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Preface 

Parallel plate wave guide is very important structure for studying the scattering 

of waves in electromagnetic theory. Engineers, physicist and mathematicians 

have shown a very keen interest in these types of problems. The grooved and 

impedance loaded wave guide structures have been frequently used for 

microwave filter and antenna applications. It has been verified experimentally 

that rectangular wave guide with finite length impedance loaded can be used as a 

band-stop filter. Hence, the solution of this problem is of importance for band

stop filter design using a rectangular wave guide with finite impeda nce loading. 

The scattering coefficients for wall impedance change in parallel-plate wave 

guides have been investigated by several authors. Among them one can cite, for 

example, Johansen [1] who considered the case where the part x<O of the parallel 

plates are perfectly conducting while the part x>O has the same surface 

impedance. Heins and Feshbach [2] provided a Wiener-Hopf solution to the 

problem of coupling of two ducts. Karajala and Mittra [3] have considered the 

scattering at the junction of two semi-infinite parallel plat e waveguides wit h 

impedance walls by mode matching method. Arora and Vijayaraghavan [4] used 

the Wiener-Hopf technique to compute the scattering of shielded surface wave in 

a parallel-plate waveguide consisting of inductively reactive gu iding surfaces and 

characterized by an abrupt wall reactance discontinuity. Finally Tayyar et al. [5] 

have considered the parallel plate wave guide having finite length impedance 

loading. 

In present dissertation some mathematical concepts and t heorems [6,7,8] are 

given in the first chapter, which are necessary to understand the subsequent 

chapters. In the second chapter the paper by Tayyar et al. [5] is reproduced with 

more details. In third chapter we have extended the work of Tayyar et al. [14] by 

considering the soft boundaries having finite length impedance loading. The 

representation of the solution to the boundary-value problem in terms of Fourier 

integrals leads to two simultaneous modified Wiener-Hopf equations which are 



uncoupled by using the po le removal technique. The so lution involves four infinite 

sets of unknown coefficients satisfying four infinite systems of linear algebraic 

equations. At the end reflection and transmission coefficients are calculated from 

these infinite systems of linear algebraic equations. 
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Chapter 1 

Preliminaries 

In this chapter some mathematical preliminaries, used in the subsequent chapters, are 

presented. These include Decomposition theorem, Factorization theorem, Extended 

Livoulle's theorem, Wiener-Hopf technique and analytic continuation principle [6, 7, 8]. 

1.1 Extended Livouville's Theorem[6] 

If f(0 is an integral function such that I f(O I ~ M I ~ IP as I ~ l-t 00 where M, pare 

constants, then f(~) is a polynomial of degree less than or equal to [p] where lP] is the 

integral part of p. 

1.2 Decomposition Theorem[6] 

Let f(v) be an analytic function of v = a- + iT and regular in the strip T _ < T < T +. 

Within this strip, If(v)1 -t 0 uniformly as la-I -t 00 . Then f(v) can be decomposed such 

that 

(1.1) 
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where 
oo+ic 

1+(v) = ~ I 1(0 d~, 
2m. ~ - V 

T _ < C < T < T +, (1.2) 

-oo+ic 

is regular in the upper half v-plane defined by T _ < T and 

T _ < T < d < T+, (1.3) 

is regular in the lower half v-plane defined by T < T +. 

1.3 Factorization Theorem[7] 

Let 1(v) be an analytic function of v = CT + iT and be regular and be non zero in the 

strip T _ < T < T +. 'Within this strip, 11(v)1 ---t 1 uniformly as ICTI ---t 00. Then g(v) can 

be factorized such that 

(1.4) 

where 

T _ < C < T < T +, (1.5) 

is regular and non zero in the upper half v-plane defined by T _ < T and 

[ 

oo+id 1 -1 . lng ~ 
g_(v) = exp 27ri ./ ~ _( J d~ , 

-oo+,d 

T _ < T < d < T +, (1.6) 

is regular and non zero in the lower half v-plane defined by T < T +. 
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1.4 Analytic Continuation[8] 

The intersection of two domain HI and H2 is the domain HI n H2 consisting of all points 

that lies in both H I and H 2. If we have two domains HI and H2 with points in common 

and a funct ion II that is analytic in HI, there may exist a function 12 which is analyt ic 

in H 2, such that 12(z ) = II( z ) for each z in the intersection HI n H2. If so, we call 12 an 

analytic cont inuation of II into the second domain H 2 . 

1.5 General Scheme of Wiener-Hopf Technique[6] 

Wiener-Hopf technique is used for solving certain integral equations and various boundary 

value problems of mathematical physics by means of integral transformation. In this 

technique, we require to determine the unknown function 'l/J+ (1/) and 'l/J- (1/) of a complex 

variable 1/ from the equation given below. The function 'l/J + (1/) and 'l/J _ (1/) are analytic , 

respectively, in the half planes 1m 1/ > T _ and 1m 1/ < T + tend to zero as 1 1/ l--t 00 in 

both domains of analyticity and satisfy in the strip T _ < T < T +, 

DI (1/) 'l/J+ (1/) + D2 (1/) 'l/J- (1/) + D3 (1/) = 0, (1.7) 

where the functions DI (1/) , D2 (1/) and D3 (1/) are known functions regular in the strip 

T _ < T < T + and DI (1/) and D2 (1/) are non zero in the strip. The basic idea in this 

technique for solution of this equation is to substitute 

(1.8) 

where the function T+ (1/) and T_ (1/) are analytic and different from zero, respectively, 

in T > T _ and T < T +. By using Eq. (1.7) and (1.8), we obtain 

(1.9) 
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The last term of the above equation can be written as 

(1.10) 

where the functions D+ (1/) and D_ (1/) are analytic in the half planes T > T _ and T < T +. 

Thus Eq. (1.9) takes the form 

(1.11) 

We observe that L.H.S. of Eq. (1.11) is regular in T > T _ while the R.H.S is regular in 

T < T +. Thus, both sides are equal to a certain integral function (polynomial) J (1/) in 

the strip T _ < T < T + 

J (1/) = T+ (1/) 'l/J+ (1/) + D+ (1/) = -T_ (v) 'l/J- (1/) - D _ (1/) . (1.12) 

By using analytic continuation, we can determine J (1/) which is regular in the whole 

complex v - plane . Let 

1 T+ (1/) 'l/J+ (1/) + D+ (1/) 1< 1 1/ IP as v ~ 00, T > T _, (1.13) 

1 -T_ (1/) 'l/J- (1/) - D_ (1/) 1< 1 1/ IP as 1/ ~ 00, T < T +. (1.14) 

6 



Chapter 2 

A Wiener-Hopf analysis of the 

parallel plate waveguide with finite 

length impedance loading 

In this chapter the review of recent paper by Tayyar et al. [5] is presented in detail. A 

Wiener-Hopf technique is used to study the band-stop filter characteristic of the parallel 

plate waveguide with finite length impedance loading. The boundary value problem 

gives two simultaneous modified Wiener-Hopf equations which are uncoupled by using 

pole removal technique. The solution involves four infinite sets of unknown coefficients 

satisfying four infinite system of linear algebraic equations. At the end reflection and 

transmission coefficients are determined from these system of linear algebraic equations. 

2 .1 Introduction 

In the present analysis Tayyar et al. [5] have considered the parallel plates waveguide 

with a finite length impedance loading as depicted in figure below. The part x < 0 and 

x > l, are perfectly conducting at y = 0 and y = b, and the part 0 < x < l , have 

constant surface impedances at y = 0 and y = b. The surface impedances of the lower 

7 



' .. 

and upper plates are different from each other and denoted by Zl = rJl Zo and Z2 = rJ2 Zo, 

respectively, with Zo being the characteristic impedance of the free space. 

y 

b 
Hard 112 Hard 

ui-Ht+ 

Hard 171 Hard 

0 I 
X 

Figure 2. 1: Geometry of the problem. 

2.2 Mathematical Formulation 

Let the incident TEM mode propagating in the positive x direction be given by 

(2 .1) 

The total field uT(x, y) can be written as 

YE(O, b) and XE ( -00, (0), (2.2) 

In Eq. (2.2), u(x, y) is the unknown function which satisfied the Helmholtz equation 

(2.3) 
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' .. 

The corresponding boundary conditions are 

Bu(x,O) = 0 
By , -00 < x < 0 and l < x < 00, (2.4) 

Bu(x, b) = 0 
By , -00 < x < 0 and l < x < 00, (2.5) 

( 1 B) () ikx 1 + -:----k -;:;;- u x, O = -e , 
~ 171 uy 

0< x < l, (2 .6) 

( 1 B) (b) ikx 1 - -. -- u x, = -e , 
~k172 By 

0 < x < l. (2.7) 

To obtain the unique solution to the mixed boundary value problem the edge and radi

ation conditions are 

T {0(IXI1/2)' IXI~0 
u (x,O) = , 

0(1 X _ lI1 /2), 1 x I ~ l 
(2.8) 

u(x, y) = O(eiklxl), 1 x I~ 00. (2.9) 

Taking Fourier transform of Eq. (2.3), we obtain 

[ 
d2 2 ] -
dy2 + K (a ) u(a, y) = 0, (2.10) 

where 

(2.11) 

and 
00 

- 1 J . u(a, y) = - u(x, y) ew-xdx. 
21f 

(2.12) 

-00 

Taking inverse Fourier transform, we get 

00 

u(x, y) = J u(a , y)eiOXdx, (2. 13) 

-00 
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Taking Fourier transform of Eqs. (2 .4) and (2.5) , we obtain 

8u(a, 0) 
8y = 0, -00 < x < 0 and l < x < 00, (2.14) 

8u(a, b) = 0 
8y , - 00 < x < 0 and l < x < 00. (2.15) 

Taking Fourier transform of Eq. (2.6), we obtain 

00 

18- Ij' 1 8 . 
(1 + ~k -8 )u(a ,O) = - (1 + ~k -8 )u(x,O)e'OXdx, 

2 'T)l Y 27f ~ 'T)l Y 
-00 

o I 
1 8 -

(1 + ~k -8 )u(a,O) 
2 'T)l Y 

1/' 18 . 1/' 18 . - (1 + ~k -8 )u(x, O)e'OXdx + - (1 + ~k -8 )u(x, O) eWXdx 
27f . 2 'T)l Y 27f . 2 ~ 'T)1 Y 

-00 0 
00 

1 /. ( 1 8) ( ) iox d +- 1 + ~k -8 u x, O e x, 
27f . 2 'T)1 Y 

I 

1 8 _ 1 ei(o+k)l - 1 . 
(1 + ~k -8 )u(a,O) = <I>l(a) - -. k + ewl<I>t(a) , (2.16) 

2 'T)1 Y 27f2 a + 
where 

o 
_ () 1 j' ( 1 8) ( ) ioxd <I> 1 a = - 1 + ~k -8 u x,O e x, 

27f 2 'T)1 Y 
(2.17) 

-00 

(2.18) 

Similarly taking Fourier transform of Eq. (2.7), we obtain 

1 8 _ 1 ei(o+kll - 1 . 
(1 - ~k -8 )u(a, b) = <I>2"(a) - -. k + ewl<I>t(a), (2 .19) 

2 'T)2 Y 2m a + 

10 



where 
o 

<pz(a) = -2
1 

1 (1 - -:---k
1 ~ )u(x, b)eioXdx, 

rr . 2 'r/2 uy 
(2.20) 

-<Xl 

<Xl 

<p t (a) = - (1 - -. --)u(x, b) eto(x-l)dx. 1 J' 1 0 . 
2rr . 2k772 oy 

(2.21) 

1 

The complementary solution of Eq. (2.10) is of the form 

u(a, y) = A(a) cos [K(a)y] + B(a) sin [K(a)y] , (2.22) 

where A and B are the function of a. Putting Eq. (2.22) in Eq. (2.13), we obtain 

00 

u(x, y) = ./ {A(a) cos [K(a)y] + B(a) sin [K(a)y]} e-ioxda. (2.23) 

- <Xl 

Using Eq. (2.14) in Eq. (2.22), we obtain 

(2.24) 

where 
I 

F ( ) = ~ J' ou(x, 0) ioxd 
1 a 8 e x . 

2rr . y 
(2.25) 

o 

Using Eq. (2.15) in Eq. (2.22), we obtain 

. F2(a) 
-A(a) sm[K(a)b] + B(a) cos[K(a)b] = K(a) ' (2.26) 

where 
I 

D ( ) _ ~ J ou (x, b) iox d 
r2 a - 8 e x. 

. 2rr y 
(2.27) 

o 

11 



Using Eq. (2.16) in Eq. (2.22), we obtain 

A() 
B(o:)K(o:) _ if--() 1 ei(a+/<;)l - 1 ialr"F.+() 

0: + 'k - '*'1 0: - -2 . k + e '*'1 0: . 
~ TIl 7f~ 0: + 

(2.28) 

Using Eq. (2. 19 ) in Eq. (2 .22) , we obtain 

A(o:) [Tl2 cos[K(o:)b] + K.(O:) sin[K(a)b]] + B(o:) [Tl2 sin[K(a)b] - K(kO:) cos[K(a)b]] 
Tl2 ~k TJ2 ~ 

1 ei(a+k)l - 1 . 
<1>;-(0:) - 27fi (0: + k) + etal

<1>t(o:) · (2.29) 

Incorporating value of B(o:) from Eq. (2.24) in Eq. (2 .26), we obtain 

A(o:) = F1(0:) cos[K(o:)b]- F2(0:). 
K(o:) sin[K(o:)b] 

(2.30) 

Using Eqs. (2.24) and (2.30) in Eq. (2.28), we arrive at 

F1 ( 0:) [ K ( 0:) . ] F2 ( 0:) 
Tl1K(0:) sin[K(o:)b] TIl cos[K(o:)b] + --;;:- sm[K(o:)]b - K(o:) sin [K(o:)b] 

if- - () 1 1 _ ial rT, + () 1 e 
[

i lk ] 
-'*'1 0: - -. ( k) - e '*'1 0: - -.-( - k- ) , 

27f~ 0: + 27r~ 0: + 
(2.31) 

F1(0:)M1(0:) F2(0:) p-() iaIR+() 
Tl 1N(0:)K2(0:) - N(0:)K2(0:) + * 0: = eo:, 

(2.32) 

where M1(0:), N(o:), P*- (o:) and R+(o:) are defined as respectively, 

K(o:) 
Nh(o:) = 771 cos[K(o:)b] + --;;:- sin[K(a)b], (2.33) 

N( ) = sin[K(a)b] 
a K(o:) , (2.34) 

1 1 
P*- (o:) = -<1>1(0:) - 27fi 0: + k' (2.35) 

12 



and 

Using Eqs . (2.24) and (2.30) in Eq. (2.29), we obtain 

Fl(a) cos[K(a) b] - F2(a) [ [K( )b] K(a). [K( )b] 
772 K (a) sin[K(a)bJ 'T/2 cos a + ik sm a 

. 1 ei(o+k)l - 1 
= <I>-(a) + e,ol<I>+(a) - -----,---

2 2 27ri a + k ' 

where M2(a), S+(a) and Q;:-(a) are defined as respectively, 

K(a) 
M2(a) = 'T/2 cos[K(a)b] + ~ sin[K(a)b], 

1 1 
Q:;(a) = -<I>z(a) - 27ri a + k' 

1 ei1k 
S+(a) = <I>t(a) - -. --k' 

2m a + 

(2.36) 

(2 .37) 

(2 .38) 

(2.39) 

Notice that P.-(a) and Q;:-(a) are regular in the lower half plane except at the pole 

singularity occurring at a = -k . 

13 



" 

2.3 Solution of the Simultaneous Modified Wiener-

Hopf Equations 

The kernel factorization of M1,2(a) and N(a) appearing in Eqs. (2 .32) and (2.37), are 

as follow 

(2.40) 

(2.41) 

The explicit expression of Mt2(a) and N+(a) can be written as procedure outlined by , 

Lee and Mittra [7] 

1 / iab I a I b 7r 
Mt(a) = [771 cos(kb) + -:- sin(kb)p 2. exp{-[l - C -In(--) + i-

2
]} 

2 7r 7r 

00 a iab 
x IL (1 + .em ) exp(m7r )' (2.42) 

1 1/2 iab I a lb . 7r 
Mi(a) = [772 cos(kb) + i sin(kb)] . exp{ -;:-[1 - C - In ( ----;-) + 22']} 

00 a iab 
x 11 (1 + -) exp(-), 

m=l 11m rn7r 
(2 .43) 

. 00 a iab 
x 11 (1 + -) exp(-). 

m = l am mn 
(2 .44) 

Here .em's, 11m'S and am's are the roots of the functions M1,2(a) and N(a), respectively. 

m = 1,2,3 .. . , (2.45) 

with 

14 



In Eqs. (2.42)- (2 .44), C is the Euler 's const ant given by C = 0. 57721.. . . It can be easily 

shown that one has 

Multiplying Eq. (2.32) with (k-;;:~~)( O) , we obtain 

(2.46) 

Now multiplying Eq. (2.32) with e- io1 (k+;;y(:/O) , we obtain 

= (k + a)N+(a)R+( ) 
+( ) a . Ml a 

(2.47) 

Multiplying Eq. (2.37) with (k-;;~~~)(O), we obtain 

Now multiplying Eq. (2.37) with e- io1 (k+;;j(:)(O) , we obtain 

= ' (k + a)N+(a) s+( ) 
M;j'(a) a . 

(2.49) 

The first term appearing in the left hand side of Eq. (2.46) is evidently regular in the 

upper half plane. The third term and the R.H.S. of same equation have singularities in 

both half-planes. Hence one has to apply the Wiener-Hopf decomposition procedure on . 

these terms. Consider the third term of Eq. (2.46) (we want to make it regular in the 

15 



lower half plane) 

Consider the 2nd term of Eq. (2.50) . Let 

f(a) = (k - a)N-(a) 1 
M1(a) (a + k)' 

(2 .51) 

be decomposed by decomposition theorem 

(2.52) 

where 
oo+ic 

f+( a ) = ~ I f(~) d~, 
2m. ~ - a 

-oo+ic 

Completing the contour by semi circle in the upper half plane then ~ = a and ~ = -k are 

the simple poles which gives 

so that 

Define 
oo+id 

(2k)N+(k) 
Mt(k)(a + k)' 

f-(a) = -~ J' f(~) d~, 
2m. ~ - a 

-oo+id 
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Completing the contour by semi circle in the upper half plane then ~ = -k is the simple 

pole which gives 

Thus, Eq. (2.52) becomes 

(2k)N+(k) 
f - (a) = Mt(k)(a + k) ' 

(k - a)N- (a) 1 

M1-(a) (a + k) 
(k - a)N-(a) 1 _ (2k) N+(k) + (2k)N+(k) 

Ml(a) (a + k) Mt(k)(a + k) Mt(k)(a + k)' 
(2.53) 

Using Eq. (2.53) in Eq. (2.50), we obtain 

(k - a)N-(a) P-(a) = (k - a)N-(a) P-(a) + ~ N+(k) k N+(k) 
Ml(a) * Ml (a) * 7ri Mt(k)(a + k) - 7ri Nlt(k)(a + k)' 

(2 .54) 

Now consider the R.H.8. of Eq. (2.46) (we want to make it regular in the upper half 

plane.) 

Consider the first term of Eq. (2.55) and let 

( ) 
_ ic.L (k - a)N-(a) n-.+( ) 

p a - e _() '±'l a , 
Ml a 

(2.56) 

be decomposed by decomposition theorem 

(2.57) 

where 
oo+ic 

p+(a) = -2
1

. j' p(O d~, 
m ~-a 

-oo+ic 

17 



Completing the contour in upper half plane by semicircle then ~ = a and zeros of 

Ml (0 are the singularities which gives 

so that 

Define 
oo+id 

p_(a) = -~ j' p(O d~, 
27r~ ~ - a 

-oo+id 

If we close the contour in upper half plane by semicircle then zeros of Ml (0 are the 

singularities so that 

Thus, Eq. (2.57) gives 

18 



(2.58) 

Consider the term of Eq. (2.55) and let 

(2.59) 

be decomposed by decomposition theorem 

(2.60) 

If we close the contour in upper half plane by semicircle then ~ = a and zeros of Ml (~) are 

the singularities vvhich gives 

R [l ( )]
' _ iol (k - a)N- (a) eilk 

es+a -e , 
~=o Ml(a) (a + k) 

so that 

Define 
oo+id 

L(a) = -~ j' ~d~ 
27T~ ~ - a 

-oo+id 
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If we close the contour in upper half plane by semicircle then zeros of Ml (0 are the 

singularities which gives 

Thus, Eq. (2.60) becomes 

eicxl(k - ex)N-(ex) eilk = eiCXl(k - ex)N-(ex) eilk _ 00 eif3mlMtU3m)(k - f3m)N(f3m)eilk 

Ml(ex) (ex + k) M1(ex) (ex + k) ~ M{ (13m) (ex - f3m)N+(f3m)(f3m + k) 

+ f ei;mlMt(f3m)(k - f3m)N(f3m)eilk . 

m=l Ml (f3m)(a - f3m)N+(f3m)(f3m + k) 

Putting Eqs.(2.58) and (2.61) in Eq. (2.55), we obtain 

_ 00 eif3ml(k - f3m)N(f3m)Mt(f3m) [<p+ 13 __ 1_ ei1k ] 
~ M{ (f3m)N+(f3m) (a - 13m) 1 (m) 21ri (k + f3m) 

+ 00 eif3",I(k - f3m)N(f3m) Mt (13m) [<p+ __ 1_ ei1k ]. 
~ M{ (f3m)N+(f3m)(a - 13m) 1 (13m) 21ri (k + 13m) 

Using Eqs. (2.55) and (2.36) in Eq. (2.62), we obtain 

+ f eif3ml (k ~ f3m)N(f3m)Mt (f3m)R+ (13m) . 
m=l Ml (f3m)N+(f3m)(a - f3m) 

20 

(2.61) 

(2.62) 

(2.63) 



Putting Eqs. (2 .54) and (2.63) in Eq. (2.46), we obtain 

Fl(a)Mt(a) 
'f/lN+(a)(k + a) 

F2(a)Mt(a) _ ! N+(k) _ ei Cll (k - a)N- (a) R+(a ) 
N+(a)(k + a)Ml(a) ni Mt (k)(a + k) Ml(a ) 

+ f e
if3m l (k - !3m )N (!3m )Mt (!3m )R+ (!3m) 

m=l M{ (!3m )N+ (!3m)(a - !3m) 

= _ (k - a )N- (a ) P - (a) - k N +(k) + f eif3m l (k - !3m )N(!3m)Mt (!3m)R+ (!3m ) . 

Ml (a) * ni Mt (k)(a + k) m= l M{ (!3m )N+ (!3m )(a - !3m ) 

. (2.64) 

The regularity of the L.H .S. of Eq. (2.64) in upper half plane may be violated by t he sim

ple pole occurring at zeros of Ml (a) lying in the upper half plane namely a = !3m , m = 

1, 2, 3, .... Consider the the second term of Eq. (2.64). Let 

F2(a)Mt (a) 
D(a ) = N+(a)(k + a)Ml (a) ' 

By decomposition theorem we can write 

where 

(2. 65) 

(2 .66) 

If we close the contour in upper half plane by semicircle then ~ = a and zeros of Ml (~) are 

the singularit ies which gives 
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so that 

Define 

closing the contour in upper half plane by semicircle then zeros of lVh (0 are the 

singularities which gives 

Thus, Eq. (2.66) becomes 

F2(Q)Mt(Q) F2(Q)Mt(Q) ~ F2 (f3m) Mt (f3m) 
N+(Q)(k + Q)lVh(Q) = N+(Q)(k + Q)Ml(Q) - ~ N+(f3m)(k + f3m)M{ (f3m)(Q - f3m) 

+ f F2 (f3m) MS(f3m) . 
m==l N+(f3m)(k + f3m)Ml (f3m)(Q - f3m) 

(2.67) 

Putting Eq. (2 .67) in Eq. (2 .64), we get 

Fl(Q)Mt(Q) F2(Q)Mt(Q) f am k N+(k) 
'TJIN+(Q)(k + Q) - N+(Q)(k + Q)lVh(Q) - m==l Q - f3m - 7fi Mt(k)(Q + k) 
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00 

"""' am Da-{3 , 
m.=1 m 

(2.68) 

where 

(2.69) 

The application of analytic continuation principle together with Liouville's theorem to 

the Eq. (2 .68) yields 

00 

. """' am 
Da-{3 . 
m=1 m 

(2.70) 

Now we will apply similar treatment to Eq. (2.47). In Eq. (2 .47), first term is regular 

in the lower half plane, while right hand side is regular in the upper half plane. Second 

and third term on L.H.S. have singularities in the lower half plane. Consider the third 

term of Eq. (2.47) on L.H.S. (we want to make it regular in the lower half) 

e-icxl(k + a)N+(a) _ e-ial(k + a)N+(a)<Pl(a) 1 e-tcxl(k + a)N+(a) 
Mt(a) P* (a) = - Mt(a) - 21Ti Mt(a)(a + k) 

(2.71) 

Consider the first term on R.H.S. of Eq. (2.71) . Let 

(2.72) 

By decomposition theorem we can write 

(2.73) 
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where 

and 

Therefore, Eq. (2.73) becomes 

e-iol(k + CY)N+(CY)<Pl(CY) = e-iol(k + CY)N+(CY)<Pl(CY) _ f ei{3m l(k - (3m)N( -(3m)Mt((3m)<P1( -13m) 

Mt(CY) Mt(CY) m=l M{ (-(3m)N+((3m)(CY + (3m) 

(2.74) 

Now consider the second term of Eq. (2 .71) . Let 

(2.75) 

By decomposition theorem we can write 

(2.76) 

where 

H CY - e-iol(k + CY)N+(CY) _ f ei{3".l(k - (3m)N( -(3m)Mt((3m) 

+( ) - Mt(CY)(CY + k) m=l M{ (-(3m)(CY + (3m)N+((3m)(k - 13m)' 

and 
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Thus, Eq. (2.76) becomes 

e-io:1(k + a)N+(a) = e-io:1(k + a)N+(Ci) _ f eif3m1 (k - (3m)N( -(3m)lVJt({3m) 

lVJt(Ci)(a + k) lVJt(Ci)(Ci + k) m=l 1VJ{ (-{3m)(a + {3m)N+({3m)(k - (3m) 

_ ~ eif3", I(k - {3m)N( -(3m) lVJt ({3m) 
~ / . 
m=l 1VJ1 (-{3m )(a + {3m )N+ ({3m)( k - (3m) 

(2.77) 

Putting Eqs. (2.74) and (2.77) in Eq. (2 .71) , we get 

(2.78) 

Now we consider the second term of Eq. (2.47). Let (we want to make it regular in the 

lower half plane) 

(2.79) 

By decomposition theorem we ca~ write 

(2 .80) 

where 

and 
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Thus, Eq. (2.80) becomes 

e-ia1 F2(a)Ml(a) = e-
ia1 F2(a)M1 (a) f e if3m1 F2( -(3m)M::((3m) 

N-(a)(k - a)Ml (a) N-(a)(k - a)Ml (a) m=l M[ (-(3m)(k + (3m)N+((3m)(a + (3m) 

+ f eif3", I F2( -(3m)M::((3m) . 

m=l M[ (":-(3m)(k + (3m)N+((3m)(a + (3m) 
(2.81) 

Putting Eqs. (2.78) and (2.81) in Eq. (2.47), we get 

where 

(2.83) 

The application of analytic continuation principle together with Liouville's theorem to 

Eq. (2.82), yields 

Now we apply similar treatment to Eq. (2.48). In Eq. (2.48) first term is regular in the 

upper half plane, the third term and the R.H.S. have singularties in both half planes. 

Consider the third term on L.H.S . (we want to make it regular in the lower half plane). 

Let 
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Consider the second term 

T(ex) = (k - ex)N-(ex) 1 . 
M2'(ex) (ex + k) 

(2.86) 

By decomposition theorem we can write 

(2.87) 

where 
T ex _ (k - ex)N-(ex) 2kN+(k) 

+( ) - M2'(ex)(ex + k) - M:}:(k)(ex + k)' 

and 

Thus, Eq. (2.87) becomes 

(k - ex)N-(ex) 1 (k - ex)N-(ex) 2kN+(k) 2kN+(k) 
M2'(ex) (ex + k) = M2-(ex)(ex + k) - M:}:(k)(ex + k) + M:}:(k)(ex + k)' (2.88) 

Putting Eq. (2.88) in Eq. (2.85), we have 

Now consider the R.H.S. of Eq. (2.48) (we want to make it regular in the upper half 

plane) 

icrl (k - ex)N-(ex) s+( ) _ icrl (k - ex)N-(ex) rr..+() 1 ial (k - ex)N-(ex) eilk 

e ex - e '¥ ex - -e . 
M2'(ex) M2'(ex) 2 27ri M2'(ex) (ex + k) 

(2.90) 

Consider 

(2.91) 
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Applying decomposition on U(Ct), we get 

and 
U_(Ct) = f eiVrn1(k ~ IJm )N(IJm )Mi (IJm )iP; (IJm ) . 

m=l M2 (IJm )N+(IJm )(Ct - IJm ) 

Thus, Eq. (2 .91) becomes 

(2 .92) 

Consider the term of Eq. (2 .90), 

(2 .93) 

Applying decomposition on V(Ct), we get 

and 

T hus, Eq. (2.93) becomes 

eiol ( k - Ct)N-(Ct) ei1k 

M2- (Ct) (Ct + k) 
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Putting Eqs. (2.92) and (2.94) in Eq. (2.90), we reach at 

Now consider the second term of Eq. (2.48). (we want to make it regular in upper half 

plane) 
F1(ex)M[(ex) 

I(ex) = N+(ex)(k + ex)M2(ex) 

Applying decomposition theorem on I(ex) , we get 

and 

Thus, Eq. (2.96) becomes 

where 
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(2.98) 

(2 .95) 



Putting Eqs. (2.89), (2.95) and (2.97) in Eq. (2.48), we obtain 

_~ N+(k) _ eia1 (k - a)N-(a) S+(a) = 
7ri Mi,'(k)(a + k) M:;(a) 

_ (k - a)N-(a) Q_( )_ f eiVm1(k - vm)N(vm)Mi,'(vm)S+(vm) 

M2 (a) * a m=l M£ (vm)N+(vm)(a - vm) 

00 

~ C
m 

7ri Mi,'(k)(a + k) m=l a - vm' 
k 

(2.99) 

The application of analytic continuation principle together with Liouville's theorem to 

Eq. (2.99) yields 

00 

"'" C
m 

L..t a - v · 
m=l m 

(2.100) 

Now we will apply similar treatment to Eq. (2.49). In Eq. (2.49) first term is regular in 

the lower half plane, while right hand side is regular in the upper half plane. Second and 

third term on L.H.S have singularities in the lower half plane. Consider the third term 

on L.H.S. of Eq. (2 .49) . (we want to make it regular in lower half plane) 

e-ta1(k + a)N+(a) _ e-ta1(k + a)N+(a)<p2(a) 1 e-ia1(k + a)N+(a) 
Mi,'(a) Q* (a) = - Mi,'(a) - 27ri Mi,'(a) (a + k) 

(2.101) 

Consider the first term on R.H.S. of Eq. (2.101) 

(2.102) 

By decomposition theorem, we can write 

(2.103) 
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where 

and 
E1_(a) = f eiVml(k -/'m)N( -l/m)Mi(l/m)<P2( -l/m). 

m= l M2 (-l/m)N+(l/m)(a + l/m) 
(2.105) 

Thus, Eq. (2.103) becomes 

_ f eiVml(k - l/m)N( -l/m)Mi (LIm) <I> 2 ( -l/m) 

m=l M£ (-l/m)N+(Llm)(a + LIm) 

~ eiVml( k - Llm) N( -Llm)Mi (LIm) <I> 2 ( -LIm) 
+ ~ I . 

m=l M2 (-Llm)N+(Llm)(a + LIm) 
(2. 106) 

Now consider the second term of Eq. (2. 101) 

(2.107) 

By decomposition theorem, we can write 

(2.108) 

where 

(2.109) 

and 

(2. 110) 
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Thus, Eq. (2.108) becomes 

e-icxl(k + a)N+(a) 

Mi(a)(a + k) 

Putting Eqs. (2 .106) and (2.111) in Eq. (2.101), we obtain 

_ f eiVml(k - Llm)N( -vm)Mi(vm)Q:;( -LIm) 

m=l M£ (-vm)N+(vm)(a + LIm) 

+ f eiVml(k - /Vm)N( -Llm)Mi(Llm)Q:;( -LIm) . 

m=l M2 (-vm)N+(vm)(a + LIm) 
(2.112) 

Now we consider the second term of Eq. (2.49) (we want to make it regular in the lower 

half plane) 

(2.113) 

By decomposition theorem, we can write 

(2.114) 

where 

and 

(2.116) 
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Thus, Eq. (2.114) becomes 

e-ia1 Fl (a)M2- (a) 
N-(a)(k - a)M2(a) 

-f eiVmlFl(-Vm)Mi(vm) 

m=l M£ (-vm)(k + vm)N+(vm)(a + vm) 

+ f / eiVmlFl(-Vm)Mi(vm) .(2.117) 
m=l M2 (-vm)(k + vm)N+(vm)(a + vm) 

Putting Eqs. (2.112) and (2.117) in Eq. (2 .49), we obtain 

(2.118) 

where 

(2.119) 

The application of analytic continuation principle together with Liouville's theorem to 

Eq. (2.118) yields 

Putting Eqs. (2.70) and (2.84) in Eq. (2 .46), we obtain 

Fl(a)Mt(a) 
ThN+(a)(k + a) 
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= _ f ei!3",l(k - 13m) N(f3m) Mi (f3m)R+(f3m) + ~ N+(k) + f am 
m=l M{ (f3m)N+(f3m)(ex - 13m) 7ri Mi(k)(ex + k) m=l ex - 13m 

inl (k - ex)N-(ex)Mi(ex) 
+e 

(k + ex)N+ (ex)Ml (ex) 

[f ei!3ml(k - f3m)N( -f3m)Mi(f3m)P.-( -13m) + f bm ]. (2.121) 

m=l M{ (-f3m)N+ (13m) (ex + 13m) m=l ex + 13m 

Putting Eq. (2.70) and Eq. (2.84) in Eq. (2.47), we obtain 

Putt ing Eqs. (2.100) and (2.120) in Eq. (2.48), we obtain 

_ F2(ex)Mt(ex) + Fl(ex)Mt(ex) = _ ~ eiVml(k - vm)N(vm)Mt(vm)S+(vm) 
'Tl2N+(ex)(k + ex) N+(ex)(k + ex) M2 (ex) ~ M£ (vm)N+(vm)(ex - vm) 

k N+(k) ~ em inl (k - ex)N-(ex)Mt(ex) 
+--: +L..; +e -

7r2 Mt(k)(ex + k) m=l ex - Vm (k + ex)N+(ex)M2 (ex) 

[f eiVml(k -/vm)N(-:m)Mt(lJm)Q-;(-Vm) + f ex dmv ]. (2.123) 

m=l M2 (-lJm)N (vm)(ex + vm) m=l + m 

Putting Eqs. (2.100) and (2.120) in Eq. (2.49), we obtain 

e-inl F2(ex)M2-(ex) e-inl Fl (ex)M:; (ex) = f eiVml(k - vm)N( -lJm)Nlt(vm)Q-; ( -vm) 
'Tl2N-(ex)(k - ex) N-(ex)(k - ex)M2(ex) m=l M£ (-vm)N+(vm)(ex + vm) 

~ bm -inl (k + ex)N+(ex)M:;(ex) 
+L..; -e 

m=l ex + Vm (k - ex)N-(ex)Mt(ex) 

34 



( , 
,~ 

Put Q = U m in Eq. (2.121), we obtain 

Fl(Um)M{(urn) 
T/ 1 N+(um)(k + urn) 

Put Q = -Um in Eq. (2.122) , we obtain 

1- f: eif3,,l(k _-;. (3n)~~~n)N~{((3n)~+((3n) + f: . a~ I) l 
L ~ M{ ((3n)N ((3n)(um + (:In) ~ l/rn T Pn J 

~ eif3nl (k - (3n)N( -(3n)M{((3n)P.-( -(3n) ~ bn + .L- + .L- -~. --:--
n=l M{ (-(3n)N+((3n)(urn - (3n) n=l Um - (3n 

k eivml N+(k)N-(urn)M{(urn) 
ni M{(k)(k + um)N+(um)M{( -urn)' 

Put a = (3m in Eq. (2.123), we obtain 

(2.126) 

_ F2((3m)Mt((3rn) + Fl ((3rn)Mt ((3rn) _ eif3ml (k - (3rn )N-((3rn)Mt((3m) 
rJ2N+((3rn)(k + (3rn) N+((3rn)(k + (3rn)M2((3rn) (k + (3m)N+((3rn)M2-((3rn) 

[f eiVnl(k ~ un)N( -:n)Mt(Un)Q;( -un) + f dn U 1 
n=l M2 (-un)N (un)((3rn + un) n=l (3rn + n 

+ 
00 eiVnl(k _ un)N(un)Mt(un)S+(un) _ 00 en __ _ k N+(k) . L L (2.127) 

n=l M£ (un)N+(IJn)((3m - un) n=l (3m - IJn ni Mi(k)((3rn + k) 
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Put a = -(3m in Eq. (2.124), we obtain 

_ ei/3",IF2( -(3m)Mi((3m) + ei/3 m 1Fl ( -(3m)Mi((3m) +ei/3
m 1 (k - (3m)N-((3m)JvIi((3m) 

rJ 2N+((3m)(k + (3m) N+((3m)(k + (3m)M2( -(3m) (k + (3m)N+((3m)Mi( -(3m ) 

[-f eiv"l(k - vn)N(vn)Mi(vn)S+(Vn) + f en 1 
n=l M{ (vn)N+(vn)((3m + vn) n=l (3m + Vn 

+ f eiv"l(k - I/n)N( -vn)Mi(l/n)Q; ( -vn) + f dn 

n=l M{ (- l/n)N+(vn)((3m - I/n) n=l (3m - I/n 

k ei/3m 1 N+(k)N-((3m)Mi((3m) 
= 7ri Mi(k)(k + (3m)N+((3m)Mi( -(3m)' (2.128) 

In Eqs. (2.125)-(2.128), p.-( -(3m) ,R+((3m), Q-; ( -I/m) and S+(I/m) stands for 

Put a = -(3m in Eq. (2 .54) 

Put a = (3m in Eq. (2.69) 

Put a = -I/m in Eq. (2.100) 

(2.131) 
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Put ex = V m in Eq. (2 .120) 

2.4 Scattered Field 

2.4.1 Reflected Field 

Putting value of A(ex) and B(ex) from Eqs. (2.24) and (2.30) in Eq. (2.23) , we get 

J' [Fl( ex) cos[K(ex)b]- F2(ex) F1(ex) , ] -iox 
u( x, y) = , K(a) sin[K(a) b] cos K(a)y + K(a) sm K(a)y e da, 

L 
(2.133) 

( ) _ J' [{Fl(a) cos[K(a)b] - F2(a)} cos K(a)y + Fl(a) sin[K(a)b] sin K(ex)y] -ioxd 
==? u x, Y - ( ) . [ ( ) ] e ex, , K a sm K a b 

L 
(2.134) 

where L is a straight line parallel to the real a-axis, lying in the strip Im(k) < Im(a) < 

Im(k). The above integral is calculated by closing the contour in the upper half plane 

and evaluating the residue contributions from the simple poles occurring at the zeros 

of K(a)sin[K(a)b] lying in the upper half-plane. The reflection coefficient R of the 

fundamental mode is defined as the complex coefficient multiplying the travelling wave 

term exp(ikx) and is computed from the contribution of the first pole at a = k. Put 

K( a ) sin[K(a)b] = 0, 

2 [ K(a)b2 K(a)b4 
] 

K (a)b 1 - 3! + 5! .... , = 0, 

a = ±k, 
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u( x, y) = 7fi 

{Fl(a: ) cos[Vk2 - a:2b]- F2(a:)} cos Vk2 - a:2y 

+Fl(a:) sin[vk2 - a:2b] sin Vk2 - a:2y 

cx=k 

(2.135) 

Now we will find F2(k) - Fl(k) . Put a: = k in Eqs. (2.121) and (2.123), solving simulta

neously for Fl (k) and F2 (k) we finally reach at 

F
2
(k) = 171'Tl2lVh(k)N+(k )(2k) 

Mt(k)[Ml(k)M2(k) - 'Tll'Tl2 ] 

[-f e
if3

", IN((3m)Mt((3m) R+((3m) + ~ N+(k) + f am 1 
m= l M{ ((3m)N+((3m) 7fi Mt(k)(2k) m= l k - (3m 

Ml (k)M2(k)'Tl2N+(k)(2k) 
Mt(k)[Ml(k)M2(k) - 'Tll'Tl2] 

(2.136) 

and 

F (k) _ 'Tll'Tll'Tl2N+(k) (2k) 
1 - Mt(k)[Ml(k)M2(k) - 'Tll'Tl2] 

[-f e
if3mI

N((3m)Mt((3m)R+((3m) + ~ N+(k) + f am 1 
m=l M{ ((3m)N+((3m) 7fi Mt(k)(2k) m= l k - (3m 

'Tll M2(k )'Tl2 N + (k) (2k) 
Mt(k)[Ml(k)M2(k) - 'Tll'Tl2] 

[ 
~ eiVmIN(l/m)Mt(/Jm)S+( l/m) k N+(k) ~ em 1 'TlI N +(k)(2k) 

- ~ + - + ~ + ~-----,-.,--
m=l M£ (I/m)N+(l/m) 7fi Mt(k)(2k) m=l k - l/m Mt(k) 

[-f e
if3ml 

N((3m) Mt ((3m)R+ ((3m) + ~ N+(k) + f am 1 (2.137) 
m=l M{((3m)N+((3m) 7fi Mt(k)(2k) m=l k - (3m ' 
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Subtracting Eq. (2.136) from Eq. (2.137), we get 

2.4.2 Transmitted Field 

The transmission coefficient T of the fund amental mode which is defined as to be complex 

coefficient of exp(ikx) and is computed from the contribution of the pole at ex = -k in 

Eq. (2.134) the result is 

(2.138) 

Now we will find F2 ( -k) - F1 ( -k). Put ex = -k in Eqs. (2.122) and (2.124) solving 

simultaneously for Fl(-k) and F2(-k) we finally have 

1 eik1 N-(k) 00 bm 1 
+27riM+(-k) -~k-f3 

1 m=l m 

+ -2kTJ2N+(k)e- ikl [_ f eivm1 N(-vm)Mi(vm)Q-;( -Vm) 

Mi(k) m=l M£ (-vm )N+(vm) 

1 eik1N-(k) 00 dm 1 
+27ri Mi(-k) - ~ k-vm . 
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Chapter 3 

Wiener-Hopf analysis of the parallel 

plate waveguide with soft 

boundaries having finite length 

impedance loading 

In this chapter we have extended the work of Tayyar et al. [5] by considering the soft 

boundaries of parallel plate waveguide having finite length impedance loading. The 

boundary value problem gives two simultaneous modified Wiener-Hopf equations which 

are uncoupled by using pole removal technique. The solution involves four infinite sets of 

unknown coefficients satisfying four infinite system of linear algebraic equations. At the 

end reflection and transmission coefficients are determined from these system of linear 

algebraic equations. 

3.1 Introduction 

Numerous past investigation have been made to study the scattering coefficients for the 

wall impedance change in parallel plate waveguides. For example Johansen [1] have 
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considered the part x < 0 of the parallel plates are perfectly conducting while the part 

x > 0 has the same surface impedance. Heins and Feshbach [2] have considered the prob

lem of coupling of two ducts. Karajala and Mittra [3] provided the mode matching method 

to the scattering at the junction of two semi-infinite parallel plate waveguides with im

pedance wall. Arora and Vijayaraghavan [4] have considered Scattering of shielded sur

face wave in a parallel plate waveguide consisting of inductively reactive guiding surfaces 

and characterized by an abrupt wall reactance discontinuity. Finally Tayyar et al. [5] 

have considered the parallel plate waveguide by taking different impedance of upper and 

lower parallel plates. 

We consider the infinite parallel plate waveguide having soft boundaries for x < 0 and 

x > l at at y = 0 and y = b, and the part 0 < x < l have constant surface impedances 

at y = 0 and y = b. The surface impedances of the lower and upper plates are different 

from each other and denoted by Zl = 'TlIZo and Z2 = 'TJ2Z0, respectively with Zo being 

the characteristic impedance of the free space. 

'" 1 Y 

b 
Sllft 172 Sllft 

U~ 
Sllft 171 SIIft 

0 I 
X 

F igure 3.1: Geometry of the problem. 
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3.2 Mathematical Formulation 

Let the incident TEM mode propagating in the positive x direction be given by 

(3.1) 

The total field 'UT(x, y) can be written as 

YE(O , b) and XE(-oo, 00) . (3.2) 

In Eq. (3.2) 'U(x, y) is the unknown function which satisfied the Helmholtz equation 

(3 .3) 

The corresponding boundary conditions are 

'U(x, 0) = 0, -00 < x < 0 and l < x < 00, (3 .4) 

u(x , b) = 0, -00 < x < 0 and l < x < 00, (3.5 ) 

( 1 [)) (0) ikx 1 + --:--k ~ 'U x, = -e , 
t 'TIl UY 

0< x < l, (3 .6) 

( 1 [)) (b) ikx 1 - -. -- 'U x, = -e , 
tk'TI2 [)y 

0 < x < l . (3.7) 

To obtain the unique solution to the mixed boundary value problem the edge and radi

ation conditions are 

T {O(I X I1/2),lx l-t 0 
'U (x, O) = , 

0(1 x - l 1
1/2 ), 1 x l-t l 

(3 .8) 

'U(x , y) = O(eik lxl) , 1 x l-t 00 . (3.9) 
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Taking Fourier transform of Eq. (3.3), we obtain 

where 

and 

[ 
d2 2] -dy2 + K (Q) U(Q, y) = 0, 

00 

U(Q, y) = ~ / . U(X , y) eioxdx, 
27r . 

-00 

Taking inverse Fourier transform of Eq. (3.11), we get 

00 

u(x, y) = .I u(Q , y)e-ioxdQ. 

-00 

Taking Fourier transform of Eqs. (3.4) and (3.5) respectively, we obtain 

U(Q, 0) = 0, -00 < x < 0 and l < x < 00, 

U(Q, b) = 0, -00 < x < 0 and l < x < 00. 

Taking Fourier transform of Eq. (3.6), we obtain 

00 

(1 + -:---k1 aa )u(Q, 0) = ~ 1(1 + -:---k1 aa )u(x, O)eiOXdx, 
~ Til Y 27r . 2 7]1 Y 

-00 

o I 

(3.10) 

(3.11) 

(3.12) 

(3 .13) 

(3.14) 

(3.15) 

1 8-
(1 + -:---k -8 )U(Q,O) 

2 ~ 771 Y 
1 I ( 1 8) ( ) iox 1 / '( 1 a) ( ) ioxd = -2 1 + -:---k -a U x, 0 e dx + -2 1 + -:---k -a U x, O e x 
7r . 2 771 Y 7r . 2 ~7]1 Y 

-00 0 
00 

1 j' ( 1 8) ( 0) ioxd +-2 1 + -:---k -8 U x, e x, 
7r 2 7]1 Y 

I 
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1 8 - 1 ei(a+k)l - 1 . 
(1 + -:--k -8 )u(a , 0) = ~l (a) - -2 . ( + k) + etal~t (a), (3. 16) 

~ fl 7]l Y 7r~ a 

where 

(3.17) 

-00 

. 00 

~+ (a) = - (1 + -. __ )U(X,O)eta(x-l)dx. 1 j' 1 [) . 
1 27r ~k?h 8y 

(3.18) 

I 

Similarly taking Fourier transform of Eq. (3.7), we obtain 

1 8 _ 1 ei(a+k )l - 1 . 
(1 - -:--k -8 )u(a, b) = ~2(a) - -2 . ( k) + etal~t(a) , (3 .19) 

~ 7]2 Y m a + 

where 
o 

~2(a) = ~ j' (1 - -:--k
1 

88 )u(x, b)eiaxdx , 
21f . ~ 7]2 Y 

(3.20) 

- 00 

00 

1 /. 1 8 . ~t(a) = - (1 - -. - - )u(x, b)eta(x-l)dx. 
27f ./ ~kr; 2 8y 

(3.21) 

I 

The complementary solution of Eq. (3. 10) is of the form 

u(a , y) = A(ci ) cos [K( a )y] + B(a) sin [K(a)y] , (3 .22) 

where A and B are the function of a. Putting Eq. (3.22) in Eq. (3.13), we obtain 

00 

u(x , y) = .l {A(a) cos [K(a)y] + B(a ) sin [K(a)y]} e-iaxda . (3 .23) 

- 00 

Using Eq. (3.14) in Eq. (3.22), we obtain 

(3.24) 
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where 

(3.25) 

Using Eq. (3 .15) in Eq. (3.22), we obtain 

A(a) cos[K(a)b] + B(a) sin[K(a)b] = F2(a), (3.26) 

where 

(3.27) 

Using Eq. (3 .16) in Eq. (3.22), we obtain 

A() 
B(a)K(a) = n-.-( ) __ 1 ei(cc+k)l - 1 icclif,+() 

a +'k '±' l a 2' ( k) + e '±'l a . 
2 rll 7f2 a + 

(3.28) 

Using Eq. (3.19) in Eq. (3 .22), we obtain 

A( a) r r T/' I \ ,' • K (a) . r r.r I ",1 . B ( a) r . rK( \ b' K (a) r T/ r \ L 11 -- lrJ2 cosln ~a)oJ -t- -. - slUln ~a)oJJ -t- -- lrJ2 SlIll 0'. ) J - -'k- COSlI\. \a)uJJ 
rJ2 2k rJ2 2 

1 ei(cc+k)l - 1 . 
<I>2'(a) - -. ( k) + etccl<I>t(a). (3.29) 

27f2 a + 

Incorporating value of A(a) from Eq. (3.24) in Eq. (3.26), we obtain 

B(a) = F2(a) - F1(a) cos[K(a)b]. 
sin[K(a)b] 

Putting Eqs. (3.24) and (3.30) in Eq. (3.28), we arrive at 

Fl ( a) [ . ' K ( a) ] K ( a) F2 ( a) 
'r/l sin[K(a)b] -rJl sm[K(a) b] + i"k cos[K(a)]b + ikrJ l sin[K(a)b] 
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(3.30) 



-, 
'--

<P - () 1 1 _ ial <p + () 1 e 
[

ilk ] 

- 1 a - 27Ti (a + k) - e 1 a - 27Ti -:-(a-+-k-:-) , 

_ Fl(a)Ml(a) 0 F2(a) P_() = ialR+( ) 
() () + ()+ . a e a, 771N a K a ik'TlIN a 

where M1(a), N(a), P.- (a) and R+(a) are defined as respectively, 

and 

. K(a) 
iVh(a) = -r11 sm[K(a)b] + ik cos[K(a)]b, 

N( ) = sin[K(a)b] 
a K(a) , 

1 1 
P.- (a) = -<pl(a) - 27Ti (a + k)' 

Putting Eqs. (3 .24) and (3.30) in Eq. (3.29), we obtain 

F~~a) ['Tl2Cos[K(a)b] + Ki~a) sin[K(a)b] 

F2(a) - Fl(a) cos[K(a)b] [ . [K( )b]- K(a) [K( )b]] + . [K( )b] 'Tl2 sm a ok cos a 772 sm a 2 

Fl ( a ) K ( a ) { 2 2} 
'Tl2ik sin[K(a)b] cos [K(a)b] + sin [K( a)b] 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

F2 ( a) [ . K ( a ) ] _ 1 1 
- 'Tl2 sin[K(a)b] -'Tl2 sm[K(a)b] + ik cos[K(a)bJ - <P2 (a) - 27Ti (a + k) 

ial <p+ () 1 e 
[

ilk ] 

= e 2 a - 27Ti -:-( a-+-k-:-) , 

(3.36) 
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where Nh(a), Q;;-(a) and S+(a) are defined as respectively, 

(3.37) 

(3.38) 

1 ei lk 

S+(a) = <]?+(a) - - . 
2 27fi (a + k) 

(3.39) 

Notice that P*-(a) and Q;;- (a) are regular in the lower half plane except at the pole 

singularity occurring at a = -k. 

3.3 Solution of Simultaneous Modified Wiener-Hopf 

Equations 

The kernel factorization of M1,2 (a) and N(a) appearing in Eqs. (3.32), (3.37) and (3.33) 

are as follow 

(3.40) 

(3.41) 

The explicit expression of M~2(a) and N+(a) can be written as procedure outlined by 

Lee and Mittra [7] 

1 / iab I a I b 7f 
M:(a) = [- 771 sin(kb) + -;- cos(kb}P 2. exp{-[l - C - In(--) + i-

2
]} 

~ 7f 7f 

00 a iab 
x mlI (1 + f3m) exp (m7f)' (3.42) 

Mi(a) = [-772 sin(kb) + ~ cos(kb}P/2 . exp{iab [l -: C - In(~) + i~2]} 
~ 7f 7f 

00 a iab 
x IT (1 + -) exp(-), 

m=l Vm mIT 
(3.43) 
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N +( ) - [sin(kb)jl/2 {iab[ C 1 (I a 1 b) .7fj} a - . exp - 1 - - n -- + z-
k 7f 7f 2 

00 a iab 
x TI (1 + -) exp(-). 

m=l am m7f 
(3.44) 

Here 13m's , um's and am's are the roots of the functions Ml,2(a) and N(a), respectively. 

m=1,2,3 ... , (3.45) 

with 

In Eqs. (3.42)-(3.44), C is the Euler's constant given by C = 0.57721. ... It can be easily 

shown that one has 

Multiplying Eq. (3.31) with ~J~:/a), we obtain 

_ Fl(a)Mt(a) + F2(a)~Mt(a) + ~N-(a) P*- (a) = eial ~N-(a) R+(a). 
7hN+(a)Jk + a ikr;lN+(a)M1(a) NI';(a) Ml(a) 

(3.46) 

Multiplying Eq. (3.31) with e- ial ~~:)(a), we get 

= ~N+(a) R+( ) 
Mt(a) a . 

(3.47) 

Now multiplying Eq. (3.36) with ~~:/a), we get 
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Multiplying Eq. (3.36) with e-iCt1 ~"'!(:/Ct) , we obtain 

= ~N+(a) S+( ) 
Mi(a) a . (3.49) 

The first term appearing in the left hand side of Eq. (3.46) is evidently regular in the 

upper half plane. The third term and the R.H.S . of same equation have singularities in 

both half planes. Hence one has to apply the Wiener-Hopf decomposition procedure on 

these terms. Consider the third term of Eq. (3.46) (we want to make it regular in the 

lower half plane) 

Consider the 2nd term of Eq. (3.50). Let 

(3.51) 

be decomposed by decomposition theorem 

(3.52) 

where 
oo+ic 

f+Ca) = -2
1

. j' f(~) d~ 
m ~ - a 

-oo+ic 
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Completing the contour by semi circle in the upper half plane then ~ = a and ~ = - k are 

the simple poles which gives 

so that 

Define 

V2kN+(k) 
Mt(k)(a + k)' 

Completing the contour by semi circle in the upper half plane then ( = -k is the simple 

pole which gives 

Thus, Eq. (3 .52) becomes 

~N-(a) 1 

Ml(a) a+k 

~N-(a) 1 V2kN+(k) V2kN+(k) 
Ml(a) a + k - Mt(k)(a + k) + Mt(k)(a + k) ' (3 .53) 

P utting Eq. (3.53) in Eq. (3.50), we obtain 
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Now consider the R.H.S of Eq. (3 .46). (we want to make it regular in the upper half 

plane) 

Consider the first term of Eq. (3.55) and let 

( ) 
_ iol ~N-(ex.) ;r-.+( ) 

p ex. - e Ml(ex.) '10'1 ex. , (3.56) 

be decomposed by 

(3.57) 

where 
oo+ic 

p+(ex.) = -2
1 J p(~) d~, 
7n ~-ex. 

-oo+ic 

If we close the contour in upper half plane by semicircle then ~ = ex. and zeros of M1 (0 are 

the singularities which gives 

so that 
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Define 
oo+id 

p_(a) = -~ J p(~) d~, 
2m ~ - a 

-oo+id 

If we close the contour in upper half plane by semicircle then zeros of Ml (0 are the 

singularities which gives 

Thus, Eq. (3.57) becomes 

(3 .58) 

Consider the term of Eq. (3.55) and let 

l(a) = eiOtI~N-(a)~ . 
Ml(a) a + k 

(3.59) 

Applying decomposition theorem , we can write 

(3.60) 

where 
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If we close the contour in upper half plane by semicircle then ~ = a and zeros of Ml (0 are 

the singularities which gives 

so that 

Define 

If we close the contour in upper half plane by semicircle then zeros of Ml (~) are the 

singularities which gives 

Thus, Eq. (3.60) becomes 

ial,jk - aN-(a) . ei1k ial,jk - aN-(a) ei1k 
00 ei{3m IM:(!3m)Vk - f3mN(f3m)ei1k 

e Ml(a) a + k = e M1-(a) a + k -l; M{ (f3m)(a - !3m)N+(!3m)(f3m + k) 
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+ f e
i
;mIMt((3m)Jk - (3m N ((3m)e i1k . 

m=l Ml ((3m)(a - (3m)N+((3m)((3m + k) 

Putting Eqs. (3.58) and (3.61) in Eq. (3.55), we obtain 

(3 .61) 

eiol ~N-(a) R+(a) = eiCtI ~N-(a) R+(a)-~ eif3ml
Jk - (3m N ((3m)Mt ((3m)R+ ((3m) 

Ml (a) Ml(a) ~ M[ ((3m)N+((3m) (a - (3m) 

+ f eif3ml Jk - (3m N ((3m)Mt ((3m)R+ ((3m) . 

m=l 'M[ ((3m)N+((3m) (a - (3m) 
(3.62) 

Putting Eqs. (3.54) and (3.62) in Eq, (3.46), we get 

Fl(a)Mt(a) F2(a)~Mt(a) (k 1 N+(k) eiCtI ~N-(a) R+(a) 
- 7hN+(a)Jk + a + ik'r/lN+(a)Ml(a) -Y '2 7ri Mt(k)(a + k) Ml(a) 

+ f eif3ml Jk - (3m N ((3m)Mt ((3m)R+ ((3m) 

m=l M{ ((3m)N+((3m)(a - (3m) 

= _ ~N-(a) P-(a)- 0.~ N+(k) + f eif3ml Jk - (3mN((3m)Mt((3m)R+((3m) , 
Ml(a) * Y '27ri Mt(k)(a + k) m=l M{ ((3m)N+((3m)(a - (3m) 

(3.63) 

The regularity of the L.H.S. of Eq. (3.63) in upper half plane may be violated by the 

simple pole occurring at zeros of Ml (a) lying in the upper half plane namely a = (3m' m = 

1, 2, 3 .... Consider the the second term of Eq. (3.63). Let 

D(a) = F2(a)~Mt(a) 
ik'r/lN+(a)Ml (a) . 

Applying decomposition theorem, we can write 

where 
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(3.64) 

(3.65) 



If we close the contour in upper half plane by semicircle then ~ = a and zeros of M l (0 are 

the singularities which gives 

so that 

Define 

Closing the contour in upper half plane by semicircle then zeros of Ml (0 are the 

singularities which gives 

Thus, Eq. (3.65) gives 

F2(a)~Mt(a) = F2(a)~Mt(a) _ f F2U3m)Jk - /3m Mt(/3m) 
ikrhN+(a)Ml(a) ik1hN+(a)M1(a) m=l ikrhN+(/3m)M{ (13m) (a - 13m) 
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(3.66) 

_eiexl ~N-(a) R+(a) + f eif3rnl Jk - {3mN ({3m) M: ({3m) R+ ({3m) 
M:;(a) m=l M{ ({3m)N+({3m)(a - (3m) 

= _ ~N-(a) P-(a)- ~~ N+(k) + f e
if3rn l Jk - (3mN({3m) M: ({3m)R+ ({3m) 

M:;(a) * V 2 7ri M:(k)(a + k) m=l M{ ({3m)N+({3m)(a - (3m) 

00 

"\"'" am 
Da-{3 , 
m=l m 

(3.67) 

where 

(3.68) 

The application of analytic continuation principle together with Liouville's theorem to 

the Eq. (3.67) yields 

00 

"\"'" am 
Da-{3 . 
m=l m 

(3.69) 

Now we will apply similar treatment to Eq. (3 .47). In Eq. (3.47) first term is regular in 

the lower half plane, while right hand side is regular in the upper half plane. Second and 

third term on L.R.S. have singularities in the lower half plane. Consider the third term 

of Eq. (3.47) on L.R.S. (we want to make it regular in the lower half) 
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Consider the first term on R.H.S. of Eq. (3.70). Let 

(3.71) 

Applying the decomposition theorem we can write 

(3 .72) 

where 

E (a) = e-iCtl~N+(a)cpl(a) _ f eif3m1 Jk - (3m N (-(3m)Mt((3m)cpl( -13m), 

+ Mt(a) m=l M{ (-(3m)N+((3m)(a + 13m ) 

and 

Therefore, Eq. (3.72) becomes 

e-iol~N-t-(a)cpl(a) _ e-iol~N+(a)CPl(a) _ f eif3m1 Jk - (3mlV( -(3m)Mt((3m)ipl( -13m 

Mt(a) - Mt(a) m=l M{ (-(3m)N+((3m)(a + 13m) 

(3.73) 

Now consider the second term of Eq. (3.70) and let 

(3.74) 

be decomposed by decomposition theorem 

(3.75) 
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,-, 

where 

and 

Thus, Eq. (3.75) becomes 

e-iol N+ (0:) e-iol N+( 0:) 00 eif3",l N( -f3m)Mt (f3m) 

Mt(a)JC;+k = Mt(a)vaTI - ~ M{ (-f3m)(a + f3m)N+(f3m)Jk - f3m 

_ ~ eif3ml (k - f3m)N( -f3m)Mt(f3m) 
~ I . 
m=l Ml (-f3m)(a + f3m)N+(f3m)Jk - f3m 

(3.76) 

Putting Eqs. (3.73) and (3 .76) in Eq. (3.70), we obtain 

(3.77) 

Now we consider the second term of Eq. (3.47). (we want to make it regular in the lower 

half plane) 

Z(o:) = e-i01F2(a)~Ml(a). 
ikril N- (a)Ml (a) 

Applying the decomposition theorem we can write 
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(3.78) 

(3.79) 



where 

Z+(a) = e-iOlF2(a)~Ml(a) _ f ei{3mlF2(-(3m))k - (3m Mt((3m) 

ik771N-(a)Ml(a) m=l ik771M[ (-(3m)N+((3m)(a + (3m)' 

and 

Thus, Eq. (3.79) becomes 

e-iolF2(a)~Ml-(a) = e-iOlF2(a)~Ml(a) ~ ei{3",lF2(-(3m))k - (3mMt ((3m) 

ik771N-(a)Ml(a) ik771N-(a)Ml(a) ~ ik771M[ (-(3m)N+((3m)(a + (3m) 

(3.80) 

_ e-iOlFl(a)Ml(a) + e-iO~F2(a)~Ml-(a) _ f bm 
771N-(a)Vk - a ~k771N-(a)Ml(a) m=l a + (3m 

+ -iol !k+'CxN+(a) p-( ) _ f ei{3m l)k - (3m N ( -(3m)Mt ((3m)P;( -(3m) 

e Mt(a) * a m=l M[ (-(3m)N+((3m)(a + (3m) 

= ~N+(a) R+(a) _ f bm _ f ei{3m l )k - (3m N (-(3m)Mt((3m)P*-( -(3m) , 

Mt(a) m=l a + (3m m=l M[ (-(3m)N+((3m)(a + (3m) 
(3.81) 

where 

(3.82) 

The application of analytic continuation principle together with Liouville's theorem to 

Eq. (3.81) yields 

,-. 
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.. 

Now we apply similar treatment to Eq. (3.48). In Eq. (3.48) first term is regular in the 

upper half plane, the third term and the R.H.S. have singularities in both half planes. 

Consider the third term on L.H.S. (we want to make it regular in the lower half plane). 

Let 

Consider the second term of Eq. ([?]) and let 

T(a) = ~N-(a) 1 
Mi(a) a + k 

(3.85) 

be decomposed by decomposition theorem 

(3.86) 

where 
'T' (~. \ _ ~N-(a) -/2kN+(k) 
.L + \ LX J - Mi ( a) (a + k) - Mt (k ) (a + k) , 

and 

Therefore, Eq. (3.86) becomes 

~N-(a) 1 ~N-(a) 1 -/2kN+(k) -/2kN+(k) 
Mi(a) a + k = Mi(a) a + k - Mt(k)(a + k) + Mt(k)(a + k)' (3.87) 

Putting Eq. (3.87) in Eq. (3.84), we arrive at 
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Now consider the R.H.S. of Eq. (3.48) (we want to make it regular in the upper half 

plane) 

consider 

U( ) = icxl~N-(Q) if.. + ( ) 
Q e _() '±'2 Q , 

M2 Q 
(3.90) 

Applying the decomposition theorem we can write 

(3.91) 

where 

and 

Thus, Eq. (3.91) becomes 

Consider the term of Eq. (3.89), 

(3.93) 
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(3.92) 



Applying the decomposition theorem we can write 

(3.94) 

where 

and 

Thus , Eq. (3.94) becomes 

eiOll~N-(CI'.)eilk 00 eivm1.jk _ /JmN(/Jm)Mt(/Jm)eilk 

M;(CI'.)(CI'. + k) - ~ M£ (/Jm)N+(/Jm)(k + /Jm)(a - /Jm) 
= 

+ f ei;ml.jk - /JmN(/Jm)Mt(/Jm)eilk . 

m=l M2 (/Jm)N+(/Jm)(k + /Jm)(CI'. - /Jm) 

Putting Eqs. (3.92) and (3.95) in Eq. (3.89), we obtain 

(3.95) 

Now consider the second term of Eq. (3.48), (we want to make it regular in upper half 

plane) 

/(CI'.) = Fl(CI'.)~Mt(CI'.). 
ikrJ2N+ (CI'.)M2 (CI'.) 

Applying the decomposition theorem we can write 

/(CI'.) = h(CI'.) + L(a), 
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(3.97) 

(3.98) 



where 
I+(a) = Fl(a)~Mi(a) _ f F1(vm)Jk - vmMi(vm) , 

zkT/2N+(a)M2(a) m=l ik772N+(vm)M£ (vm)(a - vm) 

and 

Thus, Eq. (3.98) becomes 

Fl(a)~Mi(a) 
ikT/2N+(a)M2(a) 

where 
F1(vm)Jk - vmMi(vm) 

Cm = . 
ikT/2 N +(Vm)M£ (vm) 

Using Eqs. (3.88), (3.96) and (3.99) in Eq. (3.48), we arrive at 

(3 .100) 

F2(a)Mi(a) Fl(a)~Mi(a) ~ Cm /k 1 N+(k) 
- T/2N+(a)Jk + a + ikT/2N+(a)M2(a) - ~ a - Vm - V 2' 7ri M;(k)(a + k) 

_eicxl ~N-(a) S+(a) + f eiLlmlJk - vmN(vm)Mi(vm)S+(vm) 

M2-(a) m=l M£ (vm)N+(vm)(a - vm) 

_ (k - a)N-(a) Q-(a) _ 0..!..- N+(k) + f eiLlrnlJk - vmN(vm)Mi(vm)S+(vm) 

M2(a) • V 2' 7ri M;(k)(a + k) m=l M£ (vm)N+(vm)(a - vm) 

(3 .101) 
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The application of analytic continuation principle t ogether with Liouville's t heorem t o 

Eq. (3 .101) yields 

00 

""" em 
L.,; C< - /J . 
m=l m 

(3.102) 

Now we will apply similar treatment to Eq. (3 .49). In Eq. (3.49) first term is regular in 

the lower half plane, while right hand side is regular in the upper half plane. Second and 

third term on L.B.S have singularities in the lower half plane. Let 

Consider the first term on R.H.S. of Eq. (3.103) 

(3.104) 

By decomposit ion t heorem, we can write 

(3.105) 

where 

and 

(3.107) 
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Therefore, Eq. (3.105) gives 

e-iod~N+(a)<pz(a) 

M:}"(a) 

e-ial~N+(a)<pz(a) 

M:}"(a) 

_ f eiv",l.jk - lJmN( -lJm)M:}"(lJm)<pz( -lJm) 

m=l M{ (-lJm)N+(lJm)(a + lJm) 

~ eivml.jk - lJmN( -lJm)M:}"(lJm)<Pz ( -lJm) 
+6 / 

m=l M2 (-lJm)N+(lJm)(a + lJm) 

Now consider the second term of Eq. (3. 103). Let 

e-ial N+(a) 
H1(a) = M:}"(a)vc;+k' 

Applying decomposition theorem, we can write 

where 

and 

Thus, Eq. (3 .110) becomes 

(3 .108) 

(3 .109) 

(3 .110) 

(3.111) 

(3.112) 

e-ial N+(a) 

M:}"(a).ja + k 

e-ia:l N+(a) 00 eivml N( -lJm)M:}" (lJm) 

M:}"(a)..;c;-+k - ~ M{ (-lJm)(a + lJm)N+(lJm).jk - lJm 

(3.113) 
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., 
" 

Putting Eqs. (3.108) and (3.113) in Eq. (3 .103) , we obtain 

_ f eivm1Jk - vmN( -vm)Mt(vm)Q-:; ( -vm) 

m=l . NIt (-vm)N+(vm)(Ct + vm) 

~ eivm1Jk - vmN( -vm)Mt(vm)Q-:;( -vm) 
+~ / 

m=l M2 (-vm)N+(vm)(Ct + vm) 
(3.114) 

Now we consider the second term of Eq. (3.49) (we want to make it regular in the lower 

half plane) 

(3.115) 

By decomposition theorem, we can write 

(3.116) 

where 

and 

(3.118) 

Thus, Eq. (3.116) becomes 

_iodF 1 (Ct)~M2(Ct) 
e ikrJ2N-(Ct)M2(Ct) 

e_ialF1(Ct)~M2(Ct) _ f eivm1Jk - VmFl(-Vm)Mt(lIm) 

~krJ2N-(Ct)Nh(Ct) m=l ikrJ2M£ (-vm)N+(vm)(Ct + vm) 

(3.119) 
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Putting Eqs. (3 .114) and (3 .119) in Eq. (3.49), we obtain 

- ial F2(a)M2-(a) _ial F1(a)Jk + aM;; (a) ~ drn 
-e +e - ~ 

T/2N-(a)Jk - a ikT/2N - (a)M2(a) m=l a + Vm 

e-ial~N+(a) Q_( ) _ f eivmlJk - vmN( -vm)M:j (vm)Q;( -I/m) 

M:j(a) * a m=l M£ (-vm)N+(vm)(a + vm) 

where 

= ~N+(a) S+(a) _ f dm 
M:j(a) m=l a + Vm 

_ f eivrnlJk - vmN( ~vm)M:j(vm)Q; ( -vm) 

m=l M£ (-vm)N+(vm)(a + I/m ) , 

d
m 

= eiVrnlyk - VmF1 (-vm)M2+(vm) 

ikT/2M£ (-vm)N+(vm) 

(3.120) 

(3.121) 

The application of analytic continuation principle together with Liouville's theorem to 

Eq. (3.120) yields 

Putting Eqs. (3.69) and (3.83) in Eq. (3.46) , we obtain 

= _ f ei
{3m

lJk - f3m N (f3m) Mt (f3m)R+ (13m) + 0...!..- N+(k) + f am 
m=l M! (f3m)N+(f3m)(a - 13m) V 2' 7ri Mt(k)(a + k) m=l a - 13m 

ial ~N-(a)Mt(a) 
+e 

~N+(a)Ml(a) 

[f ei(3rr.lJk ~ f3 mN( -~m)Mt(f3m)P.-( -13m) + f a !m ]. 
m=l Ml (-f3m)N (f3m)(a + 13m) m=1 13m 

(3.123) 
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Putting Eqs. (3.69) and (3 .83) in Eq. (3 .47), we obtain 

e-ialFl(ex)Ml(ex) + e-ialF2(ex)~Ml(ex) = 
'f'/lN-(ex).jk - ex ik'f'/lN-(ex)Ml(ex) 

Putting Eqs. (3.102) and (3.122) in Eq. (3.48), we obtain 

_ F2(ex)M:}'(ex) + Fl(ex)~M:}'(ex) = _ f eivml.jk - I/mN(l/m)M:}'(l/m)S+(l/m) 

'f'/2N+(ex).jk + ex ik'f'/2N+ (ex)M2 (ex) m=l M£ (I/m)N+(l/m)(ex - l/m) 

~ 1 N+(k) ~ em ial ~N-(ex)M:}'(ex) 
+ -- + ~ +e 

2 7fi M:}'(k)(ex + k) m=l ex - l/m Vk + exN+(ex)M2-(a) 

I ~ eivml\/k - I/rn N ( -l/rn)M:}'(I/m)Q-; ( - l/m) + f dm l 
l~ M£ (-l/m)N+(l/m)(a + l/m) m=l a + l/m J . 

Putting Eqs. (3.102) and (3.122) in Eq. (3.49), we obtain 

_e-ial F2 (ex)M:; (a) +e-ial F~(ex)~M2- (ex) = f eiv",l.jk - I/mN ( -l/m)M:}'(I/m)Q; ( -l/m) 
'f'/2N-(ex)~ ~k'f'/2N (a)M2(ex) m=l M£ (-l/m)N+(l/m)(ex + l/m) 
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3.4 Scattered Field 

3.4.1 Reflected Field 

Putting value of A(a) and B(a) from Eqs. (3.24) and (3.30) in Eq. (3 .23), we obtain 

u(x,y) = Fl(a)cosK(a)y+. sinK(a)y e-W!Xda, 
/

. { F2(a) - Fl(a) cos[K(a)b] } . 
. sm[K(a)b] 
L 

(3.127) 

( ) _ f {Fl (a) cos[K(a)y] sin[K(a)b] + {F2(a) - Fl(a) cos [K(a)b]} sin K(a)y} - iax d 
=:} U x, y - . [ ( ) ] e a. . sm K a b 

L 

(3 .128) 

Put 

sin[K(a)b] = 0, 

where n = 0, 1,2, ... , 

(3.129) 

The reflection coefficient R of the fundamental mode is defined as the complex coefficient 

multiplying the travelling wave term exp(ikx) and is computed from the contribution of 

the first pole at a = q 

(3.130) 

where 

F _ rlIk2Ml(q)M2(q)N+(q)~ 
l(q) - Mi(q){k2Ml(q)M2(q) _ q2 + k2} 
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and 

771k2Ml(q)M2 (q)N- (q) eiql~ 

Ml (q){k2M1(q)M2(q) - q2 + k2} 

772kM2(q)N-(q)(k - q)eiql.Jk+CJ 
iM2 (q){k2M1(q)M2(q) - q2 + k2} 

F2(q) = 771 kMl(q) N+( q)(k + q)~ 
iM:(q){k2Ml(q)M2(q) - q2 + k2} 

771kMl(q)N-(q)eiql(k - q).Jk+CJ 

iMl (q){k 2lVh(q)M2(q) - q2 + k2} 

772k2 Ml (q)M2(q)N-(q)eiql~ 

Mi(q){k2Ml(q)M2(q) - q2 + k2} 
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(3.131) 

(3.132) 



3.4.2 Transmitted Field 

The transmission coefficient T of the fundamental mode which is defined as to be complex 

coefficient of exp( ikx) and is computed from the contribution of the pole at a = -q III 

Eq. (3 .128) the result is 

where 

and 

772 kM2( -q)N+(q)e-iql(k + q)..[k=q 

iM:f(q){k2 Ml (-q)M2( -q) - q2 + P} 

(3 .133) 

772 kM2( -q)N-(q)(k - q)v"f+q ~ M2 (v",)N+(vm)(-q-vm) 

[ 

~ eivml;~-vmN(vm)Mi(vm)S+(vm) I 
+ iM2-(q){k2 Nh (-q)M2( -q) - q2 + k2} !k 1 N+(k) ~ em 

-y 2';::; Mi(k)(-q+k) - D (-q-vm ) 

m=l 
- ~ -. 1-~ ei{3ml~N(-f3m)lvrt(f3m)P.-(-f3rn.l 

771 k2 M1 (-q)M2( -q)N- (q)e-iqlv"f+q m=l M{ (-f3m)N+(f3m)(-q+f3",) 

Mt(q){k2M1(q)M2(q) - q2 + k2} _ ~ bm 
D (-q+f3",) 
m=l 

771k2Ml (-q)M2( -q)N+(q)..[k=q 
M1-(q){k2M1(-q)M2(-q) - q2 + k2} 
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