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Preface

The non-Newtonian fluids find increasing practical applications in the recent years. It is due
to the fact that many of the fluids used in industry and engineering are significantly non-
Newtonian. The flows of such fluids have special relevance in oil and gas well drilling to well
completion operations from industrial processes involving waste fluids, synthetic fibers,
foodstuffs to extrusion of molten plastic and polymer solutions. The expression between shear
stress and shear rate in the non-Newtonian fluids is non-linear. A distinct feature of non-
Newtonian fluids from Newtonian fluid is that these cannot be described by a single
constitutive equation. Mathematical systems in the non-Newtonian fluids are of higher order
and in general more complicated in comparison to the Newtonian fluids. These systems need

additional initial/boundary conditions for a unique solution.

The boundary layer flows of non-Newtonian fluids over a stretching sheet is important in a
variety of contexts including extrusion process, glass fiber and paper production, hot rolling,
wire drawing, crystal growing in food processing and movements of biological fluids. Such
flows add complexities to the governing equations for the dependence of physical quantities in
the two and three dimensions. The heat transfer analysis in boundary layer flow with radiation
is further important in electrical power generation, astrophysical flows, solar power technology,
space vehicle reentry and other industrial areas. Mass transfer in such flows is inspired for an
interest in membrane separation process, microfiltration, and reverse osmosis, in
electrochemistry and fiber industries. There are transport processes in industrial applications in
which heat and mass transfer is a consequence of buoyancy effects caused by thermal and mass
diffusion in the presence of chemical reaction. Such interaction is significant in the design of
chemical processing equipment, nuclear reactor safety, combustion of solar system equipment

etc. Motivated by such practical applications, the present thesis is structured as follows.

Chapter one provides the background and boundary layer equations for some models of non-
Newtonian fluids namely second grade, Maxwell, Jeffrey and micropolar fluids. Brief idea of

homotopy analysis method (HAM) is also given.

The unsteady mixed convection boundary layer magnetohydrodynamic (MHD) flow of a

second grade fluid bounded by a stretching surface has been addressed in chapter two. Both the



stretching velocity and the surface temperature are taken time-dependent. Problem formulation
is developed in the presence of thermal radiation. Governing nonlinear problem is solved by a
homotopy analysis method. Convergence of derived solution is studied. The dependence of
velocity and temperature profiles on various quantities is shown and discussed by plotting
graphs. Numerical values of skin friction coefficient and local Nusselt number are tabulated. It
is noticed that velocity profiles are increasing functions of second grade parameter. The local
Nusselt number also increases when the value of Prandtl number is increased. These
observations have been published in "International Journal for Numerical Methods in

Fluids, DOT: 10.100/f1d.2285".

Chapter three investigates the unsteady three-dimensional flow of an elastico-viscous fluid
over a stretching sheet. The mass transfer analysis is also studied. The governing boundary
layer equations are reduced into the partial differential equations by similarity transformation.
The effects of embedded parameters in the considered problem are examined in detail.
Numerical data for surface shear stresses and surface mass transfer in steady case are also
tabulated. Both cases of destructive/generative chemical reactions are analyzed. It is found that
the influence of viscoelastic parameter and the Hartman number on the shear stresses are
quantitatively similar. Such results are published in "International Journal for Numerical

Methods in Fluids, DO 10.100/1d.2252".

The joule heating and thermophoresis effects on MHD flow of a Maxwell fluid in the
presence of thermal radiation are studied in chapter four. The nonlinear ordinary differential
SyStems obtained after employing similarity transformations have been solved and series
solutions are constructed. The local Nusselt and Sherwood numbers are further computed. The
thermal boundary layer thickness increases with increase in the Prandtl number. The local
Nusselt and Sherwood number increases when porosity parameter is increased. These
conclusions have been published in "International Journal of Heat and Mass Transfer, 53

(20710) 4780-4788".

The influence of heat transfer on the boundary layer flow of a Maxwell fluid over a moving
Permeable surface in a parallel free stream is argued in chapter five. Solution of the governing
problem is developed by homotopy analysis method. The results of velocity, temperature and

Nusselt number are presented and discussed for various emerging parameters. A comparative



study is seen with the known numerical solution in a limiting sense and an excellent agreement
is noted. It is also found that velocity in the Maxwell fluid is less than the viscous fluid. It is
revealed that the boundary layer thickness decreases with the increasing values of Deborah
number. The thermal boundary layer thickness decreases by increasing suction parameter. This

research is submitted for publication in "Chinese Journal of Mechanics-Series A".

In chapter six, we perform a study for heat and mass transfer analysis in the presence of
thermal radiation on the unsteady MHD flow of a micropolar fluid. Series solutions for velocity,
temperature and concentration fields are derived and discussed. Plots for various interesting
parameters are reported and analyzed. Numerical data for surface shear stress, Nusselt number
and Sherwood numbers in steady cases are also computed. Comparison between the present
and previous limiting results in shown. The results of this chapter have been published in

"Zeitschrift Naturforschung A, 64 (2010) 950-960".

Chapter seven is prepared to analyze the heat and mass transfer characteristics for the steady
mixed convection flow of an incompressible micropolar fluid. The relevant system of the partial
differential equations has been reduced into ordinary differential equations by employing
similarity transformation. Series solutions for velocity, temperature and concentration fields are
developed by using homotopy analysis method (HAM). Effects of various parameters on
velocity, temperature and concentration fields are discussed by displaying graphs. Numerical
values of skin friction coefficient, Nusselt number and Sherwood numbers are worked out. A
comparison between the available numerical solutions in a limiting situation is seen. The
velocity profile is found to decrease when the Prandtl number increases. Moreover, the
buoyancy parameter decreases the thickness of thermal boundary layer. These conclusions

have been accepted for publication in "International Journal for Numerical Methods in
Fluids, DOTI: 10.1002/f1d.2424".

Chapter eight examines the MHD flow and mass transfer characteristics in a Jeffrey fluid
bounded by a non-linearly stretching surface. The velocity and concentration fields are derived.
Homotopy analysis procedure is adopted for computations of a set of coupled nonlinear
ordinary differential equations. Effects of involved parameters on the velocity and
concentrations fields are examined carefully. Numerical values of mass transfer coefficient are

first tabulated and then investigated. As expected the concentration fields decreases by

ili



increasing the Schimidt number. The surface mass transfer decreases when the Hartman
number increases. The observations of this problem have been published in "Zeitschrift

Naturforschung A, 64 (2010) 1111 -- 1120",

In chapter nine, we have considered the effect of mass transfer on stagnation point flow of a
Jeffrey fluid bounded by a stretching surface. Similarity transformations reduce the partial
differential equations into the ordinary differential equations. Homotopy analysis method
(HAM) is invoked for the development of solutions. Plots are prepared to illustrate the flow and
mass transfer characteristics and their dependence on the physical parameters. The values of
surface mass transfer and gradient of mass transfer are computed and analyzed. It is observed
that velocity field and boundary layer thickness are increasing functions of Deborah number.
The fluid concentration increases with an increase in generative chemical reaction parameter
and has opposite behavior for destructive chemical reaction when compared with the situation
in case of generative chemical reaction parameter. Such contexts have been submitted for

publication in "Asia-Pacific Journal of Chemical Engineering".

The unsteady stagnation point flow of a second grade fluid with heat transfer is discussed in
chapter ten. The time-dependent free stream is considered. The equations of motion and energy
are transformed into the ordinary differential equations by similarity transformations.
Homotopy analysis method is used to find the solution of the governing problem. Graphical
results are given in order to illustrate the details of flow and heat transfer characteristics and
their dependence upon the embedded parameters. Numerical values of skin- friction
coefficients and Nusselt number are given and examined carefully. It is seen that velocity is
greater for second grade fluid when compared with a Newtonian fluid. The velocity and
boundary layer thickness increases in both cases of suction and injection as second grade
parameter increases. However, in injection case such increase is larger than that of suction. We
further found that for fixed values of other parameters, the local Nusselt number increases
when there is an increase in the second grade parameter. The findings of this chapter have

been submitted for publication in "International Journal of Heat and Mass Transfer".

Chapter eleven discusses the steady mixed convection stagnation point flow of a micropolar
flow towards a stretching sheet. Governing problems of flow, heat and mass transfer are solved

by employing homotopy analysis method (HAM). The skin friction coefficients, local Nusselt

v
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number and Sherwood number are computed. Comparison of the present solution series
solution is given to the corresponding numerical solution. A good agreement is achieved. When
the stretching velocity of the surface is greater than the stagnation velocity of the external
stream the flow has inverted boundary layer structure. The effect of the local buoyancy
parameter on the velocity is found similar to the material parameter. These observations have

been submitted for publication in “Central Euorpean Journal of Physics".
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Chapter 1

Background and boundary layer

analysis

1.1 Review of literature

The non-Newtonian fluids are quite prevalent in industry and engineering. Examples of such
fluids include polymer solutions, paints, certain oils, exocitic lubricants, colloidal and suspen-
sion solutions, clay coatings and cosmetic products etc. As a consequence of diverse physical
structure of such fluids there is not a single model which can predict all the salient features of
non-Newtonian fluids. The non-Newtonian fluids are in general classified into three categories
known as (i) the differential type (ii) the rate type and (iii) the integral type. The detailed
discussion of the relevant issue is found in the literature by Rajagopal [1] and Rajagopal and
Kaloni [2]. The differential type fluids have received much attention in the past. Dunn and Ra-
jagopal [3] discussed interesting features of differential type fluids. There is a simplest subclass
of differential type fluids which is known as second grade fluid. This fluid model has an ability
to describe normal stress differences and does not exhibit the shear thinning/shear thickening

effects. The thermodynamical compatibility of second grade fluid model has been taken into

o



account by Fosdick and Rajagopal [4]. It was revealed that Clausius-Duhem inequality should
hold together with the helmholtz free energy being at its minimum whenever the fluid is locally
at rest. Later various investigators including Rajagopal [5], Siddigqui and Kaloni [6], Siddiqui
and Benharbit [7], Fetecan and Fetecau (8], Fetecau and Zierep (9], Asghar et. al [10], Erdogan
and Imark [11], Tan and Masuoka [12], Tan and Xu [13] and Hayat et al. [14 — 16] discussed
the steady and unsteady flows of second grade fluid under various aspects.

There is a simplest subclass of the rate type fluids known as the Maxwell. This model can
easily describe the characteristics of the relaxation time. Bhatnagar et al. [17] reported the
pioneering works on the flow analysis of rate type fluids. They considered the two-dimensional
flow of an oldroyd-B fluid over a stretching surface in the presence of variable free stream
velocity. Choi et al. [18] considered the channel flow of an upper convected Maxwell (UCM)
fluid induced by suction. Numerical and analytical solutions of the resulting differential system
were obtained. The analytical solution was derived by power series method and numerical
solutions was obtained by Runge-Kutta method. The unsteady flow of a Maxwell fluid between
two side walls due to a suddenly moved plate was examined by Hayat et al. [19]. Zierep et al.
[20] discussed the numerical results for the energy conservation of Maxwell media for Stokes’
first problem. Haitao and Mingyu [21] addressed the unsteady flow of fractional Maxwell fluid
in a channel.Fetecau et. al [22, 23] studied the unsteady flows in Maxwell fluids respectively.
In these studies, the flows have been induced by the oscillating/accelerated rigid plate. The
MHD unsteady flow of a Maxwell fluid in a rotating frame of reference and porous medium has
been reported by Hayat et al. [24]. Tan and Masuoka [25] analyzed linear convective stability
of a Maxwell fluid layer in a porous medium. The theory of micropolar fluid was initiated by
Eringen (26, 27] . The equations governing the flow of a micropolar fluid involve a microrotation
vector and a gyration parameter in addition to the classical velocity vector field. Interesting
features and applications of micropolar fluids are described in the books by Eringen [28] and

Lukaszewicz [29]. This fluid model has special relevance in blood flows, suspension solutions,



liquid crystals, fluids with additives, flow of colloidal solutions etc.

The boundary layer How [30] on a moving surface are very important because of their
relevance in a number of engineering processes. Sakiadis [31] initiated the seminal work on this
topic. The work of Sakiadis was subsequently extended by many authors for boundary layer
flows in viscous and non-Newtonian fluids under various conditions. Crane [32] investigated the
viscous flow over a sheet with linear surface velocity. In this attempt, the similarity solution was
given. Vleggar [33] and Gupta and Gupta [34] have investigated the stretching problem with
constant surface temperature while Soundalgekar and Ramana Myrty [35] analyzed constant
surface velocity case with power-law temperature variation. Chen and Char [36] extended
the works of Gupta and Gupta [34] for non-isothermal stretching sheet. The non-Newtonian
boundary layer flow by a stretching sheet was examined by Siddappa and Khapate [37] and
Rajagopal et al. [38] . Lawerence and Rao [39] discussed the uniqueness of the solution obtained
Rajagopal et al. [38]. Troy et al. [40] constructed the uniqueness of the steady flow of an
incompressible second-order fluid over a stretching sheet. Andersson et al. [41] investigated
the stretching flow of a power-law fluid. Few investigations dealing with non-Newtonian flow
problems over stretching/shrinking sheet has been presented by Cortell [42,43], Hayat et al.
[44 — 49], Ariel [50,51] , Mushtaq et al. [52] and A. Ishak [53] . All the aforementioned attempts
takes into account a constant value of velocity wall or linearly stretching sheet problem. The
flow of non-linearly stretching sheet was investigated by Vajravelu [54, 55], Cortell [56, 57] and
Hayat et al [58]. Raptis and Perdikis [59] have examined the MHD viscous low over a non-linear
stretching sheet in the presence of a chemical reaction. The works on unsteady boundary layer
viscous and non-Newtonian fluids flow by an impulsively stretching surface have been discussed
by Pop and Na [60], Wang et al. [61], Liao [62,63], Pahlavan and Sadeghy [64] and Sajid et
al. [65]. Nazar et al. [66] argued at the unsteady flow over a stretching sheet in a micropolar
fluid. Liquid film flow on an unsteady stretching surface was first considered by Wang [67].

Few more contributions regarding the time-dependent stretching flows have been presented in



the references [68 — 74] . All the above mentioned studies were concerned the two-dimensional
flows induced by a stretching surface. Three-dimensional boundary layer flow over a stretched
surface has been investigated by Wang [75]. Devi et al. [76] studied the problem of unsteady
three-dimensional flow over a stretching surface. Lakshmisha et al. [77] presented the numerical
solution for unsteady three-dimensional flow induced by a stretching surface with heat and mass
transfer. Chamkha [78] examined the hydromagnetic steady three-dimensional viscous flow over
a stretching surface with heat generation absorption. Exact and perturbation solutions for the
problem arising in the three dimensional flow of a viscous fluid over a stretching surface have
been derived by Ariel [79]. The other investigations for three-dimensional stretching flow has
been examined by Aboeldahab [80], Aboeldahab and Azzam [81] and Xu et al. [82]. Hayat et
al. [83] firstly studied the problem of three-dimensional boundary layer flow of a viscoelastic
fluid by a stretching surface via homotopy analysis method (HAM). Roslinda and Norfaizin [84]
numerically examined the three-dimensional flow due to a stretching surface.

The stagnation point flow of a fluid past a stretching sheet has been given much attention
in the recent times. This is in view of their importance in many industrial applications, such as
extrusion, paper production, insulating materials, glass drawing, continuos casting etc. Chiam
[85] investigated the steady two dimensional stagnation point flow of a viscous fluid towards a
stretching sheet. Bhatangar et al. [17] obtained solution for the flow of an Oldroyd-B fluid over a
stretching sheet in the presence of constant free stream. Mahapatra and Gupta [86] analyzed the
heat transfer in the stagnation point flow towards a stretching surface. The steady stagnation
point flow of an incompressible micropolar fluid over a stretching surface is studied by Nazar et
al. [87]. Sadeghy et al. [88] numerically studied the stagnation point flow of an upper convected
Maxwell fluid. Ishak et al. [89] investigated the mixed convection stagnation point flow of an
incompressible viscous fluid towards a vertical permeable stretching sheet. The effect of thermal
radiation on the mixed convection boundary layer magnetohydrodynamic stagnation point flow

in a porous space has been investigated by Hayat et al. [90]. Mahapatra et al. [91] discussed



the steady two-dimensional oblique stagnation point flow of an incompressible viscoelastic fluid
towards a stretching sheet. Labropulu and D. Li examined [92] the steady two dimensional
stagnation point flow with partial slip. Nazar et al. [93] described the steady stagnation point
flow of an incompressible micropolar Huid by a stretched sheet.

1.2 Basic equations

The following laws have been used for the problems formulation in this thesis.

1.2.1 The continuity equation

divV =0. (1.1)
1.2.2 The momentum equation
p% =divT + pb, (1.2)
T=—pI+8§. (1.3)
1.2.3 The energy equation
pcp% = kV*T + T.L. (1.4)

1.2.4 The concentration equation

% = DV3C - RC. (1.5)

In above equations V is the velocity, T is the Cauchy stress tensor, S is the extra stress tensor,
b is the body force per unit mass, p the density, p is the pressure, I is the identity tensor, ¢, is
the specific heat, k the thermal conductivity, L is the velocity gradient, T° the temperature of
fluid, D is coefficient of mass diffusivity, i is the chemical reaction and C' is the concentration

of flnid.



1.2.5 Maxwell’s equations

(a) Gauss's law

V.E="e, (1.6)
€n
(b) Gauss's law for magnetism
v.B=0. (1.7)
(¢) Faraday's law
JB
(d) Amperes law
V X B = jigd + poco’ e (19)
(e) Ohms’ law
J=0(E+V xB),. (1.10)

where p, is the charge density, E is the electric field, B is the magnetic field, 1 is the magnetic
constant, gg is the electric constant, J is the current density and o is the electrical conductivity

of the fuid.
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1.3 Constitutive expressions and boundary layer equations in

the non-Newtonian fluids

This thesis will be based upon the boundary layer Hows in second grade, Maxwell, Jeffrey and
micropolar fluids. Hence, we briefly describe the relevant equations here for the convenience of

readers.

1.3.1 Boundary layer equation in a second grade fluid

Extra stress tensor in a second grade fluid is

S =uA; + a1 Az + agA? (1.11)

in which p is the dynamic viscosity and the material parameters «;(i = 1,2) satisfy the
following constraints:

p=>0, ap >0, ap+ay=0. (1.12)

The definitions of the first two Rivlin-Ericksen tensors A; and As are

A;=L+LT, (1.13)
Ay = % + AL+ LTA,, (1.14)

where LT = (grad V)" and d/dt is used for the material derivative. The two-dimensional flow
field requires that

V = [u(z,y,t),v(z,y,t),0], (1.15)

in which u and v are the respective components of velocity parallel to the 2— and y—axes,

respectively.

11



In view of Egs. (1.11) — (1.15) and (1.3) we have the following components of the Cauchy

stress tensor

321:, 9 52u
o 2 5201 +ugy + vm) +
Tow = —p+2u 5 |+ o PRY 2
4(2) *2(5.-;) +2gu
du\* ou\? av\? _oudv
“+xo [4 (a) -i*(*a—y*) +(§ﬂ’:") 28’3}55— . (1.16)

= Gy [2Y 2B +23”a"
Ay dy dy Ox
av\* du dv Ou v
+a [4 (a—y) + (&—y) + ( ) +2dya ] (1.17)
[ Ju 9*u % v ]
By ayazj 520y Vet B aﬁ
J ; 3 v 3 v du Ou
Tty—Tyl =M (I“f_d_) +nf] ag"z +1d1:dy 3-&:%4*
0u0u Ou0w Oudy
| oz dy 8:1: dx Oy dy
- Ju du du Bv du v . % dv Ov (1.18)
2|1oc0y " Oz0z  OyOy  Gzoy|’ :
Tz;; = _p, T;z - Ty: = 0. (1.19)

Substituting the above equations along with the continuity equation the z—and y—components

12



of equation of motion become

)+

E

2y
)+

ou du du dp Pu  Pu
ﬂ(‘a—r‘-f-ﬂ.a—!— dy)=—£+§i(5?+ay_,
[ & Sy Pu 4, Ou du Ozu du P u
2ot dzdy? T i
| e
Byzat o ay 6‘:.." 3y2 8y dx0y
, Pu 5 6118u+0u3v v P*v
020y = Ox Oxdy Oy Ox? Oz a? |
v v v ap 9
o(a+amom) =+ (o
[ 9% P &Pu  Ou v
oot T aa.ag 9z ay2 " 9y 9ady
G &thé gm 2 6116 v
t
Jav v é}uﬂ%/ 31;3 v
6‘ 61:61; 8y Ay R ay 9?2

The above equations after employing the usual boundary layer assumptions [30]

u=0(1), v=0(), x=0(1),

T;m
gives
du ou  Ou 0%u
a -+ H% + v % = Ua—yz

y = 0(),
—00), T _ o),
p
o, B i B
dzdy? = Oz dy? My?

4+ 3B +
— - /8
p |Oy*ot

1.3.2 Boundary layer equation in a Maxwell fluid

In this section the relevant equations are [18]
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Y ﬂ T f)” o @ + alg.u‘;_' f‘}tgl_‘y
P\ "oz O'J R ay '
8_11 du\ _ 0p  0Sy. | OSy
("'ch By) T "oy o | oy’ WL
88, du , Ou . du dul @
Szz + M [ O v dy -Sma 'S'rya 'Sxa:'a_z’ = S:cy ay] = 2”03:1
6Sw BSyy 8'& 8U 60 — 6u- 8‘”
Szy+/\1 [ Smy%_syy_sz'za_ *Szya_y‘ = } a'i'aw 3
a8, v v v v v
Syy + M1 [u B Wt a;y S,,-ya S””ay Sy:;a - Syya] = 2“-0_:::-' (1.26)
The boundary layer flow equation is
du D 2821.'. sz d9*u 19p  Pu
Yoz X ”3_-,:; e W ay? s 61,83; T pox TH Ay*’
1.3.3 Boundary layer equation in a Jeffrey fluid
The extra stress tensor S in a Jeffrey fluid is
= dA,
8= 7 + ’\] [Al + Ao—— g J (1.27)

where Ay is the ratio of relaxation to retardation times and \; is the retardation time and the

stress components are

T:J:a:='_'p+(

- B I dv 0u
Toy =T = (1+,\1) [a;,““ . +"2( Byoz

Ty =—p+ (

14

2 du Pu 92
1+,\1) [zﬂ“? (”@“m)], (1.28)
Pu 0% 5
R ™ A "ay"_am)] . (1.29)
2# av ) 62v 621'} .
1+ M ) [iTy = (“ayax - “W)] , (1.30)



Zz2 =~ II-;:z = 7};: = TZLI'-' — T.‘:y =,

The two-dimensional equations are

2L B _ o (g ) (P, P
P\% ™" ay) Oz L+ A dx?  dy?

dx g):c2 8.'332 dx 6y&g:c
tha - Fu Ju 0% d%u

+(#%) toyor? T oy oyoz Voo |

LOvdu O Oudv  Ov O

| dy Oy? oy Oy dx? Oy dydx |

u@ _|_ ya_‘”'. y s _@ _I_ L @, + 6_21}
i dw dy) Oy 14+ M oz Oy?

ou P v udi
Ox 8‘_;1:5;:; oz gyz aaggwg
s N Y B
v ( ) +u6:::3 i 52 Dyox + Uay('iu:?
RETRARCy A
oy2ox Ay Oxdy Ay Oy? oy |

_|_

The above expressions under usual boundary layer assumptions reduce to

Cdu  Ou p v 9

i

V— =

5z Ve T o 14 Mm O
VA2 @ O*u X% Pu i @@ i @
T+ M/ |Byoyor T ooz " ayoy? T Cays )

1.3.4 Boundary layer equation in a micropolar fluid

(1.31)

(1.32)

(1.33)

(1.34)

For micropolar fluid, the momentum Eq. (1.2) along with the law of angular momentum in the

absence of body forces and body couple are given by



dV

ar
_dN
Pl di

~Vp+ (p+5)V*V 4+ kV x N,

Y*V(V-N)=+4"V x(V x N)+ &KV x N-2kN.

(1.35)

In above equations V and N are the velocity and microrotation vectors, j denotes the gyration

parameters of the fluid, v* and & are the spin gradient viscosity and vortex viscosity, respectively.

Microrotation vector N for two-dimensional flow is

The scalar equations are

2
Ox
EE
ox

uw

u +

ox

in which the Eq. (1.39) suggests that o (N) « o (du) S (Bv) .

ON N o

N = [0! OsN ('T! y)] -

u 19p  (u+k) [*u
Vo =——7—+ a3
Ay p O p On?
Qv 19p  (ptk) (O
Ty T eay T e a2
9y pj\0z*  Oy*) pj

dy

o
oy

o
ay?

v

du

The subjected boundary layer flow equations are given by

T ”ay - poz P
ON 0N Nk (
UtV = = — —
dw 9y pi Oy*  pj
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9*u "

oy?
v
Iy

)+
)+

dx

sodl
p oy’

KEN
p Oz’

)_%
PJ

koN
poy’

0

N,

(1.36)

(1.37)

(1.38)

(1.39)



1.4 Homotopy analysis method

The method is proposed by Liao [94, 95] and is very useful for the development of series solutions
especially to nonlinear problems [96 — 125]. We choose a nonlinear equation

Let us consider a nonlinear equation governed by
N(v)+ f(z) =0, (1.40)

in which N is a nonlinear operator, f(x) is a known function and v is an unknown function.

We now write

(1= p)L [B(x,p) — vo(x)] = ph{N [¥ (x,p) — f ()]} (1.41)

where vg(2) denotes the initial approximation, £ is an auxiliary linear operator, p € [0,1] is an
embedding parameter, /i is an auxiliary parameter, 7(z,p) is an unknown function of z and p.

Obviously for p = 0 and p = 1 we have

(2,0) = wola)

v(z,1) = v(2) (1.42)

respectively. and for p variation from 0 to 1, the solution ¥(x, p) approaches from the initial
approximation vg(xz) to the desired solution v(x).
Taylor series gives

o(,p) = vo(z) + ) vm () p™, (1.43)
m=1
19" (xp)

8] = m! gpm (3-44)

p=0

in which the auxiliary parameter is responsible for the series convergence and for p = 1 one

17



obtains
0o

v(x) = vo(x) + Z Uy () .

m=1

The mth— order deformation problems are

‘C [‘Um (:17) - x'mvm—l (9:}1 = ﬁ'Rm (I) 3

0, m<l1,
Xon =
1, m>1,

1 dm—1 s i
R (:1‘) = (Tﬂ- . 1)! v {dpm-lA [ﬂO(I) + Z Vin (T)p

m=1

MAPLE or MATHEMATICA can solve the resulted problems.
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Chapter 2

Unsteady MHD mixed convection
flow of second grade fluid over a
stretching surface with thermal

radiation

This chapter investigates the mixed convection flow of a magnetohydrodynamic (MHD) sec-
ond grade fluid over an unsteady permeable stretching sheet. Boundary layer assumptions
are used in the problem statement. The stretching velocity and the surface temperature are
time-dependent. Series solutions of the governing boundary value problems are obtained by
employing homotopy analysis method (HAM). Convergence of the obtained solution is explic-
itly discussed. The dependence of velocity and temperature profiles on the various embedded
parameters is shown and discussed by plotting graphs. Skin friction coefficient and the local

Nusselt number are tabulated and analyzed.
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2.1 Mathematical formulation

Consider the unsteady flow of an incompressible MHD second grade finid over a porous stretch-
ing surface. The fluid is electrically conducting under the influence of a time dependent magnetic
field B(t) applied in a direction normal to the stretching surface. The induced magnetic field
is negligible under the assumption of a small magnetic Reynolds number. In addition, heat
transfer process is considered. Under these assumptions and Boussineq's approximation, the

governing boundary layer equations are

du v

3_3.‘ e a—y =1); (21)

3u+u8u - ou _uc?z_u_l_u_l Pu ot u % @6’2_u+6;ui%{+1}@
ot " ox "oy T a2 T ) |otoyr T oz T 9z 0y T Oy oyE | oy
2
+9B(T — Too) — "Bp(‘)u, (2.2)

aT g B_T . 9% %-i-u 9% 0_n+09-iu‘_£?_u
' ~ “ayatay " “owdyoy | 0 dy

&°T ou\® g,
h— — ] = . 2.3
TaE T (é’y) 9y @3
By using Rosseland approximation [136] for radiation we have
40* T
== —_— 24
‘I'l 3 k‘ ay ( )

in which ¢* is the Stefan—Boltzmann constant, ¢, is the radiative heat flux in the y—direction,
T is the fluid temperature, g is gravitational acceleration, v is the kinematic viscosity, ¢ is the
electrical conductivity, p is Auid density, 4 is thermal expansion coefficients of temperature, ¢,

is specific heat and k" the mean absorption coefficient. The fluid is compatible with the thermo-
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dynamics in the sense that the specific Helmholtz free energy is a minimum when the fluid is in
equilibrium when ¢ > 0,y = 0, oy +og = 0 (e (2 = 1,2) are the material parameters of second grade fluid) .
We express the termi 7% as the linear function of temperature into a Taylor series about The by

neglecting higher terms and write
THSATET — 3T%. (2.5)

Now Eq. (2.3) becomes

ar uf)T n vaT . %u Ou . Pu du 4 Uag‘u du
j | ettt = B am e P8R s TR
P | Bt O Ay Yoyotoy " " ozoy by dy* dy

L0 [(160°T N oT) (0u)?
dy 3k* dy H dy

The associated boundary conditions are presented in the following forms

—

2.6)

=y v =V T=T, atin=0, (2.7)
w—0, T — T, asy — co. (2.8)
where V,, given by
;o Uy
Vo = (1 —et)l/2 (29)

represents the mass transfer at surface with V,, > 0 for injection and V,, < 0 for suction.

Further the stretching velocity U, (2, ) and surface temperature Ty, (x,t) are taken as

Uw(:l.‘, t) = —

e — ar . -2
e Tw(:v,t)_Too+Tn2u(1 ) (2.10)

in which @ and e are the constants with @ > 0 and £ > 0 (with &t < 1), and both a and & have

dimension time~!. We choose time dependent magnetic field of the form B(t) = By(1 —et)~1/2
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[126 — 130).

Writing

1=\ 22y, = Tl (), O) = 2= 2.1)

and the velocity components
o o

u=g v=—3 (2.12)

where 1) is a stream function, the continuity equation is identically satisfied and the resulting

problems for f and # are given by

QI _ e _ 1t
N G (f" + %nf”) —Mf' + M +a Pt =1==17 =0, (2.13)
+A (zfm 4 %f;f””))

(1+ 4Ry) 0" + Py (f0' — ['60) — PrEc(f")? — Pr A (nf’ +46)
Lpnt "o
—Pr Ecor i Iy =0, (2.14)
4 % A (3 fﬂ'a +7 f” fm)

f0) = 8 f(0)=1, f(c0)—0,

f"() — 0, 6(0)=1, 6(co) — 0. (2.15)

Here A = £/a is the unsteadiness parameter, o = acy /(1 —&t) (with et < 1) is the dimension-

3
less second grade parameter, A = Gra 5 is mixed convection parameter, G7, (= 98T 3 fw):' M )
Re; u2z? /v
is the local Grashof number, Re, = U,z /v is the local Reynolds number, Pr = ﬁ is the
40.$T3 '2

Prandtl number, R4(=

>2) is the radiation parameter, Ec(= )) is the Eckert

ok E,T(ﬁ—

number and primes indicate the differentiation with respect to 1.
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Expressions of the skin friction coefficient Cy and local Nusselt number Nu, are given by

; Tw

Cr=
T pul

w

LI E

Ny =
Tk (Tw — T)

where the skin-friction 7, and wall heat flux ¢, are

Tw = ['u C‘_}y

From Egs. (2.3) — (2.5) one can write

RYC; = [J‘"’(?r)+a(Sf’(?r)f”(n} Fn £ ) + g(3;'**(1;)+nfm(n)))]

RV Nu, = —¢'(0).

2.2 Analytic solutions

S P P SO
Aot~ dx dy dzdy  Oy?

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

The velocity f(n) and temperature é(7) for HAM solutions can be expressed in the set of base

functions

{nk exp(—nn)|k > 0,n > 0}

as follows

oo 00
Fn)=abo+Y > ap " exp(—nn),

n=0 k=0

o o0
ZZ i, n?] exlj —nn),
n=( k=

where a,,,, and b, , are the coefficients.
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The initial guesses fy and &g of f(n) and 0(n) are

fo(n) =841 —exp(—n),

o(n) = exp(—n).

The auxiliary linear operators are chosen as

_Ef_ &
F=a® ~ dy’
d*0
‘CS_W_G

Above operators have the following properties

Ly [Cy + Caexp(n) + Czexp(—n)] =0,

Ly [Cs exp(n) + Cs exp(—1)] =0,

in which C; (i = 1 — 5) are the arbitrary constants.

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

If p € [0,1] is an embedding parameter, fi f and fy the non-zero auxiliary parameters then

we construct the following zeroth-order deformation problems as

-

(1= p)Ls[f(n,p) — fo(n)] = phsNy [ (m,p),0(n, p)] :

(1 —p)Lo[0(n, p) — b0(n)] = pligNg [f (m,p), 0, p)] ;

- af (;p) ofmp)|  _
f{rbp) n=0 B aﬂ =0 = an =00 - D‘
9(?};1})’ =1, 5(?r;p)‘ =0,

n=0 n=o00
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FFp) ( of (n p))zﬂr( - @I (mp) _ 0f (mp)

Ny [f (m;p), 0(n; 'f*}] = o an? an

'JD'zf{n 2] df(mﬂ)
an
*Fmip)\ dsf(n.?) 1 c)“f(?r O'f (m;p)
af (m;p) @*f (msp) _ Of (m;p) &' f (m;p)
an on? an an’

J.-Aé('q,p} -4 (

(2.35)

+2

. X 20i(y e B (- N .
No [f (m:p), ﬂ(n;p)] = (1+ 3Ra) 2 %(,;2' D) 4 pr (f (m;p) _aeé;,p) — 8 (p) 2LLP) é‘;}’,p))
-~ 2
2 n 88

—PrEc (W) —Pr4 2 ln g:; P) +46 (7;,;))}

82f n. 1 82 T (n:p) 8*F (m;p)
—aPr Be 2 o o : (2.36)

af TM?) 02! (mp) f (m:p) O*J (m;p) @ F (m:p)
on? an on? e
For p =0 and p = 1, we have

F0)=fom),  Fon1)=fm), (2.37)
0(m;0)=0bo(n),  G(m1)=0(n) (2.38)

and when p increases from 0 to 1, f (17:p) and a(u; p) deforms from fy () and 6 (1) to f(n)

and ¢ (n) respectively. Expanding f(n;p) and a(n; p) we have

Fnip) = fo(n) + Z f () p (2.39)
m=1

a('}‘]‘,p) =ty ("?) = Z Orn (?f) Pn" (2.40)
m=1
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1.9 (n;p)
; b (n) = e
p=0 p=0

19" (n;p)

m!  Jp™ (241)

fm (??) -

and the auxiliary parameters hy and fig are selected in such a way that the series (2.39) and

(2.40) converge at p = 1. Therefore

F) = fom) + Y fm(m), (2.42)
m=1

0(n) = bo(m) + Y _ (). (2.43)
m=l1

The mth order deformation problems are
'Cf [fm (7)) = )Cmfm—l {T.*}] = ﬁfqe‘z{n (??) ’ (244)

Ly [9m (n) — XmOm—1 (TJ)] = ﬁOR?—n (1), (2-45)

.fm (0) =0, f;f”([]) =0, .:”(DO) =0, gm.(o) =0, H:u(m) =0,

m(0) =0, ¢,,(00) =0, (2.46)
where

Rin(n)y=fl_y—A4A (flacr + 30 m_y) + A (2f1_) + Fnfir ) — M2fL,_,
= Fm1- ¥ = Fon1-nft

ANk + Y : (2.47)
k=0 | +o (2fima—rf — Fo kSR — Fn-1-xf")
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m—1

RO () = (L+ 3Ra) 0y —Pr 4 by +40m1) +Pr S (fino1-10% — £l 1_iOk)

fe=0
A o e 7 AN
m—1 5 (‘3 m—1—kJk + ':jfm—l—k k ) 1
—PrEe | Y, |floiwfl +a i & . (2.48)
k=0 f:u—-l—k Z !"{_I’_Jf;! = f"” —1-k Zflf—f}l:w
=0 =0
0, m<I,
X.m- — (2.49)
Ly i 3]
The general solutions of Egs. (2.44) — (2.46) are
fm(n) = fm(n) + C1 + C2exp(n) + C exp(—n), (2.50)
Om (1) = 05,(n) + Caexp(n) + Cs exp(—n), (2.51)
where f.(n) and &, () depict the special solutions and
O = Gyp=;
Ofm(1)
Ci = —C3—fn(0), C3= ~an -
Cs = —05,(0). (2.52)

2.3 Convergence of the series solutions

It is obvious that the series solutions (2.42) and (2.43) contain non-zero auxiliary parameters
fiy and fig. Such parameters are useful in adjusting and controlling the convergence. For the
allowed values of fiy and g of the functions f”(0) and #'(0) the fiy and hp—curves are plotted
for 20th-order of approximations. Fig. 2.1 depicts that the range for the admissible values of
hy and hy are —1.1 < hy, g < —0.3. The series given by (2.42) and (2.43) converge in the

whole region of 7 for iy = hy = —0.6. Table 2.1 elucidates the convergence of HAM solutions
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for —f"(0) and —#'(0) at different order of approximations when a = 0.2, A = 0.2, S = 0.5,

M=10,A=15, Pr=0.7, Ry=0.3 and Ec=0.5.

a=02A=02 M=1058=05A=15Fr=07,R;=03 Ec=05

-0.85
-09
-0.95
S
=
,? = ()
o'
-1.05
-1.1
-1.25 -1 -0.75 -05 ~025
hy, g

Fig. 2.1: The fi—curves of the functions f”(0) and '(0) at 20" order of approximation.

Order of convergence | —f”(0) | —6'(0)
1 0.934000 | 1.062300
5 0.933202 | 1.072775
10 0.931987 | 1.071984
15 0.931871 | 1.071892
20 0.931861 | 1.071876
25 0.931861 | 1.071876
30 0.931861 | 1.071876

Table 2.1: Convergence of HAM solutions for different order of approximations when a = 0.2,

A=02,85=05 M=10, A=15,Pr=0.7, R4=0.3 and Ec = 0.5.
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2.4 Results and discussion

The aim of this section is to examine the effects of second grade parameter «, unsteadiness
parameter A, suction parameter S, Hartman number M, mixed convection parameter A, Prandtl
number Pr, radiation parameter Ry and Eckert number Ee¢ on the velocity and temperature
fields in Figs. 2.2 — 2.17. The variation of skin friction coefficient R./*C; and the local Nusselt
number R;_,U *Nu, for different involved parameters are also computed in the Tables 2.2 and
2.3:

Figs. 2.2 and 2.3 illustrate the influence of second grade parameter a on the velocity and
temperature profiles respectively. It is observed that f’ is an increasing function of a whereas
the temperature field @ decreases when « is increased. The effect of unsteadiness parameter
A is explained in the Figs. 2.4 and 2.5. Both velocity and temperature fields decrease when
unsteadiness parameter A is increased. The influence of suction parameter S is shown in Figs.
2.6 and 2.7. It is seen that velocity and boundary layer thickness are decreasing functions of S.
The thermal boundary layer thickness also decreases by increasing S. Porous wall is a powerful
mechanism for controlling momentum of the boundary layer regime flow in actual applications.
Fig. 2.8 describes the variation of M on f’. Obviously f’ is a decreasing function of M. This
is in view of the fact that an increase of M signifies the increase of Lorentz force thereby
decreasing the magnitude of velocity. However temperature profile increases upon increasing
the Hartman number M (Fig. 2.9). The increasing fricitional drag due to the Lorentz force
is responsible for increasing the thermal boundary layer thickness. Magnetic field can control
the flow characteristics. The influence of A on f’ (from Fig. 2.10) is similar when compared
with Fig. 2.1 but the increment in f’ is slightly larger in case of A when compared with the

effects of a. Infact increasing values of A corresponds to the stronger buoyancy force which

causes an increase in flow velocity. The thermal boundary layer decreases by increasing A (Fig.

2.11). Figs. 2.12 and 2.14 describe the effects of Pr and Ec on f’ respectively. Both Ec and
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Pr decrease the velocity profile. Infact an increase in the Prandtl nnmber leads to an increase
in fluid viscosity which causes a decrease in the flow velocity. As expected it is found that ¢
is decreasing by increasing Pr (Fig.2.13). A higher Prandt]l number fluid has a thinner thermal
boundary layer and (his increase the gradient of the temperature. Fig. 2.17 clearly indicates
that an increase in the radiation parameter Ry leads to an increase of the temperature profiles
and boundary layer thickness with Ry.

From Table 2.2 it is noticed that the magnitude of skin friction coeflicient increases for large
values of o, A, M and 5. The skin friction coefficient on the wall increases with the application
of magnetic field. This is because of the magnetic force acts as a retarding force and causes an
increase of shear stress. We found that for a fixed values of other parameters, the local Nusselt
number increases with an increase in the radiation parameter R,. The local Nusselt number
is increased as Pr increases. Table 2.3 shows that the magnitude of skin friction coefficient

decreases for large values of A and R, while it has opposite behaviors for Pr and Ec.

2.5 Concluding remarks

Heat transfer analysis in presence of thermal radiation is discussed for an unsteady mixed
convection flow of an incompressible second grade fluid. Series solutions for velocity and tem-
perature fields are developed and discussed. The main results of the present analysis are listed

below.

¢ The effects of M, Pr and Ec on f' are similar in a qualitative sense.

¢ Velocity f’ is an increasing function of second grade parameter c.

Thermal boundary layer decreases by increasing A

Behaviors of Ry and Pr on the temperature # are opposite.

e Temperature # is decreasing function of Pr.
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e Skin friction coeflicient decreases for large values of A and R,.
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Fig. 2.2. Influence of second grade parameter o on f'.
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Fig. 2.3. Influence of second grade parameter a on 6.
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Fig. 2.4. Influence of unsteadiness parameter A on f’.
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Fig. 2.5. Influence of unsteadiness parameter A on 6.
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Fig. 2.6. Influence of suction parameter S on f’.
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Fig. 2.7. Influence of suction parameter S on 6.
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Fig. 2.8. Influence of magnetic field parameter M on f’.
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Fig. 2.9. Influence of magnetic field parameter M on #.
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Fig. 2.10. Influence of mixed convection parameter A on f’.
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Fig. 2.11. Influence of mixed convection parameter A on f.
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Fig. 2.12. Influence of Prandtl number Pr on f’.
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Fig. 2.13. Influence of Prandtl number Pr on 6.
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Fig. 2.14. Influence of Eckert number Ee on f’.
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Fig. 2.15. Influence of Eckert number Ee¢ on 6.
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Fig. 2.16. Influence of radiation parameter Ry on f’.
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Fig. 2.17. Influence of radiation parameter Iy on 0.
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a | A|S |M|-Rez"?Cs | —Rez'"? Nu,
0.0 {03 |10|1.0]| 1410729 1.331094
0.1 1.663287 1.357985
0.2 1.915516 1.379278
0.3 2.157693 1.397342
0.1]0.0( 10| 10| 1473777 1.128001
0.2 1.604252 1.287265
0.5 1.772210 1.486206
1.0 2.011094 1.754981
0.1[03]0.0]1.0| 1.138991 1.021669
0.5 1.391402 1.176773
10 1.663289 1.357986
2.0 2.195402 1.796294
0.1]03]10|0.0]| 1.376664 1.299427
0.5 | 1.520058 1.303633
10| 1.893507 1.318593
15| 2.392306 1.347098

Table 2.2: Values of skin friction coeflicient Re;_l’! 2 Cy and local Nusselt number Re, 12 y Uy

for some values of a, A, S and M when Pr = 0.7, Ec = 0.5 and R; = 0.2.
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A | Pr | Be| Ry | —Re;'?Cy | —Rez'* Nu,
0.0 | 0.7 |05 |0.3]|2566913 | 1.360468
1.0 2106632 | 1.320651
2.0 1.689495 | 1.309902
3.0 1.304385 | 1.298427
15| 05| 05|03 1.750576 | 1.020008
0.7 1.893504 | 1.318593
1.0 2.037612 | 1.733572
1.4 2168786 | 2.263574
15 [ 0.7 [ 0.0 | 0.3 | 1.848007 | 1.155598
1.0 1941544 | 1.494708
2.0 2.046708 | 1.892974
3.0 2.461445 | 3.609218
15 [ 0.7 05 | 0.0 2029563 | 1.706453
0.5 | 1.823451 | 1.158098
1.0 | 1.692786 | 0.908656
1.5 | 1.601013 | 0.763227

Table 2.3: Values of skin friction coeflicient Re, /3 C'y and local Nusselt number Re

for some values of A, Pr, Fe and Ry when o = 0.2, A=0.3 and S = M = 1.0.
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Chapter 3

Unsteady three-dimensional flow of
an elastico-viscous fluid in the

presence of mass transfer

The purpose of this chapter is to discuss the unsteady three-dimensional MHD flow of an
elastico-viscous fluid over a stretching surface, The whole analysis is examined in the pres-
ence of mass transfer. The governing boundary layer equations are reduced into the partial
differential equations by similarity transformations. The transformed system of equations is
solved analytically by employing homotopy analysis method (HAM). Plots for various interest-
ing parameters are presented and discussed. Numerical data for shear stresses and surface mass

transfer in steady case is also tabulated.

3.1 Problem statement

Here we study the mass transfer effects on unsteady three-dimensional flow of an elastico-

viscous fluid bounded by a stretching surface. A constant applied magnetic field By is exerted
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in the y—direction. The magnetic Reynolds number is chosen very small and hence an induced
magnetic field is not considered. No electric field is applied. Under the stated assumptions, the

relevant equations are as follows:

du v  dw
[ Pu " Pu " @ \
92201 " " ozoz2 T 923
u  Ou  Ou  Ou O udu  Oudtw o Bj
il e R e e P e s PEEE SR iy SRR - —u, (3.2
o Tyt Ve T e T 9z 022 * 9z 022 S0
+2@__-62u + 2.@1‘1@
\ 0z Ox0= 0z 0z2° /
( v v v \
0z%0t * R i )
v v v v B dvd*v v d*w o B2
T I R i 3y 02 T 5z 02 —= o 88)
4 @ 821} L 2%&
\ Jz dyoz dz 022 /
ac ac ac ac &*C
B + U= + ua—y 4 wo = DW — RC, (3.4)

where u, v and w denote the respective velocities in the z—, y— and z—directions, p the fluid
density, » the kinematic viscosity, o the electrical conductivity of the fluid, A&y the material
parameter, C' the concentration species and D the diffusion coefficient of the diffusing species

in the fluid and R the first -order homogeneous constant reaction rate.
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The prescribed boundary conditions are

v=w=0 C=Cx, t<0,
=0,C=0Cy, 2=0; 20,

u =
thy = Qt, V=1, =Dy, w

o8 &y —0,C—=0,a8z—00;, t>0 (3.5)

- 0, v—=0 ——=0, —
u v 0()2 032

in which the constants a and b are positive.

By virtue of the following dimensionless quantities

n= JVEZ' U= u.-,;.afg:; E) - = ay%’ w = _\/MU‘(D’ E) + g(?}‘ 5)] .
E=1—exp(-7), T=at. (3.6)

equation (3.1) is satisfied identically and Eqs. (3.2) — (3.5) take the forms given below

d"".f 2 Pf(oFf of nd*f | *f
b [(H L= (fhf) - Mzé‘_u] =3 [5 P 35671]
3 1 2 20\ o2
| a-ozgrerrazive(5i-58) 58
% (c’)n 7y ) P ( -¢ 2ant 66{6‘1; )
PFg &g dg Ay n g &g
£aqa+f [(f+g)6_7;2_(3_17) 231,}*‘5(1 ‘E)['ian £3§an
8’9 cﬂ; &g 9f\ 0%

+K
df dg\ o q 17 dy
‘2"( *s )an (“5’ (Earr' 56&67:)

—¢) [” o 3¢ +Sct(f +9 -gi; et =Dl (3.9)
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9f(0,§) _ =
o

f(0,§) = g(0,§) =0,

99(0,€) _  9f(o0,§) _ 9g(c0,8)
an =% ol an =90, =1,
Pf(0,§) _ Pg(co,€) ‘
o = o7 - 0. (3.10)
X 2
Bl o b 3p. 00 0 ¥ . 8 (3.11)
v a pa D a

In the above equations ¢ (= b/a), K, M, Sc, and v are the dimensionless stretching, viscoelas-
tic, Hartman, Schmidt and chemical reaction parameters respectively. Obviously for ¢ = 0,
the problem reduces to the two-dimensional case. It should be further noted that for de-
structive/generative chemical reaction v > 0/ < 0 respectively and v = 0 corresponds to
non-reactive species,

Expressions of skin friction coefficients C'y, and Cf, in the z— and y—directions and local

Sherwood number Sh are given by

Cf;r _ Tuu ny Tw;,t S h = EJw

sz pu w D(Cy — Cwx) (312)

where 7y, and 7, are the skin frictions along » and y- directions and J, is the mass flux.

From (3.6) and (3.12) we arrive at

I 1-¢(of O N
£1/2 Rel/? Cpr = ﬂ + K 26 (&’J aﬂb) +{1-9) 3{31}2+
x on? 3 3f L 99 3{; _f Yo )ﬁ 3
5 an " an) on? M2 50
[ 1-€ (99 & Py
grRrarey, = |20k TE(E”_?WDHI_E)WJr
v Ty 3.”2 3 QQ Lo 3f f )22_9- §
. an - Oy 8?; ~{f+g on? »
120 pa-1/2 — _ 99
TR anl,o (3.13)
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in which the local Reynolds number is Re, = u,z/v.

For the steady-state results (£ = 1), Egs. (3.7) —

P
o

a9 f
g an?

+ |(

i

-

99
an

33 29

)

of

)2_

(f+ J
— 2_.._
) M a”l + K

o
(05
ﬂfzg—f;] +K
(5
92 b3
a,,f” o(f +g)a—f;—-q«5c¢

3.2 Homotopy analysis solutions

(3.9) are reduced to

d“f (

*r o d‘*q

on?
&g _&f
ot on?

&g
) o

o) o7

Pf
ap

af | 9y
an ' an

(o
2

af g
dn - On

0.

&g |
on?

9* f
on?

(3.14)

=0 (3.15)

(3.16)

For homotopy solutions, we express f(n,€), g(7n.€) and ¢(7,€) by a set of base functions

{Ehnj exp(—=nn)|k >0,n>0,j > U}

in the forms

o0 00 DO

Fm€) =ao+> ) ) af " exp(—nn),

k=0 3=0 n=1
o0
= b0+

f-_ﬂ J=0 l'l=1

DD bk exp(—

na),

¢(n,€) = Z YD chub n exp(—nn),

ke
where ﬂ‘,-]r 2t O3

k=0 j=0n=1

(3.17)

(3.18)

(3.19)

(3.20)

and c "+ n are the coefficients to be determined. By the rule of solution expressions

and the boundary conditions (3.10), one can choose the initial guesses fo, go and ¢g of f(),£),
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g(n,€) and ¢(n,£) and auxiliary linear operators Ly, £, and Ly are selected as

fo(n, &) = 1 —exp(—n), (3.21)
g90(n,€) = c[1 — exp(—n)], (3.22)
do(n:€) = exp(—1), (3.23)
- -j%{- " %, (3.24)
Ly= j%?; = :—f;. (3.25)
Ly= ‘(‘%ﬁ’ - ¢. (3.26)

Clearly the operators defined by Eqgs. (3.24) — (3.26) have the following properties

Ly [Cy + Caexp(n) + Caexp(—n)] =0, (3.27)
L, [Cy + C5 exp(n) + Cg exp(—n)] = 0, (3.28)
Ly [Cr exp(n) + Cg exp(—n)] = 0, (3.29)

in which Cj(i = 1 — 8) are the arbitrary constants.
If p € [0,1] and fhiy, hy and h, depict the respective embedding and non-zero auxiliary
parameters then the deformation problems at the zeroth order satisfy the following equations

and boundary conditions
(1 =)L (f o &p) — o, €)) = pyN [F(,5)] (3.30)

(1= )Ly a(n. &) = go(n. &) = NG [F1,&5p), 30, &:)] (3.31)
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(1= p) L4 [D0,60) = o (1,6)] =phoN [Fn&p) D &im)| . (332)

" A ; af (m;
j'('r;;{}‘”;n = 0= 9("1?5)|a,=01 ﬁf’(’ﬁEJL’:ﬂ o f(a;:?g) - =1,

dme)|  _ _ ofme| _ofme| _, —0, (333
on | & " o - o(n; € )|q=m : (3.33)

and the values of non-linear operators Ny, Ny, Ny and N are

2 82 32

& a d
i [(f +9) ﬂnj; (511) “6{:]

3f Nt PP Py
(1 5)&3+£(I+Q)W+E 52 )W
+K ; (3.34)
%(Bf dg) i (na"f : 6“f)
an  on ) on? 2 ot oEomn?

2 a2

Ny [f(n,f;p).ﬁ(ms:p)] = E?,;? +E(1-¢) [f%:i _5%]
@ (740) 8- (B) -

il s\ N &g f\ 0%
(I_E}W+E(I+f)w+§(3_712_3_712)3_772’

+K e " (3.35)
e(af a”) 4 (1_5,(2_@%_,5#“0‘9)

an Oy 01;3 2 9n ocon?

N [001,69), F1,:7), 301, 69)] = 5o +5e(1 — &) (352 — €32) + Sce (F +9)
—Sctd. (3.36)
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When p =0 and p = 1 then
f0.60) = fo(n,&),  f(n.&1) = f(,£).

3(1,&:0) = go(n,€),  g(n,&1) = g(n,8),
d(1,&0) = ¢do(n,€),  d(n,&1) = ¢(n,€).

and Taylor’s series gives

Fn,&p) = fon, &) + Z Fn(n,)p™,

m=1

§m.&p) = 00 &) + D gm(m, E)p™,

m=1

n,&p) = do(m&) + Y bpul(m E)P™,

m=1

am E

J(n.€; d &3

2] guie) = 422
3

Fm(n) = 7y i) |

fm('ff) = }}'—,LF
p=0

We select the auxiliary parameters in such a way that the series (3.40) —

p =1 and we have
F(0,€) = fo(n, &)+ Y fm(n, ),

m=1

9(m,€) = go(n,€) + Z gm(1,€),

m=1

¢(1,€) = o(m,6) + Y, byu(m,€).

m=1
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(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.42) converge at

(3.44)

(3.45)

(3.46)



The mth— order deformation problems are

Ly [fn (11:€) = X frm1 (0,€)] = By RE, (0, €),

C!} [ym ('f.’: 6) - X-mym—L (‘”! 5)] = thgr, (ﬁ":f) 3

ﬁfﬁ [rﬁbm (nag) - X'mqu.—l (ﬂ: 5)] = ﬁlﬁR% (Th E) '

9fn(0,€) _ 9gim(0,€)

fm(0,8) = gm(0,€) = an an = ¢,»(0,§) =0,
8f1r1(003 E) Bgm(oo,ff) o - 82fm (00:'5) o 829m(00,5) .
—37; ——“*"an = (00, §) = o2 = ang =
where
o and 2 on? AE an
- 83fm—l 7 84fm—1 a3fm—1
[0 -0% -0 (F550 |
i 9 1 aefm—l—k afﬁ.‘- afmv—l—k
V(B g = ot Sl E
" L a:;) on? (ﬂf&? 8’39‘?} e ;.
m—1—k k Yk m—1-k
N Z_: ; (Fi + ax) ot i ( amE P ) an?
= NG RIS
A an  dn and
P gm— 17 9% gin— P gm— 5 .5 O—
f = m—1 _ N9 9n—1 m—1| _ 4252 Gm—1
. P gm—1 N gm-1  Pgma
o [(1—5) ap T8 (5 T )}
i Policain B0k 0014
2 m—1—k _& Jm—1—k
m—1 (S [(fk +:1qk} 8712 2 6” 2 ()'f} ’
r a m—1—~K a v 8 ' a m—1—k
Y i 3oaa 22 ik gza 3 f; 9 ==
=JIE" on o on n
e o (2 , 991\ P
i’ oy Oy on?
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(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)



b [ BQ(b?Ji-—l 7 8()"1"—1 ad)m—l
R?J! (3}) = W T S(‘ (1 = (f) (}E a?} _E l")E )
mi—1 -
—|--ES Z [ dl‘flm 1—k fﬂ‘d‘p%;fl_—#:[ — '}'S(;EQ')' (353)
0, m<l, r
X = ('554)
i TSI =

The general solutions of Eqs (3.47) — (3.49) can be written as

fm.(?'hf) = fr:;(‘fhﬁ) +C1+Cs exp('-"}) +C3 eXP(—ﬂ)s (355)
9m(11,€) = gm(n,€) + Ca + Cs exp(n) + Cs exp(—n), (3.56)
d’m(“’h f) . ¢':u. (”! 5) + C? EXP(TI) it GS GX])(—T.J), (357)

where f (1.£), g5(1,&), &y, (1,€) are the particular solutions of the Eqs (3.47) — (3.47) and the

coefficients € (i = 1 — 8) are determined by the boundary conditions (3.50).

Ca = C5=07=0,

" af*(n,§) 95 (1,€)
Ci1 = —C3—fn(0,§), C3= y O = = .
1 3 — fm(0,€), C3 M |yo 6 o |-
C‘l = _Cﬁ = g:a(O': E): Cs = _qb:a(oi E)) (358)

3.3 Convergence of the homotopy solutions

It is known that he auxiliary parameters iy, fiy and fiy play an important role in adjusting and
controlling the convergence of the series solutions (3.44) and (3.46). Hence to find the admissible
values of fiy, fiy and fig, the hi—curves are plotted for the 14th-order of approximations. Fig.

3.1 elucidates that the range for the admissible values of fif, ki, and fis are —1.5 < Ay < —0.5,
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~13 < hy < —0.5 and =14 < hy < —0.8. The performed calculations indicates that the
series given by (3.44) and (3.46) converge in the whole region of 7 when fiy = iy, = —0.8 and

hy = —0.6.

K=01,M=10,c=05

S
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| (e T T
2
w15
~2 = ﬁ-...,(f,ol :
- gr‘u;(f-o}
-25
=2 -1.5 -1 -0.5 0 05
fif, hg

Fig. 3.1. The h—curves of f,,,(£,0) and g,,(&,0) at the 14th-order of approximations when & = (.5.
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-0.25
-0.56
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-1.25
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-25 -2 -1.5 -1 -05 0
hy

Fig. 3.2. The fi—curve of ¢, (£,0) at the 14th-order of approximations when & = 0.5.
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3.4 Results and discussion

In this section, our main interest is to discuss the variations of emerging parameters such as
viscoelastic parameter K, Hartman number M, dimensionless time 7, Schmidt number Sc and
chemical reaction parameter 7 on the velocity components, concentration field, skin friction
coefficients and the surface mass transfer. The analysis of such variations is made through
Figs. 3.3 — 3.19. Figs. 3.3 — 3.12 display the effects of viscoelastic parameter K, Hartman
number M, dimensionless time 7 on the velocity components f, (7, §) and g,(1,£) and the local
skin-friction coefficients £/2 1'{&},’!2 Cpe and £ 1/2 Re;lﬁ’} 'y, ty- Figs. 3.3 — 3.6 give the variations
of K and M on the velocity components [, (1, €) and g,(7,£). It is observed that both f,(n, &)
and g,(n,£) decrease when the values of K are increased. The boundary layer thickness is
also decreased when K increases. Note that this change is larger in g, (7,§) when compared
with f,(n,€). The velocity components f,(n,€) and g,(n,€) are decreasing functions of M
(Figs. 3.5 and 3.6). Figs. 3.7 and 3.8 indicate the effects of dimensionless time T on the velocity
components [, (7,€) and g,(n,&). Clearly the velocity components f, (1, £) and g, (1, ) increase
by increasing 7. The effects of X, M and 7 on the skin-friction coefficients £1/2 Rey 2o 7 and
5”2 R;eim Cry are shown in the Figs. 3.9 — 3.12. It is observed that the magnitude of skin
friction coefficients ¢/* Rey/* 'r= and & 13 Rey e 1y increase when K and M are increased.
Figs. 3.13 — 3.19. are prepared for the effects of dimensionless time 7, the Schmidt number
Sec and the chemical reaction parameter v on the concentration field ¢(7,£) and the surface
mass transfer £/ Re; L C'yxSh. Fig. 3.13 elucidates the influence of 7 on the concentration
field ¢(n, €) in the case of destructive chemical reaction v > 0. It is noted that concentration
field ¢(n, €) is an increasing function of 7 and the concentration boundary layer thickness also
increases for large values of 7. The variation of Se¢ on the concentration field is sketched in

Fig. 3.14. It is observed that ¢ is a decreasing function of Se. Fig. 3.15 gives the effects of

destructive chemical reaction (y > 0) on the concentration field. It is seen that results here are



similar to v < 0 but change in Fig. 3.15 is slightly smaller when compared with Fig. 3.14. Fig.
3.16 illustrates the variation of generative chemical reaction (v < 0). It has opposite results
when compared with Fig. 3.15. Figs. 3.17 and 3.18 indicate the variation of v on the surface
mass transfer for both cases of destructive (y > 0) and generative (7 < 0) chemical reactions.
The surface mass transfer in case of (v > 0) is opposite when compared with (7 < 0). The
variation of Schmidt number Se on surface mass transfer is shown in Fig. 3.19. It is observed
that surface mass transfer increases by increasing Sc.

Here Tables 3.1 — 3.5 give the steady-state results (¢ = 1) for the surface shear stresses
and surface mass transfer for different values of the emerging parameters. For the variation
of stretching ratio ¢, the values of skin friction coefficients and mass transfer are presented in
Table 3.1. It is shown that as the parameter ¢ increases, the magnitude of the surface shear
stresses and mass transfer increases. Table 3.2. presents the values of surface shear stresses and
mass transfer for various values of viscoelastic parameter K and Hartman number M in the
two-cimensional How (¢ = 0). From Tables 3.3 and 3.4, one can see that the behaviors of K and
M in three-dimensional and axisymmetric flows are qualitatively similar to the two-dimensional
case. It is noted from these tables that by increasing K and A the skin friction coefficients
increase while the surface mass transfer decreases. Table 3.5 is prepared for the variations of Se¢

and 7 on the surface mass transfer. The magnitude of —¢/(0) increases when Se and ~ increase.

3.5 Final remarks

The series solutions of unsteady three-dimensional MHD flow of an elastico-viscous fluid with
mass transfer are developed. Results of the velocity components, concentration field, skin
friction coefficients and the surface mass transfer are sketched and analyzed. Main observations

of the present study can be summarized in the points presented as follows.
» The behaviors of K and M on f, and g, are qualitatively similar.
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Boundary layer thickness is decreasing function of K and M.
Behavior of time 7 on the boundary layer thickness is quite opposite to that of K and M.
Effects of K and M on the shear stresses are similar,

The magnitude of surface shear stresses increases with K and M when stretching ratio is

fixed.
The concentration field has opposite effects for Se and 7.

The influence of the destructive (7 > 0) chemical reaction is to decrease the concentration

field ¢.

The concentration field ¢ has opposite results for destructive (v > 0) and generative

(7 < 0) chemical reactions.
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Fig. 3.3. Influence of K on f,(n,§).



fn.&)

gy(n.€)

=05 M=10¢c=05

K=00
K=025
K= 050
K=1.0

Fig. 3.4. Influence of K on g, (1, £).

r=058K=01,¢=05

Fig. 3.5. Influence of M on f,(7,£).




Gyn.8)

fiin.é)

r=05K=01.¢c=05

M=0.0
M=1.0
M=20
M=30

Fig. 3.6. Influence of M on g, (n,§).

K=01M=10¢=05

=005
r=025
=050
=50

—_— e o

2
r}JE

Fig. 3.7. Influence of 7 on f,(n,£).

56



K=01M=10¢c=05

05 5
=005
04 =025
=050
0.3 =
G
S
02
01
e W
b gl i T YO
O e I AL TERTPY
0 1 2 3 4
?}JE
Fig. 3.8. Influence of 7 on g,(n,€).
M=10¢=05
o ¥ — S—
K=00
-0.5 K=01
L I K=03 |
(.q.:}s =1 N ! K=05 |
S IR o
& —-1.5 A\ e
i N e
W -2 i
-2.5 Y
0 2 4 6 8 10
T

Fig. 3.9. Influence of K on £Y/? Res/? Ca.

a7



'3

M=1.0,c=05

12Re, 112Gy,

o —
K=00
~-025 K=01
_05]|3 -~ K=03
N | K=05 Lo
-075| "N, T 0 — — — — — — —
—1 S S R i i e e
‘ _1.25 -----------------------------------
-1.5
0 2 4 6 8 10
T
Fig. 3.10. Influence of K on £'/2 l"'{.o?,sl,,’!2 Cyy-
M= 10, ¢=05
O — -
- M=00
-0.5 M=0.5
M=1.0
g =% M=15
= N
W N S = e e e
g .?.‘h"'-- -—
W -2 R s A P NS e
-2.5
0 2 4 6 8 10
T

Fig. 3.11. Influence of M on ¢/2 Re;’!2 Cye.

58



f‘!szex 12 Cﬁ,

-0.25
-05
-0.75

-1.25
-1.5

M=1.0,c=05

M=0.0
M=05

) M=1.0

0 2 4 6 8 10

Fig. 3.12. Influence of M on €2 Rey/* Cy,.

K=0.1,M=10,¢=05 Sc=y=05

Fig. 3.13. Influence of 7 on ¢(n, §).

59

T=0.05
— =025
- r=10,50
_T=5.0 -
3 4 5



T=05K=01,M=10,c=05v=058

1 =
Sc=0.1
08| "\ Sc=03
Sc=06
s Sc=1.0
G
S
0.4
02
0
0 1 2 3 4 5

Fig. 3.14. Influence of Sc¢ on ¢(n, €).

=06 K=01,M=10,c=05 Sc=05

dn.é)

| y=00

y=10
y=20
=30

3
NG

Fig. 3.15. Influence of v (> 0) on ¢(n, &).

60




Re "CySh

£112

14

1.2

0.8

06

04

T=05K=01,M=10c=05 Sc=05

| y= 00
y=-10
y=-20
y=-3.0

Fig. 3.16. Influence of v (< 0) on ¢(1,£).

K=018c=1M=10¢c=05

....

.'.. /’-—'
L] ) ey — | p— Cm— — —
v -
2
Z y=00
y=03
y=06
l y=10
2 4 6 8 10

Fig. 3.17. Influence of 4(> 0) on £Y/2 Re; /* €y, Sh.

61




K=01 Sc=1M=10.¢=05

1
08
06| &
...\ — = o o
5 ol W
d T
‘-} 02 O i o s o e v i
% o ¥ 49
E y=-03
-0.2
y=-06 |
-04 y=-10
0 2 4 6 8 10
T

Fig. 3.18. Influence of v(< 0) on £V/2 Re; /2 CrxSh.

K=01,M=10c=05y=10

2
Sc=05
Sc=1.0
Sc=1.58
Sc=20 |
6 8 10
T

Fig. 3.19. Influence of Sc on £Y/2 Re;lﬂ CyeSh.

62



‘_‘fl}ﬂ(o)

_g:;r;(ﬂ) _qu (U)

1.49071 0

0.60887

0.25

1.57275

0.36434 | 0.63348

0.50

1.66144

0.79772 | 0.65587

1.0

1.86655

1.86655 | 0.69511

Table 3.1: Steady state results for surface shear stresses — f,,,(0), —g,,(0) and surface mass

transfer —, (0) when M =1.0, K =0.1, Se=v =05 and { = 1.

—fm(0)

0.0

1.41421

0.61246

0.1

1.49071

0.60887

0.2

1.58114

0.60489

0.1

1.05409

0.63274

0.5

1.17851

0.62504

1

1.49071

0.60887

L5

1.90029

0.59283

Table 3.2: Steady state results for surface shear stresses — f,, (0), —9,,(0) and surface mass

transfer —¢, (0) for various values of K and M when ¢ =0 (i.e for two-dimensional flow g = 0)

Se=4=05and £ =1.
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K

M

‘frm(u)

—QW(U)

= ¢'q (0)

0.0

1.0

1.47677

0.67981

0.66717

0.1

1.66145

0.79772

0.65588

0.2

1.96980

1.04254

0.64060

0.1

1.22155

0.53808

0.68627

0.5

1.34420

0.61269

0.67685

1.0

1.66145

0.79772

0.65588

1.5

2.08789

1.03654

0.63389

Table 3.3: Steady state results for surface shear stresses — f;,(0), —g,,(0) and surface mass

transfer —¢, (0) for values of K and M when ¢ = 0.5, Sc =~ =0.5 and { = 1.

Table 3.4: Steady state results for surface shear stresses — f,,,(0), —gy,(0) and surface mass

transfer —q{}”(O) for various values of K and M when ¢ = 1 (i.e for axisymmetric flow [ = g)

K | M | =f(0) | =6,(0)
0.0 1.0 | 1.53571 | 0.71629
0.1 1.86656 | 0.69511
0.1 0 | 1408007 | 0.72741
0.5 | 1.53459 | 0.71779
1 1.86656 | 0.69511
1.5 | 2.31942 | 0.66975

Sc=v=0.5and £ =1.
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v | Se | =¢,(0), ¢=0.0 | =¢,(0), ¢ =0.5 | =¢,(0), ¢ = 1.0
0.2 0.5 0.45109 0.50827 0.55472
0.5 0.60887 0.65587 0.69511
0.8 0.72883 0.77082 0.80636
1.2 0.86071 0.89855 0.93098
0.5] 0.5 0.60887 0.65587 0.69511
1.0 0.89484 0.97810 1.04905
1.5 1.11978 1.23323 1.33078
2.0 1.31175 1.45142 1.57211

Table 3.5: Steady state results for surface mass transfer —¢, (0) for various values of v and

Scwhen K =0.1, M =1.0 and £ = 1.
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Chapter 4

Thermal Radiation and Joule
heating effects on MHD flow of a

Maxwell fluid with thermophoresis

This chapter addresses the magnetohydrodynamic (MHD) two-dimensional flow with heat and
mass transfer over a stretching sheet in the presence of Joule heating and thermophoresis. The
resulting partial differential differential equations are converted into a set of coupled ordinary
differential equations. Series solutions have been derived by using homotopy analysis method
(HAM). The local Nusselt and Sherwood numbers are also computed. Graphical results for
the dimensionless velocity, temperature and concentration fields are reported and examined for

some parameters showing the interesting aspects of the obtained solutions.

4.1 Problem description

Consider the problem of heat and mass transfer characteristics in steady MHD flow of a Maxwell

fluid past a vertical stretching sheet in Darcian porous medium. The surface is stretched in its
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own plane with a velocity proportional to its distance from the fixed origin # = 0. A uniform
magnetic field of strength By is applied in y—direction (taken normal to flow). The magnetic
Reynolds number is small and so induced magnetic field is neglected. We further assume
that surface has variable temperature T),(x) and variable concentration C\,(z), and fluid has
uniform ambient temperature Th, and uniform ambient concentration Cao, where T, > 1. and
Cw > Cx respectively. In addition the effects of thermophoresis are considered in order to
understand the mass deposition variation on surface. Under these assumptions and Boussineq’s

approximation, the governing equations for boundary layer How are

du v
e el (4.1)
du  Ju ZOPu 0% Pul  Pu v oB} du
uaw-kva-i-/\l [u 6:r2+v %-2—4-2111;% _Vé‘T;z_K_'u_ - (u+,\1v-é§)
+g [ﬁ?(T - Tx) + 66‘(0 = Gco)] ' (4.2)
or T _ k *T 1 9¢.  p (au.) 2 oBE , ,
UtV =— g ————+— | =~ | +—u%, 4.3
0r "0y T pey 0 pe, Oy pep \ Oy pep (“3)
oc  oC &*Cc o
UE; + l"a—y* = Dgy—z- = 5; (VTC) . (4.4)

In above equations w and v denote the velocity components in the 2— and y—directions respec-
tively, T is the fluid temperature, C is the concentration field, g is gravitational acceleration,
v is the kinematic viscosity, K'* is permeability of porous medium, p is the fluid density, fFp,
f. are the thermal expansion coefficients of temperature and concentration, respectively, ¢, is
specific heat, ¢, is the radiative heat flux, D is diffusion coefficient and Vi is the thermophetic

velocity.
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The radiative heat flux g, is defined by Rosseland approximation as follows

—40* T

3k Oy (4.9)

Gy =

in which ¢* denotes the Stefan-Boltzman constant and k' the Rosseland mean absorption
coefficient. The fluid phase temperature differences within the flow are sufficiently small so
that T may be described as a linear function of temperature. Hence expanding T in Taylors

series about the free-stream temperature 7o and neglecting higher order terms, we have

T4 = 4T3 T - 3T3, (4.6)

Utilizing Eq. (4.3), one has

(4.7)

uw

ar T  k &PT 160*T38*T  pu (du\® oBE ,
—— U = s +— 5 ) +—v
dzr Oy pcy dy*  3Bk*pc, Ay*  pey \ Oy pCp

The effect of thermophoresis is usually prescribed by means of the average velocity, which a
particle will acquire when exposed to a temperature gradient. In boundary layer flow, the
temperature gradient in y—direction is much larger than in the w—direction, and therefore
only the thermophoetic velocity in y—direction is considered. Consequently the thermophoretic

velocity Vip [137 — 142] can be expressed as
Vi = —kj—— (4.8)

in which k& is the thermophoretic coefficient and 7. is reference temperature. A thermophoretic

parameter I' is given by the relation



The associated boundary conditions are given by

y = yla)=1az; v=0, T'=Tyla), C=0Culz) at-y=10,
du
u — O 3 =0, T— T, C—Cx asy— oo. (4.10)

Furthermore, the wall temperature and concentration fields are taken in the following forms:
To =T +bx, Cy,=Cx+ecz, (4.11)

where a, b and ¢ are the positive constants.

We now introduce dimensionless quantities as

C_Cm

u=\/§y. u=azf'(n), v=—vVavf(n), 6@ = T TW‘ i =m—m W)

The quantities defined above automatically ensures the continuity equation (4.1) and Eqs. (4.2),

(4.3) and (4.7) now are
F"+ 1" =P+ B2fF 1" — ") — M2 + M*Bff" —nf + A0+ N¢g) =0, (4.13)

(1 + %Ra) §" + Pt (f0' — 6f) + Pr Ecf" + M?Pr Ecf” = 0, (4.14)

¢" + Sc(f¢' — of') — Sl (¢'0 — p8") = (4.15)

f0) = 0, f(0)=1, 6(0) =1, ¢(0) =1,
f'(e0) — 0, f"(c0) =0, f(c0) — 0, ¢(c0) — 0, (4.16)
where 8 = Aja is the Deborah number, M? = 0B} /pa is the Hartman number, 7, (=

Ir‘) '
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Tm o Tc!la):]::;f'[‘r2

Gry )
ul 22 /y?

the porosity parameter, A = ReZ is the local buoyancy parameter, Gr, (= 98(

b
Be (Cu = Cix)
By (T —Tic) .
buoyancy parameter, Re, = u,x/v is the local Reynolds number, Pr = I—!“E is the Prandtl
e e

22 is the radiation parameter, Ee(= —%w __y s the Eckert number

and Sc = () is the Schmidt number.

is the local Grashof number, N = ( ) is the constant dimensionless concentration

number, R4(=

The local Nusselt number Nu,. and local Sherwood number Sh can be written as

@
~ D(Cy—Css)’

Tlw

N = T — T

Sh (4.17)

in which 7, g, and j,, denote the wall skin friction, the wall heat flux and the mass flux from

the plate which are given by

160°T3 ) 6T] : (30)
: _ — k ._l_ _____‘DO —_— ' w —_ — — N 4-18

which in terms of dimensionless variables become

Nu, Re;'/? (Iﬁz) = —¢'(0), Sh/Re}? = —¢/(0). (4.19)

4.2 Solutions by homotopy analysis method (HAM)

The velocity f(n), temperature #(7) and the concentration ¢(n) fields for HAM solutions can

be expressed by the set of base functions

{‘r}"' exp(—nn)|k > 0,n > 0} (4.20)
as follows
fm=ado+Y Y ak 0" exp(—nn), (4.21)
n=0 k=0
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L

0(n) = > ban® exp(—nn), (4.22)

n=0 k=0
o> > 4]
om) =D chu* exp(—mn), (4.23)
n=0 k=0
where a.fn',“ bf}l_n and cf,‘;.h,, are the coefficients. The initial guesses fo, 0o and ¢ of f(1n), 6(n)

and ¢(n) based on the rule of solution expressions and the boundary conditions are

fo(n) =1 = exp(-=n), (4.24)
Oo(n) = exp(—n), (4.25)
do(n) = exp(—n). (4.26)

The auxiliary linear operators are
df df
Y 4.2

el =t (4.27)

Lo= dz—z -0, (4.28)
dn
d*¢

Ly= o . (4.29)

The operators given in Eqs. (4.27) — (4.29) have the following properties

Ly [Cy + Caexp(n) + Cyexp(—1)] =0, (4.30)
Ly [Cyexp(n) + Cs exp(—n)] = 0, (4.31)
Ly [Cs exp(n) + Crexp(—n)] = 0, (4.32)

where ¢;(i = 1 — 7) are the arbitrary constants.

If p € [0,1] is the embedding parameter and fiy, hy and h, are the non-zero auxiliary
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parameters then the zeroth-order deformation problems are expressed by the following relations

(1 =)Ly 1Fn.2) = fom)) = phyNy [ £(1,2),0(n. ), & (m.p)| (4.33)
™ (1 = P)ﬁa[gﬁﬂ, P) . 90(”)] = PﬁﬂNﬂ [f'(mp)‘ 9(”»?))1 Q}’ (Tfs p)] 3 (434)
(L=p) Lo [ & (n.9) = do ()] = phsNy [F1,), 80, ), b (n, )] (4.35)

- aftmp)|  _, ofmp)|  _
f(n;p) pa = TR | L E on =0, (4.36)

n= n=00

op)| _ =1 dmp)| =0 (4.37)
o p)L:D =1, @(n;p)L:m =0 (4.38)

and the non-linear operators Ny, Np and N, are

- . - - 37 5 = 2
Ny [F5),0059), )] = L2 g}; D) 1 (M +1) flo,p) 2400 — (2
[ 27y, py 2L 012) 81 ()

an _an? - 2y Af(n.p) lm Sl
+8 Loy |~ (M) R (000.p) + No(np)) s (4.39)

_ ‘(f(_w‘zu)) o3

No [ i), 8 9). d1:)| = (1+ §Ra) 252+ Pr (f(n, p) 2422 — 200y )

+PrEe (S—C{L};ﬂ) + M2PrEe (*%{]—Fl) , (4.40)

Ny [f (m:2), 0(m; p), c%(n;p)J = 23 | 5c (f{t'auiv)@é%’il - ﬂé’,’,il&(n;p))

B 0(n,p) 9p(mp) = 2o
- SCF( o an —05(T?,P)—3,,9— . (4.41)
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For p =0 and p = 1, one has

-

Fm0) = fo(m),  fl:1) = f(m),

0(1;0) = bo(n),  B(m;1) = 0(n),

d(m;0) = do(n),  d(m;1) = $(n)

and now by Taylor’s theorem one can easily write

f('ﬁp) = fo(n) + Z fru(ﬂ)pmn

m=1

B(m;p) = bo(n) + Y Om(m)p™,

m=1

&("?i p) = do(n) + 2 Dy (m)p™

m=1

I am™ f(m;
fm(ﬂ) = %T!_{:m B) Ip:ﬂ
a™ P(n;
q‘)m(r;) — n—if'ﬁfj?i(_ﬂleIL:u'

arl‘lg H
o Omlo) = R

(4.42)

(4.43)

(4.44)

(4.46)

(4.47)

(4.48)

The auxiliary parameters are so properly chosen that the series (4.33) — (4.35) converge at

p = 1. Hence
f(”} = fﬂ'(n) + Z fm (ﬂ)a

m=1

0(n) = bo(n) + ) _ Oum(n),

m=1

¢(n) = do(m) + Y Sa(n)-

m=1
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The mth— order deformation problems satisfy the following expressions

L")‘ [.fm {?” = xmfm—l (")I = ﬁfR'::; (U} '

Lo [0 (1) = XonOm—1 (0)] = heRY, (n),

Eqﬁ [¢m (Tl) o Xm‘ibm—l (”)] = %R:: (”) ’

fm(0) =0, [(0)=0, f,(0) =0, 6m(0)=0, Bpn(c0)=0,

Pm(0) =0, ¢,,(00) =0,

Rffn (n) = :::—1 - ‘hf;:—l +A (9m—1-k + N¢m.—1—k)

(M25+ l)fm—l—-kfi: i _1_};.’.;7
S5y "

m—

4
R () = (1 L gnd

= +M2Ecf!, , .
m—1

R

0, m<l1,
Xm —
1, m>L

The general solutions of Eqs. (4.52) — (4.55) are

Jm(n) = f(n) + C1 + Caexp(n) + Csexp(—n),
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k k
+f (zfm—l—k Ea foifl = -1k E) fk-ff.fw)

m (7?) = :m—l + Se Z [fmul-kgbi: == ¢‘m-l—kflt'] + Sel’ (d;’ﬂ" — O
le=0

U
m—1

) P =% Pr Tf fm—l—k'g;p = gm—l—kffi + ch::;._l_kfj?

)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)



O (n) = 0, () + Cyexp(n) + Cs exp(—n), (4.61)

where f' (n). &7, (1), and &, (n) depict the special solutions and

C: = C4=Cg=0,

" af*(n)
Ci = —Cs—fal0), C3= ,
1 3 —Tm(0), Cs M oo

Cs = —05,(0), C7=—¢,,(0). (4.62)

4.3 Convergence of the series solutions

It is obvious that the series solutions (4.49) — (4.51) consist of the non-zero auxiliary parameters
hig, hg, and hy which can adjust and control the convergence. For range meaningful of /iy, fg,
and Ay of the functions f”(0), #(0) and ¢'(0), the Ay, fig, and fig—curves are plotted for 25th-
order of approximations. Fig. 4.1 depicts that the range for the admissible values of hiy, hy,
and fy are —1.1 < hy, Ry, iy < —0.4. Our analysis further shows that the series given by

(4.49) — (4.51) converge in the whole region of n when fiy = hp = fiy, = —1.0.

f=02M=056=\T=02 FPr=07Ec=05=Sc N=10,v1=05

L]

\

Y
L
I
. 4
\

10, 40, &'
S
a

-07

-0.75

-15 -1.25 -1 -075 -05 -025 0
hr. hg

Fig. 4.1. h—curves of f”(0), #'(0) and ¢'(0) at 15th-order of approximation.
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Table 4.1: Convergence of HAM solutions for different order of approximations when

B=02 M=05+ =05 A=10,Pr=07T=02 Ry =03 and Ec=0.5.

Order of convergence | —f”(0) | —#'(0) | —¢'(0)

1 0.68333 | 0.50416 | 0.68333
5 0.62111 | 0.62252 | 0.68124
10 0.61941 | 0.62424 | 0.67997
15 0.61927 | 0.62430 | 0.67978
20 0.61925 | 0.62428 | 0.67975
25 0.61925 | 0.62428 | 0.67975
30 0.61925 | 0.62428 | 0.67975

4.4 Discussion of results

This section concerns with the effects of Deborah number 4, Hartman number M, porosity
parameter vy,, local buoyancy parameter A, the buoyancy ratio N, Prandtl number Pr | the
radiation parameter Ry, Eckert number Ec and Schmidt number Sc on the velocity, temperature
and concentration fields. For this purpose, Figs. 4.2 —4.19 have been displayed. Figs. 4.2 —4.9
show the effects of 3, M, v, A, N, Ec, Rq and Pr on the velocity field f’. The velocity profiles
for different values of Deborah number # are plotted in Fig. 4.2. It is seen that the boundary
layer thickness decreases with the increasing values of 4. Fig. 4.3 describes the variation of
M on f'. Obviously f’ is a decreasing function of M. The variation of 7; on f’ is illustrated
in Fig, 4.4, This Fig. shows that v, and M has similar effects on f’. Fig. 4.5 indicates the
effects of A on f’. Clearly f’ is an increasing function of A. From Fig. 4.6 one can see that the
boundary layer thickness increases when N increases. The effect of radiation parameter R4 on
the velocity field [’ is shown in Fig. 4.7. Here the velocity profile shows a decrease with an

increase in the radiation parameter. Figs. 4.8 and 4.9 describe the effects of F¢ and Pr on f’,

76



respectively. Both E¢ and Pr decrease the velocity profile. Infact an increase in the Prandtl
mumber leads to an inerease in fluid viscosity which causes a decrease in the flow velocity.

Figs. 4.10—4.16 depict the influences of g, M, v, A, Ee, Ry and Pr on #. From Figs. 10—12
it is observed that the temperature profile increases by increasing 8, M and 7,. It is noticed
that # decreases when A increases (Fig.4.13). Fig. 4.14 describes the effects of R4 on #. Here
# increases when Ry increases. Fig. 4.15 indicates that € is an increasing function of Eec. In
Fig. 4.16 the variation of temperature ¢ is plotted for different values of Pr. The temperature
decreases when Prandtl number is increased. The thermal boundary layer thickness decreases
due to an increase in Pr.

Figs. 4.17 — 4.19 are sketched for the effects of 8, I' and Se¢ on concentration field ¢.
Fig. 4.17 elucidates the influence of # on the concentration field ¢. It is obvious that the
concentration field decreases by increasing . Fig. 4.18 depicts that the concentration field ¢
increases for large I'. Fig. 4.19 gives the effects of Se on the concentration field. It is observed
that ¢ is a decreasing function of Se. Tables 4.2 and 4.3 are given for the numerical values
of the Nusselt number and Sherwood number for the different values of involved parameters
of interest. From Table 4.2 it is found that the magnitude of —#'(0) decreases for large values
of Ry. The magnitude of —¢'(0) increases when Sc is increased. Table 4.3 is prepared for the
variations of N, vy, #, M, and A on —#'(0) and —¢'(0). It is obvious from this Table that the

magnitude of —¢'(0) increases for large values of A and decreases for large values of M.

4.5 Concluding remarks

Heat and mass transfer analysis in presence of thermal radiation and thermophoresis on a steady
mixed convection of an incompressible Maxwell fluid is analyzed. Series solutions for velocity,
temperature and concentration fields are developed and discussed. The behaviors of embedded

parameters are examined. The main results of the present analysis are mentioned as follows.
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The effects of 4, M, R4 and Ec on f' are similar in a qualitative sense.

Velocity f' is an increasing function of N.

Behaviors of Ry and Pr on the temperature € are opposite.
The temperature ¢ decreases when Pr increases.

Variation of T' on temperature @ is opposite to that of Pr.
Concentration field decreases by inereasing Se.

The magnitude of the local Nusselt and Sherwood number increases when +, is increased.

Effects of I' on the local Nusselt and Sherwood numbers are opposite.

f'im

0.8

0.6
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0.2

A=10=y1=N,M=02 Sc=05=Pr=Ec, Ry=03,1=02

n

Figs 4.2: Influence of 3 on the velocity f’.
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Figs 4.3: Influence of M on the velocity f.
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Figs 4.4: Influence of v, on the velocity f.
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p=02,M=10=2=N,Sc=05=Pr=Ec=Ry,I'=02
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Figs 4.5: Influence of A on the velocity f’.
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Figs 4.6: Influence of N on the velocity f’.
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B=02M=10=y1=N,Sc=05=Pr=Ec, I'=02

Rg=01
Rg=05
Rg= 1.0
Rg=15 |
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Figs 4.7: Influence of Ry on the velocity f’.
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Figs 4.8: Influence of Ec on the velocity f’.
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A=02 M=10=y1=N,Sc=05=Ec=Ry, I'=02
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Figs 4.9: Influence of Pr on the velocity f’.
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Figs. 4.10: Influence of 8 on the temperature 6.
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Figs. 4.11: Influence of A on the temperature 6.
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Figs. 4.12: Influence of 7, on the temperature .
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Figs. 4.13: Influence of A on the temperature 6.
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Figs. 4.14: Influence of Ry on the temperature 6.
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f=02 M=10=2=y;=N,Sc=05=Pr=Ry I'=02

Ec=00
Ec=10
Ec=20
Ec=30

&n)

Figs. 4.15: Influence of E¢ on the temperature 6.
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Figs. 4.16: Influence of Pr on the temperature .
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Figs. 4.17: Influence of # on the concentration ¢.
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Figs. 4.18: Influence of T’ on the concentration .
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Figs. 4.19: Influence of Se¢ on the concentration ¢.
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Chapter 5

Influence of thermal radiation on the
steady flow of a Maxwell fluid over a
moving permeable surface in a

parallel free stream

The flow and heat transfer characteristics over a moving permeable surface in a Maxwell fluid in
this chapter. Governing problems of flow and heat transfer are solved analytically by employing
the homotopy analysis method (HAM). Effects of the involved parameters namely the Deborah
number A, suction parameter S, constant velocity ratio (Here 0 < 7 < 1 correspond to the sheet
moving in the same direction to the free stream, while » < 0 and » > 1 are when they move in
the opposite directions), the Prandtl number Pr, Eckert number E¢ and the radiation parameter
Ry are examined carefully. A comparative study is presented with the known numerical solution
in a limiting sense and an excellent agreement is noted. It is found that f’ in the Maxwell fluid

is less than the viscous fuid.
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5.1 Problem development

Let us investigate the steady flow of a Maxwell flnid over a moving permeable surface moving
with constant velocity u,, in the same direction as that of the uniform free stream velocity qo.
The constant temperature of wall and free stream are denoted by 7, and 7. The boundary

layer flow is given by the following equations

du Ov
du du 8
I3—+UE}J+/\1 82+1 ay2+2'uva By] 312’ (5.2)
ar 9T _ k &PT 1 9¢  p (au)
UB—FV— = ——— — — — + — ; 5.3
de Ay pey Oy* pey, Oy pep \ Oy (5:3)

where « and v denote the velocity components in z— and y—directions respectively, 7' is the
fluid temperature, ¢, is specific heat, g, is the radiative heat flux which is [136]

—40* OT*

e <o 4
3y (5:4)

q-r =

in which ¢ represents the Stefan-Boltzman constant and A&* is Rosseland mean absorption
coefficient. We assume that temperature difference with the flow are sufficiently small such
that 7" could be approached as a linear function of temperature. Hence, we expressed T4 in

Talyors series around 7. and neglect higher order terms. That is

T8 4TS T —3T4. (5.5)
Now Eq. (5.3) becomes
ar T k8T 160°T3 3T u [0u\®
11.'5'1—" + Ha—y— = ‘P—cp‘ 8y2 + 3k*ﬂcp ayg E (8_y) . (5.6)
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The boundary conditions can be written as follows

W = Uy, V= Vw, g = j.u at y =10,
B oy e, Pl a8 g (5.7)
00y (f_}y 1 o0 ' y 1 :
where
v\ V2 )
I 8
Uy ( e ) f(0) (5.8)

We define the dimensionless quantities given below

s T —Tss [ U
¢ = V2aUf(n), 0(n) = T — T’ M=\ 3za¥"

Uv

w = Uf), v=—y\g-[fn)—nf@) (5.9)
where U = t, + too and the stream function v satisfies

pos 2F g=¥ :
U= —, By (5.10)

The above expression also satisfies the continuity equation (5.1). From Egs. (5.2) and (5.6) we
have

fm ) ffﬂ - g (szffﬂ' & f2fm 5 nf:-zfn) =0, (5_11)
(1 + %Rd) ¢" + Pr f0' + Pr Ecf" =0, (5.12)

and the boundary conditions (5.7) are

fO =8  fO=1-r 00)=1,

flloo) = r,  f"c0)=0, 6(c0)=0. (5.13)
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with f(0) = S with S > 0 corresponds to suction case and S < 0 implies injection. Here primes
denote the differentiation with respect to 7, r is the constant parameter, Pr is the Prandtl
number, Ec is the Eckert number, R, is the radiation parameter and 3 is the dimensionless
Deborah number. These are defined by

2 *
Uo  p._ MO ﬁ:ﬂ U _ 4008,

U ] @ ] ) 1 Ec — m’ Rd = W— (5‘14)

At this stage the local Nusselt number Nu, and heat transfer from the plate g, can be

computed from the following expressions

= LGw
Niip = R Ty —To)’ (5.15)

where ¢y, is the heat transfer from the plate, which is given by

aT
w=—k|— . 5.16
w=+(5) | (5.16)
which in terms of variables (5.9) become
Re; Y2 Nu, = —'(0), (5.17)

in which Re, = Uz/v is the local Reynolds number.

5.2 Homotopy analysis solutions

The initial guesses approximations of f (7)) and 6(n) are chosen as

fo(n) =8+ (1—2r)[(1 —exp(—n)] +ry, for r#1/2, (5.18)
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fo(n) = exp(—n) + znexp(-1), (5.19)

and the auxiliary linear operators Ly and Ly are

3
o, Ly(f) = % - %, (5.20)
d*f
Lo (f) = @z f (5.21)
with
Ly [Cy + Caexp(n) + Cyexp(—n)] = 0, (5.22)
Ly [Cyexp(n) + Cs exp(—n)] =0 (5.23)

in which C;, (i = 1 — 5) are the arbitrary constants. If p € [0, 1] is the embedding parameter and
lig, and hy are the non-zero auxiliary parameters then the zeroth-order deformation problems

are given below

(1—p) &1 [F(mp) — fo )] = pheNy [F i) (5.24)

(1—-p) Lo [a('?;}-’) -0 (?J)] = phoNp [3 (mp), f (v;p)] ; (5.25)
Fo;p)=0, FOp)=1-r, [F(op)=r, ["(c0;p)=0, (5.26)
B(0p)=1,  B(coip) =0, (5.27)

in which the non-linear operators Ny and Nj are of the following forms:

[ np] 200 4 1 (n;p) Zhpe)
" 7 2 5 7
2f(r,p)3f( 1.p) 9*f (1,p) +(f(n,p)) & f(n.p)

]
on on? o
_B8 : e , 5.28
e % N U OR A (UN) e
! on? a3
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No [ﬁf?z:ri),f(n p)] = (1+ 4Rq) 2202 4 pr F(; p) Flp)

2
+Pr Be (2042)" (5.29)
For p = 0 and p = 1, the above zeroth-order deformation equations have the solutions
F0)=fo(m), Flm1) =), (5:30)

G(;0) =80 (n), O(m1)=6(n). (5.31)

When p increases from 0 to 1, f(n:p) and 8 (n; p) vary from fy () and (1) to the exact

solutions f (n) and #(5). In view of Taylors theorem and Eqs. (5.25) and (5.26) one can write

Fnip) = fo(n) + Z fn () ™™, (5.32)
=1
0 (m;p) = 0o (n) + Z O (1) P™, (5.33)
m=1
where
: 1 gnf n; 1 6""§ np
jm (”) = === _;i'%':i} 3 H:H {”} # 1 (53‘1)
m!  Op ml  dp
p=0 p=0

The auxiliary parameters are so properly chosen that the series (5.24) and (5.25) converge at

p = 1. Hence
F)=fom)+ Y fm), (5.35)
m=1
0 (n) = 6o (1) + Z O (1) (5.36)

The mth— order deformation problems are

'C'f [fm (7?) - Xm.fm—l (”)] b hflR'il (Tf) : (537)
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‘Co [6}1’! (") B Xmg'm-—-l (n)] = ﬁf)an (7}) ) (5.38)

{"m (U) — Gm (00) = U$ (540)
e Uit 2 ol
m—1 m—1-k k=171
RE () = s () + 3 | fmrckfl =5 . i=o : ,
k=0 +fra-1-k t§1 Fue—tF" +0f it lE{}fﬂ_;f:"
- (5.41)
4 m—1 ;
Rin (n) = (1 + 5&:) O +Pr Y [0y ifis+ Befmiafil] (542)
k=0
0 m<1,
Xm = (5‘43)
1, m>d

5.3 Convergence of the homotopy solution

The auxiliary parameters iy and fi; in the series solutions (5.35) and (5.36) have a great role
in adjusting and controlling the convergence. In order to find the admissible values of fiy and
hg the fiy and hg—curves are plotted for 20th-order of approximations. Fig. 1 depicts that the
range for the admissible values of fiy and iy are —0.8 < fiy < —0.2 and —1.0 < iy < —0.6.

It is found that the series given by (5.35) and (5.36) converge in the whole region of 7 when
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hy =—0.5 and iy = —0.7.

B=03r=04,5=05Ec=05FPr=05FRy=03

o| i §
~02
8
= _04
S
<
~06
~08

Fig. 5.1. h-curves for 20th-order approximations.

5.4 Results and discussion

Our interest here is to discuss the variations of pertinent parameters such as Deborah number /3,
the constant velocity ratio r, suction parameter S, the Prandtl number Pr, the Eckert number
Fe and the radiation parameter Ry. Therefore Figs. 5.2—5.11 have been plotted. The variation
of Deborah number /4, the velocity ratio » and the suction parameter S on the velocity f’ can be
seen through Figs. 5.2 — 5.6. Figs. 5.2 and 5.3 study the influence of 3 on f’ when r = 0.3 and
r = 1.0. It is revealed that the boundary layer thickness decreases with the increasing values of
B. The variation of S on f’ is illustrated in the Figs. 5.4 and 5.5. These Figs. show that f and
S has similar effects on f’. It is noticed that decrease is larger in the case of S when compared
with f. Hence a porous character of wall provides a powerful mechanism for controlling the
momentum boundary layer thickness. Fig. 5.6 describes the effect of » on f’. It is found that
initially f* decreases but after = 0.6, it increases when r decreases.

Figs. 5.7—5.11 deseribe the effects of suction parameter S, the velocity ratio r, the Prandt]
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number Pr, the Eckert number Ee¢ and radiation parameter Ry on temperature profile 6. Fig.
5.7 elucidates the effects of S on #. The temperature field ¢ decreases when S increases. Fig.
5.8 indicates the effect of r on #. The boundary layer thickness decreases by increasing r. It is
observed that ¢ decreases when Pr increases (Fig. 5.9). A higher Prandtl number fluid has a
thinner thermal boundary layer and this increases the gradient of temperature. The influence
of Eckert number Ec is shown in Fig. 5.10. It is observed that # is an increasing function of
Ee. The boundary layer thickness also increases when Ee increases. Fig. 5.11 describes the
effects of Ry on 0. Here 0 increases as R, increases. Table 5.1 includes the values of the skin
friction coefficient when # = 0 = S. From this Table it can be seen that the HAM solution has
a good agreement with the corresponding numerical solution in a viscous fluid [131]. Table 5.2
presents the values of skin friction coefficient for some values of § when f# = 0. Table 5.3 depicts
the variation of heat transfer at the wall —#'(0) for some values of Ee¢ and » when Pr = 0.7,
B = Ry =0= 5. The numerical values of present result has an excellent agreement with those
obtained in [131]. Table 5.4 presents the values of —8'(0) for different values of S and R,; when
Pr=10.7, =04 and f# = 0. The local Nusselt number increases when Prandtl number Pr is

increased.
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S§=10,r=03

£ =00
p=02
p=04
p=06

Fig. 5.2. Velocity profile f/(n) for various values of # when r = 0.3.

S=10r=10
—— p-=00
-~ B=02
= ,8 = 04 |
p=06 |
0 1 2 4 5 6

Fig. 5.3. Velocity profile f(n) for various values of # when r = 1.0.
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B=03r=03

S=00
S=05
S=10
S=15

Fig. 5.4. Velocity profiles f/(n) for various values of S when r = 0.3.

B=08r=10

()

Fig. 5.5. Velocity profile f'(n) for various values of # when r = 1.0.
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Fig. 5.6. Velocity profile f/(n) for various values of r.

p=03r=04 Pr=07 Ec=05 Rd=03
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6 8

Fig. 5.7. Temperature profile 8(7) for various values of S.
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Fig. 5.8. Temperature profile (1) for various values of r.
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Fig. 5.9. Temperature profile 6(5) for various values of Pr.
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Fig. 5.10. Temperature profile #(7) for various values of Ec.
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n
Fig. 5.11. Temperature profile #(7) for various values of R,.

S=10,r=04,3=03 Pr=05 Ry=03
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r (131] Present results

0 | —0.627562 —.627548
0.1 | —0.493760 —0.493753
0.2 | —0.363346 | —0.363335
0.3 | —-0.237133 —0.237137
0.4 | —0.115810 —0.115810
0.5 [ 0.000000 0.000000
0.6 | 0.109638 0.109658
0.7 | 0.212373 0.212392
0.8 0.307355 0.307376
0.9 0.393563 0.393528
1.0 [ 0.469601 0.469654
1 0.533708 0.533813
1.2 | 0.583178 0.583239
1.3 | 0.613646 0.614732
14| 0.616140 0.653461
1.5 | 0.565821 0.769748

Table 5.1: Values of f”(0) for some values of » when =0 = S.
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S |7 1"(0)
-0.3 | 0.4 | —0.081214
—0.1 —0.103628

0.0 —0.115810

0.5 —0.185218

1.0 —0.265104

0.5 | 0.0] —0.957637

0.3 | =0.374052
0.5 | 0.000000
0.7 ] 0.357932
1.0 | 0.857625

Table 5.2: Values of f”(0) for some values of S when 4 = 0.

Ee | r (131] | Present Results
0.0 | 0.1 ] 0.493641 0.493616
0.03 0.489305 0.489298
0.3 ] 0.484789 ().484812
0.7 | 0.452195 0.452346
0.9 { 0.425233 0.425267
1.2 | 0.368048 0.368254
1.5 | 0.264915 0.264998
0.1 | 1.2 | 0.346889 0.346963
1.5 | 0.234991 0.235075

Table 5.3: Values of —6'(0) for some values of Ec and r when Pr=0.7, = Rg=0=S.
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S | Ra|Pr | —6(0)

0.2 03| 07| 0461479

0.6 0.599733
R 1.2 0.830794
1.5 0.954183

0.5 (0.0 | 0.7 | 0.713993

0.3 0.563952

0.6 0.475947

0.9 0.416898

0.1 0.227182

0.7 | 0.563846

1.0 | 0.721336

Table 5.4: Values of —'(0) for some values of S and Ry when Pr= 0.7, r = 0.4 and 3 = 0.
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Chapter 6

Effects of thermal radiation on
unsteady MHD flow of a Micropolar

fluid with heat and mass transfer

This chapter explores the combined effects of heat and mass transfer on the unsteady flow
of a micropolar fluid over a stretching sheet. The thermal radiation effects are present. The
arising non-linear partial differential equations are first reduced to a set of non-linear ordinary
differential equations and then solved by homotopy analysis method (HAM). Plots for various
interesting parameters are presented and discussed. Numerical data for surface shear stress,
Nusselt number and Sherwood numbers in steady case are also tabulated. Comparison between

the present and previous limiting results is given.

6.1 Mathematical formulation

We investigate the unsteady flow of a micropolar fluid over a stretching surface. The fluid is

electrically conducting in the presence of a constant applied magnetic field By. The induced



magnetic field is neglected under the assumption of a small magnetic Reynold number. Initially

(for ¢ = 0), both fluid and plate are stationary. The fluid has constant temperature o, and

concentration C'se. The plate at y = 0 is stretched by the velocity component u = ax. For £ > 0

the surface temperature and concentration are T, and €', respectively. The boundary layer

-

N flow is governed by the following equations
o o0
dz Oy
'QE‘F'H%"I‘U?—T{_ v.i_f @+E_8N*_O'_B§u
o oz oy p)oy poy p
ON®* ON* ON* +*&#N* & . Ou
o "o "oy T aF 0 (2N +6y)’
or ~ or = or] , *T 0q
e |3 + 5 9% = Vo ~ B
2
Qgﬂ-u?g-—i-v?g:DE—RC

ot O Ay Ay

Yt and the subjected conditions are

% = w=sN=0, =T, =054 1<,
< u
U = Uy =az, v=0 N =—Nga—y, T =00, C=Cu y=0120,

u — 0,bv—0, N*=0,7T-0,C—0, asy — co. t >0,

(6.6)

in which » and v are the velocity components along the z— and y—axes, respectively, p is fluid

density, v is kinematic viscosity, ¢ is the electrical conductivity, N* is the microrotation or

angular velocity, 7' the temperature, ¢, the specific heat, k the thermal conductivity of the

fluid, g, the radiative heat flux, C is the concentration species of the fluid, D is the diffusion

< coefficient of the diffusion species in the fluid, R denotes the first-order homogeneous constant

reaction rate, j = (v/¢) is microinertia per unit mass, v* = (u + 1/2)j and k are the spin
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gradient viscosity and vortex viscosity, respectively. Here Ny is a constant and 0 < Ny < 1.
The case Ny = 0, which indicates N* = ( at the wall, represents concentrated particle flows
in which the microelements close to the wall surface are unable to rotate [132]. This case is
also known as the strong concentration of mircoelements [133]. The case Ng = & indicates
the vanishing of anti-symmetric part of the stress tensor and denotes weak concentration [134]
of mircoelements. We shall consider here both cases of Ny = 0 and Ny = % However, it
can easily be shown that for Ny = -é- the governing equations can be reduced to the classical
problem of steady boundary layer flow of a viscous incompressible fluid near the plane wall.
However the most common boundary condition used in the literature is the vanishing of the
spin on the boundary, so-called strong interaction. The opposite extreme, the weak interaction,
is the vanishing of the momentum stress on the boundary [133]. A third, or compromise in
the vanishing of a linear combination of spin, shearing stress and couple stress, involving some
friction coefficients, a particular case of which was the condition used by Peddieson [135].
Employing Rosseland approximation we have

40* 0T

- B (6.7)

Hy =

where ¢* is the Stefan—Boltzmann constant and &* the mean absorption coeflicient. Using

Taylor series one can expand T% about Tl as
T 4T3 T - 3T1. (6.8)

where the higher order terms have been neglected.

Now Eqs. (6.4), (6.7) and (6.8) we have

ar AT AT 9 [[160*T3 aT
o |+ gy =y (o) ) o
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Defining

v = ()26 %xf(Em), N° =tﬂ/rfJ”z&"”za:rr;{E.n) n=(a/v)"2 ey

5 = ] —exp(—'."], T = flt‘ 0= I_‘m Tw, ¢ = 6;"—-—70 {(J.].U)
O
equation (6.1) is automatically satisfied and Eqgs. (6.2), (6.3), (6.5), (6.6) and (6.9) reduce to
m B U 8f’ " 2 :
(1K) "+ (1= ) (51" ~ &5 ) +EUS" = (P = M2+ Kag' =0, (6.10)
1( " 1 ! a ! ’ g
1+ 20 ) "+ (1-8) (59+39 — €52 ) + € [for— flg—2Kag — Kuf'] =0, (6.12)
2 2 2 g
7 U o0
(1+ Ng)d" +Pr(1 —§) §9 —56—5 +Préfe =0, (6.13)
o'+ 5e(1-) (30~ €32 ) + Scerd ~ St =0, (6.14)
F6,0), f1(60) = 1, g(£0)=~Ny f"(£,0), 6(¢0)=d(&0)=1,
f'(€,00) = g(& 00) = 0(€,00) = P(§, 00) =0, (6.15)
where prime denotes the derivative with respect to 7). Here material parameter K, Hartman
number M, Prandtl number Pr, radiation parameter Ng, Schmidt number Se and chemical
reaction parameter v are given by
_ K 2 _ = lﬁr:*Toao v i E
K, = 2 y M pa  Pr= e Np = TR y QB By 1= (6.16)
The skin friction coefficient C'y,, local Nusselt number Nu and local Sherwood number Sh are
defined by the following expressions

108



-

u
[(!’4‘*')3?;4-“\7

= - y=0
S = puZ, y
v —x@T/Oy)y=0 o, _ —(0C/y)y=0
Mo = —m-m) ' P et

Utilizing Eq. (6.10) we obtain

Rel/2€Y2Cp, = [1+(1— Np) K1 f(€,0),

NuRe;'2¢/2 = —0/(£,0), ShRe;'2¢"/2 = —¢/(¢,0).

where Re, = ax? /v is the local Reynolds number.

For ¢ = 0 (initial unsteady-state flow), Eqs. (6.11) — (6.14) can be written as

(L+ Kn) /" + 31" + Kag =0,

(1+%)g"+gy'+%g =10,
(1+ Ng) 6" + Pr 32!9' =0,
o + ch—q*f 0,

When € =1 (final steady state flow) then Eqgs. (6.11) — (6.14) become
(1 4. I{I)fml“;“ ffﬂ' o (fl')2 - .ﬂ:fzf! ‘|“K19’ = 0’

1 K\ u / "o__
+5 )9 + fgt = ['g—2K19— K1f" =0,

(1+ Ng) 0" +Pr f6 =0,
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(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)



¢" + Scfd) —vSep = 0.

6.2 Homotopy analysis solutions

(6.26)

For homotopy analysis solutions, we write f(£,7), g(&,n), #(€,n) and ¢(€.n) by a set of base

| @
functions
{€" exp(—n)lk > 0,n> 0,5 > 0}
in the forms
o0 o0 o0
fosé)= ag,o + Z Z Z aﬁlﬂfkn" exp(—n7), (6.27)
k=0 j=0n=1
g(n,€) = Z Z Z k E5n exp(—nn), (6.28)
k=0 j=0n=1
0(n,6) =) ZZ ¢ w51 exp(—nn), (6.29)
k=0 j=0 n=1
o0 o0 o0
o) =3 > > djnt"r exp(-mn), (6.30)
k=0 3=0 n=1
in which a,J b f;?'.", cj".” and dff‘n are the coefficients. By rule of solution expressions and the
boundary conditions (6.15), we can choose the initial guesses fo, go, #o and ¢, of f(€,71), (&, ),
0(&,m) and ¢(€,7) as follows:
fo(&,m) =1 —exp(-n), (6.31)
90(&,m) = Noexp(-1), (6.32)
0o(&:m) = exp(—n), (6.33)
7 ¢o(&sm) = exp(—n). (6.34)
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The auxiliary linear operators are defined by the following equations

g= %}f - % (6.35)
Ly = %% -9 (6.36)
Ly= f—qﬂ —0, (6.37)
L=t~ (6.38)
which satisfy
Ly [C1 + Caexp(n) + Caexp(—n)] = 0, (6.39)
Ly [Caexp(n) + Cs exp(—n)] = 0, (6.40)
Ly [Cs exp(n) + C7 exp(—n)] = 0, (6.41)
L [Cs exp(n) + Cy exp(—n)] = 0, (6.42)

where Cj(i = 1 — 9) are the arbitrary constants.
If p € [0, 1] denotes the embedding parameter and Ry, hg, hg and Ry the non-zero auxiliary

parameters then we construct the zeroth order deformation equations

(1 =)L 1F(€ mp) — fo(&.m)) = phyNG [F(6,mi)] (6.43)

(1= P)Lq[a(&,m:p) — 90(&m)] = PhgNG [F(&,mip), 3(€,mip)] (6.44)
(1=p) Lo [B(€.m5) — b0 (€,1)] = phoNo [£(€,mp),8 €,mim)] (6.45)
(L=P) Lo [3(6.7m57) — 90 (&:m)] = PheN; [£(€,m9),8 €, mip)] (6.46)

111



subjected to the following boundary conditions

: g 9*f(n;€)
f(’“f)l,Fu = 0, §(1:8),=0=—No 01:’2 L
- —— _ofmo)|  _
e _, = 8| =5, e
of (n; ; ;
9058 = 0. fg;:;ﬂ\ —imo|_=dme| =0 @)
=00

in which we define the non-linear operators Ny, Ny, Ny and N as

Ny [F(€mip),a€ mim)| = 1+ K) ZEG 4 (1 - ¢) (324520 — 2

*f(&mp) _ [9f(&nmp)

2
" f (& mip) o2 . ( an ) LKy, (6.48)
_jw2 af(El UB P)

an

N [FEmp)a(emp)] = (1+ 5r) Lo 4 (1 —g) (20852 — e 25mn) 4 Lo(¢,msp))

3 da(E.,m: _ P
i) ZETE) _ (g ) 2EID)

*f (& m;
—-2Kg(&,mp) — I\’l__%}f_m

+¢ (6.49)

Na (b6, m:0), F(Emip)]| = (1+ Ny 2052 1 pr(1 — ¢) (325n) — ¢ 2iGpm) )
+Pref(e,mp) 2gm), (6.50)

N [3(6,mip). fi&,mim)] = L5 + Se(1 — &) (§265me) — 22Xl
+ScE f(E,m;0) 2252) — 4 Sced(€,mip). (6.51)
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Obviously when p = () and p = 1 then

-

FEm:0)= fol€m),  f(&m1) = f(&n),

g(&,m0) =go(&m),  9(€.m1) =g(&.n),
B(E,m;0) =0o(&,m),  B(E,m1) = 0(E,m),
H(E,m0) = go(€,m),  B(E,m1) = d(E,m),

In view of Taylor series with respect to p we have

F&mp) = fol&,m) + ) Fm(&m)p™,

m=1

3Emp) = o(&m) + D gm(Emp™,

m=1
-

O(&,mp) = Bo(E,m) + Z O (&, m)p™,

m=1

W& mp) = do(&m) + Y Sm(Em)p™

m=1

1 9"f(&mp)

fm(n) = m! o™ p=0’ gm(m) = ml o™
1 9™0(&,m:p) L ame mp)
9::1(7?) - E!_ 6.”11? p-‘=0, ¢m(n) . ET 67}‘“

1 9"g(§,m:p)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

The auxiliary parameters are so properly chosen that the series (6.56) — (6.59) converge at

p =1, then we have

f(fl ??) = fﬂ(&??) + Z fm(f- 7?),

m=1
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a m— — / .
L) €Se Y. ity 1k = 1Sk, (673)

Ry (1) = by = Se(1 = )G Hnr — &
k=0

0, m<Il,

Xm = {6.74)
1o S L.

@
¥ The general solutions of Eqs (6.65) — (6.68) are

fm(&m) = fr(&n) + C1 + Caexp(n) + Cs exp(—n), (6.75)

gm (&) = gm(&,m) + Ca + Cs exp(n) + Cg exp(—1), (6.76)
g'm (6: Tf) = 9:“(£, 7?) 0 C‘? exp(‘r,:) T CS eXIJ(—'*?): {6'77)
¢'m(£! ﬂ) = ¢’:l'l(€! 7’) + Cg exp(?;) i i Clﬂ exp(_”) (6'78)

in which f) (&,7), g5.(&,n), 0;.(&,7), ¢,(€,1) are the particular solutions of the Eqs. (6.65) —
(6.68). Note that Eqs. (6.65) — (6.68) can be solved by Mathematica one after the other in the

orderm=1,23,...

6.3 Convergence of the homotopy solutions

Obviously the series solutions (6.61)— (6.64) depend upon the non-zero auxiliary parameters fis,
lig, hip and hy, which can adjust and control the convergence of the HAM solutions. For suitable
values of hiy, fig, g and hy, the fi—curves of the functions f”(¢,0), ¢'(€,0), #(¢,0),and ¢/(€,0)
are plotted for 10th-order of approximations. It is noticed from Fig. 6.1 that the range for the
admissible values of hiy, hy, fig and hy are 0.8 < iy < 0.3, 0.9 < fip < —0.2, and 0.8 < kg,
hy < —0.3. Furthermore, it is noticed that the series given by (6.61) — (6.64) converge in the

L4
-
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whole region of 7 for fiy = iy, = —0.7 = hy = hy.
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Fig. 6. 1. shows hi—curves for velocity and concentration when £ = 0.5.

6.4 Results and discussion

Here we analyze the variations of material parameter K, Hartman number M, Prandtl number
Pr, radiation parameter Ng, Schmidt number Sc¢ and chemical reaction parameter 4 on the
velocity components, concentration field and skin friction coefficient. Figs. 6.2—6.16 have been
sketched for this purpose. Figs. 6.2 — 6.7 display the effects of dimensionless time 7, material
parameter K; and Hartman number M on the velocity component f’(n,€) and skin-friction
coefficient £!/2 Rel/? C'yy. The variation of dimensionless time 7 on the velocity component
J'(n,€) is shown in Fig. 6.2. Clearly, the velocity component f/(1,£) increases by increasing 7.
Fig. 6.3 gives the variations of M on the velocity component f’(7,&). The velocity component
f'(n,€) is a decreasing function of M. Figs. 6.4 and 6.5 represent the velocity profiles for various

values of K| when Ny = 0.5 and Ny = 0.0 respectively. It is seen that results here are similar in

both cases but change in Fig. 6.4 is slightly smaller when compared with Fig. 6.5. The effects

of K; and M on the skin-friction coefficient ¢1/2 Rei; A Cf, are shown in the Figs. 6.6 and 6.7.
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It is observed that the magnitude of skin friction coefficient £'/2 Rey/? C'y, increases when K
and M are increased. Figs. 6.8 — 6.11 are plotted for the microrotation profile g(7,€). From
Figs. 6.10 and 6.11, one can observed that the microrotation profile for Ny = 0 is different than
No =0.5.

Figs. 6.12—6.14. are prepared for the effects of Prandtl number Pr, radiation parameter Np
and dimensionless time 7 on the temperature field #(7,£). The variation of Pr on temperature
field is sketched in Fig. 6.12. It is found that @ is a decreasing function of Pr. Fig. 13 gives
the effects of radiation parameter Np on the temperature field. It has opposite results when
compared with Fig. 6.12. Fig. 6.14 elucidates the influence of 7 on #(7,£). It is noticed that
temperature field (7, £) is an increasing function of 7 and the concentration boundary layer
thickness also increases for large values of 7. Figs. 6.15 — 6.18 are prepared for the effects
of dimensionless time 7, the Schmidt number Sc¢ and the chemical reaction parameter v on
the concentration field ¢(,£) and the surface mass transfer ¢'/2 Rey 172 Cy:Sh. Fig. 6.15
shows the influence of 7 on the concentration field ¢(7,€) in the case of destructive chemical
reaction v > 0. It is noted that concentration field ¢(n, &) is an increasing function of 7 and
the concentration boundary layer thickness also increases for large values of 7. The variation
of Sec on the concentration field is sketched in Fig. 6.16. It is observed that ¢ is a decreasing
function of Se. Fig. 6.17 gives the effects of destructive chemical reaction (v > 0) on the
concentration field. It is seen that results here are similar to 4 < 0 but change in Fig. 6.17 is
slightly smaller when compared with Fig. 6.16. Fig. 6.18 illustrates the variation of generative
chemical reaction (v < 0). It has opposite results when compared with Fig. 6.17.

Tables 6.1 — 6.4 give the steady-state results (£ = 1) for the surface shear stress, surface
heat transfer and surface mass transfer for different values of the emerging parameters. Table
6.1 includes the values of skin friction coefficient Cp, i’( 2. This table indicates that HAM
solution has a good agreement with the numerical solution [66]. From Table 6.2 it is noticed

that the magnitude of skin friction coefficient increases for large values of M and K. It is also
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observed from the comparison of these tables that the magnitude of skin friction coefficient
Crz Rei‘{ 2is larger in case of magnetohydrodynamic flow. Table 6.3 depicts the variation of
heat transfer characteristic at the wall —@'(0) for different values of Ng, Pr, K and M. The
magnitude of —#'(0) increases for larger values of K. Table 4 is prepared for the variation of
Ky, M, Se and « on surface mass transfer. It is apparent from this table that the magnitude
of —¢/(0) increases for large values of K and decreases for large values of M. The magnitude

of —¢/(0) increases when Se¢ and « are increased.

6.5 Closing remarks

A mathematical model for the unsteady flow of a micropolar fluid with heat and mass transfer
is presented. Computations for the nonlinear problems are made. The main results can be

summarized as follows:

The increasing values of M leads to a decrease in the boundary layer thickness.

The fluid veloecity increases as the microgyration parameter Ny increases.

Microrotation profile has a parabolic distribution for Ng = 0.

The temperature @ decreases when Pr increases,

The variation of Pr on temperature is opposite to that of Ng.

The influence of destructive chemical reaction parameter is to decrease the concentration

field.

The concentration field ¢ has opposite results for destructive (y > 0) and generative

(v < 0) chemical reactions.

The effects of Sc and destructive chemical reaction parameter (v > 0) on the concentration

field are opposite.
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Fig. 6.2. Influence of 7 on velocity profile f'.
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Fig. 6.3. Influence of M on velocity profile f’.
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Fig. 6.4. Influence of Ky on velocity profile f when Ny = 0.5
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Fig. 6.5. Influence of K on velocity profile f* when Ny = 0.0
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Fig. 6.8. Influence of M on ¢/? Rel/? Cf.
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Fig. 6.8. Influence of 7 on microrotation profile ¢ when Ny = 0.5.
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Fig. 6.9. Influence of 7 on microrotation profile ¢ when Ny = 0.0
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Fig. 6.10. Influence of K on microrotation profile g when Np = 0.5.
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Fig. 6.11. Influence of K; and Ny on microrotation profile g.
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Fig. 6.12. Influence of Pr on temperature profile #.
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Fig. 6.13. Influence of Ny on temperature profile #,
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Fig. 6.14. Influence of 7 on temperature profile 4.
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Fig. 6.15. Influence of T on concentration profile ¢.




Ki=10,M=10 Nn=05y=05

Sc= 001
Sc=05
Sc=10
Sc=15

ané)

Fig. 6.16. Influence of Se on concentration profile ¢.
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Fig. 6.17. Influence of 4 > 0 on concentration profile ¢.
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Fig. 6.18. Influence of 4 < 0 on concentration profile ¢.

K1\ No 0.0 0.5
[66] ~1.0000 ~1.0000
0.0
HAM | —1.000000 | —1.000000
[66] ~1.3679 —1.2247
1.0
HAM | —1.367872 | —1.224741
[66] ~1.6213 ~1.4142
2.0
HAM | -1.621225 | —1.414218
[66] ~2.0042 ~1.7321
4.0
HAM | —2.004133 | —1.732052
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Ng when M =0 and &€ = 1.

Table 6.2. Values of skin friction coefficient C'y, Re};ﬁ for various values of K; and M when

E=1.

Table 6.1: Comparison of the values of skin friction coefficient C'y, Rel/? for values of K 1 and

Mg | Rel® | CppRe
No=00 | No=05
0.0 | 1.0 | —1.367872 | —1.224754
0.5 ~1.530501 | —1.363638
1.0 ~1.942227 | —1.706493
15 ~2.487393 | —2.147621
0.5 00| —1.118038 | —1.118032
10 | —1.530501 | —1.363638
2.0 | —1.815277 | —1.574471
40| —2.245602 | —1.929364

Neg| K |Pr| M Present
1.0 | 1.0 | 1.0 | 0.0 | 0.3893 | 0.389321
2.0 0.4115 | 0.411524
2.0 1 0.0 0.2588 | 0.259632
1.0 0.2895 | 0.289547
2.0 0.3099 | 0.309981
0.5 | 10107100 0.371412
0.5 0.353991

1.0 0.321648
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Table 6.3. Values of —8'(0) for some values of Ng, K and Pr when Ny = 0.5 and € = 1.

Se v K, M =¢'(0)

0.5 1.0 1.0 0.5 0820814

~ 0.7 0.979971
L
1.2 1.299943
2.0 1.696172

0.5 1.0 1.0 0.5 0.820813
2.0 1.088922
3.0 1.301085

0.7 1.0 1.0 0.5 0.979971
2.0 0.784003
4.0 0.797627

0.7 1.0 1.0 0.0 0.781761
0.5 0.773298

————
—

1.0 0.754651

1.5 0.734822

Table 6.4. Values of —¢'(0) for some values of Ky, M, Sc and v when Ny = 0.5 and £ = 1.
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Chapter 7

Mixed convection flow of a
micropolar fluid in the presence of

radiation and chemical reaction

This chapter discloses the effects of heat and mass transfer on the mixed convection flow of a
magnetohydrodynamic (MHD) micropolar Huid bounded by a stretching surface. Homotopy
analysis procedure is adopted for computations of a set of coupled nonlinear ordinary differential
equations. Numerical values of skin friction coeflicient and Nusselt and Sherwood numbers are

worked out. A comparative study is provided with the limiting available numerical solution.

7.1 Mathematical formulation

We consider the steady mixed convection boundary layer flow of a micropolar fluid over a
stretching surface. The fluid is electrically conducting in the presence of a constant applied
magnetic field Bg. The induced magnetic field is neglected under small magnetic Reynolds

number assumption. The effects of electric field are absent. We further assume that the surface

130



7

—
R

has temperature T}, the concentration Cy,, and fluid has uniform ambient temperature Tl and

uniform ambient concentration Cw, (Here T, > T', and C,, > C). The governing equations

can be expressed in the forms:
du v
— 4+ == 7.1
dx * Ay B (7.1)
ou ou k\ O*u KON* o B?
—_— V— = == E—— e " T e T ¥ - = 9 1 T‘2
uge + 05 = (v 5) S5+ 28 4 00T~ Too) +B0(C — ) - T, (72
dN* ON* *82N* =& du
T _ 5 (ope . oM 7.
“or TV oy "5 O pj(” +3) (5
or  orT O*1T g,
o] E e AT 74
pcp[“aa:“ay] ay: oy’ (74)
ac oc o*C ,
Ua -+ Ua—y - Dryz - RC (70)
with the following conditions
du
U = Uy=uaz, v=0, N":—No—é};, T=T C=0Cuy=0,
@« — 0,v—=0, N*=0,T=0,C—=0, as y — oo. (7.6)

In above expressions u and v are the velocity components parallel to the x— and y—axes, re-
spectively, ¢ the dynamic viscosity, p the fluid density, v the kinematic viscosity, o the electrical
conductivity, N* the microrotation or angular velocity, T' the temperature, ¢, the specific heat,
k the thermal conductivity of the fluid, ¢, the radiative heat flux, C' the concentration species
of the fluid, D is the diffusion coefficient of the diffusion species in the fluid, R denotes the
first-order homogeneous constant reaction rate, j = (v/¢) is microinertia, v* = (u + £/2)j and
x are the spin gradient viscosity and vortex viscosity, respectively. Here for £ = 0 we have the
case of viscous fluid. Further the boundary parameter Ny has range 0 < Ny < 1. It should
be noted that when Ny = 0 (called strong concentration) then N* = 0 near the wall. This

represents the concentrated particle flows in which the microelements close to the wall surface
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are unable to rotate. The case Ny = 1/2 corresponds to the vanishing of anti-symmetric part
of the stress tensor and it shows weak concentration of microelements (see [53] for detail).
Employing Rosseland approximation, one can write
40* OT?

=3 By (7.7)

in which o* is the Stefan—Boltzmann constant and k* the mean absorption coefficient.

Using Taylor series and neglecting higher order terms one obtains
T ~ 4T3 T - 3T (7.8)
In view of Egs. (7.4), (7.7) and (7.8) we have

ar _ ar\ _ d [(160°T3 \ T
e (v +v5y) =55 304 By e

Introducing the following quantities

n = (a/v)"Py, u=caf (), v=—()"f (1), N* = (a/)"* azg(n),

ot BT e

equation (7.1) is automatically satisfied and Eqgs. (7.2), (7.3), (7.4), (7.6) and (7.9) become

(L4 EKy) f" + ff" = ()2 = M2f' + Kr g + M0+ N¢) =0, (7.11)
(1 + %) g+ fogr— flg— 2K g — Ky f" =0, (7.12)

(14 Ng)0" +Prfo' =0, (7.13)

¢" + Scfd' —vScp =0, (7.14)
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f0) = 0, f(0)=1, g(0)=—No f'(0), 6(0)=h(0)=1,

J'(00) = g(o0) = 0(c0) = ¢(c0) =0, (7.15)

where prime denotes the derivative with respect to 7. Here micropolar parameter K, Hartman
number M, Prandtl number Pr, radiation parameter N, Schmidt number Se, chemical reaction

parameter v, local buoyancy parameter A and local Grashof number G, are given by

_ K g oB? _v _ 160*T3, _v
Ay = y’M_—__-pa'Pr_a’NR_ ek ,SC—D,
R G  gB(Tw—To)a®/1? Be (Cu — Coo)
S = = A= Re2’ Gy = T2/ . = Br (To—To)’ (7.16)

The skin friction coeflicients C'y,, local Nusselt number Nu and local Sherwood number Sh can

be expressed as

[(u+n)@ +KkN*

dy y=0
G = pus, ’
—(9T/9y)y=o —(0C/dy)y=0

Nap = —p VR, g — AW BASY, 1

i ST ) (Co —Coo) (7.17)

which after invoking Eq. (7.10) take the following forms:
Rel/2Cp, = [1+4 (1-Np) K] f"(0),
NuRe;Y? = —0/'(0), ShRe;'/? = —¢/(0), (7.18)

where Re, = ax?/v is the local Reynolds number.
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7.2 Homotopy analysis solutions

Keeping (7.15) in mind we express f(n), g(n), #(n) and ¢(n) by a set of base functions

{'qk exp(—nn)|k > 0,n > 0} (7.19)
in the forms
o0 o0
fn) =ago+ )Y ah, 0" exp(—ny), (7.20)
n=0 k=0
o0 [+ <]
g(m) =" bk, n* exp(—nn), (7.21)
n=0 k=0
(s ] o0
0n) =D e exp(—nm), (7.22)
n=0 k=0
o0 00
¢5(ﬂ) = Z Z dﬁa.nﬂk exP(_nT’) (723)
n=0 k=0

bfu.u!

in which a*

aind ck . and d:‘;,‘,, are the coefficients. By rule of solution expressions and the

boundary conditions (7.15), the initial guesses fy, gg, O and & of f(17), g(5), 0(n) and ¢(y) are

selected as follows

Jo(n) =1 —exp(—n), (7.24)
go(n) = No exp(—1), (7.25)
fo(n) = exp(—n), (7.26)
do(n) = exp(—n). (7.27)

We select the auxiliary linear operators as
d*f df
Ly= — (7.28)

Tdap dy
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d’g
L, = =
d20
ﬁn — d—?}.!’ - H,
&2
Ly = __Q;a.‘ — ¢
q "
The linear operators in Eqs. (7.29) — (7.32) have the following properties
Ly [C) 4+ Cyexp(n) + Czexp(—n)] =0,
Ly [Caexp(n) + Cs exp(—1)] =0,
Ly [Cs exp(n) + C7exp(—n)] = 0,
Ly [Cs exp(n) + Cy exp(—n)] = 0,
where Cj(i = 1 — 9) are the arbitrary constants.
- The zeroth order deformation problems can be written as
(1= p)Ls[F(m:p) — fo(m)] = phsNy [f (m; P)] '
(1= )Lola(nip) = go(m)] = Py [ Fmip), D)
(1=p) Lo [5' (m;p) — 6o (n)] = pheNp [f(n: P).étn;p)] ;
(1-p) Ly [&(n:p) ) ('r:)] = phoN, [f(n;p),r?:'(n;r))] ,
. o o Rfm)| A _ df(n)
f(n) - 0, 9(??)|r,=o =—No a2 . ) 9(71)|n=0 = ¢(?I)|n=u = 3_'*‘} »
2\ n
e ; . af(n) _2 _ 3 .
il = 0 5| =8| __=dm| =0

=00

(7.29)

(7.30)

(7.31)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)



where p € [0, 1] indicates the embedding parameter and /ig, lig, fip and fiy the nonzero auxiliary

parameters. Moreover the nonlinear operators Ny, N, Np and N, are prescribed below as

Nj [f{n;P)-.&(r;;w)s@(‘u;p).@(n: p)] = (1+ K1)

Pfnp) (af(n;pJ) ’ .
dn

- [f (m:p)

on?

Ny [f (15 2), §(m; ), 0(m; p), D5 p)] =

+

No [f(ﬂ;p},!‘i(n;p),g(fm),E(H;P)} =14+ Np)—55— P

[ (5 2), §(m; p), O(m; p). B )] -

For p =0 and p = 1 we have

By means of Taylors series

F i) 2ZEE) _ f (g, ;) 2200E0)
—2K19(m;p) = 8225:" p)
626(7?;}0) +P?f('f} P) aegi]f’)
PIID) 1 sefm) 2P —sehiaip).

(”v fO(”)) f(’?: ) (”)
am:0) =go(n),  g(m1) = g(n),

B(n; 0) = 6o(n),  B(m; 1) = 6(n),

o(m:0) = do(m),  dlmi1) = ¢(n).

Fp) = fom) + D fm(mp™,

m=1
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M26f(7!§}")

an

|

(1+ %) 2oy

3 dg(n; 2 ¥
a :;;(;M’) + (r” P) e (6(1‘;;1}) + Nﬁf’(?ﬁma‘ﬂ)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)



O

a(mp) = Zj on ()" (7.51)

=1

00 p) = bo(n) + ) _ Om(m)p™, (7.52)
m=]
domp) = do(n) + Y dpuln)p™, (7.53)

m=1

1 9™ f(m;p) _ 1 9mg(n;p)
Jm(n) ml onm p=0| gm("}') =l anm p=0'
_ 1 9™0(n;p) 1 9™¢(n;p)
Om(n) = Ei-—-é?};;—' p=D, Gm(n) = Hwanm - (7.54)

The auxiliary parameters are so properly chosen that series (7.51) — (7.54) converge when p = 1

and thus
£(n) = Jo(n) + “Z_j Fu(n), (7.55)
9(n) = go(n) + :i;: 9m (1), (7.56)
0(n) = Oo(n) + Z Oun(n). (7.57)
é(n) = do(n) + g Gm(1)- (7.58)

The resulting problems at the mth— order deformation are

L [fm () = XonFm-1 ()] = hyRE, (0), (7.59)
‘CQ [gm (n) = Xm.qm—l (7?)] = ﬁyR?ﬂ ("?) ] (7'60)
Lo [0m (1) — XnOm—1 (n)] = haRY, (n) , (7.61)
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Mar®

L [m (1) = XmPm—1 ()] = FgR3, (0) , (7.62)

fm(U) = 0, f:n(u) = (), f:"(OO) =0, Qm(ﬂ) =0, gm(oo} =0, g:"(OO) =),

0n(0) = 0, O(c0) =0, ¢,(0) =0, ¢p(c0) =0 (7.63)
with the following definitions

m—1
'R::a ('-’f) = [1 5 Ifl) f:::—-1+|:z [fkf::n—l—k - .ﬁr :n—l—k] . sz:n—ll +K19:1:-l+’\ (9"1'?—I + N¢m—l) '

k=0
(7.64)
9 1(1 1 == ! =
Rm (ff) =1+ T Im—1+ Z [figl 1=k gkfmwl—k] i (7'60)
k=0
m—1
RE, (1) = (14 Nr)by_y +Pr Y [fibhoyi+ 96001 1] (7.66)
k=0
m—1
RG, (0) = Bpes + 5 Y Fibhor—k — ¥SChpm—1, (7.67)
k=0
0, m<l1,
X = (7.68)
1, m>1.
The general solutions of Eqs (7.60) — (7.63) are given by
Jm(n) = fin(m) + C1 + Caexp(n) + Cz exp(—7), (7.69)
9m(n) = gin(n) + Cs + Cs exp(n) + Cg exp(—1), (7.70)
Om(n) = S:n(’?) + Crexp(n) + Cg exp(—7), (7.711)
b (1) = ¢1.(n) + Cy exp(n) + Cip exp(—n). (7.72)

Here [ (n), gh(n), 05.(n), ¢r.(n) are the particular solutions of the Eqs. (7.60) — (7.63). Note
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that Eqs. (7.60) — (7.63) can be solved by Mathematica one after the other in the order

s i L .

7.3 Convergence of the homotopy solutions

We note that the series solutions (7.56) — (7.59) contain the non-zero auxiliary parameters fiy,
hy, hp and h;. We can adjust and control the convergence of the HAM solutions with the help
of these auxiliary parameters. Hence to compute the range of admissible values of iy, hiy, fig
and hg, we display the i—curves of the functions f”(0), ¢'(0), #'(0) and ¢'(0) for 20th-order
of approximations. Fig. 1 depicts that the range for the reliable values of fiy, fiy, fig and
hy are —0.8 < hy < 0.3, —0.9 < hy < —0.2 and —0.8 < hy, hy < —0.3. The series given
by (7.56) — (7.59) converge in the whole region of # when liy = hy = —0.7 = hy = hy. Fig.
7.1. shows the h—curves for velocity, microrotation, temperature and concentration.Table 1

indicates the convergence of the homotopy solutions for different order of approximations.

K' =1.0M=10N=10 Nyg=051=05 Sc=05y=07 Pr=10Ng=02

Oy, g, 810, ¢10)

-1.25 -1 -075 -0.5 -0.25 0

Fig. 7.1. The fi—curves of f”(0), ¢’(0), #'(0) and ¢'(0) at 20th-order of approximations.
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Order of convergence | —f”(0) | —g’(0) | —6'(0) | —¢'(0)
1 0.82500 | 0.32500 | 0.69666 | 0.83083
5 0.80405 | 0.32671 | 0.55507 | 0.72949
10 0.80344 | 0.32639 | 0.55285 | 0.72666
15 g 0.80357 | 0.32642 | 0.556342 | 0.72662
- 20 0.80357 | 0.32642 | 0.55343 | 0.72662
25 0.80357 | 0.32642 | 0.55342 | 0.72662
30 0.80357 | 0.32642 | 0.55342 | 0.72662
35 0.80357 | 0.32642 | 0.55342 | 0.72662

Table 7.1: Numerical values for the convergence of f”(0), ¢’(0), '(0) and ¢'(0).

7.4 Results and discussion

The purpose of this section is to analyze the graphical results for the effects of Hartman number
M, material parameter K, local buoyancy parameter A, the buoyancy ratio N, Prandt]l number
Pr, radiation parameter Np, Schmidt number Se and chemical reaction parameter v on the
velocity, temperature and concentration fields. Hence the Figs. 7.2 — 7.22 have been displayed.
Figs. 7.2 — 7.7 are presented to show the effects of A, N, K;, M, Pr and Sc on f’. Fig. 7.2
shows the effect of A on the velocity f’. It is observed from this Fig. that the boundary layer
thickness increases by increasing A. It is found that f’ also increases when N increases (Fig.
7.3). Fig. 7.4 represent the velocity profiles for various values of K; when Ny = 0.5. Here the
qualitative effects of K are found similar to that of A and N of f’. Fig. 7.5 gives the variations
of M on velocity component f’. The velocity component f’ is a decreasing function of M. This
is in view of the fact that an increase of M signifies the increase of Lorentz force, therefore
decreasing the magnitude of the velocity. Figs. 7.6 and 7.7 describe the effects of Pr and Sc on

/', respectively. Both Pr and Sc decrease the velocity profile. Infact an increase in the Prandtl
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number leads to an increase in fluid viscosity which causes the decrease in the flow velocity.

Figs. 7.8 — 7.11 are prepared for the effects of M and K, on the microrotation profile g(7).
Fig. 7.8 is drawn when Ny = 0.0. From Fig. 7.8, we have seen that it increases initially but
at n = 2 it starts decreasing. Fig. 7.9 is drawn for Ny = 0.5. We see that g increases by
increasing the Hartman number. From Figs. 7.10 — 7.11, it is clear that the microrotation
profile for Ny = 0.0 and that Ny = 0.5 are different. Figs. 7.12 — 7.16 are plotted for the effects
of buoyancy ratio N, local buoyancy parameter A, Prandtl number Pr, radiation parameter Ng
and Hartman number M on the temperature profile #(7). The qualitative effects of N and A on
the temperature is similar ( Figs. 7.12 and 7.13). The variation of Pr on the temperature field
is sketched in Fig. 7.14. As expected, it is found that @ is decreasing when Pr is increased. Fig.
7.15 gives the effects of radiation parameter Ny on the temperature field. It has opposite result
when compared with Fig. 7.14. The temperature profile increases by increasing the Hartman
number M (Fig. 16). The increasing frictional drag due to the Lorentz force is responsible for
an increment in the thermal boundary layer thickness. Figs. 7.17—7.22 display the effects of M,
N, A, v and Se¢ on the concentration profiles. Fig. 7.17 displays the effect of Hartman number
M on the concentration profile ¢. It is observed that concentration boundary layer increases
by increasing M. The behaviors of N and )\ on concentration profile are seen in the Figs. 7.18
and 7.19. Both N and A decrease the concentration profile. Fig. 7.20 illustrates the effects
of destructive chemical reaction parameter (y > 0). It is obvious that the fluid concentration
decreases with an increase in the destructive chemical reaction parameter. Fig. 7.21 shows the
influence of generative chemical reaction parameter (y < 0) on the concentration profile ¢. This
Fig. illustrates that concentration field has opposite behavior for (v < 0) when compared with
the case of chemical reaction parameter (v > 0).

Tables 7.2 — 7.5 are given for the numerical values of the skin friction coefficients, Nusselt
number and Sherwood number for the different values of involved parameters of interest. From

Table 7.2 it is noticed that the magnitude of skin friction coefficient decreases for large value
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of N and A. From Table 7.3 it is found that the magnitude of —#'(0) increases for large values
of I{;. This Table indicates that HAM solution has a good agreement with limiting numerical
solution [53]. Table 7.4 is prepared for the variations of N, A, K, M, Sc and 7 on the surface
mass transfer. It is obvious from this Table that the magnitude of —¢'(0) increases for large
values of K} and decreases for large values of M. The magnitude of —¢’(0) increases when Sc

and < are increased.

7.5 Conclusions

Heat and mass transfer analysis in the presence of thermal radiation is analyzed for the steady
mixed convection flow of an incompressible micropolar fluid. The behavior of the embedded

parameters in the derived series solutions are examined. The main observations are

Velocity [ is an increasing function of N and A.

Microrotation profile for Ny = 0 has a parabolic distribution.

The temperature & is a decreasing function of Pr.

Behaviors of Ni and Pr on the temperature are opposite.

Concentration field decreases when Se increases.

¢ There are opposite results for destructive (7 > 0) and generative (v < 0) chemical reac-

tions on the concentration field ¢.
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Ki=10 M=05,Pr=07 N=1 Sc=05 Ng=02 Ng=05

A=00
A=05
A=10
A= 15

')

5 6

Fig. 7.2. Influence of A on velocity profile f’.

Ki=10 Sc=051=05=M,y=10,Pr=07 Ng=02 Ny=05

N=00
N=05
N=10
N=15

f'op

Fig. 7.3. Influence of N on velocity profile f’.
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N=108=05A=05=M,y=10 Pr=07,Ng=02, No= 0.5

Ki=00
Ki= 1.0
Ky=20
Ki=30

f'an

Fig. 7.4. Influence of K on velocity profile f’.

Ki=10, M=05,Pr=07 N=1, Sc= 0.5 Ng= 02, Np= 0.5

f'tm)

Fig. 7.5. Influence of M on velocity profile f.
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Ki=10,1=05=M,y=10=N, Sc=0.5, Ng= 0.2, No= 0.5

O
'

Fig. 7.6. Influence of Pr on velocity profile f'.

Ki=1.0,1=05=M,y=10=N, Pr=0.7, Ng= 0.2, Np= 0.5

Sc=01 |
Sc=06
Sc=12

Sc=20

f'im)

Fig. 7.7. Influence of Sc on velocity profile f'.




Ki=10,8=0521=05y=10Pr=07 Ng=02 Np=00

0.06 M=00
M=05
0.05 M= 10
M=15
0.04 B
N e
A ® 003
0.02
0.01
0
0 2 4 8 10
n
Fig. 7.8. Influence of M on microrotation profile ¢ when Ny = 0.0.
Ki=10,8Sc=05A1=05y=10Pr=07 Ng=02 Ny=00
05 - o
M=o00
| M=05
s M= 10
M= 15
v 03
=
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0.2
0.1
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2 4 6 8
n
Fig. 7.9. Influence of M on microrotation profile g when Ny = 0.5.
3
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N=10 Sc=051=05=M,y=10,Pr=07, Ng=02, Np= 0.5

0.15
0.125
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% 0.075
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Fig. 7.10. Influence of K on microrotation profile g when Ny = 0.0.

an

N=10,Sc=051=05=M,y=10,Pr=07, Ng=02 Np=05

Ki=00
Ki=05
Ki= 1.0
Ky=15

Fig. 7.11. Influence of K on microrotation profile g when Ny = 0.5.
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Ky=10 Sc=051=05=M,y=10,Pr=07 Ng=02, Ny =05

1
, N=000
08 : N=500
% N=100
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Fig. 7.12. Influence of N on temperature profile 6.

Ki=10 M=05 ,Pr=07, N=1 Sc= 0.5 Ng=02 No= 05

1
| — a=00
08 A=10
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&
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0.2
0

Fig. 7.13. Influence of A on temperature profile 6.
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Fig. 7.14. Influence of Pr on temperature profile 6.

Ky=10,8=051=05=M,y=10,Pr=07, N=10,Ny=05

1
— Mg =00
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Fig. 7.15. Influence of Ng on temperature profile 6.
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Ki=10, M=05,Pr=07 N=1,Sc=05 Ng=02 Nyg=05
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1
M=00
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Fig. 7.16. Influence of M on temperature profile 6.
Ki=10, M=05,Pr=07,N=1,Sc=05 Ng=02 Nyg=0.5
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Fig. 7.17. Influence of M on temperature profile ¢
.\3‘
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Ki=10 8=051=05=M,y=10, Pr=07 Ng=02 No=0.5

1

— N-=000
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: N=100
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&
04
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Fig. 7.18. Influence of N on concentration profile ¢.

Ki=10, M=05 ,Pr=07 N=1 Sc= 05, Ng= 02, Np= 0.5

e

Fig. 7.19. Influence of A on concentration profile ¢.
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Ki=10,A=05=M,N=10, Sc=05 Ng=02 Np=05

1

- ‘y= 0.0

0.8 y= 1.0
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04
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Fig. 7.20. Influence of v > () on concentration profile ¢.
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Fig. 7.21. Influence of v < 0 on concentration profile ¢.
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Ki=10A=05=M,y=10=N,Pr=07, Nr=0.2, No= 05
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1
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Fig. 7.22. Influence of Se on concentration profile ¢.

- Cr.Rex’* | CpzRel?
No=00 | No=05

0.0[05]07] -1.61091 | —1.40874
1.0 ~1.36232 | —1.19014
2.0 ~1.11835 | —0.97610
3.0 —0.87861 | —0.97611
1.0 (00| 10| —1.94222 | —1.70649
0.2 ~1.70191 | —1.49091
0.5 ~1.36232 | —1.19015

1.0 —0.83192 | —0.72411
100500 —092807 | —0.92897
05| —1.16966 | —1.06471

10| —1.36231 | —1.19019

15| —1.52876 | —1.30789

153



Table 7.2: Values of skin friction coefficient Cp, Re_l./')' for various values of N, A, K} and M

when Pr=0.7, Se=05and y=1= M.

®) Np| Ky | Pr| M| [53] | Present
1.0 [ 1.0 | 1.0 [ 0.0 | 0.3893 | 0.389321

2.0 0.4115 | 0.411524

2.0 | 0.0 0.2588 | 0.259632

1.0 0.2895 | 0.289547

2.0 0.3099 | 0.309981

05100700 — [0.371412

05| - |0.353991

L0 — |0.321648

Table 7.3: Comparison of values of —¢'(0) for some values of Ng, K; and Pr when Ny = 0.5
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I,

0.5

1.0

1.0

0.5 0.0

0.0

0.820814

1.2

1.299943

2.0

1.696172

0.5

1.0

1.0

0.820813

2.0

1.088922

3.0

1.301085

0.7

1.0

1.0

0.5

0.979971

2.0

0.784003

4.0

0.797627

0.7

1.0

1.0

0.0

0.781761

0.5

0.773298

1.5

0.734822

1.0

1.0

1.0 | 1.0

0.5

0.827542

2.0

0.833643

3.0

0.839325

1.0

0.0

0.809882

1.0

0.841481

2.0

0.864091

Table 7.4: Values of —¢'(0) for some values of K;, M, Sc and v when Ny = 0.5.
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Chapter 8

MHD steady flow and mass transfer
of Jeffrey fluid over a non-linear

stretching surface with mass transfer

The aim of this chapter is to investigate the MHD boundary layer flow of a Jeffrey fluid in-
duced by a non-linearly stretching sheet with mass transfer. The relevant system of partial
differential equations has been reduced into ordinary differential equations by employing the
similarity transformation. Series solutions of velocity and concentration fields are developed by
using homotopy analysis method (HAM). Effects of the various parameters such as Hartman
number, Schmidt number and chemical reaction parameter on velocity and concentration fields
are discussed by displaying graphs. Numerical values of the mass transfer coefficient are also

tabulated and analyzed.



9

8.1 Mathematical formulation

We consider the steady, incompressible and MHD flow of a two-dimensional Jeffrey fluid over
a non-linear stretching sheet. We choose z—axis parallel and y—axis normal to the stretching
surface. A uniform magnetic field exerted in the y—direction. For small magnetic Reynolds
number the induced magnetic field is neglected. We also considered the presence of first-order

chemical reaction. For the present problem, the equations governing the flow are given below

3{;

du  Ou ,0%u 2631; 9*u
ugm-‘i*‘l}'é"y'*l‘)\][ 32+ ay2+2 'Uamay
P [P P o )] eB
"oy T Yaca® T Yoyt T a0 By oy? p ‘
2
u@+va—C=D8—C—RC. (8.3)

gz 9y Oy

In the above equations, u and v are components of the velocity along  and ydirections re-
spectively, v is kinematic viscosity, p is the fluid density, o is the electrical conductivity, Ay is
relaxation time, Ay is retardation time. C' is the species concentration in the fluid, D is the
mass diffusion coefficient and R is the first order chemical reaction parameter.

The appropriate boundary conditions are

u(@,y) = az+ba’, v(z,y) =0,C(e,y) =Cuw aty=0,

u — 0, C—0 as y— o0, (8.4)

where a and b are the dimensional constants.
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In order to make the problem simpler, we introduce the following quantities

n = \/!E)y, u = azf'(n) + ba*qd (n),
v o= —\/Ef(u)—%m\/gg(??),

® C = @Gy {Co(q)+%‘301(n)}. (8.5)

where prime denotes the derivative with respect to 7. We note that Eq. (8.1) is satisfied

identically and Eqs. (8.2) — (8.4) are transformed as follows:

fm . szr . f:2 + ffﬂ' + {31 (2ffl'fﬂ' - fzfm) A 62 (fnz _ fffm) - 0’ (8.6)

4ff'g” + 2fgffﬂ' _ fzgm
—4fgf" +4f'f"g - 2f*¢

gﬂ'.r__ﬂ{291_3f!g!+2fﬂ'g+glrf+ﬁl

f." gm e g.f fm " f gmf
_2gfﬂb" = th‘g.ﬂ

Gl + Scf G — SevCo =0, (8.5)
Cll + SefCl — Sef'Ch — SeyCh + SegClh =0, (8.9)
f(O) = 0, f’(O) =1, f’(OO) =0,

9(0) = 0, ¢'(0)=1, ¢'(e0) =0,
Co(0) = 1, Co(o0) =0,

Ci1(0) = 0, Ci(o0) =0, (8.10)

in which the chemical reaction parameter «y, the Schmidt number Se, the Hartman number M
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and the Deborah numbers 3, 3, are

2
e E g = % M? = ﬂ—f% B = Ma, By = Ma. (8.11)
[

a

Here v > 0 indicates the destructive chemical reaction and v < 0 for generative chemical
reaction. For v = () we have the case for a non - reactive species. The expressions of the mass

transfer Cj and C] at the wall are

Ch(0) = (%%’) <060 = (Ef”g’l) <o (8.12)
= =

8.2 Homotopy analysis solutions

For the series solutions, we express f(7), g(1) and concentration fields Cy (1) and Cy () by the

set of base functions

{nk exp(—nn)/ k= 0,n = O} (8.13)
in the patterns
o0 o0
f(n) = a-g'u — Z Z ai‘;,.nnk exp(—nn), (8.14)
n=0 k=0
oo o0
9(m) =bo+ > > b, 1" exp(—nn), (8.15)
n=0 k=0
(> 0] oo
Co(m) =YY di 0" exp(—nn), (8.16)
n=0 k=0
(s} o0
CI (qJ = Z Z e:r!.rl”k exP(—ml), (817)
n=(0 k=0
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in which a* _ b5  d¥ and eﬁm are the coefficients. The initial guesses fo(%), g0(1), Co,0(7)

mmn “mmn “mn

and Cyo(n) of f(n), g(n), Co(n) and C(n) are

Jo(n) =1 —exp(-n) ,

go(n) = 1 —exp(-n) ,

Co0(n) = exp(-n) ,

Ci0(n) = nexp(-n)

with the following auxiliary linear operators

df df
Li(f) = =
_d% dg
La(g) = o
d*C,
L3(Cy) = dn?D — Co,
d*C,
L4(Ch) = - i Ci

and

Ly [er + c2exp(n) + cgexp(—n)] =0,
La[cq + c5 exp(n) + cg exp(—n)] =0,
Ls[cz exp(n) + cg exp(—n)] =0,

La[cg exp(n) + c10 exp(—n)] =0,
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where ¢;(i = 1 — 10) are the arbitrary constants. If p € [0,1] is an embedding parameter and
A, hy, hey and he, indicate the non-zero auxiliary parameters respectively then the zeroth order

deformation problems are constructed as follows.

(1= P)Ealf(,p) — Folm)] = phigN; [F(n,)] (8:30)
(1= p)a[a(n,7) — go(m)] = phgN; [£(1,), 5(n.P)] (8:31)
(1=p) £2 [Co (1,7) = Coo ()] = PheuNe, [Com,p) . F (0.9)] (8:32)

(1-p) L2 [51 (n.p) — Crp (n)] = phe,Ne, [50 (n,2),C1 (n,p), F (0,p),G (n,p)] ,  (8.33)

x af (n; af (n;
f(n;p)| _0=0.-—ch:’——?—) =1’_f§1__g) =10 (8.34)
e =0 L 7)=00
" Ag(n; Ag(n;
307 2)ly=0 = 0, % =1, % =0. (8.35)
7= n=00
9Co(n;p) Co(mp)|  _
= L =5, =0. (8.36)
-_0 -
n =00
aC\ (m;p) aCi(mp)| .
on |, 0, =5, | 0. (8.37)

in which the non-linear differential operators Ny, Ny, Ng, and N, are

5 3 Flo. s . - g
Nilftmp)l = ﬂa(—;f;—@ - w%’;?’) + f(n;p)azg;‘p) B (Bfg:;p))

" f s 270, X .
2f.\\2 -
+B, [(%ﬁzp)) = fim; p)aq—*-—g;i'p)] (8.38)
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i ) 35(m: L da(m: L Aa(n;p) Of (n:
Ny[f(ffip):g(fhp)] = __%_(;;la—m - M ggig " =& gg):;” ff?:; <

& (n;p) L Pglmp)
o T f (’J-P)—&P—“—

af (:p) P*a(m; p) A p) P s p)
on an? +2/(m;p) an on?

+29(n,p)

( Af(m;p)

1 — P pﬁi—“;—;‘—”l —4f(m; p)g(n,p)%

O ip) #f(wip) ., [9f(nip) * 94(nip)
+4 an o 9(n.p) 2( an ) o
af (m;p) Pg(mip)  dg(m;p) PF(msp) o )3"5(11;13)

an a3 on an’ he o

+l32

(’ff P, 332f (m;p) 8*§(m; p)
an2 87?2

—2g(n,p)

9%Cy (1,p)

Neo [C‘o (mp)+ f (n, p)] =—7 T Sef (n,p) 9Co (m,p) (;“ P)

Ne, [C’a mp).Cr (0.p), F (n,0) .3 (0,p)| = %‘;[:m SevC)

_‘_’%—E}‘Cl ’?1

+8c | +5(n,p) Xl 80"

+ ( np)w

Obviously for p = 0 and p = 1, we have
F(;0) = fo(m), f(m 1) = f(m),

9(n,0) = go(n), d(n,1) = g(n),
()=

Co(1,0) =Coo(m), Co(m1)=Co(n),
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Cy (9,0)=Cio(n), Ci(n,1)=Ci(n) (8.45)

Expanding f(n:p), (1, p).Co (1, p) and Ci (1,p) in Taylor series with respect to embedding

parameter p, we obtain

Forp) = fom) + D Fulm)p™, (8.46)
m=l1
9(n,2) = go(n) + >, g (m)p™, (8.47)
m=1
o 0o
Co (n,p) = Coo () + Y Com ()™, (8.48)
m=1
= 00
Ci(n,p) =Cro(m)+ Y, Crym () p™, (8.49)
m=1
= 2 00 n:p) = 1 9up)
fm("?) o ml! anm o 1 gm(’?) = ml anm et b (8‘50)
1 8Co(n, 1 9mC (n,
Cl},*m (73) v mau—?(r?m 1 Cl,m. (7]) — E_a;fg‘ﬂ ' (851)
p=0 p=0

in which the series convergence in Eqgs. (8.47) — (8.50) is dependent upon fiy, fig, hc, and fic: .
The values of fiy, hy, hic, and hic;, are chosen in such a way that the series (8.47) — (8.50) are

convergent at p = 1 and hence

fn) = fo(n) + ,i, fn(n) (8.52)
9(n) = go(n) + g gm(1), (8.53)
Co(n) = Coo (n) + 2 Con (1), (8.54)
Ci () =Cyo(n)+ f;:l Crm (1) - (8.55)
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The problems corresponding to the m!" — order deformation are

‘Cl [fm (f” = Xm.fm—l (7“] = hf’Rf.m (TI) ' (856)
£2 [ym.(ﬂ) = Xmgm—l(n)] = hy'R‘g.m(?!)s (857)
'C'3 [cﬁ.m (7’) - XmCO.m-l (")] == h(ToRC'o_.,. ('?) ' (858)
Ly [Gl,m (71) - chl.m—l (7?)] ==, ﬁC’;RC’Lm (7?) ' (8'59)
fn(0) =0, £3,(0) = 0, fy,(00) =0, (8.60)
gm(0) = 0,7, (0) = 0, gy, (c0) = 0, (8.61)
Cﬂ,m (0) — C{},m (00) = 0| (8.62)
Cl Jm (0) Cl rn ) = 0. (863)
m—1 mi—1
Ry (n) = fot_y = M2fo i+ Y [fmet—fft — Py s Fi) + By Z Frn—1-k Zm,k e
k=0 k= =0
m=—1
+B2 ), Fnrkfh = Fn-1-kfi"
il (8.64)
m—1
‘R'y‘m ('”) = g:::—- "wzy:n-l + Z [_3f:u—l—k9;r + 29m-1—kff = fm—l—kgs:]
k=0
m—1 k
Z Jn—1-k Z [4fiio + 25090 = ferg” — A 9]
+8y | —
% Z S Z 4fi o = 2fi91)
=0
m—1 - "__
+ﬁ2 z m-—l kglk g,m-l Lf (865)

k=0 fm- —Lgm = 29‘?71'-1 ’-fmf + 3fm—1 A-.Qg
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m—1

Rgm () = [’)’,m—l - S"—*"fcﬁ.m—l + Sec Z C:).m—l-—k.fkt (866)
k=0

m—1

Rcl'm (”) = C";I:m—] _SC'Ych Jn—1 +SC Z (”(’rl!m—l—‘-‘f;’; + Ci,m—l—i.-fk = 2 (“(!]'m—-]—kgk) * (867)
k=0

U 0, m<l1,
x"fl — (8-68)
1, m>1.

8.3 Convergence of homotopy solutions

The convergence of series solutions are dependent upon the values of auxiliary parameters iy,
hig, hc, and hcy,. In order to determine the range of the admissible values of fiy, fig, fic, and
he, for the functions f”(0), ¢”(0), C4(0) and C{(0), the fi—curves are plotted for 15" —order
of approximation in Figs.8.1(a,b). It is clear that admissible values of ks , fiy , i, and g, are
—-1< hy £-03,-0.7 < hiy < 0.2, -1.5 < lig, < —0.5, and —1.8 < hig;, < —0.5. Furthermore
the series solutions (8.53) — (8.56) converge in the whole region of 9 when hy = h, = —0.5 and
- hcy, = he, = —1. Table 8.1 shows the convergence of HAM solutions at different order of

approximations,
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-1.2
-1.4

-1.6

0, g"0)

-18

----------------------
- -

-12

-1 -08 -06 -04 -02 0
hf,hg

(b)
ﬁ1=ﬁ2 =O\’:l M= 1.0,3:)’: 10
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N G o= O

{
]
i
[

Figs. 8.1(a,b): The fi—curves of the functions f”(0), ¢”(0),C4(0) and C}(0) at 15" order of

approximation.
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order of approximation | —Jf”(0) | —g”(0) ~Cp(0) —-C1(0)
1 1.212500 | 1.787500 | 1.166667 | 0.250000
5 1.286329 | 1.729082 | 1.1602806 | 0.128032
10 1.286998 | 1.728359 | 1.1600012 | 0.128054
15 1.287000 | 1.728356 | 1.160005 | 0.128064
20 1.287000 | 1.728356 | 1.160005 [ 0.128063
25 1.287000 | 1.728356 | 1.160005 [ 0.128063

Table 8.1: Convergence of HAM solution for different order of approximations when M = 1.0,

£=02,8=1.0and y=0.2

8.4 Results and discussion

In this section, the graphical results are presented for the effects of Deborah numbers 3,, 8,
Hartman number M, Schmidt number Se¢ and the chemical reaction parameter vy on the velocity
and concentration fields. Such effects are discussed by Figs. 8.2 —8.10. Figs. 8.2 — 8.4 show the
effects of #,, B, and M on f’ and ¢'. For different values of Deborah number f,, the velocity
profiles are plotted in Fig. 8.2. It is obvious that velocity distribution across the boundary
layer decreases by increasing values of . Fig. 8.2 shows the variation of Deborah number
By on f" and ¢'. It is found that the velocity components f’ and ¢ decrease as f3; increases.
However such increase is small in f* when compared with ¢’. The boundary layer thickness
decreases when Deborah number /3, is increased. The effects of Deborah number 3, on the
velocity components f* and ¢’ are opposite to 3, (Figs. 8.3a and 8.3b). It can be seen from
Figs. 8.4(a, b) that the effect of Hartman number M is similar to 3; on the velocity components
f' and ¢’. The variations of the emerging parameters on the concentration fields Cy and C; are

plotted in the Figs. 8.5 — 8.10. Figs. 8.5(a,b). are the graphical representations showing the
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effects of the Deborah number 3, on Cpand € in the case of destructive chemical reaction
(v > 0) . The concentration field Cj increases for large values of #; while the magnitude of
C decreases when 3, increases. It should be pointed out that the variation in C| is larger
in comparison to Cp for large values of ;. Figs. 8.6(a,b) are displayed for the variations of
B4 on the concentration fields Cy and Cy in case of destructive chemical reaction (v > 0) . It
can be seen that Figs. 8.6(a,b). have the opposite qualitative effects when compared with Figs
8.5(a,b). Fig. 8.7a shows the effects of M on Cj. It is observed that the concentration field Cj is
increased when A/ increases. The variation of M on C is sketched in Fig. 8.7b. Figs. 8.8 gives
the variations of Schmidt number Se on the concentration fields Cy and Cy for v = 0.2. Both
Cp and C decrease when Se increases. The effects of destructive chemical reaction parameter
(v > 0) on the concentration fields Cy and C; are displayed in Figs. 8.9. It is found from Figs
8.9a that the concentration field Cy is a decreasing function of +. It is also clear from Fig.
8.9b that the magnitude of Cy decreases when « increases. Figs. 8.10 depict the variation of
generative chemical reaction (4 < 0) on the concentration fields Cp and C;. It is found from Fig
8.10a that Cj increases for large generative chemical reaction parameter. Fig . 8.10b depicts

that the magnitude of C also increases as v (v < 0) increases.

8.5 Closing remarks

The present study investigates the mass transfer in the MHD flow of a Jeffrey fluid bounded
by a non-linearly stretching surface. The velocity and the concentration fields are derived. Ho-
motopy analysis method is utilized for the series solutions. The behaviors of various embedded
parameters in the considered problem are analyzed. The gradient of mass transfer are also

computed in the tabulated forms. The main observations are pointed out below.

e The behavior of 3, and M on f'(7) and ¢'(7) are same.

e The effects of increasing the values of M is to decrease the boundary layer thickness.
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The concentrations fields Cy and ') decreases as Se increases,

The influence of the destructive (v > 0) is to decrease the concentration fields.

The concentration fields Cy and C; has opposite results for destructive (v > 0) and

generative (v < ) chemical reactions.

The surface mass transfer decreases by increasing M.
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(b)
M=10, g>=0.3

g'(n)

Figs. 8.2 (a, b). The variation of Deborah number 3, on f" and ¢'.
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Ui
Figs. 8.3 (a,b). The variation of Deborah number 3, on f’ and ¢'.
o
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Figs. 8.4 (a,b). The variation of Hartman number M on f’ and ¢'.
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(a)
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Figs. 8.5(a,b). The variation of Deborah number 3, on Cy and C}.
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Figs. 8.6(a,b). The variation of Deborah number 3, on Cy and Cj.
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-0.01
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Figs. 8.7(a,b). The variation of Hartman number M on Cy and C).
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Figs. 8.8(a,b). The variation of Schmidt number S¢ on Cp and CY.
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Figs. 8.9(a,b). The variation of chemical reaction parameter v on Cy and C) in the case of
destructive chemical reaction.
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(a)
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n
(b)
Pr1=p2=03 M=05 S=05
12

Figs. 8.10(a,b). The variation of chemical reaction parameter v on Cy and C) in case of

generative chemical reaction.
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Sc| v | M| By =58, | —Cy(0) | —C1(0)

1 10412 0.2 0.83412 | 0.15646

0.8 1.05823 | 0.13321

O 1.0 1.15258 | 0.12582

2.0 1.53473 | 0.10372

0.5 1.0 0.79841 | 0.07527

1.0 0.87943 | 0.08653

1.5 1.42758 | 0.16663

2.0 1.66074 | 0.20171

1.011.0] 0 1.17773 | 0.12365

0.3 1.17554 | 0.12416

0.6 1.16966 | 0.12526

0.9 1.16153 | 0.12605

-~ 1.2 1.15258 | 0.12583

1.2 0 1.14848 | 0.11841

0.2 1.15258 | 0.12582

0.4 1.55658 | 0.12992

0.8 1.16029 | 0.13383

1.0 1.16204 | 0.13469

Table 10.2: Values of the surface mass transfer C{j(0) and C{(0) for some values of M, 3,, /3,

, Se and 7.
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Chapter 9

Stagnation point flow of a Jeffrey

fluid with mass transfer

This chapter reports the stagnation-point flow of an incompressible Jeffrey fuid bounded by
a linear stretching surface. The analysis of mass transfer is also analyzed. The resulting
partial differential equations are reduced into ordinary differential equations. Computations for
dimensionless velocity and concentration fields are performed by an efficient approach namely
the homotopy analysis method (HAM). Plots are prepared to illustrate the details of flow and
mass transfer characteristics and their dependence upon the physical parameters. The values

of surface mass transfer and gradient of mass transfer are evaluated and analyzed.

9.1 Problem formulation

We consider the two-dimensional flow near a stagnation point in the half space y > 0. The
sheet in XOZ plane is stretched in the x—direction such that the velocity component in x-
direction varies linearly along it. The ambient fluid moves with a velocity az. In addition the
mass transfer effects are considered. The velocity U, (x) and the concentration Cy(z) of the

stretching sheet is proportional to the distance x from the stagnation-point, where C\,(z) > Cu.
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The boundary layer flow is governed by the following equations

ou v
SN o B 0
gy =" (9.1)
du  Ou OU oo v 0*u Pu u udPu O Pu .
Yoe iy~ 0% oz Tit R [aT;? +oa (“hamay? ik =iy o ay*aTay)]  (92)

2
u%+va—c =Da ¢

%' a_y2_RC’ (9.3)

In above equations u, v are the velocity components along the x— and y—axes, p the fluid
density, v the kinematic viscosity, D is the mass diffusion, C' the concentration field and R the
reaction rate. Here A indicates the ratio of relaxation and retardation times and Ay is the
relaxation time.

The subjected boundary conditions are
u=Uu(z)=cx, v=0, C=Cu(z) =Co+bz at y=0, (9.4)

u=Us(z)=az, C=Co as y— oo, (9.5)

where ¢ is a stretching rate and the subscripts w and oo are written for the wall and free stream
conditions.
Defining the following relations

C—Cx

Ca =G e

= \/g'y. u=cxf'(n), v=—yevf(n), o=

equation (9.1) is satisfied and the non-dimensional form of Eqgs. (9.2) — (9.5) can be presented
as

"+ M) (Ff =) +B(2 = ")+ 1+ M) = =0, (9.7)

¥l S

¢" + Se(fé' — of —¢) =0, (9.8)
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f =0 f=1,¢=1 at n=0

F o= %, ¢=0 at n— 0. (9.9)
u ¥ ...
B = MAec, Sc= o T= (9.10)

Here prime denotes a differentiation with respect to 7. Furthermore, Sc, f and v are the
Schmidt, Deborah and chemical reaction parameters respectively. The surface mass transfer is

expressed in the form
¢
/(0) = (—) <0. 9.11
10=(5) (011)

The Eqgs. (9.7) and (9.9) for Ay = § = a/c = 0, has an exact solution of the form

f(n) =1—exp(—n) (9.12)

9.2 Homotopy solutions

In deriving the HAM solutions we have the base functions of the form

{n"' exp(—nn), k>0, n> 0}

and
f()=afo+ > ) ap,n* exp(—nn), (9.13)
n=0 k=0
$(n) =D Y b exp(—nn), (9.14)
n=0 k=0
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where af, | and bf,  are the coefficients. The initial approximations are fo and ¢, and auxiliary

linear operators are

fotn) = Zn+(1=2)[(1 - exp(-n)].
y do(n) = exp(-n). (9.15)
df df
Li(f)= pov e = (9.16)
d*f
Ly(f) = az (9.17)
whence
Ly[Cy + Caexp(n) + Czexp(—n)] =0, (9.18)
L[Cuexp(n) + Cs exp(—n)] =0 (9.19)
and C; (i =1—5) are the arbitrary constants. The embedding parameter is p € [0,1] and
— non-zero auxiliary parameters are hy and hy. The problems at the zeroth order are written in
the forms
(L =p)Lsf(mip) — fo(n)] = phyNy[f(n; )], (9.20)
(L =»)Lo[d(n;p) — do(n)] = PhoNgld (i p), £ (n; p), (9.21)
i _a Ofmp)| _, 0f(mnp) _a
f(?}'!p)l'p.;:{] e U‘ 6?} '?:0 b= 11 6” _— == c! (9‘22)
o p)lyeo =1, A1 P)] =00 = 0, (9.23)

0
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Ny [f(m;p)]

Bf(n,p) & f (n,p) af (n,p) 2
T}ﬂ+(l+A1) f(n,p) 6?}2 = ( M )

; 9 f (n, A P M )

€
Q? +U+A0§‘

[

(9.24)

2 m; ;5 e v )
Nl 1) = 52 4 ) 22552 — g0 L) i 029

The above zeroth-order deformation equations (9.20) and (9.21) for p = 0 and p = 1 have the

following solutions

f(m;0) = fo(n), f(m1) = f(n), (9-26)
¢(m;0) = ¢o(n), é(n; 1) = o(n). (9-27)

Obviously when p increases from 0 to 1, f(n,p) varies from initial guess fo(n) to the exact

solution f(n). Therefore, by Taylors’ theorem and Egs. (9.26) and (9.27) we get

""\r_;" 00
f(mp) = fo(n) + Z S (m)p™, (9.28)
m=0
o0
é(mip) = do(n) + D bm(m)p™, (9.29)
m=0
_ 1 9"f(mp) _ 1 9"¢(nip)
fm(n) = o | b)) = s —rm e (9.30)
Clearly Eqs. (9.20) and (9.21) involve non-zero auxiliary parameters hy and hg. The conver-
gence of the series (9.28) and (9.29) depends upon hy and hg. The values of hy and hy are
selected such that the Eqs. (9.28) and (9.29) are convergent at p = 1. Hence we write
oo
@) ) = fo(m) + Y fm(n), (9:31)

m=0
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d(n) = do(n) + Y bu(n). (9.32)

m={)
The mth-order deformation problems are
- Li{fm() = X Fmar ()] = hyRE(m), (9.33)
\l
L[bm (M) = XnPm—1 (m)] = hg R, (1), (9.34)
Jin(0) = £,(0) = f1,(00) = 0, ¢,,(0) = ¢ (00) =0, (9.35)
= a?] 3| A+M) (i~ T = Foaea=k J&)
Rh0) = fia )+ (0= ) [0 20 5 + 2 ( e
k=0 | +B(Froak fi — fma-k £i)
(9.36)
m—1
R?n(n) = qﬁﬁn—l(ff) o SC’T‘i’m—l + Se Z [¢;ra—1-kfk = ¢ch:n—1—k] ' (937)
k=0
0, m<l1,
X‘m —3 (9'38)
1., el
-
The general solutions are
.fm('”} = fl:z(ﬂ) + C‘1 T C? GXP(TJ} It C3 exP( —'-’I), (939)
(ﬁm(ﬂ) - ‘35;1(??) 3 C‘i exp('q) + CS exP(_TI)r (9‘40)
where f5 and ¢}, are the particular solutions and after invoking Eqs. (9.35) the constants are
given by
Afm(n)
Co = (Cy=0, C3= 2% :
2 1 3 M o
@) Cr = —C3—fn(0), Cs=-¢,(0). (9.41)
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By symbolic software Mathematica, the system of Eqs. (9.33) — (9.35) can be solved when

m=1, 2, 3..

9.3 Convergence of homotopy solutions

The auxiliary parameters fiy and A in the series solutions (9.31) and (9.32) play a vital role
in adjusting and controlling the convergence. In order to find the admissible values of iy and
hiy the fiy and hg—curves are plotted for 20th-order of approximations. Fig. 9.1 shows that the
range for the admissible values of fiy and h; are —1.2 < hy < —0.5 and —1.5 < fiy, < —0.8. Our
computations also indicates that the series given by (9.31) and (9.32) converge in the whole

region of 7 when iy = —0.5 and hig = —1. Table 9.1 shows the convergence of the homotopy
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solutions for different order of approximations for A\ = 0.2, # = 0.3, a/c = 0.1, Se = 0.5 = .

A1=02,=03,ac=01

-0.92
-0.9225
-0.926
-0.9275
-0.93
-0.9325
-0.935
-0.9375

(0

-16 -1.25 -1 -075 -05 -025 0
hy

A=02,8=03,8c=01,S=05=y

-0.86

-0.862

~0.864

o))

~0.866

-0.868

-1.75 -15 -126 -1 -0756 -05 -025 0
ho
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Fig. 9.1. The A—curves f”(0) and ¢'(0) at 20th-order of approximations.

Order of approximation | —f”(0) | —¢'(0)
1 0.921376 | 0.887509
5 0.934758 | 0.864394
10 0.935072 | 0.863623
15 0.935068 | 0.863615
20 0.935068 | 0.863615
25 0.935068 | 0.863615
30 0.935068 | 0.863615

Table 9.1: Convergence of the HAM solutions for different order of approximation when

M =02 =03, a/c=01,Sc=05=7,

9.4 Results and discussion

In this section, the influence of emerging parameters on the velocity and concentration fields
is studied. Figs. 9.2 and 9.3 are plotted to show the comparison between exact and the
homotopy solution for the velocity f(n) and the concentration field field ¢(n) in the case of
B = A = a/e = 0. It is noted from these Figs. that the exact solution has an excellent
agreement with HAM solution at 15th-order of approximations. Figs. 9.4 — 9.12. represent
the variations of 3, Ay, a/c, Sc and +. Figs. 9.4 — 9.6. describe the effects of A, Ay and a/c
on the velocity profile f’. From Fig. 9.4 it can be seen that the velocity field and boundary
layer thickness are increasing functions of . It is observed from Fig. 9.5 that the effect of Ay
is opposite to the effect of the Deborah number £. Fig. 9.6. elucidates that f’ is increasing
function a/c.

The effects of A, A\;, a/e, Sc and 7 on the concentration profile ¢(n) are examined in the
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Figs. 9.7 —9.12. Fig 9.7. gives the variation of 8 on ¢ for the destructive (v > 0) chemical
reaction. Increasing the value of 3 decreases ¢. The variation of Ay on ¢ is given in Fig. 9.8. As
Ay increases, the concentration field increases. The effects of a/c¢ is opposite to of Ay on ¢ (Fig.
9.9). The variation of Schmidt number Sc on ¢ is shown in Fig. 9.10. The concentration field
¢ decreases when Se increases. As expected the fluid concentration increases with an increase
in generative chemical reaction parameter (7 < 0) (Fig. 9.11.) . The fluid concentration ¢ has
the opposite behavior for destructive chemical reaction parameter (7 > 0) in comparison to the
case of generative chemical reaction (Fig. 9.12).

The values of the surface mass transfer —¢'(0) and the gradient of mass transfer —¢'(1) are
presented in the Tables 9.2 and 9.3. Table 9.2 depicts that the surface mass transfer —¢'(0)
increases by increasing A and a/c while decreases for large values of A;. Table 9.3 shows that
the surface mass transfer —¢'(0) increases by increasing both Sc and 5. The gradient of mass
transfer —¢/(7) increases as both Se and + are increased when = 0.2 and 1 = 0.5. The

magnitude of —&'(n) is larger for n = 0.2.

9.5 Closing remarks

The present study describes the stagnation point flow of a Jeffrey fluid with mass transfer effect.
Analytical solution to the governing nonlinear problem is derived. Analysis of Table 9.1 shows
that solution upto 15th order of approximations is enough. It is also observed by fixing Sc and
v that the influence of increasing 3 on the surface mass transfer is larger than \;. The surface

mass transfer is larger for increasing values of 4 when compared with Se.
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Fig. 10.3. The comparison of ¢(n) for the analytical approximation with the numerical

solutions when Ay = = a/ec = 0. Filled circle: numerical solution; Solid line: 15th-order
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Fig. 9.5. Influence of A\; on f’.
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Fig. 9.6. Influence of a/e on the velocity f'.
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Fig. 9.7. Influence of # on ¢.
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Fig. 9.8. Influence of A\; on ¢.
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Fig. 9.9. Influence of a/c on ¢.

193




f=021;=03 a/c=03 y=05

1
Sc =00
4 Sc =02
8w Sc =05
) =0
06 *\ o
L 5
04
02
0
0

Fig. 9.10. Influence of Se on ¢.
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Fig. 9.11. Influence of v(< 0) on ¢.
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Fig. 12. Influence of 4(> 0) on ¢.

afc | B [ M | —=¢/(0)
0 |0.2]0.2]0.86269
0.06 0.86748
0.12 0.87561
0.2 0.88621
0.35 0.90833
0110 0.84477
0.2 0.87316

0.6 0.90221

0.8 0.91159

0.1 [02] 0 |0.88354
0.2 | 0.87315

0.4 | 0.86403

0.8 | 0.84858

1.0 | 0.84193
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Table 9.2: Values of the surface mass transfer —¢/(0) when Se = v = 0.5.

vy | Se| =d'0) | n | v | Se| —d'(n)

0 [ 1.0]1.04752 [ 0.2 | 0 | 1.0 | 0.86319

0.2 1.15128 0.6 1.03916
0.5 1.28689 1.5 1.10435
0.8 1.40642 | 0.5 | 0 | 1.0 | 0.64004
1.5 1.64828 0.6 0.70779
1.8 1.74036 1.5 0.74569

1.0 | 0.2 | 0.61615 | 0.2 | 1.0 | 0.4 | 0.75509

0.4 | 0.90205 0.8 | 1.02579

0.8 | 1.31358 1.0 | 1.12394

1.0 | 1.48045 | 0.5 | 1.0 | 0.4 | 0.57759

1.2 | 1.63168 0.8 | 0.69941

1.0 | 0.73015

G

Table 9.3: Values of the surface mass transfer —¢'(0) and the gradient of mass transfer when

B=02, A =02and a/c=0.1.
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Chapter 10

Unsteady stagnation point flow of a

second grade fluid with heat transfer

The stagnation-point flow of an incompressible second grade fluid over an unsteady stretching
surface in the presence of variable free stream is examined. Flow analysis has been carried out
when heat transfer is present. The resulting partial differential equations have been reduced
into the ordinary differential equations by the suitable transformations. Computations of di-
mensionless velocity and temperature fields have been performed by using homotopy analysis
method (HAM). Graphical plots are prepared in order to illustrate the details of flow and heat
transfer characteristics and their dependence upon the embedded parameters. Numerical values

of skin-friction coeflicient and Nusselt number are given and examined very carefully.

10.1 Definition of the problem

Consider the unsteady stagnation point flow of an incompressible second grade fluid over a
porous stretching surface with variable free stream. We select x—axis along the surface and
y—axis normal to it. In addition, the heat transfer is considered. The boundary layer equations

which can govern the present flow are
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du v

20420 10.1
5z Ty 0, (10.1)
(}u + 31:. f)n au i @ n ’(")?'u. Lo Pu i Fu " a_ui')ﬁ 5. @5)2_13 + ﬂga_ti
Yor Yoy T ot T 0z Vo T |01 TV 0u0y® T 0z OyE Oy OuE | Oy
(10.2)

: 2
[8T arT BT] LS‘ T (10.3)

E+’UE+15 ayg,

where u, v being the velocity components along the x— and y—axes, p the fluid density, v the

kinematic viscosity, 7' the fluid temperature, p the fluid density and ¢, the specific heat.

The associated boundary conditions of the problem are

u = Uyp(ait), v=Vy(z,t), T=Tp(zt) at y=0,

u — Ulz,t)=, T — Ty as y — 00. (10.4)

with V,, defined by
L

Vo =—Gcpin

(10.5)

represents the mass transfer at surface with V, > 0 for injection and V,, < 0 for suction.

Further the stretching velocity Uy, (x, t) and surface temperature T,,(x, £) are taken of the forms

cx ba ax
ITEI‘.‘ Tw(&.,tJ = Tm e —_E't‘ U(:L’, t) = 1 —gt

Ull'.‘ (:Bi t) = 1

(10.6)

in which a, ¢ and & are the constants with @ > 0 and & > 0 (with et < 1), and both a and ¢

have dimension time™!.

We introduce the following transformations

= \/_y, ¥ = vaUyf(n), 8(n) = IT E;o; (10.7)
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and the velocity components

(il /y
D (10.8)

e dy 'S o

where 1 is a stream function, the continuity equation is identically satisfied and the resulting

problems for [ and # become

2 ;
f'"‘_f'z'*'ff”_fl (}'! + %”fﬂ) +a [2[};!}! = f!l?. ey ffrm + A (2]:”! + %ﬂfﬂﬂ)] +%+A% =0’

(10.9)
6" +Pr (f0' — f'0) —Pr A (9 + —;-T;G') . (10.10)
f0)=8, f(0)=1, f'(c0)—a/ec, 6(0)=1, 6(c0)— 0. (10.11)

Here A = ¢/c is the unsteadiness parameter, « = cay /pu(1 — et) the dimensionless second grade
parameter, Pr = % the Prandt! number and primes indicate the differentiation with respect
to 7.

The skin [riction coefficient C'y and local Nusselt number Nu, are

Tw

Cr= P A, (10.12)
T Thw
Nu= T -T9) (10.13)

where the skin-friction 7,, and wall heat flux g, are defined as

v Moy T oy T oway T “owdy T Va2 ) |,y '
— (ﬂ) , (10.15)
ay y=0
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Due to Egs. (10.7) we obtain

A
RCy = ) +a (37001 - S0 ") + 5 @G+ )| L 00
1=l
o~ RVANu, = ¢ (0). (10.17)
N
10.2 Solution expressions
For the HAM solutions we consider f(n) and 6(n) in the set of base functions
{nk exp(—nn)|k > 0,n > 0}
and write
v o0 oo
f(n)=abo+D Y aman" exp(—mn), (10.18)
n=0 k=0
oo o0
o 0(n)=> "> bk 1" exp(—nn), (10.19)
- n=0 k=0
in which a,,, and by, , are the coefficients. The initial guesses fp and fy are taken in the
following expressions
a a
fo(n) = —n+ (1~ =) [(1 — exp(-n)], (10.20)
Oo(n) = exp(—). (10.21)
and the operators
&f df
.- 22
/ dn®  dy’ (02
d*0
3

200



with the following properties

Ly [Cy + Cyexp(n) + Caexp(—n)] =0, (10.24)

Ly [Cyexp(n) + Cj exp(—n)] =0, (10.25)

in which C; (i = 1 — 5) are the arbitrary constants.
If p € [0,1] is an embedding parameter, /iy and hy the non-zero anxiliary parameters then

the zeroth-order deformation problems can be written as

(1= p);(f(n,p) — folm)] = phyN [Fn,p),0(m,p)] (10.26)
(1 = )o@, p) — o)) = PhaNa [ £(n, ), B(n.)] (10.27)
: af (m;p) f (n;p)
fmp)l =8, —4=—=| =1, === =ale, (10.28)
|ﬂ=0 on 0 o —
b(n; p)L:n =1, (}(n;p)|n=m =1, (10.29)

Ny [Fonn)] = 2 - () 4 F i) ) — 4 (3242 4 2 4 % 4 A
va |- (Zh)" - 4 (p2f + 2 ’)+2—§m%‘%4 l&kﬂ%’%ﬂ]cmo

2 ; 20 ~ f(n;
No [f(n; p).e(u;p)] =2 Z(f:’g'p ) + Pr (f (mp) (’:; P) —0(n:p) a—fé—;'i))
-PrA (@(7;;3;) i ;naeghp)) . (10.31)
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For p =0 and p = 1, we have

Fo0)=folm),  Tl1)=f(@), (10.32)

6 (n;0) = 6, (n), a(n; 1)=0(n) (10.33)

and when p increases from 0 to 1, f(n; p) and 5(1;; p) deforms from fj (n) and fg (n) to f(n)

and @ (1)) respectively. Expanding f (n;p) and @('q; p) one can write

Fip)=fom)+ > fun ()™, (10.34)
m=1

O(mp)=00(n)+ Y O (n)p™, (10.35)
m=1

1 6"‘5(:};;0)
9 | e ——
' m (1) m!  dp™
p=0 p=0

10" (m;p)

ml dp™ (20.36)

fm (m) =

and the auxiliary parameters /iy and figp have been chosen in such a way that the series (10.39)

and (10.40) converge at p = 1. Hence

F) = fom)+ Y fm(n), (10.37)
m=1
9(7?) ot 90("’?) T Z gm(i’}). (10.38)

m=1

The problems corresponding to the mth order deformation are

Ls [fn () = XonSm—1 ()] = ByRE, () , (10.39)

Lo [0m (1) = XonOm—-1 ()] = he RS, (1), (10.40)
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fm(0) =0, f,(0) =0, fr,(00) =0,  6(0) =0, Op(00) =0,

qjm({)) =0, ¢’ﬂx(°°} =0,

1 1
RlL,() = fi_,—A4A (f:n-—t + §?Ff::.-«1) +aA (2f::~1 o 51’!}':::11)
a? a i Sm—1-ff = fina
(F+42)a-xm+ X

(10.41)

(10)42)

k=0 | +a (2f) 1 xft' = Foh-1-dt = Fm-1-1S3")

m—1

1 /
RY, (1) = Oy = AP (Bt 4 00| 4P Y (Fncraly = frn-1-a0)

k=0
0, m<1
xﬂl = 2
1, m>1

The general solutions of Eqs. (10.39) — (10.41) are

fm(n) = fr(n) + C1 + Ca exp(n) + Cz exp(—7),

O.m(n) = 6;,(n) + Cyexp(n) + Cs exp(—n),

in which f}; () and @), (1) are the special solutions and

Cy = C4=0,

fm(n)
i, = —C —fr:I(UJ, Cy= 4 '
Cs = —7,(0).
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10.3 Convergence of the derived solution expressions

It can be clearly seen that the series solutions (10.37) and (10.38) contain the non-zero auxiliary
parameters /iy and fig. These parameters are useful in adjusting and controlling the convergence.
For the appropriate values of iy and hg of the functions f(0) and 8'(0) the hy and hyp—curves
are plotted for 20th-order of approximations. Fig. 10.1 clearly indicates that the range for the
admissible values of fiy and kg are —1. < hy, hyp < —0.3. The series given by (10.37) and (10.38)

converge in the whole region of 7 when /iy = hg = —0.7.

a=02A=03 S=05a/c=02 Pr=1.0

2

~-1.78 -15 -1.25 -1 -075 -05 -025 0
fig, hg

Figs. 10.1: The h—curves of the functions f”(0) and ¢'(0) at 15 order of approximation.

O
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Order of convergence | —f"(0) -0'(0)
1 0.979200 | 1.156667
5 0.959231 | 1.459734
10 0.959203 | 1.458497
15 0.959204 | 1.458505
20 0.959204 | 1.458503
25 0.959204 | 1.458503
30 0.959204 | 1.458503

Table 10.1: Convergence of HAM solutions for different order of approximations when o = 0.2,

A=03,S5=0.5,Pr=1.0and a/c=0.2.

10.4 Results and discussion

In this section, our main interest is to discuss the variation of the emerging parameters such
as a/e, oo, A, S and Pr on the velocity components, temperature fields, skin friction coefficient
and Nusselt number. The analysis of such variation is made by Figs. 10.2 — 10.13. Fig. 10.2
shows the effects of a/c on the velocity component f'. When a/c = 0 then there is no stagnation
point flow. Velocity f’ increases when the parameter a/c increases. It is noticed that flow has a
boundary layer structure for values of a/c > 1 and thickness of boundary layer decreases with
an increase in a/c. Further Fig. 10.2 clearly depicts that when the stretching velocity of the
surface is greater than the stagnation velocity of the external stream (i.e. a/e < 1) the flow
has inverted boundary layer structure. Fig. 10.3. is drawn for the several values o and a/c
when § = 1.0 and A = 0.3. It is seen that velocity f’ is greater for second grade fluid when
compared to a Newtonian fuid. Figs. 10.4 and 10.5 depict the effects of o on f’ in suction
and injection respectively. In both cases, a increases the velocity profile. The boundary layer

thickness also increases. However, in injection case such increase is larger than suction case.
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The behaviors of A and S on velocity profile are seen in the Figs. 10.6 and 10.7. Both A and
S decrease the velocity profile. Sucking fluid particles through porous wall reduce the growth
of the fluid boundary layer. This is in accordance with the fact that suction causes reduction
in the boundary layer thickness. Fig. 10.8 is plotted for the variation of vertical component of
velocity f. We see that f increases by increasing a/c. Fig. 10.9. presents the effect of S on f.
It is also found that f increases when S increases. The qualitative effects of a/c and S on the
temperature are similar (Figs. 10.10. and 10.11). The variation of Pr on temperature field is
sketched in the Figs. 10.12 and 10.13 for suction and injection respectively. As expected # is
decreasing when Pr increases. However such decrease is larger for suction when compared with
injection case (Figs. 10.13). From Table 10.2 it is noticed that the magnitude of skin friction
coefficient increases for large values of a, A, a/c and S. The skin friction coefficient parameter
increases by increasing A. We found that for a fixed values of other parameters, the local

Nusselt number increases when there is an increase in .

10.5 Concluding remarks

.We studied the stagnation point fow of a second fluid with heat transfer effect in the presence
of variable free stream. The governing nonlinear problem has been computed and the main

points can be summarized as follows:

* Velocity component [’ is a decreasing function of a/c < 1.

e The effects of A and S on the velocity profile f’ are similar in a qualitative sense.
e The velocity [’ increases when « increases.

e The influence of A is to increase the boundary layer thickness.

e Both f’ and @ are decreasing functions of S.
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e The temperature @ yields a decrease when Pr increases.

¢ Local Nusselt number is an increasing function of o, § and a/ec.

a=028=10A=03

1.5
1.25

f'im)

“ 075
0.5
0.25

Fig. 10.2. Influence of a/c on f'.

S=10A=03
a =00, ac=00
a=00 ac=01
a=00 ac=02
a=03 ac=00
a=03 ac=01 |
a=03 ac=02
E
4 5 6

Fig. 10.3. Influence of o and a/c on f'.
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Fig. 10.4. Influence of & on f’ for suction.

S=-10A=03a/c=03
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Fig. 10.5. Influence of o on f” for injection.
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a=02 S= 10 a8c=03

Fig. 10.6. Influence of A on f’.

a=02 A=03 ac=03

'ty

Fig. 10.7. Influence of S on f.
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Fig. 10.8. Influence of a/c on f.
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Fig. 10.9. Influence of S on f.
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Fig. 10.11. Influence of § on #.
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Fig. 10.12. Influence of Pr on @ for suction.
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Fig. 10.13. Influence of Pr on @ for injection.
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o A S ajc —Reg'uac; —Reg;l’!2 Ny

0.0 03 10 0.2 1.469456 1.753764

0.1 1.627582 1.782792

., 0.2 1.792047 1.801183
0.1 02 1.0 0.2 1.602816 1.757819

0.4 1.652567 1.807621

0.7 1.728709 1.881074

1.0 1.806307 1.952925

0.1 05 0.0 03 1.172283 1.237817

0.5 1.341659 1.522888

1.0 1.506370 1.855564

0.1 05 1.0 00 1.968956 1.785723
0.1 1.833141 1.808871

0.2 1L.677760 1.832274
0.3  1.506372 1.855564

Table 10.2: Values of skin friction coefficient Re; /> Cy and local Nusselt number Re; '/

Nu, for some values of a, A, S and a/c when Pr = 1.0.
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Chapter 11

Mixed convection stagnation point
flow of a micropolar fluid towards a
stretching surface with thermal

radiation

This chapter describes the mixed convection stagnation point flow with heat and mass transfer
in a micropolar fluid towards a stretching surface. Mathematical . The governing partial
differential equations are first reduced into the ordinary differential equations and then solved
by using homotopy analysis method (HAM). Numerical values of skin friction coefficients, local
Nusselt number and Sherwood number are computed. The present results are also compared

with the existing numerical solution in a limiting sense.

214



11.1 Mathematical formulation

Let us consider the steady mixed convection stagnation point flow of a micropolar fluid over
a stretching surface. We consider that the surface has temperature 7,,, the concentration C,

and fluid has uniform ambient temperature T, and uniform ambient concentration Ce (Here

J

Ty > T and €', > C). The associated equations and boundary conditions are

du v
bl R 1.3
=t By 0, (11.1)
u—+u@-u%+(u+f)@+fﬂ+ﬁ(T—T)+ﬁ(c—-c) (11.2)
"oy~ om p) O T pgy T Tl TR el
ON* ON* ~*3N* & ( Bu)
u +v = — — = LI ==, 11.3
D dy  pi 9 pj dy A
or  ar &PT  9gr
oc  acC 9*C
. Ug —I—va—y = D-a? (11.5)
” du
w = Up(z)=cx, v=0, N Z*Nn%‘ T =Tu(z), C=Culz)aty=0,
u — ufzr)=ax, N*—=0,T—0,C —0asy— oo, (11.6)

where u and v are the velocity components parallel to the z— and y—axes, respectively, p the
fluid density, v the kinematic viscosity, o the electrical conductivity, N* the microrotation or
angular velocity, T' the temperature, ¢, the specific heat, k the thermal conductivity of the fluid,
¢, the radiative heat flux, C' the concentration species of the fluid, D is the diffusion coefficient
of the diffusion species in the fluid, j = (~/c) is microinertia, 4* = (p + £/2)j and k are the
spin gradient viscosity and vortex viscosity, respectively. Here for x = (0 we have the case of

viscous fluid. Further the boundary parameter Ny has range 0 < Ny < 1. It should be noted
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that when Ny = 0 (called strong concentration) then N* = 0 near the wall. This represents
the concentrated particle flows in which the microelements close to the wall surface are unable
to rotate. The case Ny = 1/2 corresponds to the vanishing of anti-symmetric part of the stress
tensor and it shows weak concentration of microelements.

Rosseland approximation gives

40" OT*
O = ~3% oy ' (11.7)
where ¢* is the Stefan—Boltzmann constant and &* the mean absorption coefficient.
Through the use of Taylor’s series
T4 4T3 T - 373, (11.8)
Invoking Eqs. (11.4), (11.7) and (11.8) we have
ar ot d 160" T3, ar
s s} % e k| —]|. 11.9
pc”(“amJ’”ay) 8y[( e ¥ )By] (11.9)
Selecting
n=(c/v)'"?y, u=caf' (), v=—()"?fm), N*=(c/v)"?cag(n),
O=r ¢=cds (11.10)

equation (11.1) is automatically satisfied and Eqs. (11.2), (11.3), (11.5), (11.6) and (11.9) finally

yield
2
L+ K0) [+ £ = (f)? + Kag + 5 + A0+ Ne) =0, (11.11)
(1 + %1.) g+ for— f'g—2K19— K f" =0, (11.12)
(1+ Ng) 0" +Pr (f0' — f'0) =0, (11.13)
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¢ +Sc(f¢' — f'6) =0, (11.14)

f0) = 0, f(0)=1, g(0)=—No f"(0), 8(0)=¢(0)=1,

f'(c0) = a/e, g(co)=0(c0) = b(c0) =0, (11.15)

where prime denotes the derivative with respect to 7). Here micropolar parameter K, Prandtl
number Pr, radiation parameter N, Schmidt number Se, chemical reaction parameter v, local

buoyancy parameter A and local Grashof number Gr, are prescribed as follows.

K v 160*T3, v
I(l = ;, P _E‘ NR_W’ SC-—B,
Gry 9B(Ty — Too) 23 /12 Be (Cw — Coo)
= — = : =—— 11.
A Re?’ e u 2 [v? S By (Tw — Teo) (H:35)

The definitions of skin friction coefficients C'y,, local Nusselt number Nu and local Sherwood

number Sh are

; du
[{,u + K) % * hf\']

= y=0
Cf;; — pu?‘u ]
—2(0T/0Y)y=0 o, _ —=(9C/yY)y=0
- A = —— 11.17
i (Tu' - Too) ‘ . (Gw i Cm) { )
which after invoking Eq. (11.10) become
Re/*Cpe = [L+ (1= No) K1] f(0),
NuRe;'? = —#/(0), ShRe;'? = —¢/(0), (11.18)

in which Re, = az?/v denotes the local Reynolds number.
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11.2 Homotopy analysis solutions

Considering a set of base functions

{7;*‘ exp(—ny)|k > 0,n > o} (11.19)
we express
o0 o0
fn) =afo+ > ak, 0" exp(—nn), (11.20)
n=0 k=0
o0 0o
g(m) =D > bk an* exp(—nny), (11.21)
n=0 k=0
o0 20
0n) =D > ek exp(—nn), (11.22)
n=0 k=0
oo 00
¢(n) =" db, 0" exp(—nn) (11.23)
n=0 k=0
in which a¥, .. b, ., ¢k . and db, ,, are the coefficients. The rule of solution expressions and the

boundary conditions (11.15), the initial guesses fo, go, g and @y of f(n), g(n), 8(n) and @(n)

are given by

foln) = Zn+ (1= 2) [(1 = exp(—)] (11.24)
90(n) = Ny exp(—n), (11.25)

Bo(n) = exp(—n), (11.26)

do(n) = exp(-1), (11.27)

with the auxiliary linear operators of the forms

_d&f df

== (11.28)
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Ly= pria ] (11.29)
2

P (11.30)

dn®

d%¢
x Ly a;? - (11.31)

having properties

Ly [Cy+ Caexp(n) + Czexp(—n)] =0, (11.32)
Ly [Cy exp(n) + Cs exp(—1)] = 0, (11.33)
Ly [Cs exp(n) + Crexp(—n)] =0, (11.34)
Ly [Cs exp(n) + Cy exp(—n)] = 0, (11.35)

where Cj(i = 1 — 9) are the arbitrary constants.

The associated zeroth order deformation problems are

(1= p)LslF () = fo(m)] = pligN [F(m:p)] (11.36)
(1 = p)Lg[a(: 1) — go(n)] —PﬁgNg{ (n;p), v;.p)] (11.37)
(1= p) Lo [0 00:) = 00 ()] = phoNo [F i), 0 (i) (11.38)
(1) L4 [ (52) = 60 ()] = phaNy [F i), & (i) (11.39)
. B . B 9%f(n) . A - af () .
Jon| _y = 0 90lmo=—~No =55 = do]_ = 75" o
B0y = 0 0D —ase O] =ém] =0, (11.40)
e =00
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in which p € [0, 1] depicts the embedding parameter and fis, iy, lig and hiy the nonzero auxiliary

parameters. Further the nonlinear operators Ny, N, Ny and A/,

3 N - 9 ] 92 F i m e Y
Ny [f (m:2): 901 p), 0003 p), Dm; p)] = (1+K)—pz5— f( }' [f (13 p) = J;:-’g’” = (aff;,’; p)) ]
kD) O\ (@) + NFmp) . (114D
oy ' '
Ny [Frs), 3 ), 0 ), B )] = (1 + ) Lo (11.42)
1 i) 222D f g, p) 200)
4 ! (11.43)

—~2K4(m;p) - ’;‘,;’2 0" |
e —0(; p) L)
25 (m; p) q,( £ (s ) 2202 ) (11.45)

J
Ne [! (1:2), (3 1), B(m; 1), Bl P] —ggz 5 k
~d(m;p) L)

[('fw) a(n:p). O(n:p ¢(nP]=(1+N gﬂﬂ’—) ( mp)é ) (11.44)

For p =0 and p = 1 then

F;0) = fo(m),  f(mi1) = f(m), (11.46)
9(m:0) =go(n),  glm:1) = g(n), (11.47)
8(n;0) = bo(n),  O(m; 1) = 6(n), (11.48)
d(m;0) = do(n), Bl 1) = p(n). (11.49)
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and so through Taylors series one can write

f(m:p) = fo(n) + 2 Fn(m)p™, (11.50)
9(m;p) = go(n) + mi: gm(m)p™, (11.51)
0(n;p) = bo(n) + ni:l Oum ()™, (11.52)
é(1;p) = do(n) + “;i;l G ()P, (11.53)

_ 1L a"f(mp) _ 1 9"g(np)

o) = o g T oy |y
_19mmp) _ 10"dmp)

Gm(n) = ml (31}"' p=01 qu(ﬂ) == m! anm - (11-54)

The auxiliary parameters are so properly chosen that series (11.51) — (11.54) converge when

» =1 and hence

f(n) = fo(n) + i:] fm(n), (11.55)
g(n) = go(n) + mi: gm(n), (11.56)
am=%m+§yum (1157)
am=¢am+§;@4m. (11.58)

The related problems at the mth— order deformation are given below

Ly [fmn (1) = XonSm-1 () = ByRE, (0) (11.59)
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Ly [gm (M) = Xmgm-1 (1)) = hgRE, (0) , (11.60)

Ly [9‘m (1)') = Ym'(}fn—-l (,r!) = thg; (n), (1161)
f"ﬁ’ [(f)m (”} = XmPm—1 (7”] == ﬁ"f'R.;r;t (”) L] (1162)

|

fm([]) = 0 j‘.m( ) 0 fm(OO) o U gm(o) = 01 g.m(OO) = 01 H:n(oo) =

0,,(0) = 0, 8,,(c0) =0, ¢,,(0) =0, ¢,(c0)=0, (11.63)
with the following definitions

m—1
R{n( ) = (1 +I{) f:: g I:Z [fk fm——l ke fifm— —A]] +I{gm l+ +’\ (em 1 +N¢m— )
k=0

(11.64)
] I{ () =
Rm (??) = {1+ gm i Z [fkgm—l k= ykfm—l—k] ' (11'6‘-}}
k=0
m—1
Rgra (‘U) = (1 o N NR)F}”I 1+ Pr Z [ffugm 1—k +-gf~gm 1— L] (11'66)
=0
m—1
'R‘;"n (n) = "rbm 1+ Se Z [fkd’iu—l—k . qbkf:n—l—k] J (11'67)
0, m<y,
X = (11.68)
1, m>1
The general solutions of Eqs (11.60) — (11.63) are
Jm(n) = fin(n) + C1 + Ca2exp(n) + Czexp(—n), (11.69)
_ gm(n) = gm(n) + Cy + Cs exp(n) + Cg exp(—7), (11.70)
O
O (n) = 07, (n) + Crexp(n) + Cs exp(—n), (11.71)
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b (1) = bm(n) + Co exp(n) + Cro exp(—7), (11.72)

where f*(n). g/.(n). 07,(1). @;,(n) are the particular solutions of the Eqs. (11.60) — (11.63).

Note that Eqgs. (11.60) — (11.63) can be solved by Mathematica one after the other in the order

= 1,2,3,.

11.3 Convergence of the series solutions

Obviously the series solutions (11.56) — (11.59) involves the non-zero auxiliary parameters fiy,
Iy, hy and hy. Such parameters help in the adjustment and control the radius of convergence
of the series solutions. In the present case, the range of reliable values of iy, fiy, hg and hy
can be computed by showing the fi—curves of the functions f”(0), ¢’'(0), #'(0) and ¢'(0) for
15th-order of approximations. Fig. 1 depicts that the range for the values of Ay, hy, hig and
iy are —0.8 < iy < —0.3, —0.9 < fip < —0.2 and —0.8 < By, ly < —0.3. The series given
by (11.56) — (11.59) converge in the whole region of n when hif = h, = —0.7 = g = hy. Fig.

11.1. depicts the h—curves of velocity, microrotation, temperature and concentration. Table 11.1
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indicates the convergence of the homotopy solutions for different order of approximations.

K=01,A=02 No=05Pr=07, Ne=0521=02 N=05
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Fig. 11. 1. The h—curves of f”(0), ¢’(0), #(0) and ¢'(0) at 15th-order of approximations.

Order of convergence | —f”(0) | —¢’(0) | —0'(0) | —¢'(0)

5 0.67194 | 0.42945 | 0.70923 | 0.74751
10 0.67115 | 0.42918 | 0.70818 | 0.73809
15 0.67116 | 0.42917 | 0.70826 | 0.73757
20 0.67116 | 0.42917 | 0.70827 | 0.73756
25 0.67116 | 0.42917 | 0.70827 | 0.73756
30 0.67116 | 0.42917 | 0.70827 | 0.73756
35 0.67116 | 0.42917 | 0.70827 | 0.73756

Table 11.1: Numerical values for the convergence of f”(0), ¢'(0), ¢'(0) and ¢'(0).
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11.4 Results and discussion

In this section, we look for the variations of the material parameter Ky, local buoyancy pa-
rameter A, the buoyancy ratio N, constant velocity ratio a/e¢, Prandtl number Pr, radiation
parameter Np, Schmidt number Se on the velocity, temperature and concentration fields. This
can be achieved by plotting the Figs. 11.2 — 11.16. Figs. 11.2 — 11.5 are presented in order to
show the effects of \, N, K and a/e on f'. Fig. 11.2 presents the effect of A on the velocity
J'. It is observed from this Fig. that the boundary layer thickness increases by increasing .
It is also found that f’ increases when N increases (Fig. 11.3). Fig. 11.4 displays the velocity
profiles for various values of K; when Ny = 0.5. The qualitative effects of K are found similar
to that of A and N of f'. Fig. 11.5 gives the variations of a/c on velocity component f’. The
velocity component f’ is a decreasing function of a/c < 1 while for a/c > 1 it decreases.

The effects of a/c and K on the microrotation profile g(7)) are plotted in the Figs. 11.6—11.9.
Fig. 11.6 is drawn when Ny = 0.5. From Fig. 11.6, we have seen that g increases initially but at
1) = 2 it starts decreasing. Fig. 11.7 is drawn for Ny = 0.5. We see that g increases by increasing
a/c. From Figs. 11.8 and 11.9, it is clear that the microrotation profile for Ny = 0.0 and that
No = 0.5 are quite different. Figs. 11.10 — 11.13 depict the effects of ratio a/e, local buoyancy
parameter A, Prandtl number Pr and radiation parameter Ny on the temperature profile 6(n).
The qualitative effects of a/c and A on the temperature are similar ( Figs. 11.10 and 11.11).
The variation of Pr on the temperature field is sketched in Fig. 11.12. As expected, it is found
that ¢ is decreasing when Pr is increased. Fig. 11.13 gives the effects of radiation parameter
Np on the temperature field. It has opposite result when compared with Fig. 11.12. Figs.
11.14 — 11.16 plot the effects of a/c, A and Sec on the concentration profiles. Fig. 11.14 shows
the effect of a/c on the concentration profile ¢. It is observed that concentration boundary layer
decreases by increasing a/c. The behaviors of A and Sc on concentration profile are seen in the

Figs. 11.15 and 11.16. Both A and Sc decrease the concentration profile.
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Tables 11.2 — 11.5 are given for the numerical values of the skin friction coefficients, Nusselt
number and Sherwood number for the different values of involved parameters of interest. From
Table 11.2 it is noticed that the magnitude of skin friction coefficient decreases for large values
of N and A. From Table 11.3 it is found that the magnitude of —6'(0) increases for large values
of K. These Tables indicates that HAM solution has a good agreement with the numerical
solution [94]. Table 11.4 is prepared for the variations of N, A, K1, Sc and a/c on the surface
mass transfer. It is obvious from this Table that the magnitude of —¢'(0) increases for large

values of Ky and Se.

11.5 Conclusions

The series solution of steady two-dimensional mixed convection stagnation point flow of a
micropolar fluid with heat and mass transfer is investigated. The behavior of the embedded

parameters are examined and the following points are noted.

¢ Velocity component f” is a decreasing function of a/c < 1 whereas for a/c > 1 it decreases.

Velocity f’ is an increasing function of K, N and A.

e Microrotation profile is parabolic distribution when Ny = 0.

The temperature € decreases when Pr is increased

The role of Np and Pr on the temperature is opposite.
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e There is a decrease in concentration field when Se increases.

Ki=1.0,No=05 Fr=07, Nr=05 a/c=02 N = 0.5

A= 00
A=02
A= 04
A= 06

Fig. 11.2. Influence of A on velocity profile f’.

Ki=1.0 Ny=05 Pr=07, Ngp=0538c=021= 02

1 — ——
N=00
N=1.0
08 N=20
N=30

04

0.2

Fig. 11.3. Influence of N on velocity profile f’.
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N= 05 No=05 Pr=07 Nr=05a/c=021=02

Ki=00
Ki=10
Ki=20
K1=3.O

Fig. 11.4. Influence of K on velocity profile f’.

Ki=1.0 No=05 Pr=07 Ng=051=02 N= 05

Fig. 11.5. Influence of a/c on velocity profile f’.
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K=10 No=05 Pr=07,Nr=058c=021= 02

05] 4
] ajc= 00
& ajc= 02
ajc= 04
ajc= 06
=
0 2 4 6 8

Fig. 11.6. Influence of a/c on microrotation profile g when Ny = 0.5.

No=05 Pr=07 Ng=05a/c=02 =02 N=05

0.35 [— Kk,=00 |

0.3 == =102

K= 04

025 K' = 0'6
= 02
2015
0.1
0.05
0

0 2 4 6 8

Fig. 11.7. Influence of K on microrotation profile ¢ when Ny = 0.5
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K=10 Np=00, FPr=07 Ng=0521 =02

0.08 ajc= 00

ajc=02

0.06 ajc= 04

ajc= 06
5 0.04
0.02

0 Wbl
0 2 4 6 8 10
n

Fig. 11.8. Influence of a/c¢ on microrotation profile ¢ when Ny = 0.0.

Ki= 1.0 No=05 Pr=07 Nz=051=02 N=05Sc=05

— alc=00
alc=02
ajc=04

| alc=12
§'
8 10

Fig. 11.10. Influence of a/c on temperature profile .
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Ki=1.0 Ny=05Pr=07 Nz=05N=05Sc=05

A=00
A= 10
A=20
A=30

Fig. 11.11. Influence of A on temperature profile 6.

Ki= 1.0, Ng= 05 N=05 Ng=051=02 Sc= 05

1
Pr=02
E - Pr=07
A
05 \ Pr=1.0
06 "',}\ Pr=12 |
04
0.2
0
0

Fig. 11.12. Influence of Pr on temperature profile 6.
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Ki=10 Ny=05Pr=07 N=0521=02 Sc=05

1
- Ne = 0.0
08| \ Ne= 0.5
Ne= 1.0
=45
0.6 e
=]
04
02
0

Fig. 11.13. Influence of Ng on temperature profile 6.

Ki= 1.0, No=05 N=05 Ng=051=02 Sc=05

1 I
' a/c=00
ajc=02
ajc=04 |
ajc=06 '
S
6 8

Fig. 11.14. Influence of a/¢ on concentration profile ¢.
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Ki= 1.0, No= 05 N=05Nz=051=02 Sc=05

A=00
A=10
A=20
A=30

7))

Fig. 11.15. Influence of A on concentration profile ¢.

Ky = 10, Np=05 N=05 Ns=051=02a/c=02

Sc=01|
Sc=05
Sc=09
Sc=12

d(n)

Fig. 11.16. Influence of Se¢ on concentration profile ¢.
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Ky =0
_a/r: Ny =0.0 No=0.5
(89] HAM 89 HAM

0.01 | —0.9980 | —0.99891 | —0.9980 | —0.99891
0.02 | —0.9958 | —0.99575 | —0.9958 | —0.99575
0.05 | —0.9876 | —0.98745 | —0.9876 | —0.98745
0.10 | —0.9694 | —0.96934 | —0.9694 | —0.96934
0.20 | —0.9181 | —0.91823 | —0.9181 | —0.91823
0.50 | —0.6673 | —0.66745 | —0.6673 | —0.66745
1.00 | 0.0000 [ 0.00000 | 0.0000 | 0.00000
200 | 20175 | 2.01844 | 2.0175 | 2.01844

Table 11.2: Comparison of values of skin fiction coefficient for some values of a/c when

A=0.
Ky=1

a/e Ng = 0.0 Ng=0.5

89] HAM 89] HAM
0.01 [ —1.3653 | —1.3653 | —1.2224 | —1.2224
0.02 | —1.3622 | —1.3622 | —1.2196 | —1.2196
0.05 [ —1.3512 | —1.3512 | —1.2095 | —1.2095
0.10 | —1.3268 | —1.3268 | —1.1872 | —1.1872
0.20 | —1.2579 | —1.2579 | —1.1244 | —1.1244
0.50 | —=0.9175 | —0.9175 | —0.8172 | —0.8172
1.00 | 0.00000 | 0.00000 | 0.0000 0.0000
2.00 | 2.8062 2.8062 24710 24710

Table 11.3: Comparison of values of skin friction coefficient for some values of a/c when
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K1=2
a/e Ng =0.0 Ng=10.5
[94] HAM (89] HAM

0.01 | —1.6183 | —1.61834 | —1.4116 | —1.41162
0.02 | —1.6147 | —1.61472 | —1.4084 | —1.40847
0.05 | —1.6015 | —1.60153 | —1.3967 | —1.39676
0.10 { —=1.5726 | —1.57263 | —1.3709 | —1.37098
0.20 | —1.4914 | —1.49144 | —1.2984 | —1.29846
0.50 | —1.0893 | —1.08933 | —0.9437 | —0.94376
1.00 | 0.0000 | 0.00000 | 0.0000 0.00000
2,00 [ 3.3595 | 3.35952 2.8532 2.85322

Table 11.4: Comparison of values of skin friction coefficient for some values of a/c when
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Table 11.5: Values of —¢'(0) for some values of Ky, M, S¢ and A when Pr = 0.7,

Npi = 0.5 and Ny = 0.5.

Se | Ki|a/e| N | A | —=¢(0)
0510020502 0.73754
1.0 1.09641
1.5 1.37524
0.5 | 0.0 0.72196
0.5 0.73042

1.0 0.73754
071000 |05]|02]0.71356
0.2 0.73748

0.4 0.77075
0.71.0]02]00]02]0.73068
0.5 0.71356

1.0 0.74398

0.71.0] 0.2 |05 0.0 | 0.71437
0.3 | 0.74732

0.6 | 0.77262
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