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Preface

The dynamics of fluids with complex microstructure provide a major challenge to the
researchers. Examples of such fluids include polymers, pasty materials, ketchup, mud.
cheese, emulsions, certain oils, paints etc. The starting point for the description of most
complex viscoelastic material is the consideration of a non-Newtonian fluid model. Many
non-Newtonian fluid models exist due to diverse characteristics of complex fluids in
nature [1-4]. Certainly, the non-Newtonian fluid models provide a more complicated
expression of the apparent viscosity. The classical Navier-Stokes equations are
mmadequate for the description of such complex viscoelastic materials. Hence, several
constitutive equations of non-Newtonian fluids have been proposed. In view of this, the
non-Newtonian fluids have been mainly classified into three categories namely (i) the
differential type. (ii) the rate type and (iii) the integral type. It is revealed from the
literature that the boundary layer flows of rate type fluids have not been studied much
when compared with the differential type fluids. In recent times, the boundary layer flow
analysis of simplest subclass of rate type fluids (known as the upper-convected Maxwell
(UCM) fluid) has been discussed [5, 6]. Further, the analysis of Falkner-Skan flow
represents a fundamental problem in fluid mechanics. The description of previous studies
through analytic and numerical treatments on this flow can be seen in the studies [7-9].

Now a days, the analysis of aerosol deposition is very significant in the engineering
processes. Specifically, the contaminant particle deposition onto the surface of products
in the electronic industry has a pivotal role regarding the quality of final product.
Convection is one of the important factors that greatly influence particle deposition.
Mixed convection flows are encountered in many engineering and industrial applications.
Such flows widely occur in electronic devices cooled by fans, nuclear reactors cooled
during emergency shutdown, heat exchanges placed in a low-velocity environment, flows
in the ocean and in the atmosphere etc. Mixed convection due to moving surfaces also
has applications in material processing systems including welding extrusion of plastics,
hot rolling, paper drawing etc. A host of recent researchers [10-14] have contributed

towards the analysis of boundary layer mixed convection past through the different



physical structures. In view of the above discussion the present dissertation is arranged as
follows.

Chapter one includes some basic definitions and equations. Chapter two addresses the
Falkner-Skan wedge flow of power law fluid with mixed convection and porous medium.
Series solution of the developed problem is obtained by homotopy analysis method.

Chapter three describes Falkner-Skan wedge flow of Maxwell fluid with mixed
convection. The present research extends the flow analysis of ref. [10] in two directions.
We first consider the Maxwell fluid model. Second generalization is concerned with the
examination of Newtonian heating. In fact there are four common heating processes
which represent wall to ambient temperature distributions. When the heat transter rate
from the bounding surface with a finite heat capacity is proportional to the local surface
temperature, the corresponding heating processes is known as Newtonian heating or
conjugate convective flow [15]. The boundary layer flow and heat transfer over a
stretching sheet with Newtonian heating 1s reported in the refs. [16-21]. This chapter is
organized as follows. In section two we present the mathematical model of the problems.
Section three contains series solution of the problems by homotopic approach [22-30].
Section four displays the convergence of the series solution. More, results and discussion

are also included in this section. Some interesting points are noted in section five.
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Chapter 1

Basic definitions

This chapter consists of some fundamental definitions, concepts and laws which are useful for

the understanding of analysis presented in the subsequent chapters.

1.1 Fluid

Fluid is a substance that deforms continuously under the influence of shear stress, no matter
how small the shear stress may be or fluid is a substance which cannot sustain a shear force

under the static condition.

1.2 Fluid mechanics

The branch of mechanics which concerns with the behavior of all fluids either at rest or in
motion and also the effects of fluid properties on boundaries. In other words, fluid mechanics
is a branch of continuous mechanics which describes the effects of forces on fluid particles in
motion and under the static condition in a continuous material. It is divided into two main

branches.

1.2.1  Fluid statics

It is the branch of Auid mechanics which describes the behavior of fluids under static condition

(at rest).



1.2.2  Fluid dynamic

It is the branch of Huid mechanics which exhibits the behavior of fluids in motion.

1.3 Stress

The force acting on the surface of unit area within a deformable body is known as stress. The
unit of stress in SI system is kg/m.s* and dimension [%] Further stress is divided into two

following components.

1.3.1 Shear stress

In shear stress the force acts parallel to the unit surface area.

1.3.2 Normal stress

In normal stress the force acts perpendicular to the unit surface area.

1.4 Strain

Strain is a dimensionless quantity used to measure the deformation of an object caused by the
applied forces.

1.5 Viscosity

It is the internal property of fluid that measures the resistance of a fluid against any deformation
when different forces are acting upon it. Mathematically, it can be expressed as the ratio of

shear stress to the rate of shear strain, i.e.

shear stress

viscosity (p) = (1.1)

rate of shear strain’

It is also known as absolute viscosity. Unit of viscosity in SI system is kg/m.s and dimension

[z7)-
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1.5.1 Kinematic viscosity ()

The ratio of absolute viscosity y to density of the fluid is known as kinematic viscosity. i.e.
< (1.2)

where o is the absolute or dynamic viscosity and p is the density of the fluid. Its unit in SI

. 0 i - . 2
system is m~/s and dimension is [!T}

1.6 Flow

A material tends to deform under the influence of different forces. If the deformation increases

continuously without any limit, then the phenomenon is known as flow.

1.6.1 Laminar flow

Laminar flow is that type of flow in which fluid particles have specific paths and paths of
individual particles do not interact or cross each other. If we observe the smoke rising from a
cigarette. For the first few centimeters the fow is certainly laminar. Then the smoke becomes

turbulent.

1.6.2 Turbulent fow

Turbulent flow is that type of flow in which fluid particles have no specific paths and also these

paths of individual particles cross each other.

1.7 Newtonian’s law of viscosity

The Newton's law of viscosity states that shear stress which deforms the fluid element is directly
and linearly proportional to velocity gradient.

Mathematically,

du
Ty OF ==

1.3
% (1.3)

6



or

du .
Tyx ‘:”@- (14)

where 7, is the shear stress acting on fluid element and p is the constant of proportionality

which is known as dynamic viscosity.

1.8 Newtonian fluids

Newtonian fluids are those which obey the Newton's law of viscosity i.e. shear stress is directly
and linearly proportional to the deformation rate, It is noted that viscosity is constant for each
Newtonian fluid at a given temperature and pressure. Examples of Newtonian fluids are water,

sugar solutions, glycerin, light-hydrocarbon oils, silicone oils etc.

1.9 Non-Newtonian fluids

The fluids which do not obey the Newton’s law of viscosity are known as the non-Newtonian
fluids. It is noted that viscosity for such fluids do not remain constant but it changes with the

applied shear stress. For such fluids we can write

du\" ;
Tyn X (@) o B, (1.5)
or
5 du . du\"1 (1.6)
e =N— N=K|— p %
Ve ’)(Iy ! dy

where 7) is the apparent viscosity, k is the consistency index and n is the index of flow behavior.
Noted that for n = 1 above equation reduces to the Newton's law of viscosity. Examples of such
fluids are paints, flour dough, ketchup, polymer solutions, tooth paste and blood ete. Further
non-Newtonian fluids are categorized into the three types (i) Integral type (ii) Differential type

(#i7) Rate type. In this dissertation we only consider the rate type fluids.



1.9.1 Rate type

Those Huids which characterize the relaxation and retardation time effects are known as rate
type fluids. Examples of rate type Huids are Maxwell fluid, Oldroyd-B Auid and Burger's fluid

elc.

1.10 Relaxation time

Under the influence of different forces a system goes to perturb. After removing such forces per-
turbed system return to its equilibrium. The time taken by the system to reach its equilibrium

position from perturbed position is called relaxation time.

1.11 Retardation time

The time required to balance the applied shear stress by the opposing force produced in the

fluid due to the applied shear stress is called retardation time.

1.12 Porous medium

A material which in composed of solid matrix with interconnected voids (pores) is called a
porous medium. Fluid flows through these pores of a material and distribution of these pores
are irregular in nature. Examples are sand, human lungs, human skin, sponge, filters, wood,

paper and cloth ete.

1.13 Mechanism of heat flow

When one considers two different bodies located at different temperature then the heat flows
from the body at high temperature to the body at low temperature. This transfer of heat takes

place by three methods.



1.13.1 Conduction

The transfer of heat from one body to another body due to the only collision of molecules which

are in contact and not due to the transfer of molecules is called conduction.

1.13.2 Convection

In this process the transfer of heat occurs due to the relative motion of molecules or transfer of

molecules.

Forced convection

Forced convection is a mechanism of heat transfer in which fluid motion is generated by an

external source like a pump and fan etc. Forced convection is typically used to increase the

rate of heat exchange.

Natural convection

Natural convection occurs due to the temperature differences which effect the density and thus
buovancy of the fluid. Natural convection can only occur, when there is gravitational field. It

is also known as free convection.

Mixed convection

Mixed convection flow occurs when both natural and forced convection processes simultaneously

and significantly contribute to heat transfer.

1.13.3 Radiation

Radiation is that process in which heat is transferred directly by electromagnetic radiations.
In liquids and gases convection and radiation play very important role in the transfer of
heat but in solids convection is totally absent and radiation is usually negligible. Thus for solid

materials conduction play major vole in the transfer of heat.



1.14 Thermal conductivity

It is the property of a material which measures the ability to conduct heat.
Fourier's law of conduction which relates the rate of heat transfer by conduction to the

temperature gradient is

=% = —kA— (1.7)

where ‘:—ft is the rate of heat transfer, & is the thermal conductivity, 4 is the area and ‘r‘i—i is the
temperature gradient.

Now we define the thermal conductivity from the Fourier’s law as

"the rate of heat transfer through a unit thickness of a material per unit area and per unit
temperature difference".

Thermal conductivity of most liguids decrease with increasing temperature except water.

The unit of thermal conductivity is kg.m/s*. X and dimension is [%—3]

1.15 Thermal diffusivity

Thermal diffusivity of a material is defined as, "thermal conduetivity of a material divided by
the product of density and specific heat at constant pressure".
Mathematically it can be expressed as

e (1.8)

Pty

The unit of thermal diffusivity in SI system is m?/s and dimension is [%]

1.16 Newtonian heating

Newtonian heating is that type of heat transfer in which the internal resistance of a body to flow
heat is neglected. In this process the rate of heat transfer is directly proportional to the surface
temperature of the body. It is noted that in Newtonian heating the temperature remains same

throughout the body at a given time. This type of analysis is also called as the lumped heat

10



capacity analysis.

1.17  Dimensionless numbers

1.17.1  Reynold number

Reynold number for the fluid behavior in the boundary layer is defined as, "the ratio of inertial
forces to viscous forces". Inertial forces act upon all masses in a non-inertial frame of reference
while viscous force is the internal resistance of a fluid to flow.

Mathematically it can be expressed as

_ Inertial force

e e e 1.9
. Viscous force (1:9)
2
pv* /L Lv
_ o T 1.10
Re o] L2 — Re . (1.10)

where v is the fluid velocity, L is the characteristic length and v is the kinematic viscosity. For
small Reynold number viscous forces are dominant which characterize by the laminar flow while

turbulent flow occurs at high Reynold number due to the dominant inertial forces.

1.17.2 Prandtl number

It is the dimensionless number which measures the ratio of momentum diffusivity to thermal

diffusivity, Mathematically it can be written as

viscous diffusion rate

= 1.11
o thermal diffusion rate ( )
e W plp  pep 1.12
Pr_a_!.-:/pcp* k (L1

where v is the kinematic viscosity or momentum diffusivity and a is the thermal diffusivity.
Physical significance of Prandtl number is that, it gives the relative thickness of velocity bound-
ary layer and thermal boundary layer. For small Pr heat diffuses very quickly as compared to

the momentum.

11



1.17.3 Grashof number

It describes the relationship between buoyancy force and viscous force acting on a fluid. It is
named after the German engineer Franz Grashof.
Mathematically it can be represented by the relation,
1’3

Gr = gB(T - Teo) 5 (1.13)

where g is the gravitational acceleration, @ is the volumetric thermal expansion coefficient, [
is the characteristic length, v is the kinematic viscosity and T', T are the temperature of the

fluid and surrounding respectively.

1.17.4 Deborah number

It is the ratio of time of relaxation to time of observation or characteristic time scale for a

material. Mathematically it can be defined as

t
De = = (1.14)
't.*‘-'

where f, is the relaxation time and t, is the characteristic time or time of observation. If the
time of relaxation of a material is very small than the time of observation i.e. small Deborah
number, material behaves like fAuid with an associated Newtonian viscous flow. But on the
other hand, if the time of relaxation of a material is large than the time of observation then

material behaves like solid.

1.17.5 Nusselt number

It is the dimensionless heat transfer coefficient which gives a measure of the ratio ol convective
to conductive heat transfer across the boundary and can be expressed as
convective heat transfer coeflicient

Nuy = - - 118
k conductive heat transfer coeflicient ( )

12



Now heat transfer by convection is (RAT') and by conduction is (kAT/L). So Nusselt number
becomes

_N'EJ',L: S (llﬁ]

where h is the convective heat transfer, L is the characteristic length and % is the thermal

conductivity of the fluid.

1.17.6 Skin friction

When Huid moves across a surface certain amount of friction appears which is called skin
friction. It occurs between the fluid and the surface, which tends to slow the fluid's motion.
The skin friction coeficient is defined as,

TI.IJ

= — 1.17
Cs pU2]2 (1.17)

where 7, is the shear stress at the wall, p is the density and U is free-stream velocity.

1.18 Falkner-Skan flow and transformation

A class of self-similar boundary-layer flows in the presence of a pressure gradient was found by
Falkner and Skan (1930). Falkner-Skan flow is an external flow with a pressure gradient. This

type of flow is characterized by flow past wedge shaped bodies, We consider the boundary layer

equations
du du
™ + 5@} =0 (1.18)
du du 10p 0%u
lt*_cﬂ-FUja—:;—"—;_‘a;-!'U'aTJi (119)
where
1 dp au
] R, oo
p Oz L o ()

in which the free stream velocity U is proportional to ™.

Uxa2™ o U=ax™ (1.21)

13



where a is constant. Now for the Falkner-Skan flow we define the similarity variables of the

form
; r m—1
n=1y \/_(”":“ D y\/—(’”’ +4Ce (1.22)
2 v 2uv
and
2vla wCpmt+l1
b=, ) —_—— — | ————— 2
b= W=y @ (1.23)

Using Eqgs. (1.22) and (1.23) in (1.19) we get

'+ f"+B(1-f?) =0 (1.24)
with the boundary conditions
FO)=f(0)=0, f'(c0)=1 (1.25)
where
g 2m (1.26)
T om+1 ’

The expression (1.24) is known as Falkner-Skan equation. For = 0, Eq. (1.24) reduces to the
Blastus equation which gives the flat plate flow. Tor g = 1, it reduces to the stagnation point
flow and 3 = —0.1988, for the separated flow. The parameter £ denotes the behavior of pressure
gradient. For positive values of the parameter @ the pressure gradient is negative or favorable
and if 4 is negative, the pressure gradient is positive or adverse. Further, for separated flow the

value of 3 denotes the point where the pressure gradient is zero.

1.19 Homotopy analysis method

In order to solve the non-linear problems, Liao [22] proposed a method which is known as
homotopy analysis method (HAM). For the basic idea of homotopy analysis method, we consider

the following differential equation

Nu(z)] =0, (1.27)

14



where N is a non-linear operator, » is the independent variable and u(z) is the unknown

function. The zeroth-order deformation equation is

(1 —q) L] (x;q) —uo (z)] = qhN [t (z;q)] (1.28)

i which ug () denotes the initial approximation, £ is the auxiliary linear operator, ¢ € [0, 1]
is an embedding parameter, % is an auxiliary parameter and @ (z;¢) is unknown function of
and ¢.

For ¢ =0 and ¢ = 1, One has

u(z;0) = ug (x), and B(z; 1) =u(z) (1.29)

As when g varies from 0 to 1, the solution @ (z;q) varies from initial approximation ug () to

the final solution u (x). By Taylor series expansion one can write

1 0™ (x;q)
a aqm

u(w;q) = ug (x) + Z wrE) e uwnlz)=

m=1

(1.30)
=0

when g = 1, we get

u(z) = ug (x) + Z win () (1.31)
m=1

Differentiating the zeroth-order deformation Eq.(1.28) m-time with respect to g, then dividing

by m! and finally setting ¢ = 0, we get the m-th order deformation equation

£ [t (2) = Xpntm1 ()] = FRom () (1.32)
N_ L O"NIi(z;q)]
Rm (1‘) = (m. =4 1)! aqm 4=0 (133)
with
0, m<l1
Xim = - (1.34)
1, m>1



Chapter 2

Falkner-Skan wedge flow of power
law fluid with mixed convection and

porous medium

2.1 Introduction

Here an analytical solution is developed for a steady two-dimensional Falkner-Skan wedge flow
of an incompressible power-law fluid. The effects of porous medium and heat transfer by mixed
convection are examined. The energy equation in the present flow is also solved. The governing
nonlinear partial differential equations are converted to the ordinary differential equations by
suitable similarity transformations. The arising mathematical problems have been solved by
honmotopy analysis method (HAM). Convergence of problems have been checked. The influence
of different parameters are presented through graphs and tabulated values. The numerical
values of local Nusselt number and skin frietion coefficient are computed and analyzed. The

work in this chapter is a review of research paper [10].
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Fig. 1. Phyzical flow model.

2.2 Mathematical formulation

Consider the two-dimensional Falkner-Skan wedge flow and heat transfer of a power-law fluid
under the influence of mixed convection. Further fluid saturates the porous medium. Cartesian
coordinates (x,y) are used in which 2- axis is parallel to the plate and y-axis perpendicular to

it. The continnity and momentum equations are

V.V =0, (2.1)
pa =V.T+R, (2.2)

The velocity field for the present flow is
V = [u(x,y), v(z,y), 0]. (2.3)

By invoking velocity field in Eqs. (2.1) and (2.2), the boundary layer equations governing the

flow in a power-law fluid are

du v
'é'; + 5; =0 (24)
0'”. 8“. . 1 ap 1 a?‘xy 1 &
Yo vay T poax o p Ay E pRz' (%:5)
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The stress tensor for the power-law model is

n—1 v
Ty = 212D Di| 7 Dy (2.6)
and
1 (0w Ouy .
= = =it 2.
D 2 (D:L'J- 3 63;1) L,

where D;, denotes the stretching tensor, n is the power-law index, p is the consistency coefficient

of viscosity. R, is the flow resistance offered by the porous medium given by

R, = ——u"-

u (2.8)

Using Egs. (2.6 — 2.8) in Eq. (2.5) we obtain

du  du 1dp 10 du|" pe , Fe? ,
Jou, ou  10p 190 |0ul™y ue . 2.9
Yoz T Uf)y poxr  pdy (“ dy ) pKu K. &

In the presence of buoyancy forces Eq. (2.9) becomes

du
V— = piees
dy

D v 1o 10,
o oy podx  pdy :

i pe , Fe o _ : Loy
_ BT 4 9B (T— Tao) Sin (2] (210
) - g e o (7= Twisin () 210

In the above expressions v and v are the velocity components in the x and y-direction, n is the
power law index, p is the density, € is the medium porosity, K is the permeability parameter of
the porons medium, F'is the imperial constant in the second order resistance, 4 is the thermal
expansion coefficient and e is the angle of inclination.

The energy equation for the present problem is

drT

pepy—— = T.L —divq, (2.11)
dit
q=—hkograd T, (2.12)

where p is the density of fluid, ¢, is the specific heat, T is the Cauchy stress tensor, L is the

velocity gradient, T' is the temperature, q is the heat flux and ky is the thermal conductivity.
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Eq. (2.11) in the absence of viscous dissipation becomes

or or O*T 3
Pl (::53—: -+ u-(%—) = kU-CTJz-_ (2.13)

The subjected boundary conditions are

o= il o= () I ="1T% at y =0,

uw — U, v—{) T —+Ty asy— oo. (2.14)

Here U (=cx™) is the free stream velocity, The relation between the Falkner-Skan power law

parameter and wedge angle A is

L (2.15)

1+ m

Noted that U increases along the wedge surface when § > 0 and decreases for & < 0.

We define the similarity transformation of the form

’ o =L
1= yg()= LRI, % =U(z)sRel /()

STUTT fea\2—1
Re, = {??1+1)Mﬂ“, (2.16)
iz

v =—U(z) Re; ™ ”—_l‘_l- {[m 2n—1)+1) f+[m(2—n)—1] n_f"} s w=U @) (81T7)

Using Eqs. (2.16) and (2.17) into Eqs. (2.4), (2.10), (2.13) and (2.14), it is noted that Eq.
(2.4) is identically satisfied while Eqs.(2.10) . (2.13) and (2.14) are reduced as follows

diA=1 i, M(2N — 1) +1 .0 B a B-—m 12 A _ (" + Y _
nlf ] f +("'J‘T--l-]-)(?"l--i-1)'“t +m+1 m—+ 1 m+l[1 (f) ]+AGS]R(2)_0'
(2.18)
po Im(2n—1)+1] i
8" + b 1 Pr fo' =0, (2.19)
f o= f=0, 8=1,  at n=0,
f»' = 1, [Z as 1] — 09, (2.20)
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where

: . 7l pre w7 "—2”
Heellopes BT, ,\zg’-;, P D SRS (2.21)
pK VK Res o
&'14’2” . .1'” 5
Gre=(m+1)g3p (Tw — Tws) = 2i-n) Re= (m+1) I—/(..-"'_n, (2.22)

The skin friction coeflicient and the local Nusselt number are defined as

Ty (0) Ly
== ¢ o T g 2.2
Cy U2’ wnd Nu, "o (T - Too) (2.23)
with
du\" aT
rm=n(5) o w=—h(5) (221)
y y=f) y y:ﬂ
Using similarity transformations in Eqs. (2.23) and (2.24) we get
1 . 7 =L
50; Re; ™ = (m+1) [ (0)]", Nu; Rert' = —¢'(0). (2.25)

2.3 Solutions by the homotopy analysis method

As we know that the homotopy solutions depend on the initial guesses (fy,fy) and auxiliary

linear operators (Ly, Lg) which are chosen in the forms

fo=n—1+ Exp(—n), 0y = Ezp(—), (2.26)
=259 gopm= 250 (221)
S ml= an®  on’ SN = an? '
with the properties
ACJ' [A| e 4+ Ase + Ag] =0, (2.28)
Ly [A;;e”“ + A5e"’] =, (2.29)
where A4, (1 = 1 — 5) are the arbitrary constants.
2.3.1 Zeroth order problem
(=) Lr |Fna) = )] = ahgNy [F(miq)] (2.30)
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(1—q) Lo [0 (n;9) — 00 (n)] = qhaNa [0 (n: q)] . (2.31)

F(0;q) = M =0, #(09)=17=0, (2.32)
dn
art _ ., Bln) = 0 8% —6s, (2.33)

an
where fiy and hg are the non-zero auxiliary parameters, ¢ € [0, 1] is the embedding parameter

and the nonlinear operators Ny and Ny are

. [+ > P RF m@@n-—1)+1 ,8%f B (B—m) ﬂ)ﬁ
M [f(fi,f})] i on? P ¥ (m+1)(n+ l)f(?w]Q m+1 (m+1) (31;
A arx”® . o
e [1 - (5;;) ] + M\0Sin (5) , (2.34)
%0 o8
No @ (n:9)] = W—{—ﬂilf’r[m@n—l)+1]f~éﬁﬁ‘ (2.35)
Fo0)=fom),  8(n,0)=60(n), (2.36)
Fn,1)=f (@), B(n1)=0(n), (2.37)

when g varies from 0 to 1 then f(n. q) and a(n. q) vary from the initial guesses fy (1)) and fg (1)
to the final solutions f (1) and g (7) respectively. Expanding f(n‘q) and a(n‘q) in Taylor’s
series with respect to the embedding parameter g one can write

oo

A | : L8 f (n,

P =fom+ Y femdt, sl =500, (239)
k=1 '

- sy 1 9% (,

0 (n.9) =00 (n) + Y _ 0k (n)d", Or (1) = g% lg=0 - (2.39)
k=1 ’

The auxiliary parameters iy and fig are so properly chosen that the series (2.38)and (2.39)

converge at ¢ = 1. Hence we have

F)=fom)+)_ fi(), (2.40)
k=1

6 (n) =B (n)+ > 0k (n). (2.41)
k=1
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2.3.2  kth-order deformation problems

Differentiating the zeroth-order deformation problem (2.30) and (2.31) k-times with respect to

¢, dividing by k! and setting ¢ = 0, the kth-order deformation problem is given by

Ly [fi () = xofe—1 (m)] = hyRpu (n) (2.42)
"CD' [9.": (”) han ngk—l (”)] = ﬁ'gﬂﬂ.k (T)') 1 (243)
fr(0)=0, frL(0)=0, 6;(0)=0, (2.44)
) =0, B(n)=0, asn— oo. (2.45)

When n = 1 the nonlinear operators are

& fro_i_ 1“‘1 2 fr_i_ E?f 5f ..
f B o : k—i—1 i k—1
Ri(m) = o’ + 9 ; fi am: m+1 Z an 6?}

A _0fp-1 + Ay Sin (%) + ( A + i ) (1—xx), (2.46)

Tm+1 dy m+1 m+1
20—y [m(2n—1)+1] s 1

‘ 2.47

RY) = gt + R ;f o (247)

The non linear operators for n = 2 are given by

2 : k=1 a2, o
Fitnl = i P fricy | 3m+1 P frici  (B—m) = 8fi dfi—ivy
Ri.(n) = 22 a2 oF T ammel) gf, o e
k-1,
df"'dff | A B _ .
m+J, d"f dn RS ISHL(Q) al (m-{-l M m+1) (1=3X2.48)

90, =
RY (n) = 3??2 Ly % Pr(3m+ 1] Z f,ag—nl (2.49)
1=0

and similarly we can obtain for n = 3,4, ... .

with
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0, k<1
1, k>1

The general solutions of Eqs. (2.42) and (2.43) can be written as
fe(m) = fi (n) + Ay + Age” + Aze™, (2.51)

O (1) = 0} (n) + Age” + Ase™, (2.52)

in which f and @} are the special solutions and the values of A, (i = 1 — 5) after using the

boundary conditions (2.44) and (2.45) are given by

afr % 7
Ay = Ay=0, Ay = fgr.(?n) ' Ay = —Az - [; (0),
n=0

As 8% ()10 + (2.53)

fl

Note that the solutions of the problems involving Eqs. (2.42) — (2.50) are constructed using the

symbolic computation software MATHEMATICA when £ =1,2,3, ...

2.4 Analysis of the solutions

2.4.1 Convergence of the series solution

We know that the series solutions contain auxiliary parameters fiy and fig. The convergence of
series solutions depend upon these parameters. The relevant fi-curves have been sketched in
the Figs. 1 and 2. It is noticed that the admissible ranges of iy and fg are —1.5 < hy < —0.5

and —1.6 < lig < —0.4.
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Table 2.1 : Convergence of the series solutions for different order of approximation when

A=01.B=01lm=1A=1,Pr=1and a =n/4.

Order of approximation | —f"” (0) | 8” (0)

1 0.39314 | 0.20000

3 0.24749 | 0.0080000

6 0.24147 | 0.000064000
8 0.24142 | 0.0000025600
9 0.24142 | 0.0000025600
15 0.24142 | 0.0000025600

, A= 01 B=01m=10,1=02Pr=1 a=n/4 n=10

-0.25
-03
-0.35
-04
-0.45
-05
-0.55

fll'l'(oj

-2 -1.5 =1 -0.5 0
hy

Fig. 2.2. h-curve for the function f.

24



A=01, B=01m=10A=02Pr=1a=n/4, n=10

-2 -1.5 -1 -0.5 0
hy

Fig. 2.3. h-curve for the function 6.

2.4.2 Discussion

In this section we study the effects of different embedded parameters on the velocity and
temperature profiles. Therefore, Figs. 2.4 — 2.21 have been prepared, Figs. 2.4 — 2.6 indicate
the effect of A on the velocity profile for the different values of m and n = 1. It is observed
that the velocity profile increases with increase in A but the velocity field increases slowly by
increasing m. The velocity boundary layer thickness decreases with an increase in A. However,
it gives opposite behavior for A which can be seen in the Figs. 2.7 — 2.9. These Figs. show
that the velocity profile increases with an increase in the values of A. Further, the velocity field
increases largely when m increases and velocity boundary layer thickness decreases. The effect
of A on velocity profile is plotted in the Figs. 2.10 — 2.12 for the different values of m and
n =2 . It is observed that the velocity profile increases with an increase in the values of A but
the velocity profile increases slowly when m is increased. From these Figs. we also observed
that the velocity boundary layer thickness decreases. The effect of A on the velocity profile is
sketched in the Figs. 2.13 — 2.15 for different values of m. It is noticed that an increase in
the values of A yields an increase in the velocity profile. However, the velocity boundary layer
thickness decreases. The effect of Prandt] number on temperature profile is shown in the Figs.
2.16—2.18 for different values of m and n = 1. It is clear that temperature profile decreases with

an increase of Pr. Further thermal boundary layer thickness decreases and it is also observed
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that temperature profile decreases largely by increasing m. Figs. (2.19 — 2.21) are plotted the
effect of Pr on temperature profile for the different values of 1 and n = 2. It is observed that
the temperature profile decreases with an increase in Pr and thermal boundary layer thickness
decreases. Further, the temperature profile decreases largely when m increases.

Table 2 and 3 show the effects of (m + 1) f” (0) and (—¢' (U)) for different values of para-

meters. The magnitude of skin friction coefficient increases with the increase in m, A, B, A and

a. Local nusselt number increases with an increase in m, n and Pr.

4 5

. 2 3
Fig. 2.4. Effect of A on f’ for n =1 and m = 0.

f'(n)
1} —
| \\ . -;:..fi‘:'-::'—
O
08¢t /;,/; -
,",//// \\
L Y
06 ,;’;f,’ A=1,3,57
04t 4/
;
0.2t
n
1 2 3 4 5

Fig. 2.5. Effect of A on f' for n =1 and m = 1.
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! \ T
| ~ - ‘,;flf/
P
08! %
1;’// \
7/
iy,
4
05 VY A=1,357
l’ff
i
04 ‘yf
i
7
0.2} 4
1 2 3 4 5

Fig. 2.6. Effect of A on f' for n =1 and m = 3.

1 2 3
Fig. 2.7. Effect of A on f" for n =1 and m = 0.3.

4 5
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1 2 3 a 5 g
Fig. 2.8. Effect of A on f’ for n =1 and m = 0.5.

f'om

’ 2 3 4 5 s "
Fig. 2.9. Effect of A on [’ for n =1 and m = 1.
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—_—

1 2 3 4 5
Fig. 2.10. Effect of A on f’ for n =2 and m = 0.

i 2 3 4 5
Fig. 2.11. Effect of A on [’ for n = 2 and m = 0.5.
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1 | 2 8 4 5
Fig. 2.12. Effect of A on f/ for n =2 and m = 1.

A=1,3,87

1 2 3 4 5 7

Fig. 2.13. Effect of A on [ for n =2 and m = 0.3.
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' 3 4 5
Fig. 2.14. Effect of A on f’ for n = 2 and m = 0.5.

- S _—— ??
1 2 3 4 5

Fig. 2.15. Effect of A on [’ for n = 2 and m = 1.
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1

0.8
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|
|
|
|
06|
? s Pr=1,8 15, 20
0.4

02

\ :

e - 1
1 2 3 4 5
Fig. 2.16. Effect of Pron # for n = 1 and m = (.

Pr= 1,8, 15,20

1 2 3 4 5
Fig. 2.17. Effect of Pr on @ for n =1 and m = 0.5.
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Pr=1,815 20

04}
0.2}
T 3 4 5
Fig. 2.18. Effect of Pr on € for n = 1 and m = 1.
00)
{!

Pr=1,8 15 20

R 3 4 5
Fig. 2.19. Effect of Pr on @ for n = 2 and m = 0.
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4 5

Pr=1,8 15 20

1 = 3 4 5
Fig. 2.21. Effect of Pron & for n =2 and m = 1.
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Table. 2.2, Skin friction (m + 1) f” (0) for different values of the parameters

m |A | B |[A |a (m+1) f" (0)
0211 011 |[#/4]1.6420
0.5 1.9482
1 2.5582
0 2.0548
0.5 2.2792
1 2.5582
0 2.4962
0.5 2.7798
1 3.0766
0.2 0.1 0.2 1.3062
0.9 1.4255
1 1.6420
1 1 | w/6 | 2.2946
m/4 | 2.5582
/2 | 2.9192




Table. 2.3. Nusselt number —#' (0) for various parameters at A =1, B =0.1, A = 1 and

a = /4.

m || Pr | —6'(0)
0 1] 0.1 0.5938
0.5 0.6004
1 0.6011
1 0.6011

2 0.6019

3 0.6083

0.1 ] 0.6011

0.6 ]06214

1.0 | 0.6326

36



2.5 Main points

Effect of mixed convection on the Falkner-Skan flow of power-law fluid is investigated. The
series solutions are computed by the homotopy analysis method (HAM). The key points of the

present analysis are as follows

Tablel shows that the convergence of the functions f and € are obtained at 8"-order of

approximation.
¢ Velocity profile increases with the increase of A for both n =1 and n = 2.

e Velocity profile increases with an increase in the values of mixed convection parameter A

and boundary layer thickness decreases for n = 1 and n = 2.

e The influence of Prandtl number (Pr) decreases the temperature profile. It also reduce

the thermal boundary thickness for n =1 and n = 2.
¢ The velocity profile increases slowly with the increase of m for the parmater A.

e The velocity profile increases largely with the increase of m for mixed convection para-

meter X,

The temperature profile decreases largely with the increase of m for Prandt] number (Pr).
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Chapter 3

Falkner-Skan wedge flow of Maxwell

fluid with mixed convection

3.1 Introduction

This chapter consists of the series solution for mixed convection Falkner-Skan flow of an incom-
pressibe Maxwell fluid. Analysis has been carried out in the presence of Newtonian heating.
Appropriate similarity transformations reduce the nonlinear partial differential equations into
nonlinear ordinary differential equations, The series solutions of the present problem is solved
by homotopy analysis method (HAM). Convergence of the problem is determined. The effects
of different parameters specially Prandtl number (Pr) and conjugate parameter (vy) are shown
and discussed. Numerical values of local Nusselt number for different values of (Pr) and (v) are

computed and analyzed.

3.2 Mathematical model

Consider the two-dimensional Falkner-Skan wedge flow of a Maxwell fluid with mixed convec-
tion. In this two-dimensional model, the Cartesian coordinates (z,y) are used such that z-axis
is parallel to the plate and y-axis normal to it. The fluid occupies the region y > 0. We assume

that the wall is subjected to a Newtonian heating. The continuity, momentuin and energy
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equations for the Maxwell fluid are given by

V.V =0, (3.1)
pa = V. T4pgBy (T — Too) Sin (%) , (3.2)
T = —pl +8, (3.3)
dT . —
pep—y = TL—divaq, (3.4)

D e ¢
Aj=L+LY (3.6)
q=—lkygradT, (3.7)

and the velocity field is

V= [u(z.y), vizy), 0. (3.8)

In the above expressions V is the velocity, T is the Cauchy stress tensor, S is the extra stress
tensor, ¢ is the gravitational acceleration which acts in the downward direction, a is the angle
of inclination of wedge, p is the density of the fluid, ¢, is the specific heat at constant pressure,
L is the gradient of velocity, Ay is the relaxation time, g; is the covariant derivative, p is the
dynamic viscosity, A is the first Rivilin-Ericksen tensor, 7" is the transpose, q is the heat flux,
kg is the thermal conductivity and T is the temperature of the fluid.
The first Rivilin-Ericksen tensor is
2t gy g

du

du v
() 0 0

Il

From Egs. (3.2) and (3.3) we have
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D . D
i (l - Al;_[)_t) a = — (l + )‘Iﬁ) Vp+pV. Ay +

0 v [
(1 A 52) p9Br (T = Tex) Sin (5)
In general form covariant derivative T% can be written as

Da;  Oa;
ﬁ* = E + gy 3 — Uy jy-

For i = 1, the above Egs. (3.10) and (3.11) become

D D
p (1 + Ala) a = - (1 B ’\lﬁ) Vp+ uV. A +
D . a
(1 + Alm) pgBr (T — T) Sin (E)
and
Qa._.l_-—aﬂ L { — U a_au.a.
Dt~ Ot +uyay) + uadn g 1,11 1,202,

where a; and ap are given by

Using Eqs.(3.13) — (3.15) in Eq. (3.12) we get

i u e
du | du i [ u- (ug? + v%ﬁ) +ug (1:% + ”ny) ]

Qu (0w | ,0u) __ duf, dv v
T Oz ("’31‘ ot Uay) Yy (u{'}x - v@y)

. 2(’32-”. - 0%u v o
T pd Qa2 Oy Oxdy

o=
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" _] + 987 (T - Too) Sin (5 )

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



The above equation after using continuity equation can be written as

A du i 50%u & 20%u 49 9%u
¥ iy o P e U —— G T U -
"oz vy T y? ' d:rr'}u

L dp 9w dzu

Similarly for © = 2, we obtain

dv v 0% 5 8% 9
ld_+T)dy+/\l[: a.2+'ﬂ' W_!-guU@T%]
1dp v v
T Teay [W N B_y"]

and energy equation (3.4) in the absence of viscous dissipation becomes

or — ar _ ko (822‘ 82’1‘)

Vg T By pe, \ D22 T dy?

Now applying the boundary layer approximation to Eqs. (3.1) and (3.17) —

we see that Eq.(3.18) vanishes and Eqs.(3.1), (3.17) and (3.19) are reduced as follows

ou v
50 ay
0w Ou . 321a+ 2 0%u L6y d*u
oz ' Oy Yo T aady
_ 1adp | O*u . [
= —575 T Vg T9Pr (T - T )sm(g),
dJd aT T
W P
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(3.18)

(3.19)

(3.19) in which

(3.20)

(3.21)

(3.22)

(3.23)



The boundary conditions are given by

u = 0, u =10, — = —-h,T aty =0,
dy
u — U, T—=Tx asy— 0o, (3.24)
Now Eq. (3.23) becomes
ugq_{_k?}i_'.,\ 12_.@_'.-2&.[_2-_82“ = _63}_{ .’QE_{
dx U(’)y L% 52 7" dy? Tw&:r:@y T oy? da
Il B (T =T) 8im [= (3.25
1 amg +4 T( = {)O) L E)s . )

where U (= ax™) is the free stream velocity, p is the density, A; is the relaxation time and T’
and T« are the temperatures of the fluid and surrounding respectively.

Let us define the similarity transformations

2
u=U@ [, n= " b=\ Vil ), (3.26)
[n+1 [vU TS S L T-Ty
== 5 5 [.f('”)“P mﬂf ('-'J)J- 9(’!) = T (3.27)

Using these transformations, Fq. (3.21) is identically satisfied and Eqgs. (3.23) — (3.24) become

(1— /") + AdSin (%) =0,

fm + ff” +;31 ( In (i’i‘—}-) (1 == f-':‘,) o (3”,_ l)ff"_f” ) R 9
2

_(&r_l) f2fm_|_(n7—l) nfmfn n+1
(3.28)
7' +Prfe =0, (3.29)
f(0) = f'(0) =0, ' (0) = —y[1+6(0)],
f (o0) =1, @ (00) = 0, (3.30)

in which prime denotes the differentiation with respect to 7, Pr is the Prandtl number, 4, is

the dimensionless Deborah number, A is the mixed convection parameter, v is the conjugate
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parameter and Gr, is the local Grashof number. These dimensionless quantities are defined by

5 HCp AU _ Gry - 2ui  (n+1) 98T’
=% Bi=0 Asga YShymimom =S 2,2 ‘

(3.31)
The local Nusselt number Nu, is defined as
T 9
Nu; = ——F%—, 3.32
= s (3.32)
where
ar
guw = —ko | =— . 3.33
=t (g) (3.33)
The Nusselt number after using the similarity transformation becomes
(Rez) ? Nuy =~ ( 1+ 2 (3.34)
H 9 (0) 1
where Re; = 22U (n+ 1) /2v is the local Reynolds number.
3.3 Solutions by homotopy analysis method (HAM)
The initial gnesses and auxiliary linear operators are of the following forms
foln)=n~— 1—1“—"@ doln) = 71T 1 £ 1, (3.35)
N e A S VT (3.36)
! = dnd d??l ] = d'!?“}' : i 14]
with the properties
LAy + Apexp(n) + Az exp(—n)] =0, (3.37)
Ly [Asexp(n) + Az exp(—1)] =0, (3.38)

in which A, (i =1 —5) are the arbitrary constants.
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3.3.1 Zeroth order problem

(1-q)Ly V(H;f;) — o (U)] = qhiy Ny [f(fr;q)} ; (3.39)
(1= a) Lo |6 (n;a) — 00 (n)] = aloNy [0 (mia), F (mi )] (3.40)
FO;)=0. f(0:90=0, [ (ooq)=1, (3.41)

7 (0:0) = (1+8(0:00),  F(o0iq) =0, (3.42)

where ¢ € [0,1] is the embedding parameter, fiy and hy are the non-zero auxiliary parameters

and Ny and Aj are the nonlinear operators. We define

- B (n: g . & f (m; 0 af ma)\?
(f (7.9), (?},9‘)) % + £ (m:9) {’)‘E]; . L n2+] (l - ( fé:} 1)) )

3 : 2
i (1 - (e ) + (3n—1) f (n; q) 2LfE TG0
e+l ( o )3 . 23’32 o +J\951n( ){.343)
=5 (F(m))* S50 + 25y (df;g?q)) -

+3,

a3
Ny [ﬁ(n;q) ,f(?izq)] = agiti‘ 2 +Pr f (n;q) _‘5'_@_(6’:_)_'?_) (3.44)
3.3.2  nth-order deformation problems
Ly [fn (1) = Xonfm—1 ()] = AyRL, (n) (3.45)
Ly [Bm (1) = XmOm—1 (0)] = RaRy, (1) 4 (3.46)
Jin (0) = £, (0) = fr, (00) = fru(c0) =0, (3.47)
010(0) + 20 (0) = O (00) = 0, (3.48)

-1 I
_211:1 :n—l-—k.zl'zﬂf;:—!ﬁ
k
m—1 f 03 kf 2n l ff'i‘ﬁ (3”_]‘ fm.—l kz( I]f:L i ”
m= - m 1-k1k =1
R{" (7.* —j::: 1 T" Z __-i_fm 1— LZI ka l’jm

+o bk Zr:n Siift!
+ A0, —1 Sin (‘5) ﬁ-‘T M+B(n=1]1(1—xm)

(3.49)
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m—1

R, () =0y +Pr > Oy i

k=0
0, m<=1
\im =
1, m>1

F0)=fom), F(m1)=f@),

If g=0and g =1, then

0(n:0) =06 (), (1) =0(n)

(3.53)

By virtue of above equations, when g increases from 0 to 1 then f(n;q) and 5(1); q) vary from

fo (n) and 8y(n) to f(n) and 8(n) respectively. Here i is the nonzero auxiliary parameter. By

Taylor’s theorem and Eqs. (3.52) and (3.53), we have

19" f (n;9)

('ff q) = fo(n) + Z fm(M@™,  fm(n) = ml O™

m=1

q=0

>0

0(7:9) = 0o () + Z B {R) @™ O (1) =

m=1

1.9™0 (1:9)
m! O™

1
g=0

where the auxiliary parameters are so properly chosen that the series (3.54) and (3.5
at g=1ie.
o0
Fmy=fo)+ 3 fm (),

m=1

0 (’?) == 6’{] (f}) + Z 'gm (??) 2

m=l

The general solutions of Eqs. (3.45) and (3.46) are
fra () = o () + Ay + Age" + Aze™,

Om (?}) - 9::1 (T?) + Age” + ASEAW:

5) converge

(3.56)

(3.58)

(3.59)



where f (1) andf}, (1) are the special solutions and the values of A; (i = 1—5) along with the

boundary conditions (3.47) and (3.48) are

'4'2 == -4‘] = {): A'i = MI i '41 = “-'Il:i . f:n (0} '
C)T} =0
1 . - -
As = == (0 0)]mg +70m (lymo) - (3.60)

Note that the solutions of the problems involving Eqgs. (3.43) — (3.51) have been developed by

using the symbolic computation software MATHEMATICA when m = 1,2,3, ...

3.4 Solution analysis

3.4.1 Convergence of the series solutions

We kunow that the series solutions given in Egs. (3.56) and (3.57) have auxiliary parameters
fiy and hy. As pointed out by Liao, the convergence of the series solutions is highly dependent
upon these parameters. For the determination of a valid range for values of these parameters,
we have sketched the fi—curves at 20th-order of approximations (see Fig. 3.2 and 3.3). These
Figs. show that the admissible ranges of values of Ay and hg are —14 < hy < —0.65 and
~1.6 < hyp < —0.7. Further Table 1 ensures that the series solutions are convergent up to five

decimal places.

3.4.2 Result and discussion

The aim of this section is to describe the variation of embedded parameters on the velocity,
temperature and surface heat transfer. Fig. 3.3 is plotted for velocity profiles for various values
of Deborah number /3. It is observed that velocity field increases when 3, increases. Figs. 3.4
and 3.5 show the effects of mixed convection parameter A and n. These Figs. show that by
increasing the values of mixed convection parameter A and n, there is a gradual increase in the
velocity profile. Further the boundary layer thickness is reduced. The eftects of Prandtl number
Pr and conjugate parameter v on velocity profile are presented in the Figs. 3.6 and 3.7. It is
noted that an increase in the values of Pr and + increases the velocity profile while such increase

reduces the thermal boundary layer thickness. The effect of Prandtl number Pr on # can be
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visualized in Fig. 3.8. It is obvious that an increase in the values of Pr greatly reduces the
thermal diffusivity, and consequently the temperature and the thermal boundary layer thickness
are decreasing functions of Pr. It is also observed that deviation in the temperature profiles are
more significant for small values of Pr when compared with its larger values. The influence of
conjugate parameter v on the velocity profile is displayed in Fig. 3.9. As expected, the larger
values of 4 accompany with the higher Newtonian heating which increases the temperature
and the thermal boundary layer thickness. An increase in n corresponds to a decrease in the
temperature and the thermal boundary layer thickness (see Fig. 3.10). To capture the effects
of inclination angle o on the velocity f' we have plotted Fig. 3.11. It is depicted that velocity
imereases and the boundary layer thickness is decreasing function of .

The study of Table 1 indicates that 20'"-order approximation gives a convergent series solu-
tion. Numerical values of local Nusselt number for various values of parameters are computed

in Table 2. Tt is noticed that local Nusselt number is an increasing function of Pr and +.

05 B1=01A=01,Pr=10y=01n=05a=n/3

-0.55

-0.6

-0.65

f”l( O)

-0.7

-0.75

-18 -16 -14 -12 -1 -08 -06 -04
hy
Fig. 3.1. li-curve for the function f.
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Br=01,7A=01Pr=10y=01n=05a=n/3

04

02

6"(0)

-02

-04

-2 -1.5

=t

-0.5 0

i
Fig. 3.2. h-curve for the function €,

Table 3.1 : Convergence of the homotopy solutions for different order of approximation

when Pr=10,A=0.1,n=05, 3, =01, a=7/3,y=0.1 and ky = hy = —0.8.

Order of approximation —f"(0) 7"(0)
] 0.756033 0.0138966
10 0.657312 0.0058769
15 0.655760 0.0037962
20 0.655961 0.0035451
25 0.655961 0.0035451
30 0.655961 0.0035451
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Fig. 3.3: Effect of 3, on f'.

b, Y 1-01,0203 04

0.5 1 15 2 2i5
Fig. 3.4: Effect of A on f’.
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Fig. 3.5: Effect of n on f’.

Pr=01 1020 30

04t

02

——— ,?
1.5 2 25 3

iy
Iig. 3.6: Effect of Pr on f’.
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y=01,02 03 04

0.5 1 1.5 2 2:5 3

Fig. 3.7: Effect of v on f'.

Pr=10305070

1 2 3 4 5
Fig. 3.8: Effect of Pr on 6.
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Fig. 3.9: Effect of v on 8.
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Fig. 3.10: Effect of n on 6.

52



1 S

> R

k. 2 7’//’ =

o8] N2

| 25

| s

| N\
0.6 Y \ =00 /12 /6 12

’/
%
0.4 f:r
‘I'?ff
7
0.2
1
1 2 3 4

Fig. 3.11: Effect of « on f’.

Table 3.2:Values of (1'{.9,.:)_”2 Nu, for different values of Pr and v when 8, = A = 0.1,
a=m/3 and iy = hy = —0.8

Pr |« - (Re_t)_lf?‘ Nuy
0.5 0.1 0.6637
1.0 (.6733
1.2 0.6822
2.0 0.7025
1.0 ] 0.1 0.6733
0.2 0.6821
0.3 0.6925
0.4 0.6940

3.5 Conclusions

The effects of Newtonian heating on the mixed convection Falkner-Skan flow of Maxwell fluid

are described. The arising nonlinear problem is computed. The presented analysis show the

following key points.

e Table 1 reveals that convergence of the functions f and # are obtained at 20™-order



approximations up to five decimal places when fiy = fig = —0.8.

The conjugate parameter v appreciably increases the dimensionless temperature and sur-

face heat transfer.

The fluid parameter g, increases the velocity whereas the boundary layer thickness de-

creases.

The influence of Prandtl number Pr decreases the temperature and the thermal boundary

layer thickness.

The mixed convection parameter A increases the velocity and decreases the velocity bound-

ary layer thickness.
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