Thus A ¢ pt is a fuzzy k-bi-ideal of R, =

Definition 268 Let R be a hemiring. A k-bi-ideal B of R is called prime (resp. semi-
P Pt

prime) if ByBs C B (resp. B} C B) implies By C B or By C B (resp. B, C B)

Jor all k-bi-ideals By, By of R.

Definition 269 Let R be a hemiring. A k-bi-ideal B of R is called strongly prime if
e, R ooy
B\BaNByBy C B wmplies By C B or By C B for all k-bi-ideals By, By of R.

Obviously every strongly prime k-bi-ideal is a prime k-bi-ideal and every prime
k-bi-ideal is a semiprime k-bi-ideal.
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Definition 270 A fuzzy k-bi-ideal A of a hemiring R s called prime (semiprime) if
ROy <A (o p < X) implies < Aorv<A (u<A) forall fuzzy k-bi-ideals p, v
of R.

A fuzzy k-bi-ideal A of a hemiring R is called strongly prime if p O vAv O p < A
implies 1 < X or ¥ < A for all fuzzy k-bi-ideals 1, v of R.

Lemma 271 Let R be a hemiring, {B; :1 € I} a family of prime k-bi-ideal of R.
Then ﬂ B; is a semiprime k-bi-ideal of R.
il

Proof. Straightforward. =

Proposition 272 Lel R be a hemiring and p, v be fuzzy k-bi-ideals of R then p A v
s also fuzzy k-bi-ideal of R.

Proof. Let z,y,z € K. Then
(1)
(pAv)(x+y) = ple+y)rviz+y) 2 [p)Ap@)Alr(z)Avy)
= (e Av@)Ap@) AvE)=(rAv)(@)ARAv) ().
(21)
(eAv)(zy) = play) Av(zy) > p@)Ap(y) Av(z) Av(y)
(pAv)(Z)A(pAv)(y).

(ifi)
(nAv)(zyz) = p(ayz) Av(zyz) 2 p(z) Ap(z) Av(z)Av(z)
= (nAv)(@)A(prav)(z).

(iv) Now let a,b, z € R such that = + a = b. Then

p(@) Av(z) > [pn(a) Ap(b)] Alv(a) Av (D)
= [pu(a) Av(a)] Alp(d) Av(b)] = (pAv)(a)A(eAr)b).

(kAv)(z)

Hence ju A v is a fuzzy k-bi-ideal of R. =

Proposition 273 Let R be a hemiring and {X; : i € I'} a family of fuzzy prime k-bi-
ideal of R. Then /\ Ai i a semiprime fuzzy k-bi-ideal of R.
i€l

Proof. Straightforward. =
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Definition 274 Let i be a henuring. A k-bi-ideal B of R is called wreducible (resp.
strongly irreducible) if By N By = B (resp. By N By C B) implies By = B or By = B
(resp. By C B or By C B) for all k-bi-ideals By, By of R.

Proposition 275 Every strongly irreducible semiprime k-bi-ideal of a hemiring R is
a strongly prime k-bi-ideal of R.

Proof. Let B be a stmngly irreducible semiprime k-bi-ideal of R. Let By, By be
any k-biideals of A such that 5,5, BB ByB; € B. Since nco By 1By is & k-biddeal and
(31 n Bz) (Bin Bg) C Blﬂg, (Bl ﬂBz) (B1 ﬂBg) C BgB]_

Thus (B; N By) (B) N Bg) C BleﬂBgBl C B. Since B is a semiprime k-bi-ideal
of R, we have By N By C B. As B is strongly irreducible, we have By C B or By C B.
Thus B is strongly prime k-bi-ideal of 2. =

Proposition 276 Let R be a hemiring and B be a k-bi-ideal of R. Let a € R be such
that a ¢ B. Then there exists an irreducible k-bi-ideal A of R such that B C A and

ad A

Proof. Let F be the collection of all k-bi-ideals of R which contains B but does
not contain a. Then F # ¢, because B € F. The collection F is a partially ordered
set under inclusion. As every totally ordered subset in F is bounded above, so by
Zorn’s Lemma there exists a maximal element say A € 7. We will show that A is an
irreducible k-bi-ideal of R. Let C, D be two k-bi-ideals of R such that Cn D = A.
If both C and D properly contains A then a € C and a € D, then a € A. This
contradicts the fact that a ¢ A. Thus A = C or A = D. Hence A is an irreducible
k-bi-ideal of R such that BC Aanda¢d A. m

Definition 277 Let R be a hemiring and A a fuzzy k-bi-ideal of R then X is called
wrreducible (resp. strongly irreducible) fuzzy k-bi-ideal of R of pAv = X (resp. pAv <))
implies p= X orv =X\ (resp. p < Xorv <)) for al fuzzy k-bi-ideals p1, v of R.

Proposition 278 Let R be a hemiring. Then every strongly irreducible semiprime
fuzzy k-bi-ideal of R is a strongly prime fuzzy k-bi-ideal of R.

Proof. Let A be a strongly irreducible semiprime k-bi-ideal of It. Let p,r be
any fuzzy k-bi-ideals of R such that (pOrv) A (v Orpu) < A As p A v is a fuzzy
k-bi-ideal of R and (g A v) G (v A p) € pg v and (pAv) O (v A p) < v Ok p. Thus
(mAv) O (A p) < (o v) A(veep) <A That is (WA ) Gk (A p) < A

As ) is semiprime, we have 1 A v < A. Since A is strongly irreducible, we have

i< Aorw <A Hence A is strongly prime. =
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Proposition 279 Let i be a hemiring, \ a fuzzy k-bi-ideal of R with A (a) = «, where
a is any element of R and a € (0,1). Then there exists a fuzzy irreducible k-bi-ideal §
of R such that A < § and 6 (a) = a.

Proof. Let X = {u: pis a fuzzy k-bi-ideal of R, pi(a) = a and A < pu}. Then
X # ¢, because A € X. Let F be a totally ordered subset of X, say F = {\;:1 € I}.
We claim that V Ai is a fuzzy k-bi-ideal of R containing .

Let z,y € Ii‘i:onsider

(1)

(va)@n(va ) o = (Vou @) A (y O (y»)
V[yevana y)]
vy VO (2 A% )]

IA

V[V (3@ ax0)]
i
whiare AJ = max {\;, \j} , note that X} € {);:i € I}

<V [V n]| =y ¥ e+o)
SVi(s+y)l = (VA) (z+y)

(2)

v A.-) (zy) = V (i (z))

' >V (M (2) A Ay ()
=V @) AV )

= (V ,\,.) (z) ;: (Y «\,-) ()

(3)
(V) (a2 =V hstaa)

2 VU\ () A Aj (2))

= Y(A i(z)) A Y (A (2))

. (\! A.') (z) A (\! /\i) (2)
(4) Now, let z + a = b, where a,b € R. Then

(v Ai) @ (Vx) = (Vo) 2 (\J/(AJ- (b)))

-V [(vortan) ax)]
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=V [y(zf (a) A X (bn]
<V |V (@axm)|

i

where A;-f = max {A;, A; } , note that ,\f e{Ai:iel}
<V [V (z\f (:r))] because A! is a fuzzy k-bi-ideal
i Li

V@] <vine) = (V) @
1] ! 1
Thus V Ai is a fuzzy k-bi-ideal of K. Clearly A < V A; and V Ai(a) =V (Ai(a) =
«. Thus \_;/\.- is the L.u.b of 7. Hence by Zorn's lemmla there e::ist.s a fuzz;' k-bi-ideal

dof R wh:ich is maximal with respect to the property that A < 4 and d (a) = o

We will show that § is fuzzy irreducible k-bi-ideal of R. Let § = d; A dy, where
83,62 are fuzzy k-bi-ideals of R. Thus d < d, and § < d2. We claim that either § = 4,
or & = §;. Suppose § # §; and & # 8. Since 4 is maximal with respect to the property
that 6 (a) = o and since § $ 6; and § $ 8y, so §; (a) # « and 3 (a) # «. Hence
a =0 (a) = (8; Adz) (a) = (61) (@) A (d2) (a) # e, which is impossible. Hence § = 4,
or § = 6. Thus § is fuzzy irreducible k-bi-ideal of . =

Theorem 280 For a hemiring R, the following assertions are equivalent:
1. R is both k-regular and k-intra-regular.
A
2. B? = B for every k-bi-ideal B of R.
F g S v,
3. By N By € ByByN ByBy for all k-bi-ideals By, By of K.

4. Bach k-bi-ideal of R is semiprime.

5. Every proper k-bi-ideal of R is the intersection of all irreducible semiprime &-bi-

ideals of R which contain it.

Proof. (1) < (2) This is Lemma 259.
(2) = (3) Let By, By be k-bi-ideals of R. Then By N B is also a k-bi-ideal of R. By

PR i P g
hypothesis By N By = (B) N By)* C ByBy. Similarly By N By = (By N By)* C ByB.
e —— "

Thus By N By € By By N By B;. By Proposition 266 By By and By B; are k-bi-ideals of
—N—
R and so ByBaN By By is a k-bi-ideal of R. Thus by the hypothesis

ey gy i gty Y o= b (O i o r"A—\‘
BiByNByB, = (813303231) (B;BgﬂBgB})

o, Ny pr—— | e
C B\By BBy = B\ByB;B, C B\RB; C B,
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Similarly ByBs N ByB, C By. Hence By By N By By C By N By.
This implies By By N ByBy = By N Bs.
(3) = (2) Obvious.
A
(2) = (4) Let By, By be k-bi-ideals of R, such that B C By. Then B} C Bj. By
=

hypothesis By = B,z C Bj. Thus By is semiprime.

(4) = (2) Obvious.

(4) = (5) Let B be a proper k-bi-ideal of R, Then B is contained in the intersection
of all irreducible k-bi-ideals of R which contain it. Proposition 276, gnarantees the
existence of such irreducible k-bi-ideals. If a ¢ B, then there exists an irreducible
k-bi-ideal of R which contain it but does not contain a. Hence B is the intersection
of all irreducible k-bi-ideals of R which contain it. By hypothesis each k-bi-ideal is
semiprime, so B is the intersection of all irreducible semiprime k-bi-ideals of i which

contain it.
= =
(5) = (2) Let B be a k-bi-ideal of R. If 32 = R then clearly B= R. If B® #R,

then .B2 is proper k-bi-ideal of R containing Ba and so by our hypothesis,

2 = {Ba : Ba irreducible semiprime k-bi-ideals of R) .

Since each B, is a semiprime k-bi-ideal, B C B, for all «, and so B C [, Ba =
A A=
B? . Thus B> =B. =

Theorem 281 Let R be a k-regular and k-intra-regular hemiring and B be a k-bi-
ideal of R. Then B 1s strongly irrveducible if and only if B s strongly prime.

Proof. Proof follows from Theorem 280. m

Theorem 282 Each k-bi-ideal of a hemiring R is strongly prime if and only if R is
k-regqular, k-intra-regular and the set of k-bi-ideals of R is totally ordered by inclusion.

Proof. Suppose that each k-bi-ideal of R is strongly prime. Then each k-bi-ideal
of R is semiprime. Thus by Theorem 280, R is both k-regular and k-intra-regular.
Now we show that the set of k-bi-ideals of R is totally ordered. Let By and By be

. e
any two k-bi-ideals of K. Then by Theorem 280, By N By = B1BaN BBy . As each
k-bi-ideal is strongly prime, B; N By is strongly prime. Hence either By C By N By or
By C By N By that is either B} C By or By C B.

Conversely, assume that R is k-regular, k-intra-regular and the set of k-bi-ideals of
Ris totally ordered. We show that each k-bi-ideal of R is strongly prime. Let B, By, By
be k-bi-ideals of R such that ByBynBsB; C B. Since R is both k-regular and k-
A —— P i, W e
intra-regular, by Theorem 280, By N By = B1ByN BB, . Since B1Ba;N BB, C B,



7. Prime k-bi-ideals in hemirings 124

s0 By N By € B. As the set of k-bi-ideals of R is totally ordered, so either By C By
or By C By, that is, either By N By = By or By N By = By. Thus either By C B or
Bz CB. n

Theorem 283 If the set of k-bi-ideals of R 1s totally ordered, then R is both k-regular
and k-intra-reqular if and only if each k-bi-ideal of R is prime.

Proof. Suppose that R is both k-regular and k-intra-regular. Let B, By, By be k-

e,
bi-ideals of It such that By By C B. Since the set of k-bi-ideals of R is totally ordered,
’ LI —edivee
either By C By or By C Bj. Suppose B; C By. Then B? C B1B; C B. By Theorem

280, B is semiprime so By C B. Hence B is prime k-bi-ideal of R.
Conversely, assume that every k-bi-ideal of R is prime. Thus every k-bi-ideal of R
is semiprime. Hence by Theorem 280, R is both k-regular and k-intra-regular. =

Theorem 284 Let R be a hemiring. Then the followings are equivalent:

1. The set of k-bi-ideals of R is totally ordered under inclusion.
2. Each k-bi-ideal of R is strongly irreducible.

3. Each k-bi-ideal of R is irreducible.

Proof. (1) = (2) Let B, By, By be k-bi-ideals of R such that By N Bz C B. Since
the set of k-bi-ideals of R is totally ordered under inclusion, so either B; C By or
By C By. Thus either By N By = By or BjN By = By. Hence ByNB; C B= B CHB
or By C B. Thus B is strongly irreducible k-bi-ideal of R.

(2) = (3) Let B, By, B be k-bi-ideals of R such that By N B, = B. Then B C B;
or B C By, By the hypothesis, either By C B or By C B. Hence either By = B or
By = B. Thus B is irreducible.

(3) = (1) Let By, By be two k-bi-ideals of R. Then By N By is a k-bi-ideal of R.
Also By N By = By N Bs. So by hypothesis either By = By N By or By = By N By, i.e;
either By C By or By C B,. Hence the set of k-bi-ideals of I is totally ordered. m

Theorem 285 For a hemiring R, the following assertions are equivalent:

1. R is both k-regular and k-intra-regular.
2. AOp A = A for every fuzzy k-bi-ideal A of R.
3. AA = (AOg ) A (p & A) for all fuzzy k-bi-ideals A, p of R.

4. Each fuzzy k-bi-ideal of R is semiprime.
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5. Iach proper fuzzy k-bi-ideal of R is the intersection of all irreducible semiprime

fuzzy k-bi-ideals of R which contain il.

Proof. (1) = (2) This is Theorem 260.

(2) = (3) Let A, p be fuzzy k-bi-ideals of R. Then A A p is also fuzzy k-bi-ideal of
R. By hypothesis A po = (AA ) 0 (A A ) < Xy . Similarly AA p < pp@p A Thus
AN < (ANOk ) A (O A) -

Now by Proposition 267, (A . p) and (@ A) are fuzzy k-bi-ideals of R and so
(AOr p) A (e O A) is a fuzzy k-bi-ideal of R. Thus by hypothesis

(AOrp) A(penA) = ((Aewp) A (pOkA)) Ok (A Ok 1) A (11 Ok A))
< (AOkp) O (OKRA) SAOKXR Ok < A

Similarly ((A Gk ) A (e Ok A)) < . Thus (A O ) A (p Ok A) < AA .

Hence (A Ok ) A (p O A) = AA p.

(3) = (2) Obvious.

(2) = (4) Let A, u be fuzzy k-bi-ideals of R such that A G A < p. Since by (2)
A A=A, s0 A < . Thus p is semiprime.

(4) = (2) Obvious.

(4) = (b) Let A be a proper [uzzy k-bi-ideal of R. Then \ is contained in the
intersection of all irreducible fuzzy k-bi-ideals of R which contain it. Proposition 279,
guarantees the existence of such irreducible fuzzy k-bi-ideals. If @ € R and t € (0, 1]
such that A(a) = t, then there exists an irreducible fuzzy k-bi-ideal p, such that
A € p, and p, (@) = t. Hence A is the intersection of all irreducible fuzzy k-bi-ideals
of R which contain it. By hypothesis each fuzzy k-bi-ideal is semiprime. Thus A is the
intersection of all irreducible, semiprime fuzzy k-bi-ideals of R which contain it.

(5) = (2) Let A be a fuzzy k-bi-ideal of R. Then A A is a fuzzy k-bi-ideal of R, so
AOpA = A Ao where A, are irreducible, semiprime fuzzy k-bi-ideals of R which contain
A O A. Since each A, is semiprime, so A < A, for all . Thus A < A Ay = A© A. But
Ak A< Xalways. Hence A=A A =

Theorem 286 Let R be a k-regular and k-intra-regular hemiring and \ be a fuzzy
k-bi-ideal of R. Then A is strongly irreducible if and only if )\ is strongly prime.

Proof. Proof follows from Theorem 285. m

Theorem 287 FEach fuzzy k-bi-ideal of a hemiring R is strongly prime if and only
if R is k-reqular and k-intra-regular and the set of fuzzy k-bi-ideals of R is totally
ordered.
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Proof. Suppose that each fuzzy k-bi-ideal of R is strongly prime. Then each [uzzy
k-bi-ideal of R is semiprime. Thus by Theorem 285, R is both k-regular and k-intra-
regular. Now we show that the set of fuzzy k-bi-ideals of R is totally ordered. Let A and
jt be any two fuzzy k-bi-ideals of R. Then by Theorem 285, AA i = (A @ p)A(1n O A) .
As each fuzzy k-bi-ideal is strongly prime, A < AA por pu < A A p that is either A < p
or p< A

Conversely, assume that R is k-regular, k-intra-regular and the set of fuzzy k-bi-
ideals of R is totally ordered. We show that each fuzzy k-bi-ideal of R is strongly
prime. Let A, p, v be fuzzy k-bi-ideals of R such that (p Gk v) A (¥ Ok p) < A. Since
R is both k-regular and k-intra-regular, by Theorem 285, pAv = (p Ok v) A(v O 1) .
Since (p g ) A (v p) < A, so pAv < A As the set of fuzzy k-bi-ideals of R is
totally ordered, so either p < v or v < p, that is, either p A v = por p Av = v. Thus
either < Aorv< A =

Theorem 288 If the set of fuzzy k-bi-ideals of R is totally ordered, then R is both
k-reqular and k-intra-reqular if and only if each fuzzy k-bi-ideal of R is prime.

Proof. Suppose that R is both k-regular and k-intra-regular. Let A, p, » be fuzzy
k-bi-ideals of R such that p ¢, v < A. Since the set of fuzzy k-bi-ideals of R is totally
ordered, either ¢t < v or v < pt. Suppose p < v. Then p O p < p Ok v < A By
Theorem 285, ) is semiprime so . < A. Hence A is prime fuzzy k-bi-ideal of R.

Conversely, assume that every fuzzy k-bi-ideal of R is prime. Thus every fuzzy
k-bi-ideal of R is semiprime. Hence by Theorem 285, R is both k-regular and k-intra-

regular ®
Theorem 289 Let B be a hemiring. Then the following are equivalent:

1. The set of all fuzzy k-bi-ideals of R is totally ordered under inclusion.
2. Bach fuzzy k-bi-ideal of R is strongly irreducible.

3. Bach fuzzy k-bi-ideal of R is irreducible.

Proof. (1) = (2) Let p,», A be any fuzzy k-bi-ideals of R such that p A v < A
Since the set of fuzzy k-bi-ideals of R is totally ordered, so either p < v or v < p.
Therefore pAv = por pAv=wr. Hence p Av < X = either p < A or v < A. Hence A
is strongly irreducible.

(2) = (3) Let p1, v, A be any fuzzy k-bi-ideals of R such that pAv = A. Then A < p
or A < v, By hypothesis, either 4 < A or » < A. So either g = A or v = A. Thus A is

irreducible,
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(3) = (1) Let , A be any fuzzy k-bi-ideals of R. Then AA pu is a fuzzy k-bi-ideal of
R, Also AAp= AA . So by hypothesis, either A = AA e or g = A A pi, that is either
A < por p< A\ Therefore the set of fuzzy k-bi-ideals of R is totally ordered. m



Chapter 8
Prime h-bi-ideals in hemirings

In this chapter we define prime, strongly prime and semiprime h-bi-ideals of a hemiring.
We also define their fuzzy versions and characterize hemirings by the properties of these
h-bi-ideals,

Recall the following definitions.

A hemiring R is said to be h-hemiregular if for each z € R, there exist a,b,z € R

such that z -+ zaz 4 z = zbx + z.
A hemiring R is said to be h-intra-hemiregular if for each x € R, there exist

m L
ai, a}, bj, b, = € R such that = + Y aza) + 2 = ) bjz?l; + 2.
i=1 J=1

A hemiring R is said to be right h-weakly regular if for each z € R, z € (zR)%.

That is for each z € R there exist a;,a},b;.b}, 2 € R such that = + Y zaizal + z =
i:l

n
b I8 :cbj:ch;- 4+ z,
=1

8.1 Right h-weakly regular hemirings

In chapter 5 we characterized right h-weakly regular hemirings in terms of their right
h-ideals and fuzzy right h-ideals. Now we characterize right h-weakly regular hemirings
in terms of h-bi-ideals and fuzzy h-bi-ideals.

Theorem 290 The following assertions are equivalent for a hemiring R with identity:
1. R is right h-weakly regular hemiring.
2. Bn1I C BT for every h-bi-ideal B and every h-ideal I of R.

3. QNI C QI for every h-quasi-ideal Q and every h-ideal I of R.

128
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Proof. (1) = (2) Let R be a right h-weakly regular hemiring and B, [ are h-
bi-ideal and h-ideal of R, respectively. Let z € BnI. Then z € B and z € I.

Since R is right h-weakly regular hemiring, there exist a;.a;,bj,b},z € I such thal
m T m

z + ) waiza; + z = ) abjabl + 2. Since z € B and = € I, we have ) za;za] and
£ j=1

i=1 J =1

n m n
Z:rbja:b;- are in BI. Thus from z + } za;za; + z = ), abjal + z it follows that
i1=1 =] J=1

x € BI. Hence BNI C BI.

(2) = (3) Obvious.

(3) = (1) Since every right h-ideal is an h-quasi-ideal, choose @ a right h-ideal of
R. Then by hypothesis Q NI C QI for every right h-ideal Q and every h-ideal I of R.
But @I € @ NI always holds. Hence @ NI = QI for every right h-ideal @ and every
h-ideal I of R. Thus by Proposition 195, R is right h-weakly regular hemiring. =

Theorem 291 The following assertions are equivalent for a hemiring R with identity:

1. R is right h-weakly regular hemiring.
2. AAp < Ay p for every fuzzy h-bi-ideal A and every fuzzy h-ideal p of R.

3. AA p < Xy pfor every fuzzy h-quasi-ideal A and every fuzzy h-ideal 2 of R.

Proof. (1) = (2) Let R be a right h-weakly regular hemiring and A, p be
fuzzy h-bi-ideal and fuzzy h-ideal of R, respectively. Let @ € R. Then there exist
m n

ai, a;, bj, Vs, z € R such that x + ) zazae) +z = 3 abjab + z. Now
i=1 j=1

(A©n )(a) = \/ [{‘. (e A () A A (M)A u(d}))]

I+i§ cidi 2= ); :.;:I; 4z
2 [7{ (Mz) A plaizai)) A R ()\(:f:) /\p(bj:r:b;))]
i=1 j=1

> [-K, (Aa) A A A (3z) A n(m))J
i= Jj=

= (AA p)(z).

(2) = (3) Obvious.

(3) = (1) Since every fuzzy right h-ideal is a fuzzy h-quasi-ideal of R, choose A a
fuzzy right h-ideal of 12 and p any fuzzy h-ideal of R. Then by hypothesis AAp < AGp .
But Aty e < AAp always true. Thus Ay e = AAp for every fuzzy right h-ideal A and
fuzzy h-ideal p of R. Hence by Theorem 196, R is right h-weakly regular hemiring. =

Theorem 292 The following assertions are equivalent for a hemiring R with identity:
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1. R is right h-weakly regular hemiring.

2. BnIndJ C B1J for every h-bi-ideal B, every h-ideal I and every right h-ideal
J of R.

3. @nInJ C QIJ for every h-quasi-ideal @, every h-ideal I and every right h-ideal
J of R.

Proof. (1) = (2) Let R be a right h-weakly regular hemiring and B, I, J are h-bi-
ideal, h-ideal and right h-ideal of R, respectively. Let z € BNInNJ. Thenx € B,z € 1
and x € J. Since R is right h-weakly regular hemiring, there exist a;,a;, b;,b;,z € R

7 n m
such that z + }°zaiza; +z = ) abjal + 2. Now za;za; + 3 wa;zajaza; + zaiza; =
i=1 j=1 i=1

n
Y wbjzbiaizal + za;za;. Since x € B, ajzaja; € I,za} € J and bjzba; € I, we have
=1

m T —
Y zaizajaiza, ) wbizbiaizal € BIJ. Thus za;zaj € BIJ. Similarly zbjat; € BIJ.
J=1

l‘:l

T L
Hence from 2 + ) zajza] +z = ) wbjzb} + z it follows that z € BIJ. This shows
=1

i=1
BnInJcBIJ.
(2) = (3) Obvious.
(3) = (1) Since every right h-ideal is an h-quasi-ideal, choose @ a right h-ideal of
R and J = R. Then by hypothesis QNInNJ=QnNINR=QnNIC QIR C QI. But
QI € QNI always true. Hence QNI = QI for every right h-ideal @ and every h-ideal
I of R. Thus by Lemma 195, R is right h-weakly regular hemiring. =

Theorem 293 The following assertions are equivalent for a hemiring R with identity:

1. R is right h-weakly regular hemiring.

2. AAp AV < Xy p@p v for every fuzzy h-bi-ideal A, every fuzzy h-ideal p and
every [uzzy right h-ideal v of R.

3. AApAv < Aoy piop v for every fuzzy h-quasi-ideal A, every fuzzy h-ideal p and
every fuzzy right h-ideal v of R.

Proof. (1) = (2) Let R be a right h-weakly regular hemiring and A, j, v be fuzzy
h-bi-ideal, fuzzy h-ideal and fuzzy right h-ideal of R, respectively. Let z € R. Then
m n

there exist a, aj, bj, U, 2 € R such that z + 3 za;za; + z = 3 wbjab; + z. Now
=1

=1

A (4 onm(ei) Av(dy)

A G 1) ¢ = A
(A B p) top v)(z) V A _j\l ((J\ On #)(C;‘) A ”(‘i:f))
J=
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> [/31 ((A n p)(2a;) A v(zal)) A /j\ ((A On 1) (zb;) A v(ab )l
2 LZ\I((A!-J& w)(zai) A v(z)) A /\1((,\ @p 1) (zbj) Au(x))]
As L
(A ©On p)(wa;) = V | [/\ (Mei) A p(di)) A /\ ,\(c )Ap(d’) ]

m " '
T Z cidi+z=Y r:}d;+z

t=1

> [/\ (A(z) A plagzala;)) A /\ (A(w)/\p(b,:cb’a,))}

because za; + )::m,m la; + za; = Zzb,ztf' a; + za,)

i=1

_K} (A=) A p(z)) A _/“\l (Alz) A #(z))] = (AA p)(x)
f= Jj=

Similarly (A oy ) (2bj) 2 (A A p)(z).
Thus

(A On ) O ¥](=) > /:\1 (@ p)(zai) A A=)) A ‘/:\] (A On 1)(2b;) A u(m))l

> (A () Av(z) = (A ) Av)().

(2) = (3) Obvious.

(3) = (1) Since every fuzzy right h-ideal is a fuzzy h-quasi-ideal of R, choose A a
fuzzy right h-ideal of R. p any fuzzy h-ideal and xp fuzzy right h-ideal of R. Then by
hypothesis A\Ap=AApAXR < AR pO) Xp S AOp . But A @y g € A A p always
true. Thus A ¢y 2 = M A p for every fuzzy right h-ideal A and fuzzy h-ideal p of R.
Hence by Theorem 196, R is right h-weakly regular hemiring. =

8.2 Prime and semiprime h-bi-ideals

In [46] many characterizations of h-hemiregular, h-intra-hemiregular and of both h-
hemiregular and h-intra-hemiregular hemirings are given. In this section we give some

more characterizations of these hemirings.

Proposition 294 Let By and By be h-bi-ideals of a hemiring R. Then BBy is an
h-bi-ideal of R.

Proof. Let By and By be h-bi-ideals of R and x,y € ByBs. Then

J:+Z:a,a +:.=be +z (8.1)

3=} J=1
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and
o, q
v+ Y acg+un=) d;d; | 23 (8.2)
k=1 =1
for ai, by, cx,dy € By, a:-.b;v,cl‘,d; € By and z, 2 € R.

Now

n ' P ' m ' q
I+y+(2“iﬂ-i+ Zﬂkﬂg)+2+21= bjbj+2d;cﬂ +z+ 2.
=1 k=1 j=1 =1

As (S aio; + Sy cnc) and (S bib + Ty did)) ave in BBy so z-+y €
B\ B;.
Multiplying the equation (8.1) by y we get

n ' m '
zy+ Y aiay+zy =Y bibjy+zy (8.3)
. =

Multiplying the equation (8.2) by Y1, aia; we get

n f n F r ¥ n i mn i q n P
S ajoy+ (z a.,-a,-) (Z ckck) + 3 aiaz = (Z a,-a.-) (Z d;d;) +3° aja;z; (8.4)
i=1 i=1 k=1 i=1 i=1 i=1 i=1
As each term in the expression of (Z?:t a.—a:) ():Ll ckcL) is the form aja;cre,
where ai, ¢, € By and a:-,cl_ € By. Thus (a.—a;ck) c;‘ € (B RB;) By C ByBjy. This im-
plies (ZL] a,-a;-) (Zﬁ___r ckcL) € B)By. Similarly (Z:-':l a,-a:) (Zle;d;) € B Bs.
Hence from equation (8.4) we get Y1, aja;y € By B. Similarly Z;?f_,lbjb;y € By By.
Thus from equation (8.3) we get a2y € By 5.
Hence B B; is closed under addition and multiplication.

Now

(BlBg) R (B,B;) = (B, By) R(B1B2) € B1B,

let z+a+z=>b+ z for some a,b € ByBy,z,z € R. Then « € ByB = B B3.
Hence B B3 is an h-bi-ideal of i, =

Proposition 295 Let A, ju be fuzzy h-bi-ideal of a hemiring R. Then AOp b is a fuzzy
h-bi-ideal of R.

Proof. Let A, p be fuzzy h-bi-ideals of R and z,y € R. Then

n

(A On 1) (z) = v A P ()] A A pe)an (bj)]]

:l:-l—Z:!l “‘“:""":2;“:1 bjb;-l-s e
(8.5)
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and
Qoudld= Ve A Prnn(e)]a A [rean(a)]
(8.6)

where a,‘,bj,ck,(h,a;,b;-, cL,d;,:-:, z1 € R.

Now

o=V [[Aeerann]a A (e u)]

..~:+p-l-§f.f.+:=§,‘le; Ji4z "

( Al A(a.) Ap a: A

§ A, A(b ) Ap (b

a :—O-Z?:l 0:‘0:1—?22;“:1!3}!’;"‘3 F+Z:=1¢kci+zl=2:=1 dydy 42y ALI _’\ (ex) A ck)_ A
\ Ny [M ) e ()]

B z+E?=1 nm:-+\z/=2;| bib+z A'_ [A i ( )] " A [A (bj) e (b;)”

A V [/\1;, [,\ (c) A (c;)] AN, [,\ (d)) A (JI)]]

VY eepba=3 0 didy e
= (A Gn p)(z) A (A n p)(y)-
To prove that @ 4 a 4y = b+ y implies (A @&y, p) (@) > (A On p)(@) A (A O p)(b),
observe that

m n
a - Za,'b,- + 21 = Ea;b; +z; and b+ chdk n= Zc d, + 22, (8.7)
i=1 =1 =1
together with o+ a -+ y = b4y, gives

:t:+a+(Za,b +z)+y= b+(Za,b|+z1)+y

i=1 i=1

Thus,
n m
o +Za}b} +xn+ty= b+Za;b,'+zl +y
and, consequently,

z+ E bJ+(Z cpdy +29) + 2 +y= b+(zckdk+zg)+§a,b.+zl4 Yy

= chdq+zn+ Eaib.‘-!*Z] +y
=1

= Za,b + Z c,,d,,+zz+z; + .
i=1
Therefore,

n ] m P
T+ Za}bj + l"chdk +zo+21+y= Za,-b.- + Zlchq +zo+ 2z +u. (8.8)
- e : —
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Now, in view of equations (8.7) and (8.8), we have
(A ©n p)(a) A (Ao p)(b)

A () autt) )

1=1

- Vo ([A ceasen]a|

L L)
at Y aibitz= Lnjb,—-l-:
i=1 j=1

A Y, (Lf\ (Acr) A u(dkn] A [Z\ (M) A ,u(d;))])
b+k);ckdk+:'=hf; d,' s =1 =1
( [ Ao@auenn )
-V V A (epanep)n
a+ En(bﬁ:: in;b;,.i.; bt ickd*+:'= ic;d,'+z' kél(A(Ck)A Jl(dk))/\
i=1 i=1 = et = ' '
\ kwt.,:\x (f\("t)/‘ p(d, )) /)
= V (S/Z\l (A(gs) A ulhs)) Ati\! ()t(g;)/\,u(h;)))

z+ ‘ia g.h.+:=§‘ auhgt=
= (A O p)(z).

Now

(A ©h pOr A) Oh p

Il

(A o pe) Gp (A ep i)

IA

(Aon Xp @ A) O p

IA

A G

Also

(A G (1t On XR) On A) On p
(A G Xr OrA) Op

(A ©n ) On xg O (A Op p)

IA A

Ay p
Thus A ¢y, 1 is a fuzzy h-bi-ideal of R. =

Definition 296 Let R be a hemiring. An h-bi-ideal B of R is called prime (resp.
semiprime) if B1Bs C B (ﬂzsp. B_f € B) implies By C B or By C B (resp. By C B)
for all h-bi-ideals By, By of R.

Definition 297 Let R be a hemiring. An h-bi-ideal B of R is called strongly prime
if ByBa N BeBy C B implies By C B or By C B for all h-bi-ideals By, B2 of R.
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Obviously every strongly prime h-bi-ideal is a prime h-bi-ideal and every prime
h-bi-ideal is a semiprime h-bi-ideal.

Definition 298 A fuzzy h-bi-ideal A of a hemiring R is called prime (semiprime) if
RO <A (nGpp < A)impliesu < Xorv<\(u<M) forall fuzzy h-bi-ideals p,v
of R.

A fuzzy h-bi-ideal A of a hemiring R is called strongly prime if g OpvAv©Op e < A
implies ¢ < A or ¥ < A for all fuzzy h-bi-ideals p, v of R.

Lemma 299 Let R be a hemiring, {B;:i€ I} a family of prime h-bi-ideal of R.

Then n B; is a semiprime h-bi-ideal of R.
el

Proof. Straightforward. m

Proposition 300 Let R be a hemiring and p,v be fuzzy h-bi-ideals of R then p A v
13 also fuzzy h-bi-ideal of R.

Proof. Let z,y,z € K. Then
(7)
(pAv)(zt+y) = plet+y)Aviz+y) > [pl@)Ap@)Alv(z)Avy)
= [p@)Av(@)|Au) Av)]=(pAv) (@) A(pAv)(y)-
()
(nAv)(zy) = play)Av(zy) 2 p(@)Ap(y) Aviz)Av(y)
(eAv) (@) A(pAv)(y).

1

(iii)
n(zyz) Av(zyz) 2 p(z) A p(z) Av(z) Av(z)
(nAv) (@) A(pAv)(z).

(nAv)(zyz)

I

(iv) Now let a,b,z, =z € R such that z +a + z = b+ z. Then

(mAv)(z) = p(z)Av(z) > [n(a)Ap®)Alv(a) Av(b)
= [u(@)Av(a)] Alu(b) Av(b)] = (pAv)(a)A(nAv)(b).

Hence ju A v is a fuzzy h-bi-ideal of R. w
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Proposition 301 Let R be a hemiring and {); :i € I} a family of fuzzy prime h-bi-
udeal of R. Then /\ Ai 18 a semaprime fuzzy h-bi-ideal of R.
i€l

Proof. Straight forward. m

Definition 302 Let R be a hemiring. An h-bi-ideal B of R is called irveducible (res.
strongly irreducible) if By N By = B (resp. ByN By C B) implies By = B or B, = B
(resp. By C B or By C B) for all h-bi-ideals By, By of R.

Proposition 303 FEvery strongly irreducible semiprime h-bi-ideal of a hemiring R is
a strongly prime h-bi-ideal of R.

Proof. Let B be a strongly irreducible semiprime h-bi-ideal of R. Let By, Bz be
any h-bi-ideals of R such that By By N ByB; C B. Since By N By is an h-bi-ideal and
(By N By) (By, N By) C By By, (B1 N By) (By N By) C ByBy.

Thus (By N By) (B; N By) C B1BaN By By C B. Since B is a semiprime h-bi-ideal
of R, we have By N By C B. As B is strongly irreducible, we have By C B or B, C B.
Thus B is strongly prime h-bi-ideal of . =

Proposition 304 Let R be a hemiring and B be an h-bi-ideal of R. Let a € R be
such that a ¢ B. Then there exists an irveducible h-bi-ideal A of R such that B C A

anda ¢ A.

Proof. Let F be the collection of all h-bi-ideals of R which contains B but don't
contain a. Then F # o, because B € F. The collection F is a partially ordered
set under inclusion. As every totally ordered subset in F is bounded above, so by
Zorn’s Lemma there exists a maximal element say A € . We will show that A is an
irreducible h-bi-ideal of R. Let C, D be two h-bi-ideals of R such that C'N D = A.
If both C and D properly contains A then @ € C and a € D, then a € A. This
contradicts the fact that a ¢ A. Thus A = C or A = D. Hence A is an irreducible
h-bi-ideal of R such that BC Aanda¢ A. =

Definition 305 Let R be a henuring and X a fuzzy h-bi-ideal of R then X s called
wrreducible (res. strongly irreducible) fuzzy h-bi-ideal of R if uAv = X (res. uAv < A)
mplies p= XA orv =\ (res. n < X orv < A) for all fuzzy h-bi-ideals p,v of R.

Proposition 306 Let i be a hemiring. Then every strongly irreducible semiprime
fuzzy h-bi-ideal of R is a strongly prime fuzzy h-bi-ideal of R.
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Proof. Let A be a strongly irreducible semiprime h-bi-ideal of R. Let u,v be
any fuzzy h-bi-ideals of R such that (G, v) A(vEpp) < A As pAv is a fuzzy
h-bi-ideal of R and (i A v) ©p (v A p) < popv and (pAv)Op (v A p) < v©Op . Thus
(Av)Op (A p) < (puepv)A(vopp) < A That is (A v) On (VA p) < A

As ) is semiprime, we have g A v < A. Since A is strongly irreducible, we have
p<Aorv <A Hence ) is strongly prime. ®

Proposition 307 Let R be a hemiring, A a fuzzy h-bi-ideal of R with A (a) = «, where
a is any element of R and a € (0,1]. Then there exists a fuzzy irreducible h-bi-ideal o
of R such that X\ < 6 and § (a) = o.

Proof. Let X = {yu: pis a fuzzy h-bi-ideal of R, p(a) = and A < pu}. Then
X # ¢, because A € X. Let F be a totally ordered subset of X, say F = {A; : 1 € I}.
We claim that \/ A; is a fuzzy h-bi-ideal of R containing A.
iel
Let z,y, z € R, consider

(1)
(Y Al-) (z) A (y A.-) (v) = (y( (@ })) A (Y(,\,. (w))

V V(A (@) A A (y)]
J

eI

:\{ (M@ ax )]
wheu; X = max {\;, Aj} , note that A’ € {Xi:iel}
4] v HE +y)”
=V [N @+
igj*-
<V = (Vo) @+v)

1A Il
\--.< !-...<

(v Ai) (@) =V O (@) 2 V () A% )
SV E)AY ()

(V 5) @A (\! 5) @)
)

(v )(xyz =V O =) 2 Y O ) A (2)
=V (i (@) AV (2 (2))
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= (Y A;) (z) A (Y )\i) (2)

(4) Now, let z +a+ 2= b+ z, where a,b € . Then
(V) @a (va) o= (vouan) (\J/( ’ cbn)
-V (v (A (u))) s (b)]
=y [Von @ o)
V(@ N w)]

|

<V
J : _
where A} = max {\i, A;}, note that A} € {Ai:i € I}
[ : .
< V Vv ()ef (:c))] because )] is a fuzzy h-bi-ideal

=V @) < Vil = (Vi) @
Thus V Ai is a fuzzy h-bi- 1deal uf R. Clea.rly AL VA and V Ai(a) = V(A, (a)) =
a. Thus V Ai is the L.u.b of 7. Hence by Zorn’s lemmn there ex:st.s a fuzzy h-bi-ideal

dof R wh'ich is maximal with respect to the property that A < é and § (a) = a.

We will show that § is fuzzy irreducible h-bi-ideal of R. Let § = §; A 2, where
d, 07 are fuzzy h-bi-ideals of R. Thus § < §; and § < ;. We claim that either § = 4,
or § = §2. Suppose d # §; and 4§ # §,. Since § is maximal with respect to the property
that § (a) = o« and since § S 6, and § S J2, so &; (a) # o and 42 (a) # a. Hence
a = d(a) = (0 Ad2) (a) = (81) (a) A (82) (a) # e, which is impossible. Hence § = 4,
or § = dz. Thus § is fuzzy irreducible h-bi-ideal of R. =

Theorem 308 For a hemiring R. the following assertions are equivalent:

1. R is both h-hemiregular and h-intra-hemiregular.

2. B? = B for every h-bi-ideal B of R.

3. By N By = BBy N ByB; for all h-bi-ideals By, By of R.
4. Each h-bi-ideal of R is semiprime.

5. Every proper h-bi-ideal of R is the intersection of all irreducible semiprime fi-bi-

ideals of R which contain it.

Proof. (1) < (2) This is Lemma 63.
(2) = (3) Let By, By be h-bi-ideals of R. Then B, N By is also an h-bi-ideal of R.
By hypothesis BiNBy = (By N By)? C By B,. Similarly ByNBy = (B) N B2)? C ByB,.
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Thus By N By C ByBa M BaBy. By Proposition 294 By By and By B, are h-bi-ideals of
R and so B1B3 N By B, is an h-bi-ideal of R. Thus by the hypothesis

BiBasnN BB, = (Bl BN BgBl) (.8132 N By By)
C BB, ByBy = B1B;BaBy C BiRB, C By

Similarly B;B; N ByB; C By. Hence By Ba N BBy € By N By.

This implies By By N ByBy = By N By.

(3) = (2) Obvious.

(2) = (4) Let By, By be h-bi-ideals of R such that B? C B,. Then B? C B,. By
hypothesis B = B_f C Bj. Thus Bj is semiprime.

(4) = (2) Obvious.

(4) = (5) Let B be a proper h-bi-ideal of R. Then B is contained in the intersection
of all irreducible h-bi-ideals of R which contain it. Proposition 304, guarantees the
existence of such irreducible h-bi-ideals. If @ ¢ B, then there exists an irreducible
h-bi-ideal of R which contain it but does not contain a. Hence B is the intersection
of all irreducible h-bi-ideals of R which contain it. By hypothesis each h-bi-ideal is
semiprime, so B is the intersection of all irreducible semiprime h-bi-ideals of R which
contain if.

(5) = (2) Let B be an h-bi-ideal of R. If B2 = R then clearly B = R. If B? # R,
then B? is a proper h-bi-ideal of R containing B2 and so by our hypothesis,

B? =N {Ba, : B, irreducible semiprime h-bi-ideals of R} .

Since each B, is a semiprime h-bi-ideal, B C B, for all &, and so B C ), Ba = B2,
Thus B2 =B. =

Theorem 309 Let R be an h-hemiregular and h-intra-hemiregular hemiring a:nd B
be an h-bi-ideal of R. Then B is strongly irreducible if and only if B is strongly prime.

Proof. Proof follows from Theorem 308. =

Theorem 310 Each h-bi-ideal of a hemiring R is strongly prime if and only if R is
h-hemiregular, h-intra-hemireqular and the set of h-bi-ideals of R is totally ordered by

inelusion.

Proof. Suppose that each h-bi-ideal of R is strongly prime. Then each h-bi-ideal
of R is semiprime. Thus by Theorem 308, R is both h-hemiregular and h-intra-
hemiregular. Now we show that the set of h-bi-ideals of R is totally ordered. Let By
and B be any two h-bi-ideals of R. Then by Theorem 308, By N By = By BaNB,B;. As
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each h-bi-ideal is strongly prime, BBy is strongly prime. Hence either By C B;MB;
or By € By N By that is either By C By or By C By,

Conversely, assume that R is h-hemiregular, h-intra-hemiregular and the set of h-
bi-ideals of R is totally ordered. We show that each h-bi-ideal of R is strongly prime.
Let B, By, By be h-bi-ideals of R such that By{Bs N BeB, € B. Since R is both h-
hemiregular and h-intra-hemiregular, by Theorem 308, By N By = B, B;N B3 B;. Since
BB, N ByB; C B, so By N By € B. As the set of h-bi-ideals of R is totally ordered,
so either By C By or By C By, that is, either By N By = By or By N By = By. Thus
either ByC Bor B, CB. =

Theorem 311 If the set of h-bi-ideals of R is tolally ordered, then R is both h-
hemaregular and h-intra-hemiregular if and only if each h-bi-ideal of R is prime.

Proof. Suppose that R is both h-hemiregular and h-infra-hemiregular. Let
B, By, By be h-bi-ideals of R such that B;B; C B. Since the set of h-bi-ideals of R is
totally ordered, either B, C B; or By C B,. Suppose By C By. Then E? C BiB; C B.
By Theorem 308, B is semiprime so B C B. Hence B is prime h-bi-ideal of R.

Conversely, assume that every h-bi-ideal of R is prime. Thus every h-bi-ideal of R is
semiprime. Hence by Theorem 308, R is both h-hemiregular and h-intra-hemiregular.

"
Theorem 312 Let R be a hemiring. Then the following are equivalent:

1. The set of h-bi-ideals of R is totally ordered under inclusion.
2. Bach h-bi-ideal of R is strongly irreducible.

3. Each h-bi-ideal of R is irreducible.

Proof. (1) = (2) Let B, By, By be h-bi-ideals of R such that By N By C B. Since
the set of h-bi-ideals of R is totally ordered under inclusion, so either By € By or
By C By. Thus either By N By = By or ByN By = By. Hence ByNBy C B = B,CHB
or By C B. Thus B is strongly irreducible h-bi-ideal of .

(2) = (3) Let B, By, By be h-bi-ideals of R such that By N By = B. Then B C B;
or B C B;. By the hypothesis, either By C B or B; C B. Hence either By = B or
By = B. Thus B is irreducible.

(3) = (1) Let By, By be two h-bi-ideals of R. Then By N By is an h-bi-ideal of R.
Also By N By = By N By. So by hypothesis either By = By N By or By = By N By, i.e.;
either By C By or By C B;. Hence the set of h-bi-ideals of R is totally ordered. m

Theorem 313 For a hemiring R, the following assertions are equivalent:
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1. R is both h-hemiregular and h-intra-hemiregular.

2. Xy A = A for every fuzzy h-bi-ideal A of R.

3. AA p= (A p) A (pop A) for all fuzzy h-bi-ideals A, u of R.
4. Bach fuzzy h-bi-ideal of R is semiprime.

5. Each proper fuzzy h-bi-ideal of R is the intersection of all irreducible semiprime
fuzzy h-bi-ideals of R which contain it.

Proof. (1) = (2) This is Theorem 64.

(2) => (3) Let A, . be fuzzy h-bi-ideals of R. Then A A p is also fuzzy h-bi-ideal of
R. By hypothesis AA jt = (AA ) O (AA p) € AOp pi. Similarly AA p < p©p A. Thus
AAp < (NG p) A (piog A).

Now by Proposition 295. (A iy ) and (g, A) are fuzzy h-bi-ideals of R and so
(A On p) A (ppop A) is a fuzzy h-bi-ideal of R. Thus by hypothesis

((’\ On f‘) A (au' Cin A)) = ((’\ (Sh P") A (a“ Cony ’\)) Cin ((’\ On p) A (# On A))
< (AOnp)On(LORA) SAORXR O A S A

Similarly ((A G ) A (peeo A)) < pe. Thus (Acm p) A(peGpA) < AA

Hence (A o ) A (o f5n A) = AA .

(3) = (2) Obvious.

(2) = (4) Let A, pu be fuzzy h-bi-ideals of R such that A ©®, A < p. Since by (2)
Aty A=A, s0 A < p. Thus p is semiprime.

(4) = (2) Obvious.

(4) = (b) Let A be a proper fuzzy h-bi-ideal of R. Then A is contained in the
intersection of all irreducible fuzzy h-bi-ideals of A which contain it. Proposition 307,
guarantees the existence of such irreducible fuzzy h-bi-ideals. If @ € R and t € (0,1]
such that A(a) = t, then there exists an irreducible fuzzy h-bi-ideal p, such that
A € py and p, (a) = t. Hence A is the intersection of all irreducible fuzzy h-bi-ideals
of It which contain it. By hypothesis each fuzzy h-bi-ideal is semiprime. Thus A is the
intersection of all irreducible. semiprime fuzzy h-bi-ideals of R which contain it.

(5) = (2) Let A be a fuzzy h-bi-ideal of R. Then A®p A is a fuzzy h-bi-ideal of R, so
AOpA = A Ao where )\, are irreducible, semiprime fuzzy h-bi-ideals of R which contain
A (op A. Since each A, is semiprime, so A < A, for all a. Thus A < A A\, = A®y A. But
Atop A < A always. Hence A= Ay, A, =

Theorem 314 Lel R be an h-hemiregular and h-intra-hemiregular hemiring and A\ be
a fuzzy h-bi-ideal of R. Then X is strongly irreducible if and only if )\ is strongly prime.
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Proof. Proof follows [rom Theorem 313. =

Theorem 315 Each fuzzy h-bi-ideal of a hemiring R is strongly prime if and only if
R is h-hemiregular. h-intra-hemireqular and the set of fuzzy h-bi-ideals of R is totally
ordered.

Proof. Suppose that each fuzzy h-bi-ideal of R is strongly prime. Then each
fuzzy h-bi-ideal of R is semiprime. Thus by Theorem 313, R is both h-hemiregular
and h-intra-hemiregular. Now we show that the set of fuzzy h-bi-ideals of R is totally
ordered. Let A and p be any two fuzzy h-bi-ideals of R. Then by Theorem 313,
AAp = (NG p) A (e A). As each fuzzy h-bi-ideal is strongly prime, A A p is
strongly prime. Hence either A < AA por g < A A p that is either A < ppor yp < A,

Conversely, assume that R is h-hemiregular, h-intra-hemiregular and the set of
fuzzy h-bi-ideals of R is totally ordered. We show that each fuzzy h-bi-ideal of R is
strongly prime. Let A, i, v be fuzzy h-bi-ideals of R such that (p Op v) A (v ©p p) < A
Since R is both h-hemiregular and h-intra-hemiregular, by Theorem 313, p A v =
(s ©Op V) A (v o ) . Since (peop v) A (v p) < A, s0 p A v < A As the set of fuzzy
h-bi-ideals of R is totally ordered, so either ;i < v or v < p, that is, either p A v = p
or pAv=wr, Thuseither u< Aorv<A =

Theorem 316 If the set of fuzzy h-bi-ideals of R is totally ordered, then R is both

h-hemiregular and h-intra-hemireqular if and only if each fuzzy h-bi-ideal of R. is prime.

Proof. Suppose that R is both h-hemiregular and h-intra-hemiregular. Let A, i, v
be fuzzy h-bi-ideals of R such that s, v < A, Since the set of fuzzy h-bi-ideals of R
is totally ordered, either j < v or v < p. Suppose p < v. Then popp < pOpY < A
By Theorem 313, A is semiprime so p < A. Hence A is prime.

Conversely, assume that every fuzzy h-bi-ideal of R is prime. Thus every fuzzy
h-bi-ideal of R is semiprime. Hence by Theorem 313, R is both h-hemiregular and

h-intra-hemiregular. m

Theorem 317 Let R be a hemiring. Then the following are equivalent:
1. The set of all fuzzy h-bi-ideals of R is totally ordered under inclusion.
2. Each fuzzy h-bi-ideal of R is strongly irreducible.
3. Bach fuzzy h-bi-ideal of R is irreducible.

Proof. (1) = (2) Let p.». A be any fuzzy h-bi-ideals of R such that u A v < A
Since the set of fuzzy h-bi-ideals of R is totally ordered, so either g < v or v < .
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Therefore pAv=por pAv=rv Hence pAr < A= either p < Xor v < A, Ience A
is strongly irreducible.

(2) = (3) Let p, v, A be any fuzzy h-bi-ideals of R such that uAwv = A. Then A < p
or A < v. By hypothesis, either ;z < XA or v < A. So either g = A or v = A. Thus A is
irrecucible.

(3) = (1) Let p, A be any fuzzy h-bi-ideals of R. Then AA p is a fuzzy h-bi-ideal of
R. Also AA = A A p. So by hypothesis, either A = AA p or o= A A p, that is either
A < por i< A Therefore the set of fuzzy h-bi-ideals of R is totally ordered. w



Bibliography

[1] M. R. Adhikari, M. K. Sen, H. J. Weinert, On k-regular semirings, Bull. Cal.
Math. Soc., 88(1996), 141-144.

[2] A. W. Aho, J. D. Ullman, Introduction to Automata Theory, Languages and
Computation, Addison Wesley, Reading MA, 1976.

[3] J. Ahsan, Fully Idempotent Semirings, Proc. Japan Acad., 69, Ser. A (1993).
185-188.

[4] J. Ahsan, Semirings characterized by their fuzzy ideals, J. Fuzzy Math., 6 (1998),
181-192.

[6) J. Ahsan, K. Saifullah, M. Farid Khan, Fuzzy semirings, Fuzzy Sets and Systems,
60 (1993), 309-320.

[6] M. Akram, W. A. Dudek, Intuitionistic fuzzy left k-ideals of semirings, Soft Com-
puting, 12 (2008), 881-890.

[7] S.I. Baik, H. S. Kim, On Fuzzy k-Ideals in Semirings, Kangweon-Kyungki Math.
8(2000), No.2, 147-154.

[8] L. B. Beasley, N. J. Pullman, Operators that preserve semiring matrix functions,
Linear Algebra Appl., 99 (1988), 199-216

(9] L. B. Beasley, N. J. Pullman, Linear operators strongly preserving idempotent
matrices over semirings, Linear Algebra Appl., 160 (1992), 217-229.

(10) D. B. Benson, Bialgebras: Some foundations for distributed and concurrent com-
putation, Fundamenta Informatica, 12 (1989), 427-486.

[11] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colleq. Publications, 1954.
[12] J. H. Conway, Regular Algebra and finite Machines, Chapman and Hall, London,
1971.

144



BIBLIOGRAPHY 145

[13] W. A. Dudek, Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft
Computing, 12 (2008), 359-364.

[14] T. K. Dutta, B. K. Biswas, Fuzzy prime ideals of a semiring, Bull. Malays Math.
Soc., 17 (1994), 9-16.

(15] T. K. Dutta, B. K. Biswas, Fuzzy k-ideals of semirings, Bull. cal. Math. Soc.,
87(1995), 91-96.

[16] S. Eilenberg, Automata, Languages and Machines, Acedmic press, New York,
1974,

(17] F. Feng, X. Z. Zhao, Y. B. Jun, *-p-semirings and *-A-semirings, Theoret. Com-
put. Sci., 347 (2005), 423-431.

(18] F. Feng, Y. B. Jun, X. Z. Zhao, On *-A-semirings, Inform. Sci., 177 (2007),
5012-5023.

[19] S. Ghosh, Fuzzy k-ideals of semirings, Fuzzy Sets and Systems 95, (1998), 103-108.

[20] K. Glazek, A Guide to Literature on Semirings and their Applications in Mathe-
matics and Information Sciences with Complete Bibliography, Kluwer Acad. Publ.
Dodrecht, 2002,

[21] J. S. Golan, Semirings and their Applications, Kluwer Acad. Publ., 1999.

[22] U. Hebisch, H. J. Weinert, Semirings: Algebraic Theory and Applications in the
Computer Science, World Scientific, 1998.

(23] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc.
Notices, 6 (1958), 321.

[24] K. Tizuka, On the Jacobson radical of a semiring, Tohoku Math. J., 11 (1959),
409-421.

[25] Y. B. Jun, J. Neggers, H .S. Kim, Normal L-fuzzy ideals in semirings, Fuzzy Sets
and Systems, 82 (1996), 383-386.

[26] Y. B. Jun, M. A. Ozturk, S. Z. Song, On fuzzy h-ideals in hemirings. Inform. Sci.
162 (2004), 211-226.

[27] Y. B. Jun, H. S. Kim, M. A. Ozturk, Fuzzy k-ideals in semirings, J. Fuzzy Math.,
13(2005), 351-364.



BIBLIOGRAPHY 146

(28] C. B. Kim, Isomorphism theorems and fuzzy k-ideals of k-semirings, Fuzzy Sets
and Systems, 112 (2000), 333-342.

[29] C. B. Kim, M. Park, k-fuzzy ideals in semirings, Fuzzy Sets and Systems, 81
(1996), 281-286.

[30] M. Kondo, W. A. Dudek, On the Transfer Principle in fuzzy theory, Mathware
Soft Comput., 12 (2005), 41-55.

[31) W. Kuich, A. Salomma, Semirings, Automata, Languages, Springer Verlag,
Berlin, 1986.

[32] D. R. LaTorre, On h-ideals and k-ideals in hemirings, Publ. Math. (Debrecen),
12 (1965), 219-226.

[33] E. T. Lee, L. A. Zadeh, Note on fuzzy languages, Inform. Sci., 1 (1969), 421-434.

[34] X. Ma, J. Zhan, On fuzzy h-ideals of hemirings, J. Syst. Sci. Complex., 20 (2007),
470-478.

[35] X. Ma, J. Zhan, Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings,
Inform. Seci., 179 (2009), 1249-1268.

[36] P. Mukhopadhyay, Characterizations of regular semirings, Mat. Vesnik, 48 (1996),
83-80.

(37) C. V. Negoita, D. A. Ralescu, Applications of Fuzzy Sets to System Analysis,
Birkhauser, Basel, 1975.

[38] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.

[39] M. K. Sen, P. Mukhopadhyay, Von Neumann regularity in semirings, IK(yungpook
Math. J., 35 (1995), 249-258.

[40] I. Simon, The nondeterministic complexity of finite automaton, Notes, Herms,
Paris, 1990, 384-400.

[41] H. Subramanian, Von Neumann regularity in semirings, Math. Nachr., 45 (1970),
73-79.

[42] H. S. Vandiver, Note on a simple type of algebra in which cancellation law of
addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914-920.

(43] W. Wechler, The Concept of Fuzziness in Automata and Language Theory,
Akademie-Verlag, Berlin, 1978.



