
Mathematical models for peristaltic 
motion in a channel 

By 

Maryiam Javed 

Department of Mathematics 
Quaid-i-Azam University 

Islamabad, Pakistan 
2012 



Mathematical models for peristaltic 
motion in a channel 

By 

Maryiam Javed 

Supervised By 

Prof. Dr. Tasawar Hayat 

Department of Mathematics 
Quaid-i-Azam University 

Islamabad, Pakistan 
2012 



Mathematical models for peristaltic 
motion in a channel 

By 

Maryiam Javed 

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR 

THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

MATHEMATICS 

Supervised By 

Prof. Dr. Tasawar Hayat 

Department of Mathematics 
Quaid-i-Azam University 

Islamabad, Pakistan 
2012 



Mathematical models for peristaltic 
motion in a channel 

By 

Maryiam Javed 

CERTIFICATE 

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF THE DOCTOR OF 

PHILOSOPHY 

We accept this thesis as conforming to the re uired standar 

1. __ ~::::=:::'~~ __ _ 

Pro. Dr. Muh mmad Ayub 
(Chai n) 

3~'1 rt!J-",~ 'r It /1"-
Prof. Dr. Tahir Mahmood 

(External Examiner) 

2. ;?: A §7~1/ L 
Prof. Dr. Tasawar Hayat 

( Supervisor) 

4. _~~. ~=----------..:: ______ 

Prof. Dr. Qamar-UI-Itaq 
(External Examiner) 

Department of Mathematics 
Quaid-i-Azam University 

Islamabad, Pakistan 
2012 



9tfy Covine (jlarents 

9tfy Supervisor; ~of. (])r. ~asawar 1fayat 



Jlctnow[ecfgements 

}I {{ tlie praises antI appreciations are for omnipotent jI([aIi, tlie most mercifu{ ana 

generous tliat ((nows 6etter tlie liiaaen trutlis of tlie universe ana Jfis JfoCy C1Topliet 

~uliamrruuf (Peace ille Vpon Jfim) wlio aedarea it an 06ugatory auty of every :Musum 

to seek.ana acquire k.nowfeage. 

I feer great lionor to express my lieartiest gratituae ana profounaest tlian~ to my 

wortliy ana aevotea supervisor, C1To! (])r. f'J'asawar J{ayat, for liis encouraging 

aiscussions, interfectua{ guiaance ana entliusiastic interest. WordS are too ae6iutating 

to express my feeung to a person wlio sacrifices liis fiea{tli for tlie 6etterment of liis 

stuaents ana for tlieir tomorrow. Witliout liis generous lie[p ana patient guiaance, it 

was not possi6fe for me to compfete tliis wor~ I am rea{(y gratefu{ to liim for 

introaucing me to tlie; scientific worU of pu6{ication. I tliank.you <very mucli Sir from 

tfie core of my lieart. 

I am fiigli(y 06ugea to C1To! (])r. ~uliamtrUUf jlyu6, Cfiairman (])epartment of 

:Matliematics, QJl.. V. for provicfing Jriena(y environment for tlie researcfi work. in tlie 

aepartment. 



:My sincerest tfian~ goes to a{{ tfie mem6ers of rt'{uia :Mecfianics qroup especia{(y CDr. 

:Nasir Ali, CDr. 'l(fiaaija :.M.aq600( (j(afiila, Ansa, Uumaira rtasmin, CDr. :.M.ufiammaa 

:Nawaz, Za fiia rBfiai ana :.M.ufiammaa Awais for tfieir co-operation ana suggestions 

tfirougfiout my researcfi wor{. 

I express my fieartfe{t tfian~ to tfie Jfielier P.ducation Commission of Pal(istan (UP-C) 

for tfie jinancia{ support tfiat rea{(y fiefpea me in acquiring tfiis aegree. 

rt'rienasfiip is a{nwst a{ways tfie union of a part of one mina witfi a part of anotfier. I 
• 

gratefu{(y ac0,wwfeage my frienas, (j(afiila ana Asia for tfieir prayers for my success. 

7lieir company maae my stay in tfie university fu{{ of joys ana everlasting memories. 

P-acfi precious secona wi{{ 6e treasurea in m,y fieart fore'ver. 

I afro tfianl( tfie office staff of tfie :.M.atfiematics department of Q./l. V. for tfieir wfiofe 

fieartea cooperation. 

I am afro e:(treme(y tfianifu{ to my e~aminer, Prof CDr. rr'afiir :.M.afimooa for giving a 

jina{ toucfi to my PfiCD tfiesis after my vi'va. 

Aci(nowfecfgements are incompfete witfiout paying regardS to my fami(y. I express my 

aeep sense of gratituae to my parents for tfieir rove ana prayers tfiat ena6fea me to 

acfiieve my Boars. I fiave no wordS to tfianl( my fatfier wfio aeveropea self conJicfence in 



me ana my motfier wfio rea[fy encouragea me tfirougfiout my stuay rife. lowe my 

fieartiest tfianl0 to my [O'()ing ana caring fius6ana for fiis prayers, encouragement ana 

morae support auring my cpfi(j). Wany tfianl0 to my in-raws, my 6rotfiers ana sisters 

especia[fy fioney for tfieir care, rove ana prayers. In tfie fast, I cannot forget my cute ana 

roving son, Wufiammaa Paizan for tfie rove ana satisfaction tfiat fie gave me in tfie 

preparation of my viva. 

Pina[fy, my sincere tfian/iJ to a[[ those who have a[ways pray for me ana for my success. 

08tfi June, 2012 



Preface 

Many nonlinear problems in theory of viscous fluids are governed by the Navier-Stokes 

eq uations. Such equations are inadequate for the flow description of non-Newtonian fluids . In 

literature, many theoretical investigations have been carried out by taking the physiological 

lluids to behave like a Newtonian fluid which is not true in reality. In such situations, the 

analysis of rheological characteristics associated with non-Newtonian fluids cannot be ignored. 

III patticular, peristalsis appears extensively in physiological and industrial applications. 

Especially , the peristaltic motion of magnetohydrodynamic (MHO) flows of electrically 

conducting fluids has become the subject of growing interest for the researchers in recent times. 

This is due to the fact that such studies are useful particularly for having a proper understanding 

of the functioning of different machines used by clinicians for pumping blood and magnetic 

resonance imaging (MRI). The effect of a magnetic fie ld on the flow of blood in atherosclerotic 

vessels also finds application in a blood pump used by cardiac surgeons during the surgical 

procedure. On the other hand, the theoretical study of MHD channel flows have many practical 

app lications in designing cooling systems with liquid metals in many devices such as 

accelerators, MHO pumps, MHD power generators, electrostatic precipitation, petroleum 

industry , electrostatic precipitation, purification of crude oil, aerodynamics heating and fluid 

droplets sprays. The fluid flow in a porous space is significant specifically in geophysical fluid 

dynamics. The distribution of fatty cholesterol and artery clogging blood clots in the lumen of 

coronary artery also behave like a porous medium in the pathological situations. Moreover, the 

process of heat transfer is useful for the analysis of tissues. Thus, the application of heat 

(hyperthermia), radiation (laser therapy) and coldness (cryosurgery) has attracted the attention of 

the investigators in them1~1 modeling for the destruction of undesirable tissues such as cancer. 

Keeping in view all the above mentioned facts, the present thesis is arranged as follows: 

Chapter one provides the survey regarding the existing relevant literature for peristalsis m 

viscous/non-Newtonian fluids under various aspects. 

The slip effects on the peristaltic transport of viscous fluid are analyzed in chapter two. The 

flow in an asymmetric channel is considered. Closed form solutions have been established under 



the assumption of long wavelength and low Reynolds number. The discussion for pressure rise 

and Crictional forces is provided through numerical integration. The results of this chapter have 

been published in Numerical Methods for Partial Differential Equations 5 (2011) 1003-1015. 

The goal of chapter three is to develop a mathematical model in order to examine the slip and 

heat transfer effects on the MHO peristaltic flow in a channel with compliant walls. The velocity 

slip condition is imposed in terms of shear stress. Solutions of the axial velocity, stream function , 

temperature and heat transfer coefficient are derived. Further, some flow quantities of interest are 

analyzed through graphical results. The contents of this chapter have been published in Asia­

Pacitic Journal of Chemical Engineering DOl: 10.1002/apj.470. 

The compliant wall effects on the peristaltic flow of viscolls fluid in a curved channel are 

analyzed in chapter fOllt'. In addition, the heat transfer is considered. The series so lution have 

been first computed and then examined by graphical illustrations. This research is published in 

Int. J. Heat and Mass Transfer 54 (2011) 1615-1621. 

Chapter five presents the analysis for peristaltic flow of non-Newtonian fluid in a channel with 

compliant walls. Constitutive equations of a subclass of rate type fluids namely an Oldroyd-B 

fluid have been used. The flow is induced by the sinusoidal waves on the channel walls. Results 

are given and discussed for the free pumping case. This research has been published in Int. J. 

Numerical Methods in Fluids DOl: 10.1002/fld.2439. 

Chapter six studies the peristaltic transport of Johnson-Segalman fluid in a compliant wall 

channel. This fluid model is developed to allow non-affine deformations and has been used by 

many investigators to explain the "spurt" phenomenon. The fluid is electrically conducting in the 

presence of a constant app lied magnetic field. Expressions for mean velocity at the boundaries of 

the channel, the mean-velocity perturbation function and the time-averaged mean axial velocity 

di stribution are derived. The effects of various emerging flow parameters are shown and 

di scussed thro ugh graphs. This work has been published in Phys. Lett. A 372 (2008) 5026-5036. 

effects of wall properties on the peristaltic f10w of power-law fluid in an asymmetric channel 

have been investigated in chapter seven. Long wavelength and low Reynolds number 

approximations have been adopted in the presentation of mathematical developments. Closed 



form solutions are constructed for the stream function and velocity. The streamlines pattern and 

trapping are also discussed. The observations of this chapter are published in AppJ. Math. 

Mech. (English edition) 31 (2010) 1231-1240. 

The analysis of an electrically conducting Jetfrey Huid with peristalsis is presented in chapter 

eight. This nuid model is simplest and can describe the rheological characteristics in terms of 

relaxation and retardation time parameters. The nonlinear differential equations subject to 

appropriate boundary conditions are solved for the ti'ee pumping case. The effects of pertinent 

parameters on the fl ow quantiti es of interest are discussed. The research in thi s chapter has been 

published in Zeitschrift fur Naturforschung A 66a (2011) 106-116. 

Chapter nine di scusses the MHO peristalt ic transport of Jeffrey fluid in a compliant wall 

channel with porous space. Heat transfer analysis is al so considered. A regular perturbation 

technique is employed to solve the resulting problem. Solutions are presented in a power of small 

wave number. Expressions for the stream functi on, temperature distribution, velocity and heat 

transfer coefficient are computed. The influence of emerging parameters is shown on velocity, 

temperature distribution, heat transfer coefficient and trapping. These contents are submitted for 

publication in Nonlinear Analysis: Modeling and Control. 

Chapter ten rep0l1s the peristaltic transport of compressible Je1frey fluid in a compliant wall 

channel. Pel1urbation approach has been employed when the ratio of the wave amplitude to the 

radius of the pore is small. Expressions of mean axial velocity distribution, mean velocity at the 

boundaries and critical values are derived. The effects of various embedded parameters are 

discussed. This research has been accepted for publication in Journal of Mechanics in 

Medicine and Biology. 
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Chapter 1 

Survey of relevant literature on 

peristalsis 

Although peristalsis occur very well in physiology but its appearance is witnessed from the 

seminal works of Kill [l J and Boyarsky [2J. In view of Kill, the normal renal pelvis and ureter 

can tolerate a flow of 8-10 mIl min per ureter without increasing pelvic pressure. Despite 

extensive research regarding the function of the mammalian kidney, scarce information is avail­

able about t he functional anatomy of the renal pelvis. Graves and Davidoff [3J have discussed 

ureteral reflux in normal and abnormal bladders and ureters . Since then, an exhaustive re­

search is undertaken on peristalsis. Latham [4J initiated the step for the .analysis of peristaltic 

transport. T he flow of viscous fluid in a flexible tube is examined by Shapiro [5J when the 

creeping and wave number is small. Burns and Parkes [6J analyzed the flow of a viscous fluid 

through axially symmetric pipes and symmetrical channels. Analysis in this attempt has been 

carried out for small Reynolds number. Fung and Yih [7J investigated two-dimensional vis­

cous flow in a channel. Analytic solution is constructed for small amplitude ratio. It is found 

that the reflux phenomenon is possible at the channel centre. Shapiro et al. [8J presented 

a mathematical model of peristaltic transport subject to long wavelength and low Reynolds 

number assumptions. They discussed the viscous flow in both channel and tube. Hanin [9J 

reported the flow analysis of viscous fluid under the assumptions of large Reynolds number, 

small amplitude and long wavelength. Meginniss [10J applied the inertial free long wavelength 
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theory of peristaltic pumping by choosing particular geometry of the tube of a roller pump. 

\iVeinberg [11] and Eckstein [12] presented the theoretical and experimental attempts regarding 

peristaltic pumping. Zein and Ostrach [13] have studied an incompressible viscous fluid in a 

two dimensional channel under long wavelength approximation. Mathematical analysis in this 

attempt ha::; been carried out by taking into account the assumption when the wavelength of the 

peristaltic wave is very small in comparison to half width of the channel. The coupling between 

the forces of fluid-mechanical origin and the dynamics of the ureteral muscle was investigated 

by Fullg [14]. More realistic model about the uteral waves has been examined by Lykoudis [15]. 

Jaffrin and Shapiro [16] presented a review article on peristalsis in view of different flow geom­

etry, amplitude ratio , wave number and Reynolds number. Mittra and Prasad [17] studied the 

peristaltic transport in the presence of pressure gradient. Wilson and Panton [18] discussed the 

two-dimensional peristaltic transport of a viscous incompressible fluid due to finite amplitude 

bending and contraction waves. Axisymmetric viscous peristaltic flow is examined analytically 

by Barton and Raynor [19]. Yin and Fung [20] provided asymptotic solutions to axisymmetric 

peristaltic flow in powers of the ratio of amplitude to the mean tube radius. Li [21] studied 

the problem of peristaltic pumping in a circular tube using long wavelength approximation. He 

further presented a comparison for the two-dimensional flow in channel and axisymmetric flow 

in a tube. Chow [22] examined the peristaltic transport of an incompressible viscous fluid in a 

circular cylindrical pipe. Lew and Fung [23] found the results for the flow in valved vessel under 

small Reynolds num~er. Tong and Vawter [24] discussed numerically the peristaltic pumping 

in a circular tube using finite-element method. Manton [25] obtained the asymptotic solution 

for the low Reynolds number flow in an axisymmetric tube when peristaltic waves of arbitrary 

shape have been considered. The peristaltic flow through non-uniform channels and tubes with 

special emphasis regarding the flow of spermatic fluid in vas deferens is considered by Gupta 

and Seshadri [26]. They discussed the mathematical model for the creeping flow . Liron [271 

introduced the idea regarding the efficiency of peristaltic fluid transport. Series solution for 

peristaltic flow in pipe and channel was constructed by employing double expansion in terms 

of the Reynolds number and the square of the wave number. Rath [28] looked at the peristaltic 

flow through a lobe-shaped tube. The interaction of peristaltic motion with pulsatile flow is 

studied by Srivastava and Srivastava [29J. They considered the peristaltic flow of viscous fluid 
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in a circular cylindrical tube. An arbitrary periodic pressure gradient is applied and solution is 

constructed for small amplitude ratiu. On the other hand, a numerical technique using bound­

ary integral method has been developed by Pozrikidis [30] just to study the peristaltic transport 

in an asymmetric channel under Stokes flow conditions. In this study, the creeping flow is stud­

ied by boundary integral technique. Takabatake et al. [31J solved the problem of peristaltic 

pumping in an axisymmetric tube by generalizing the numerical method of Takabatake and 

Ayukawa [32] to the axisymmetric case. Eytan and Elad [33] have developed a mathematical 

model for peristaltic flow of viscous fluid in an asymmetr ic channel. Lubrication approach has 

been used for the solution of t ime dependent flow in a fixed frame. They have also calculated 

the possible particle trajectories in order to examine embryo transport before it gets implanted 

at t he uterine wall . Mishra and Rao [34] examined t he flow of a viscous incompressible fluid in 

an asymmetric channel. Asymmetry is generated through waves propagating on t he walls with 

different amplitudes and phase. Rao and Mishra [35] also investigated the curvature effects 

on t he peristaltic flow of viscous fluid in an asymmetric channel. The problem of peristaltic 

transport of a viscous incompressible fluid through uniform and non-uniform annulus is studied 

by Mekheimer [36]. This analysis was examined for long wavelength approximation. 

All the above mentioned investigations deal with the peristaltic motion of viscous fluid 

under different aspects. T here is another area, namely, the non-Newtonian fluid mechanics in 

which peristaltic mechanism was also analyzed. previously. Such consideration is very important 

because many fluids in the physiological world are non-Newtonian. Peristaltic flow of power 

law fluid in a tube was first studied by Raju and Devanathan [37]. The solution was derived for 

the stream function in power series of the amplitude of deformation. Devi and Devanathan [38] 

discussed the peristaltic motion of a micropolar fluid under the assumption of small wave 

amplitUde. Radhakrishnamacharya [39] reported the peristaltic motion of a power law fluid in 

a two-dimensional channel. The solution for the stream function is derived as an asymptotic 

expansion in terms of slope parameter. Bohme and Friedrich [40] examined the peristaltic 

transport of viscoelastic fluids for low Reynolds number. Srivastava and Srivastava [41] have 

discussed the peristaltic flow by considering a two-fluid model. Mathematical modelling is 

developed for a Casson fluid and flow is treated creeping. The peristaltic motion of power law 

fluid in the uniform and non-uniform tubes with reference to the vas deferens and small intestine 
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is studied by Srivastava and Srivastava [42J. Peristaltic flows for second and third grade fluids 

have been examined by Siddiqui and Schwarz [43,44J. Usha and Rao [45] analyzed the peristalt ic 

transport of two-layered power-law fluids in axisymmetric tubes. They observed a negative time­

mean flow for the free pumping case when one of the peripheral layer and core fluids is non­

Newtonian. EI Shehawey et al. [46] reported the peristaltic transport of Carreau fluid in non­

uniform channel for low Reynolds number and long wavelength approximation. EI Shehawey 

and Sobh [47J carried out the analysis for the perist.altic motion of a viscoelastic fluid in tube. 

Hakeem et al [48] examined the endoscopic effects on the peristaltic transport of a Carreau fluid. 

T his work was discussed under low Reynolds number and long wavelength. The peristaltic 

transport of a Couple-Stress fluid in uniform and non-uniform two-dimensional channels has 

been investigated by Mekheimer [49]. Hayat et al. [50,51J examined the peristaltic transport of 

Johnson-Segalman and Oldroyd-B fluids in a planar channel. Vajravelu et a l. [52,53J studied 

the peristaltic transport of Herschel- Bulkley fluid in a channel/ inclined tube. They constructed 

expressions of velocity distribution, stream function and volume flow rate. Haroun [54] discussed 

the peristaltic motion of third order fluid in an asymmetric channel. Analytic solution is 

developed for small Deborah number. 

Recently there are several studies describing the effects of MHD, porosity, heat transfer and 

slip on the peristaltic transport of visco us and non-Newtonian fluins. For instance, t he effect. 

of moving magnetic field on blood flow was studied by Stud et a1. [55]. It is noticed that the 

magnetic field effect accelerates the speed of blood. Srivastava and Agrawal [56] considered 

the blood as an electrically conducting fluid and constitutes a suspension of red cell in plasma. 

Agrawal and Anwaruddin [57] studied the influence of magnetic field on blood flow through an 

equally branched channel with flexible outer walls executing peristaltic waves. Mekheimer [58] 

studied the peristaltic transport of blood in non- uniform channels when a uniform magnetic: 

field is applied. Tzirtzilakis [59] has illustrated a mathematical model of blood flow under the 

action of an applied magnetic field . Hayat and Ali [60] discussed the MHD peristaltic transport 

of third grade fluid in a tube. The peristaltic flow of a Jeffrey fluid in an asymmetric channel 

is studied by Kothandapani and Srinivas [61] subject to large wavelength and low Reynolds 

number assumptions. The study of peristaltic: flow through a porous medium was presented by 

EI Shehawey et a1. [62] . EI Shehawey and Husseny [63] studied the effects of porous boundaries 
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all peristalt ic transport in a porous space. El Shehawey et al. [64] analyzed the peristalt ic motion 

of generalized Newtonian fluid through a porous medium. El Shehawey and Husseny [65] also 

analyzed the peristaltic pumping of a viscous incompressible and electrically conducting fluid in 

the porous walls of a two-dimensional channel. Sobh [66] studied the peristaltic transport of a 

MHD viscous fluid saturating a porous medium in uniform channel. Hayat et al. [67] analyzed 

the peristaltic transport of an incompressible, electrically conducting Maxwell fluid in a planar 

channel. T he effect of Hall current is taken into account and permeability of porous medium 

is considered uniform. Kothandapani and Srinivas [68] reported t he peristalt ic t ransport of 

viscous fluid in an inclined asymmetric channel with a porous medium. The peristaltic flow 

of Newtonian/non-Newtonian fluids in the presence of heat transfer has many applications in 

biomedical science and electronic industry. Radhakrishnamacharya and Murty [69] considered 

the heat transfer analysis on the peristalt ic activity of viscous fluid in a non-uniform channel. 

Vajravelu et al. [70] discussed the heat transfer effects on peristaltic flow of viscous fluid in a 

vert ical porous annular region between two concentric t ubes . Mekheimer and Elmaboud [71] 

analyzed the heat transfer and magnetic field effects on peristalt ic t ransport of viscous fluid in 

a vertical annulus. Analysis is performed through low Reynolds number and long-wavelength 

approximation. Srinivas and Kothandapani [72] have discussed the heat transfer effects on 

MHD peristaltic flow of viscous fluid in an asymmetric channel. The heat transfer effects on 

peristaltic motion of :viscous fluid in a vertical asymmetric channel with porous medium was 

studied by Srinivas and Gayathri [73]. Hayat et al. [74] reported the heat transfer effects on 

MHD peristaltic transport of viscous fluid in an asymmetric channel with porous medium. 

Mekheimer et a l. [75] analyzed the effects of heat transfer and space porosity on the peristalt ic 

transport of a Newtonian fluid in a vert ical asymmetric channel. Influence of partial slip/ heat 

transfer on the peristaltic flow are st udied by Hayat et al. [76], Ali et a l. [77] , Ebaid [78], Hayat 

et al. [79] and Yildirim and Sezer [80]. 

I t is noticed from the available studies that very less attention is fo cused to the perist altic 

flows in curved channel. The peristaltic flow in curved channel or tubes is important in context 

of its applications in several flows of physiological conduits. Sato et a1. [81] examined the 

peristaltic flow in a two-dimensional rectangular curved channel in the fixed frame of reference. 

Ali et a1. [82] discussed the peristalt ic flow of viscous fluid in a curved channel. Closed form 
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solutions of t he stream function , axial velocity and pressure gradient are developed under long 

wavelength and low Reynolds number assumptions. Ali et al. [83] extended the flow analysis 

of ref. [82] in view of ·heat transfer effects. The peristaltic flow of third grade fluid in a curved 

channel has been discussed by Ali et al. [84]. 

Although there is a growing body of literature on the peristaltic transport in a channel/tube 

with non-compliant walls but there are some studies describing t he wall properties on the 

peristaltic motion in a channel/tube. Mention may be made in this direction to the interesting 

at tempts by Mittra and Prasad [85], Camenschi [86], Camenschi and Sandru [87] and Carew 

and Pedley [88]. Davies and Carpenter [89] examined the stability of plane channel flow with 

compliant walls. The peristaltic motion in circular cylindrical tubes with compliant feature is 

discussed by Muthu et al. [90] . Haroun [91] studied the effect of wall properties on peristaltic 

transport of viscous fluid in an asymmetric channel. Radhakrishnamacharya and Srinivasulu 

[92] analyzed the wall properties effects on peristaltic transport with heat transfer. Effects of 

heat transfer and wall properties on MHD peristaltic transport with heat transfer and porous 

medium was examined by Kothandapani and Srinivas [93]. Muthu et al. [94] reported the 

peristaltic motion of micropolar fluid in a circular cylindrical fl exible tube with viscoelastic or 

elastic wall properties. Mean axial velocity is given due attention for free pumping sit uation. 

Abd Elnaby and Haroun [95] analyzed the effect of wall properties on peristalt ic transport of 

viscous fluid. Ali et al. [96] examined the peristaltic flow of Maxwell fluid in a compliant wall 

channel. Srinivas et al. [97] studied the peristaltic flow with compliant walls in the presence of 

slip condition and heat transfer. Hayat and Hina [98] discussed the effects of heat and mass 

t ransfer on the magnetohydrodynamic peristalt ic fl ow in a two-dimensional planar channel. The 

channel walls are taken to be compliant and an incompressible Maxwell fluid occupies a porous 

space. Slip and heat transfer effects on the peristaltic flow in an asymmetric channel have been 

examined by Hayat et al. [99]. The closed form solutions of momentum and energy equations are 

obtained for long wavelength and low Reynolds number approximations. Numerical integration 

technique has been applied to discuss the pumping and trapping phenomena. 

A vailable literature on the peristaltic transport witnesses that less attention has been given 

to the case of a compressible fluid. In this regard, few investigations have been presented. For 

example Tsiklauri and Beresnev [100] discussed the peristaltic motion of compressible Maxwell 
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fluid. Hayat et al. [101] extended the flow analysis of ref. [100] for a Jeffrey fluid. The peristaltic 

transport of a compressible viscous fluid through a tapered pore is studied by Elshehawey et 

al. [102]. Mekheimer and Abdel-Wahab [103] examined the wall properties effect on peristaltic 

flow of compressible viscous fluid in a microchannel. 
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Chapter 2 

Slip effects on peristaltic flow in an 

asymmetric channel 

The magnetohydrodynamic (MHD) peristalt ic flow of viscous fluid in an asymmetric channel 

is theoretically analyzed. The analysis is discussed by taking the slip effects into account. 

The solutions for stream function, longitudinal pressure gradient and temperature have been 

constructed in closed form. Long wavelength and low Reynolds number approximations is 

employed throughout the analysis of computations. A discussion for pressure rise and frictional 

forces is provided through numerical integration. Finally, the effects of various key parameters 

are discussed with the help of graphs and tables. 

2.1 Problem formulation 

We consider asymmetric channel of width d1 + d2 filled with an incompressible viscous fluid. 

The fluid is electrically conducting under the influence of a uniform applied magnetic field 

B = (0 , Bo, 0) and the induced magnetic field is negligible for small magnetic Reynolds number. 

The temperatures of the upper and lower walls of the channel are taken as To and Tl respectively. 

The imposed travelling waves of small amplitudes on the insulating walls of channel are defined 
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by 

Y HI (X, Y, t) = dl + al cos ( 2; (X - ct) ) , upper wall , 

Y H 2 (X, Y , t) = - d2 - bj cos (2; (X - ct) + <I> ) , lower wall , 

where aI + bI + 2aI bl cos <I> ::; (dl + d2)2, A is t he wavelength , c is the wave speed , <I> (0 ::; <I> ::; 7f) 

the phase difference, a I , bl are the wave amplitudes and X and Yare the Cartesian coordinates 

wit h X measured in the direction of the wave propagation and Y measured in the direction 

normal to the mean position of the channel walls . Furthermore, for <I> = 0 and <I> = 7r we 

have symmetric channel with waves out of phase and in phase, respectively. The system in the 

laboratory frame is represented by the following governing equations 

(2.1 ) 

(2 .2) 

(2.3) 

(2.4) 

where U and V are the velocity components in the X and Y directions respectively and p, 

t , P , j.L , l/, (J" , ~, k and T are the fluid density, the time, the pressure, the dynamic viscosity, the 

kinematic viscosity, the electrical conductivity, the specific heat, t he thermal conductivity and 

the temperature respectively. 

The transformation b etween laboratory and wave frames are 

x = X - ct, Y = Y, u = U - ct, v = V, P (x ) = P (X, t). (2.5) 
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Upon making use of the above transformations, we have from Eqs. (2. 1) - (2.4) as follows 

a'U + av = 0 
ax ay , 

(
a a ) ap ( 0

2 a2 
) 2 

P 'U ox + v oy 'U = - ox + P, ox2 + oy2 'U - aBo'U, 

( 
0 a ) op ( 0

2 
0

2 
) P 'u-a + V-a V = -£:j + tL !'l 2 + a 2 V, 

X Y uy u x Y 

[ { 

<1 2 (,, )2 oak 2 (a") + 2 'f/ ~ ( 'U- +V-) T=-_V2T+ I) x ~ ax oy P + (au + ov ) oy ax 

2.2 Dimensionless formulation 

Defining 

R 

PI' 

and sett ing 

x _ Y 
A' Y = d

1
' 

ct Hl 
A' h1 = dr' 
cdl - III 

IJ III = cd
l

' 

plJ~ E = c
2 

k' ~(TI-To) 

a I}! 
V= -­

ax ' 

equation (2.6) is automatically satisfied and Eqs.(2.7)-(2 .9) become 
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(2.6) 

(2.7) 

(2.8) 

}] (2.9) 



Under long wavelength and low Reynolds number, the fo llowing equations are obtained 

(2.13) 

(2 .14) 

(2 .15) 

in which bars have been suppressed for simplicity, 8p/8y = 0, W is the stream function, M is 

the Hartman number, PI' is the Prandtl number and E is the Eckert number. Moreover 8 is 

t he wave number, R is t he Reynolds number and a, b, <I> and d satisfy [72] 

If q is the flux in the wave frame, then the dimensionless boundary conditions are 

q 
W =2 at y=h1 (x)=1+a cos27Tx, 

q 
W = - 2 at y = h2 (x) = -d - b cos (27TX + <I» , 

8w 82w - + (3- = - 1 at y = hI , 
8y 8y2 

8w 82 w 
8y - (3 8y2 = - 1 at y = h 2, 

8() 
() + 'Y- = 0 at y = hI, 

8y 
8() 

() - 'Y- = 1 at y = h2 . 
8y 

(2.16) 

(2.17) 

(2 .18) 

(2.19) 

(2.20) 

(2.21) 

(2 .22) 

It should be noted t hat Eqs.(2 .19)- (2.22) are the slip conditions for the velocity and tem­

perature respectively and (3 = a. / d1 , 'Y = T) / d1 (a. and T) are the dimensional slip parameters 

corresponding to velocity and thermal slip conditions). 
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2.3 Solution in the wave frame 

The solution of Eq. (2 .13) is given as 

(2 .23) 

Using the boundary conditions (2.17)-(2.22), the values of Ai's (i = 1, 2,3 , 4) are 

q qh1 

2 hI - h2 
_ (h2 - hI - q) (hI + h2) (1 - cosh M (hI - h2) - (3M sinh M (hI - h2)) , (2 .24) 

{ 

2 - 2 (coshM (hI - h2) + ,6MsinhM (hI - h2)) } 

q 

+ M (hI - h2) [s inh M (h I - h2) + 2(3M coshM (hI - h2) 

+(32 M 2 sinh M (hI - h2)] 

+ (h2 - hI - q) (2 - 2coshM (hI - h2) - 2,6MsinhM (hI - h2))} , 

{ 

2 - 2 (cosh M (hI - h2) + (3M sinh M (hI - h2)) 

(hI - h2) +M (hI - h2) [sinh M (hI - h2) 

+ 2,6M cosh M (hI - h2) +,62 M2 sinh M (hI - h2)] 

(hI - h2 + q) (cosh NIh! - cosh M h2 +,6M (sinh Mh] + sinh Mh2)) 

{ 

2 - 2 (cosh M (hI - h2) +,6M sinh M (hI - h2)) } 

+ M (hI - h2) [sinhM (hI - h2) 

+2(3 M cosh M (hI - h2) + (32 M 2 sinh M (hI - h2)] 

(hI - h2 + q) (sinhMhl - sinh Mh2 + OM (cosh Mh1 + cosh Mh2)) 

{ 

2 - 2 (cosh M (hI - h2) +,6M sinh M (hI - h2)) } 

+ M (hI - h2) [sinh M (h I - h2) 

+2(3M cosh M (hI - h2) +,62 M2 sinh M (hI - h2)] 

Integration of Eq. (2 .15) yields 
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(2.25) 

(2.26) 

(2 .27) 

(2.28) 



Using the boundary condi tions (2.21) and (2 .22), the expressions of C1 and C2 are given by 

cosh 2M h2 - cosh 2M hI 

h2 - hI - 2')' 
sinh 2M hI + sinh 2M h2 

h2 - hI - 2')' 

A6 = sinh 2M h2 - sinh 2M hI 
h2 - h1 - 2')' 

As = cosh 2M hI + cosh 2M h2 
h2 - hI - 2')' 

Putting the values of C1 and C2 in Eq. (2.28) and rearranging, we have 

where Br- = Pr E is the Brinkman number. 

The longitudinal velocity is 

u 
ow 
oy 
A 2 + A3M sinh My + A4M cosh My . 

Now by Eq. (2 .14), the longitudinal pressure gradient is 

dp 2 
- = -M (A2 + 1) dx 
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(2.30) 

(2.32) 

(2.33) 



and the heat transfer coefficient at t he upper wall is 

The dimensionless expressions of pressure rise (tlP) and frictional forces (FI) and (F2) at the 

upper and lower walls are 

tlP (2.35) 

(2.36) 

(2.37) 

2.4 Results and discussion 

T he expressions for longitudinal velocity, temperature and dp / dx have been discussed graphi­

cally in this sect ion. Also, the pressure rise per wavelength (tlP) and the frictional forces Fi 

(i = 1, 2) at the channel walls are analyzed carefully through numerical integration. Figures 

2.1a and 2.1b are plotted respectively to see the effects of M and (3 on the longitudinal velocity 

u. These Figures show that the longitudinal velocity u increases in the neighborhood of the 

walls when M and (3 are increased . However, it decreases near the centre of the channel. It is 

evident from these plots that velocity profile is parabolic for fixed values of the parameters at 
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Figure 2.1a: Variation of the longitudinal velocity '11. for different values of Hartman number 

Jvl when a = 0.7, b = 1.2, d = 2, x = 0, f3 = 0.5 , <T? = 0 and q = - 1. 

Figure 2.1b: Variation of the longitudinal velocity 'U for different values of thermal slip 

parameter f3 when a = 0.7, b = 1.2, d = 2, x = 0, M = 0.01 , <T? = 0 and q = - 1. 

Here Figures 2.2a and 2.2b indicate the parabolic nature of the temperature profiles. These 

also show that the temperature decreases by increasing the Hartman number (M) at the inlet 

x = O. Note that the temperature decreases in the downstream. 
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Figure 2.2a: Variation of temperature distribution () for different values of Hartman number 
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!l1 at the inlet :1; = 0 when a = 0.7 , b = 1.2. d = 2, (3 = 0.2, "y = 0.1, <I> = 7f /4, B7' = 1 and 

Ij = - 1. 

Figure 2.2b: Variation of temperature distribution e for different values of Hartman number 

M at the inlet x = 0.2 when a = 0.7, b = 1.2, d = 2, (3 = 0.2, "y = 0.1, <I> = 7f /4, BT = 1 and 

q =-1. 
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Figure 2.2c: Variation of temperature distribution e for different values of amplitude ratio 

a when M = 0.01 , b = 1.2, d = 2, x = 0.0 , (3 = 0.2 , "y = 0.1, <I> = 7f/4, BT = 1 and q =-1. 

Figure 2.2d: Variation of temperature distribution e for different values of channel width d 

when !l1 = 0.01 , a = 0.7, b = 1.2 , x = 0.0 , ,6 = 0.2 , "y = 0.1 , <I> = 7f /4, BT = 1 and q = -1. 

The variations of the amplitude ratio of t.he upper wall a and thermal slip parameter "y on 

the temperature are plotted in the Figures 2.2c and 2.2f. It is obvious from these Figures that 

temperature is an increasing function of a and T Such variations are significant only near t he 

upper wall . Figure 2.2d elucidates that the temperature increases by increasing d in the vicinity 

of lower wall and no significant variation occurs near the upper wall. F igure 2.2e illustrates 

that the temperature decreases with an increase in the slip parameter (3. However, opposite 

behavior is noted in the case of Brinkman number (Figure 2.2h). Figure 2.2g indicates that by 

increasing <I> no considerable variation occurs near the upper wall of the channel. However we 
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note that an increase in <I> reduces the amplitude of the temperature at the inlet. 
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Figure 2.2[: Variation of temperature distribution e for different values of thermal slip 

parameters'Y when a = 0.7, b = 1.2 , d = 2, x = 0.0, M = 0.5, (3 = 0.5, <I> = 37f /2, BT = 1 and 

q = - 1. 
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Figure 2.2 h: Variation of temperature distribution B for different values of Brinkman number 

B1' when a = 0.7, b = 1.2, d = 2, x = 0.0, NI = 0.01 , f3 = 0.2, 'Y = 0.1 , <P = rr/4 and q =-1. 
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Figure 2.3a: Variation of pressure gradient (dp/dx) for different values of flow rate q when 

a = 0.7, b = 1.2, d = 2, M = 1, fJ = 0.5 and <P = rr /4. 

Figure 2.3b: Variation of pressure gradient (dp/dx) for different values of flow rate q when 

a = 0.7 , b = 1.2 , d = 2, M = 1, fJ = 0.5 and <P = rr /4. 
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Figure 2.3d: Variation of pressure gradient (dp / dx) for different values of slip parameter fJ 
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when a = 0.7, q = -4, b = 1.2 , d = 2, M = 1 and <1> = 7r /4. 
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Figure 2.3e: Variation of pressure gradient (dp / dx) for different values of Hartma'n number 

M when a = 0.7, b = 1.2, d = 2, q = -4, (3 = 0.5 and <1> = 7r/4. 

F igure 2.3f: Variation of pressure gradient (dp / dx) for different values of phase difference <I> 

when a = 0.7, b = 1.2, d = 2, M = 1, (3 = 0.5 and q = -4. 

The results presented in Figures 2.3 (a - c) show the effect of flow rate q , slip parameter (3, 

Hartman number M and t he phase difference <1> on the pressure gradient dp/dx . Interestingly 

dp/dx is positive for q from -8 to -5. In this situation dp/dx resists the flow in the channel 

and known as adverse pressure gradient. For q :2: 0, dp/dx is negative in the whole channel and 

here it assists the flow which is known as favourable pressure gradient. When q changes from 

-4 to - 1.5, t hen dp/dx is positive in the narrow part of t he channel and negative in negative 

part of the channel and here it assists the flow. Figure 2.3d depicts that dp/dx decreases with 

an increase in the velocity slip parameter (3 in the narrow part of the channel. However dp/dx 

exhibits an opposite behavior for lvI, where by increasing M, dp/dx increases in the narrow 

part of t he channel x E [0.08, 0.78] and decreases in the wider part of the channel x E [0,0.08] 

and x E [0.78 , 1] Fig1)res 2.3e and 2.3f display the variation of dp / dx for different values of <1>. 

Interestingly a small amount of pressure gradient is required to pass the flow in the wider part 

of the channel in an asymmetric channel when compared to the symmetric channel. However, 
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an opposite behavior is noted in t he wider part of the channel. 
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Figure 2.4a: Variation of pressure rise per wavelength (tlP) for different values of Hartman 

number ]1;1 when a = 0.7, b = 1.2 , d = 2, f3 = 0.5 and <I> = 1r /4 . 

Figure 2.4b: Variation of pressure rise per wavelength (tlP) for different values of channel 

width d when a = 0.7, b = 1.2, M = 1, f3 = 0.5 and <I> = 1r /4. 
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Figure 2.4c: Variation of pressure rise per wavelength (tlP) for different values of slip 
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Figure 2.4d: Variation of pressure rise per wavelength (tlP) for different values of phase 

difference <I> when a = 0.7, b = 1.2, d = 2, M = 1 and f3 = 0.5. 
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Figures 2.4 (a - d) show the variation of pressure rise per wave length (Lj.P) against the 

average time flux Q (= q + 1 + d). We divide the whole region into three parts for peristaltic 

pumping. When ~P > 0 and Q > 0, that is the region above the horizontal doted line and 

is kllown as the peristaltic pumping region. The region corresponding to b>.P = 0 is the free 

pumping region. The lower part of the Figure below the doted line represents the augmented 

pumping region and here b>.P < 0 and Q > O. Figure 2.4a indicates that the pumping rate 

increases by increasing Iv! and decreases after a critical value of Q = 0.58 and this behavior 

remains the same in the free and augmented pumping region. F igures 2.4b and 2.4c show the 

effect of the channel width d and slip parameter (3 on b>.P. Here pressure rise decreases wit h 

an increase in d and (3 in t he free and peristalt ic pumping region and after a critical value 

of Q, it increases in the augmented pumping region . F igure 2.4d explains t he effect of the 

phase difference <.P on b>.P. The solid line curve shows the case of t he symmetric channel. Here 

pressure rise decreases with an increase in <.P in the free and peristaltic pumping region and 

after a critical value of Q, it increases in the augmented pumping region. However a wider 

peristaltic pumping region is observed in this case. 

The effects of d, M , (3 and <.P on Fi (i = 1, 2) are plotted in the Figures 2.5 (a - d) and 

2.6 (a - d). F igures 5 (a - d) represents the variation of FI (i.e. the frictional force at the upper 

wall of the channel) and Figures 2.6 (a - d) indicate the variation of i'2 (i.e. the frictional force 

at the lower wall of the channel) with Q. The phenomenon presented in these Figures is quite 

opposite to the pumping characteristic. By increasing d, FI decreases while F2 increases when 

Q > O. Figures 2.5b and 2.6b display the same behavior. Here FI and F2 increase by increasing 

the Hartman number M. Both FI and F2 decrease with an increase in the slip parameter (3 

after a certain critical value of Q. Figures 2.5d and 2.6d represent that FI and F2 decrease with 
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an increase ill the phase difference <P anu increase by increasing <P after a certain value of Q. 

' -d~ 
3- .... . . d=~1.4 

- - -d=1 .8 
,~=2.0 

2f 

-2 _~~~,._._ ._~ ._. 
- 1 - 0.5 0.5 1 1.5 

Q 

(a) 

I _ -, 
2.5 3 

4>, -=M= 0.01J 
' ..... M = 1.0 

3 - __ - M = 2.0 
: . - ' - ' M:;; 3.0 

2·-~ 

, .' 
./ .-

, 1 
-,' I 

, ! 

~- OlL __ ----~~.~. ~~,~7~·~~~·~~·~~: · ;~·· ~~ .. ~~~-··-.. -.. ·-.. --.... ~ 
- 1 ~ .. " ..... .. ; ~, .,. 

I 

-2 r , , 1 , 

-t~~ 
, 

~ __ ._~_i 
- 1 - 0.5 o 0.5 1 

Q 

(b) 

Figure 2.5a: Variation of frictional force Fl for different values of channel width d when 

a = 0.7, b = 1.2, M = 1, /3 = 0.5 and <P = 37r/2. 

Figure 2.5b: Variation of frictional force F] for different values of Hartman number M when 

a = 0.7, b = 1.2, d = 2, /3 = 0.5 and <P = 37r /2. 
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Figure 2.5d: Variation of frictional force Fl for different values of phase difference <I> when 
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a = 0.7, b = 1.2, d = 2, M = 1 and f3 = 0.5. 
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Figure 2.6b: Variation of frictional force H for difFerent values of Hartman number M when 

a = 0.7, b = 1.2 , d = 2, !3 = 0.5 and <1> = 31['/2. 
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Figure 2.6d: Variation of frictional force F2 for different values of phase difference <I> when 

a = 0.7, b = 1.2, d = 2, M = 1 and f3 = 0.5. 
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Variations of the heat transfer coefficient (Z) at the upper wall are given in the Tables 

2.1(a)-(f). These Tables show that the heat transfer coefficient decreases with an increase in 

the Hartman number NI, flow rate q and the slip parameters {3 and "f. However, it increases by 

increasing the amplitude ratio a and the Eckert number E. 

x M 

0.01 2 3 4 

0.1 l.8556 l.5370 l.4384 l.3687 

0.2 2.05882 l.9149 1.8487 l.8041 

0.3 2.4314 2.3851 2.3518 2.3248 

Table 2.1a: Variation of the heat transfer coefficient (Z) at the upper wall for different values 

of Hartman Humber M when a = 0.74 , b = 1.2 , d = 2, (3 = 0.35, 'Y = 0. 18, <]) = 7r /4, PI' = I, 

E = 1 and q = - 2. 

x E 

1 2 3 4 

0.1 0.9517 1.2444 1.5370 1.8296 

0.2 1.6068 1.7609 1.9149 2.0690 

0.3 2.2246 2.3049 2.3851 2.4653 

Table 2.1b: Variation of the heat transfer coefficient (Z) at the upper wall for different values 

of Eckert number E when a = 0.5, b = 0.6 , d = 1.5, (3 = 0.5, 'Y = 0.18, <]) = 7r /4, Pr = 1, M = 2 

and q = - 2. 

x q 

-0.5 -1 -1.5 -2 

0.1 3.6302 2.7950 2.0972 1.5370 

0.2 6.1657 4.2547 2.8378 1.9149 

0.3 6.0646 3.4817 2.2552 2.3851 

Table 2. 1c: Variation of the heat transfer coefficient (Z) at the upper wall for different values 

of flow rate q when a = 0.5, b = 0.6, d = 1.5, (3 = 0.5, 'Y = 0.18, <]) = 7r / 4, PI' = I, E = -3 and 
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M=2. 
x a 

0.5 0.7 0.9 1.1 

0.1 0.6447 0.9006 1.1561 1.4114 

0.2 1.0943 1.5218 1.9452 2.3652 

0.3 1.4266 2.0851 2.8132 3.6284 

Table 2.1d: Variation of the heat transfer coefficient (Z) at the upper wall for different values 

of amplitude ratio a when b = 0.6 , d = 1.5, /3 = 0.5 , 'Y = 0.18 , <I> = 1f /4, Pr = E = 1, NI = 2 

alld q = -2. 

x 'Y 

0.1 0.15 0.2 0.25 

0.1 1.5634 1.5467 1.5307 1.5155 

0.2 1.9955 1.9441 1.8961 1.8510 

0.3 2.5655 2.4494 2.3443 2.2488 

Table 2.1e: Variation of the heat transfer coefficient (Z) at the upper wall for different values 

of slip parameter , when a = 0.5, b = 0.6, d = 1.5, /3 = 0.5 , <I> = 1f /4, PI' = 1, E = 3, M = 2 

and q = -2. 

x /3 

0.3 0.4 0.5 0.6 

0.1 1.6732 1.4265 1.2599 1.1423 

0.2 1.9927 1.8528 1.7610 1.6975 

0.3 2.4317 2.3490 2.2975 2.2632 

Table 2.1f: VariatioIl; of the heat transfer coefficient (Z) at the upper wall for different values 

of slip parameter /3 when a = 0.5 , b = 0.6, d = 1.5, 'Y = 0.18, <I> = 1f /4, Pr = 1, E = 3, M = 2 

and q = -2. 

2.5 Concluding remarks 

In the present chapter, we have analyzed the slip effects on the magnetohydrodynamic peristaltic 

flow of a viscous fluid. The influence of heat transfer is also seen. Closed form solutions are 
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der ived for the velocity and temperature. T he main observat.ions of t he presented analysis are 

as follows. 

• The longitudinal velocity increases in the neighborhood of the walls and decreases near 

the centre of the channel when the velocity slip parameter is increased. 

• An increase in velocity slip parameter leads to a decrease in the temperature. 

• Due to increase in thermal slip parameter, the temperature increases. 

• The effects of Brinkman number and velocity slip parameter on the temperature are quite 

opposite. However , the variations of Brinkman number and thermal slip parameter on 

the temperature are similar in a qualitative sense. 

• Frictional forces on the upper and lower walls are the increasing functions of Hartman 

number. 

• T here is a decrease in t he heat transfer coefficient at the upper wall when velocity and 

thermal slip parameters are increased. 

• The effects of Hartman number and flow rate on the heat transfer coefficient at the upper 

wall are quite opposite to that of ampli tude ratio and Eckert number. 

• The variations of velocity and thermal slip parameters on the heat transfer coefficient at 

the upper wall are opposite when compared with the variations of amplitude ratio and 

the Eckert number. 
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Chapter 3 

Wall properties and slip effects on 

the magnetohydrodynamic 

peristaltic motion of viscous fluid 

with heat transfer and porous space 

This chapter explores the effects of slip conditions and wall properties 011 Lhe MHD peristaltic 

flow of viscous fluid filling the porous space in a channeL Th(~ heat transfer analysis is also 

presented. The solutions of the stream function, velocity and temperature distributions an! 

constructed in closed form under long wavelength and low Reynolds number approximations. 

T he efFects of various influential key parameters are reported and discussed. 

3.1 Mathematical model 

We consider a channel of width 2d. The channel is fill ed with an incompressible and magneto­

hydrodynamic (MHD) viscous fluid. A uniform magnetic field B = (0, Eo , 0) is applied in the 

y-direc tion. The induced magnetic field is negligible under the assumption of small magnetic 

Reynolds number considerat ion. The fluid fills the porous space. The temperatures of the 

lower and upper walls of the channel are maintained at To and Tl respectively. The imposed 
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travelling waves of small amplitudes on the insulating walls of the channel are given by the 

following expressions 

Y = ± 7] = ± [d + a si n (2; (x - et) ) ] , 

where A is the waveleng th , e is the wave speed , a is the wave amplitude a nd x and y are the 

Cartesian coordinates with x measured in the direction of the wave propagation and y measured 

in the direction normal to the mean position of the channel walls. 

The equations which can govern the motion for the present flow are 

01.£ + ov = 0 (3.1) ox oy , 

p (~ + u~ + v~) 1.£ = - op + J.L ( 0
2 

+ 0
2 

) 'U - CT B5U - !!:..u, (3.2) ot ox oy ox ox2 oy2 k 

p (~ + u~ + v~) v = - op + J.L (02 

+ 0
2 

) V - !!:..v , (3.3) ot ox oy oy ox2 oy2 k 

( (~ + 'u~ + v~) T = ~V'2T + v [{ 2 ( ~~ ) 2 + 2 ( ~~)2 }] (3.4) 
ot ox oy P + (au + av ) ay ax 

subjected to the boundary conditions 

u±a~~ = o at y=±77=:l=[d+asin(2;(x -c;n)] , (3.5) 

o op (0
2

1.£ 02U) (01.£ 01.£ 01.£) 2 - L (T)) =-= J.L -+ - - P - +u-+v- -CTBou ox ox oy2 oy2 ot ox oy 
J.L - kU at y = ±r/, (3.6) 

oT 
T - ~~ = To on y = -7], oy 

oT 
T + ~ oy = Tl on y = 7] , 

(3 .7) 

(3.8) 

where 1.£ and v are the velocity components in .'E and y directions respectively and p, t, p, 

J.L , v, CT, (, K and T are the fluid density, the t ime, the pressure, t he dynamic v iscosity, the 

kinematic viscosity, t he electrical conductivity, the specific heat, t he t hermal conductivity and 

the temperature respectively. Furthermore, L = -rfly + m" + Cft, r is the elastic tension 

in t he m embrane, m is t he mass per unit area and C is the coefficient of viscous damping. 
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On setting 
Bw 

u = By and 
oW 

V=--ax 
equation (3.1) is automatically satisfied and Eqs.(3.2)-(3.8) are reduced as follows 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.16) 

(3.17) 
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3.2 Non-dimensionalization 

Defining the following non-dimensional variables and parameters 

x* x * y 
3: ' Y = d' 
k a 

el2 ' E= d' K * 

R 

equations (3.9)-(3.17) take the form 

w* _ w * _ ct * 
- cel ' t - >:: , 1] 

el M 2 _ (J B5 d2 
0=3:' - J.1- ' 

pll( 
Pr = - , 

K, 
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(3 .18) 

(3 .19) 

(3.20) 



8w 82w 
- ± (3-2 = 0 at y = ±17 = ± [1 + Esin (27r (x - t))], 
8y 8y 

8p [ E3 sin 27r (x - t)] 
8x = - 8E7r3 (E1 + E2 ) cos 27r (x - t) - 27r 

( 
82 fJ2 ) 8w ( 8 oW 8 8w 8 ) 8w 

= f-L 8x2 + 8y2 8y - P at +- ay 'ax - a; ay ay 

_aB28w _!!:. 8w at y = ±1], 
o 8y k 8y , 

8e e - , - = 0 at y = - 1] , 
8y 
8e 

e + ' -8 = 1 at y = 1/ . 
Y 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Invoking long wavelength and low Reynolds number assumptions, one obtains from Eqs.(3.18)­

(3.24) , the expressions as follows : 

8
3w _ N 28W _ 8p =0, 

8y3 8y 8x 

~ (8
2e) + E (8

2
W)2 _ 0 

Pr 8y2 8y2 -, 

- - N 2
_ = E 1 - + E2-- + E3-- 1] at y = ±1] , 

8
3 
W aW [8

3 
8

3 
8

2 
] 

8y3 8y 8x3 8x8t2 8x8t 

8w 82 w 
-8 ± (3-82 =0 at y =±17=±[1 +Esin27r(x-t)] , 

y y 

8e e - ,- = 0 at y = - 1], 
8y 
8e e + <y- = 1 at y = 1/ . . 8y 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3 .30) 

In above equations, the asterisks have been suppressed for simplicity, 8p/8y = 0 which means 

that p =1= p (y) , w is a stream function , N = J M2 + 1/ J( , M is the Hartman number, J( is 

the porosity parameter, Pr is the Prandtl number and E is the Eckert number. Furthermore, 

Eqs. (3.28)-(3.30) are the slip conditions for the velocity and temperature respectively and 

(3 = ex/d, ,= Ud (ex and ~ are the dimensional slip parameters corresponding to velocity and 

temperature). 
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3.3 Solution of the problem 

From Eq. (3.25) we have 

(3.31 ) 

Employing boundary conditions (3.28) , we can write 

0, 

N (cosh NT/ + f3 N sinh N T/) . 

and now Eq. (3.31) becomes 

iII = £2 [ sinh Ny _ ] 
N (cosh N T/ + f3 N sinh NI]) Y , 

(3.32) 

£ 2 _ 8En
3 

[E3 sin 2n (x - t) (E E ) ( . )] 
- -- - 1 + 2 cos 2n x - t . 

N2 2n 

Using the expression of stream function in Eq. (3.26) and integrating the resulting expression 

twice, we have 

B7·£4N2 ( COSh2NY y2) e = - 2 - - + B l Y + B 2 · 
2 (cosh N T/ + f3 N sinh N 17) 4N2 2 

(3.33) 

Through Eqs. (3.29) and (3.30) , one has 

1 

2(T/+')')' 

~ + B7-L4 N2 . [_ i sinh 2NT/ cosh 2NT/ _ T/ 2] 
2 2(coshNT/+f3NsinhNT/)2 ')'T/ + 2N + 4N2 2· 

Putting the above expressions in Eq. (3.33) and rearranging, we get 

e = Br£4N2 [COSh2N77 - cosh2Ny 

8 (cosh N T/ + f3 N sinh N T/) 2 N2 

2 (2 2) 4 (sin 2NT/ )] Y + T/ + ')' 
+ Y - T/ + ')' 2N - T/ + 2 (1] + ')') , (3.34) 
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where Br = Pr E is the Brinkman number and the longitudinal velocity is 

'U 
oW 
oy 
L 2 [ cosh N y _ 1] . 

(cosh N7/ + f3N sinh Nr/) 

The heat trallsfer coefficient at the upper wall is 

7]x
BrL"N

2 [-2 . I N] 7]x 
2 -N Sllll 7] + 47] + 2 (77 + 'V) . 8 (cosh N 17 + f3 N sinh N 1/) , 

3.4 Graphical results and discussion 

(3 .35) 

(3.36) 

T he object of this section is to analyze the longitudinal velocity, stream function , temperature 

and heat trallsfer coefficient for various parameters of interest. Hence we displayed Figures 

3.1 (a - d)-3. 7 (a - d). Figure 3.1 is plotted to examine the effect of various parameters on the 

longitudinal velocity 1£. One observes from Figure 3.1b that the longitudinal velocity 1£ increases 

when the porosity parameter J( increases while it decreases when the Hartman number M is 

increased (Figure 3.1a) . Figures 3.1c and 3.1d record the behavior of velocity slip parameter (3 

and the occlusion parameter E on the velocity respectively. These Figures' depict an increase in 

the velocity when !vI and E are increased. T he effect of the elastic parameters E1 , E2 and E3 

are evident in Figure 3.1e. It may be of interest to note from this Figure that by increasing 

the elastic parameters, the velocity increases. It is also interesting to observe that the velocity 

profile is parabolic for fixed values of the parameters and its magnitude is maximum near the 

centre of the channel. Moreover, it is found that the elastic tension El has a significant effect 

on the axial velocity in comparison to the mass characterizing parameter E2 and the damping 

nature of the wall E3 . 
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Fig1ll'e 3.1a: Variations of the longitudinal velocity '/.L for difFerent values of Hartman number 
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Figure 3.1b: Variations of the longitudinal velocity u for different values of porosity pa­

rameter K when El = 1.0, E2 = 0.5, E3 = 0.1, E = 0.1, M = 2, (3 = 0.2, x = 0.2 and 

t = 0.2. 
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Figure 3.1c: Variations of the longitudinal velocity 'U for different values of velocity slip 

parameter (3 when El = 1, E2 = 0.5, E3 = 0.5 , E = 0.1, K = 5, M = 2, x = 0.3 and t = 0.1. 
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Figure 3.1d: Variations of the longitudinal velocity lL for different values of amplitude ratio 

E when El = 0.5, E2 = 0.2, E3 = 0.1, M = 2, J( = 5, {3 = 0.2 , x = 0.2 and t = 0.2. 
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Figure 3.1e: Variations of the longitudinal velocity 'LL for different values of wall parameters 

when E = 0.1, M = 2, J( = 5, {3 = 0.2, x = 0.2 and t = 0.2. 

In F igures 3.2 (a - g) , the nature of t he temperature profile is of parabolic character. Here 

the temperature decreases by increasing the Hartman number M (Figure 3.2a) and the veloc­

ity slip parameter {3 (Figure 3.2c) . Note that the temperature decreases in the downstream. 

However , F igures 3.2b and 3. 2d illustrate that the temperature increases by increasing the per­

meability parameter J( and the thermal slip parameter "/. The variations of the Brinkman 

number Br and the occlusion parameter E on the temperature are sketched in the Figures 3.2e 

and 3.2f. It is not ed from these Figures that the temperature is an increasing function of Br and 

E. Figure 3.2g elucidates the effect of t he elastic parameters El , E2 and E3 on t he temperature. 

This F igure reveals that the amplitude of temperature increases with an increase in El , E2 and 

38 



E 3. It is further observed that the effect of E1 on temperature is quite significant. 
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Figure 3.2c: Variations of temperature distribution e for different values of velocity slip 

parameter (3 when E1 = 0.8, E2 = 0.2, E3 = 0.1, E = 0.1 , M = 2, J( = 5, 'Y = 0.1, x = 0.3, 
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B7' = 2 and t = 0.1. 
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t = 0.3. 

Figure 3.2g: Variations of temperature distribution e for different values of wall parameters 

when E = 0.1. M = 2, J( = 5, f3 = 0.2, "( = 0.1, B7' = 2, x = 0.3 and t = O.L 

The results presented in Figures 3.3 (a - 1) indicate the behavior of lVJ, K, f3, " BT, E 1 , E2 

and E3 011 the heat transfer coefficient Z. These Figmes show the typical oscillatory behavior 

of heat transfer which is in view of consideration of the peristaltic motion. Figures 3.3b and 

3. 3d-3.3f, depict that the absolute value of the heat transfer coefficient increases by increasing 

J( , "(, BT', E 1, E2 and E3 respectively, while the behavior is quite opposite in the cases of M and 

f3 (Figures 3.3a and 3.3c). The damping nature of the wall E3 has a very insignificant effect on 

the heat transfer. 
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Figure 3.3a: Variations of heat transfer coefficient Z for difFerent values of Hartman number 

M when E1 = I , E2 = 0.2 , E3 = 0.1, E = 0. 2, J( = 0.05 , f3 = 0.2, , = 0.1, Br = 1 and t = 0.2. 

Figure 3.3b: Variations of heat transfer coefficient Z for different values of porosity para­

meter K when E1 = 0.3, E2 = 0.2, E3 = 0.1, E = 0.2, M = 4, f3 = 0.2, , = 0.1, Br = 2 and 
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t = 0.1. 
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Figure 3.3c: Variations of heat transfer coefficient Z for different values of velocity slip 

parameter (3 when El = 0.3, E2 = 0.2, E3 = 0.1 , E = 0.2 , M = 4, K = 0.2, 'Y = 0.1 , Br = 2 

and t = 0.2. 

Figure 3.3d: Variations of heat transfer coefficient Z for different values of thermal slip 

parameter 'Y when E j = 0.8, E2 = 0.1, E3 = 0.1, E = 0.2, M = 2, K = 0.02 , (3 = 0.2, Br = 2 

and t = 0. 2. 
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Figure 3.3e: Variations of heat transfer coefficient Z for different values of Brinkman number 

B7' when El = 0.3, E2 = 0.2, E3 = 0.1, E = 0.2, M' = 4, K = 0.2 , (3 = 0.2, 'Y = 0.1 and t = 0.2. 
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Figure 3.3f: Variations of heat transfer coefficient Z for difFerent values of wall parameters 

when E = 0.1 5, M = 1, J( = 0.05 , B1' = 3, (3 = 0.2 , ,= 0.1 and t = 0.25. 

The formation of an internally circulating bolus of fluid by closed streamlines is shown in 

Figures 3.4 (a - c)-3 .7 (a - d). Figures 3.4(a - c) display the efFect of the Hartman number M 

on the streamlines for fixed value of the other parameters. These Figures show that the size of 

the trapping bolus decreases with an increase in the Hartman number lvI , while the behavior 

is quite opposite in the case of t he permeability parameter J( (Figures 3.5 (a - c)). Figures 

3.6 (a - c) reveal that the behavior of velocity for slip parameter (3 on the streamlines. Here we 

observed t hat the number of t he streamlines increases by increasing (3. The effect of the elastic 

parameters on the streamlines is plotted in Figures 3.7 (a - d). T he number of the trapped 

bolus increases with an increase in E l , E2 and E3 . We also note that the damping seems less 

effecti ve in the trapping phenomenon. 
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-02 -01 0 01 02 03 0 4 05 06 

(c) 

Figure 3.4: Streamlines for (a) !VI = 0, (b), !vI = 4, (c) !VI = 6. 

The other parameters chosen are (E = 0.2, f3 = 0.1, El = 0.3, E2 = 0.1, E3 = 0.1, K = 0.04 and t = 0) . 
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I -02 -01 0 0.1 0.2 0 3 04 0 5 06 

(C) 

Figure 3.5: Streamlines for (a) J( = 0.05 , (b), J( = 0.2, (c) K -; 00. 

The other parameters chosen are (10 = 0.17 , f3 = 0.1, E1 = 0.3, E2 = 0.1 , E3 = 0.1 , M = 4 and t = 0). 
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-0.2 - 0.1 0 0.1 0.2 0 .3 04 05 06 

(c) 

Figure 3.6: Streamlines for (a) (3 = 0, (b) , (3 = 0.1, (c) (3 = 0.2. 
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Tbe other parameters chosen are (E = 0.17 , E) = 0. 3, E2 = 0.1, E3 = 0. 1, M = 4, K = 0.05 an I t = 0). 

--0, 01 02 03 04 0.5 06 07 
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:: •• ~--~-WJ~~~ --- - -_._- -- -- . 
_. 

/ ..... -

-'5 ..... 

-0 , 04 0 5 -0 , 

(c) (d) 

Figure 3.7: Streamlines for (E = 0.2, (3 = 0.1 , K = 0.04, M = 5 and t = 0.1) . 

(a) E1 = 0.5 , E2 = 0.3, E3 = O.l. 

(b) E1 = 0.8, E2 = 0.3 , E3 = O.l. 

(c) E1 = 0.5 , E2 = 0.5, E3 = O.l. 

(d) E1 = 0.5, E2 = 0.3 , E3 = 0.7. 

3.5 Closing remarks 

T heoretical st udy for the slip effects in the magnetohydrodynamic peristaltic flow of viscous 

fluid through a porous medium is presented in the presence of heat transfer. The main findings 
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are summed \lp below. 

• There is an increase in the longitudinal velocity in the neighborhood of the walls when 

velocity slip parameter increases. Further sllch behavior is maintained at the channel 

centre. 

• Temperature decreases in view of increasing velocity slip parameter. 

• The behavior of velocity and t hermal slip parameters on the temperature are opposite. 

• Brinkman number and velocity slip parameter has reverse effects on the t empera ture. 

On the other hand, the variations of Brinkman number and t hermal slip parameter are 

similar quali tat ively. 

• Heat transfer coefficient at the upper wall is decreasing function of velocity slip parameter. 

• The influence of Hartman number on t he heat transfer coefficient at the upper wall is 

quite opposite to that of a Brinkman number. 

• The absolute value of the heat transfer coefficient increases 1Il the upper part of the 

channel when t he elastic parameters increase. 

48 



Chapter 4 

Peristaltic transport of viscous fluid 

in a curved channel with compliant 

walls 

This chapter looks at the influence of compliant wall properties and heat transfer on the peri­

staltic flow of an incompressible viscous fluid in a curved channel. The equations are first 

modelled and then solved for stream function , velocity and temperature profiles. The varia­

tions of various interesting parameters are shown and examined very carefully. 

4.1 Mathematical model 

We consider a curved channel of thickness 2d filled with an incompressible viscous fluid. The 

channel is coi led in a circle with centre 0 and radius R*. The flow in the channel is inducecl 

by sinusoidal waves of small amplitude a. Moreover t he channel walls are of compliant nature. 

The temperatures of the lower and upper walls of the channel are To and T} respectively. The 

displacements of the channel walls are considered as follows: 

r = ±7) = ± [d + a sin ( 2/~ (x - et) ) ] , 
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where A is the wavelength and c is the wave speed. Let v and u denote t he velocity components 

in the radial (1') and axial (x) directions respectively. 

The governing equations in the absence of body forces can be written as 

a [( l' + R*) v 1 + R* au = 0 
aT ax' 

( 4.1) 

(
av av uR* av u

2
) ap 2J.L 0 [( R*) ov ] 

p -at +v-01' + l' + R*-a-x - 1' + R* = --aT + T+R*OT T+ -01' 

+ R* f1. a [ _ou + R* av _ 'U ] _ ( 2f.L ) ( R* _au + _v_) 
l' + R* ax aT l' + R* ax l' + R* T + R* T + R* ax T + R* ' 

(4.2) 

(
au au R* ou 'uv) R* op f1. 0 [ ( R*)20U] P -+v- + u-+ =- -+ - 1'+ -
at aT T + R* ox T + R* l' + R* ox (1' + R*)2 aT aT 

+ 1'+ --- - --f1. a [( R* ) 2 ( R* av 'u) ] 
(T + R*) 2 0'" l' + R* ax l' + R* 

+ ( _2f1.R_* ) _0 ( R* _ou + v ) 
l' + R* ox l' + R* ox l' + R* ' 

(4.3) 

C (
aT aT uR* aT ) [82

T 1 aT ( R* )2 a2
T ] p - + v- + - = K, -- + + --

p Dt 01' l' + R* ax a1,2 T + R* aT 7' + R* Dx2 

+ f1. 2 - + -+ - --- - ---,,-
[ ( 

av ) 2 (au R* av u) ( R* av 1L) 1 
Eh aT T + R* ax l' + R* 7' + R* ax T + R* 

au [ ( ou R* OV 'u) ] (R* au v) 2 + f1.- - + - -- + 2J1' --- +--::::-
a7' U7' 'f' + R* ox 'f' + R* T + R· UX 7' + R* 

(4.4) 

The boundary conditions are taken in the forms given below 

'u = o at T=±77=± [d +asin ( 2;(x-ct))] , (4.5) 

~!!.-L(7]) = ~ op 
T + R' ax l' + R* ax 

-----,,-- (7' + R*) - + - + - + --f1. 0 [ 2 ( au R* av 'u)] (2f1.R* ) a ( R* O'U v) 
(7'+R*)2a1' 01' T + R* ax 7' + R* r- + R* ax 7'+R*ax T+R* 

(
au au R* au uv ) 

-p -+v-+ u-+-- at 7'=±77, (46) 
at aT T + R* ax T + R* . 

T = To on T = - 7], (4.7) 

T = T1 on T = 7], (4.8) 

Here p, t , p, f1. , Cp , K, and T are the fluid density, the t ime, the pressure, the dynamic 

viscosity, the specific heat, the thermal conductivity and the temperature respectively. Further, 
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L = -(Y~ + mt;2 + C tt, (Y is the longitudinal tension per unit width , Tn is the mass per uni t 

area and C is the coefficient of viscous damping. 

4.2 Dimensionless formulation 

On setting 
oW k oW 

U =-- v=o----
aT' T + k ax 

and defining the following uon-dimensional variables 

v* W * ct 
v = - w* - - t =-

c ' - cel ' A ' 
R* cd a . d 

k = d ' R = --;; ' E = d' 0 = ~ ' 

Cel
3 

Pr _- pvCp , E3 = - 2-' 
A j.L /'L 

equation (4.1 ) is satisfi ed ident ically and equations (4.2 to 4.8) now are expressed as 

[ () ( )2 ()2 1 a 2 k 2 k 2 k 1 2_ P 
Ro {) --k Wxt + 0 --k Wrx - 8 --k wr\]l xx - 2 \]Ir --"!:l 

l' + - T + " T + .. (7' + k) ur 

6 a .. . 2aSrx 6 
+--k-a [(7 +k)SrrJ+k8 -a - ( k)SXX ' 

T + ' T X 7' + .. (4.9) 

[ ( k) (k) k] ( k ) OP R - 8\]1 ,·t - 0 --k WxWrr + 8 -- \]IT\]ITX - 8 2 \]I,.Wx = - --k -a 
T + . r+k (T + k) T+ - x 

1 a [( k )2 S ] ); ( k ) asxx + r + rx + U -- --, 
(r+k)20T 7'+ k ax 

(4.10) 

Srr = 28 (r ~ k) W rx, (4.11) 

( 
k )2 1 

S"x = - \]Irr + 62 
--k \]I x:!: + ( k) WT , 

T + T + ' (4.12) 

[ ( .k ) k] Sxx = 2 -8 - ' -k W rx + 8 2 W x , 
r+ - (T+k) 

(4.13) 

Wr=O at 7'=±'1') = ±[1+ Esin27r(x - t)J, (4.14) 
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k [ 0
3

1] 0
3

1] 02ry ] 1 0 [ 2] (k) 05xx 
-- E[- + £2-- + E3-- = (1' + k) 5n · + 15 -- --
T+k ox3 ot20x oW:!: (r+k)20r " T+k ox 

-R [- 8WTt - 8 (~) wxw,." + 15 (_k_) WTW"X - 8 k 2 WTWX ] at T = ±ry, (4,15) 
7' + k r+k CI'+k ) 

Pr RI5 [8() + 8 (_k_) Wx oe _ _ 15_ w,. oe ] = 02e + _ l _oe + 82 (~) 2 02e 
ot l' + k or 7' + k ox or,2 T + k or 7' + k 8x2 

[ 
:2 ( k ) 2 2 ( WT 2 ( k ) 2 ) (WT 2 k ) + B7' 28 --k Wrx + - W,.,. + --k + 8 --k Wxx --k + 8 ( )2 Wxx 

T+"' 1' + " T+ " T+ " 1'+k 

- Wn ( - W"T + WTk + 82 (~) 2 Wxx ) + 2152 ( _ (_k_) WTX + k 2 Wx) 2] ,(4 .16) 
T + " 7' + k T + k (r + k) 

e = 0 at 7' = - 1] , (4,17) 

e = 1 at r = 7]. (4.18) 

The above equations after employing long wavelength and low Reynolds number approximations 

give 

7' = ±77, 

e = 1 at r = 1] , 

= 0, 

(4. 19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

where for brevity, the asterisks are omitted, W is the stream function, Pr is the Prandtl number, 

E is the Eckert number and Br = Pr E is the Brinkman number. 
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4.3 Solution of the problem 

The closed form solution of equation (4.19) is given by 

\[J = - (1' + k) In (1' + k) - - + - In (1' + k) + - (1' + k) + C3 G 2 [ 1] C] C2 2 
4 2 2 2 ' 

(4.25) 

3 [E3 sin 27f (x - t) ] 
G = 8E7f k 27f - (E1 + E2 )cos27f (x - t) , 

Using the boundary conditions (4.21) and (4 .22), the values of the constants are 

C1 = ~ (k2 _ ry2)2 In ( k + 71) , 
4k77 k - 1] 

G [2 2'j C2 = - -k (k + 1]) In (k + 71) - (k - 1]) in (k - 17) , 
8~ . 

C3 = --k In (1' + k) - - - - In k --k G 2 [ 1] C1 C2 2 
4 2 2 2 ' 

From equation (4.20) we have 

[ 
C? C 1 G 2 G2 2] 

()=-IJ'I' 2 -- in (T + k)+-(1' + k) +Dlln (I'+k)+D2. 
4(1' +k) 2 16 

(4.26) 

The value of the constants subj ect to the boundary conditions (4.23) and (4.24) are 

1 { [ C
2 

k1] G
2 
hi C G ] } Dl = ( ) 1 + B1' - ~ 2 + _T_. - _1_ (In2 (k + 1'1) -ln2 (k - ry)) , 

In k+1) (k + 17) (k - 1/) 4 2 
k-1) 

D2~ (1 ) {In(k - ry) +B7" [_C1G (In2(k+ry)in(k-ry)-ln2(k-1])ln(k+17)) 
In k-1) 2 

k+1) 

+ C
4
? (in (k - -;) _ In (k + -;)) + G

6

2 
[In (k _ 7/) (k + 1])2 - In (k + ry) (k - 1])2] ] } . 

(k +ry) (k - 1]) 1 

The longit udinal velocity is 

u 
aw 
aT 

- [ ~ (1' + k) In (7" + k) + 2 (7~~ k) + C2 (7" + k) ] 
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and the heat transfer coefficient at the upper wall is 

z 

(4.28) 

4.4 Graphical results and discussion 

We study the behavior of the longitudinal velocity, stream function, temperature and heat 

transfer coefI1cient in this section. For this purpose, Figures 4.1 (a - c)-4.6 (a - c) have been 

plotted. F igures 4.1 (a - c) examine the efFect of various parameters on t he longitudinal velocity 

'l.t . It is observed t hat the longit udinal velocity 'U increases with an increase in the curvature 

k in the upper half of the channel while the reverse situation is observed in t he lower half 

of the channel. T he effect of the occlusion parameter E on 'U is depicted in Figure 4.1b. We 

observe that there is an increase in the longit udinal velocity when E increases. The variations 

of the elastic parameters E1 , E2 and E3 are shown in Figure 4 .1c. T his Fig. indicates that by 

increasing t he elastic parameters (E1 , E2 and E3), the velocity increases. It is also interesting 

to note that the velocity profile is parabolic for fixed values of the parameters and its magnitude 

is maximum near t he centre of the channel. Moreover, it is observed that the elastic tension 

E1 has a significant effect on the axial velocity when compared with the mass characterizing 

parameter E2 and the damping nature of the wall E3 , 
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Figure 4.1a: Variations of the longitudinal velocity 'U for different values of curvature para­

meter k when El = 0.5, E2 = 0.2 , E3 = 0.1 , E = 0.15, x = 0.2 and t = 0.05. 

Figure 4.1b: Variations of the longitudinal velocity 'U for different values of occlusion para­

meter E when El = 0.5, E2 = 0.2, E3 = 0,1 , k = 5, x = 0.2 and t = 0.05. 
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20 25 

Figure 4.1c: Variations of the longitudinal velocity 1£ for different values of elastic parameters 

when k = 5, E = 0.3, x = 0,2 and t = 0.05. 

In Figures 4.2 (a - d) , the nature of the temperature profiles is also parabolic. Here the 

teIllperature increases by increasing the Brinkman number Br- (Figure 4.2a) and the occlusion 

parameter E (Figure 4. 2c). The variations of the curvature parameter k is sketched in Figure 

4,2b. Obviously the temperature is a decreasing function of k. A small change has been observed 

from this figure for large values of k. Figure 4.2d elucidates the effect of the elastic parameters 

E1 , E2 and E3 on the temperature. The amplitude of temperature increases upon increasing 

E1 , E2 and E3 . It is further observed that the effect of El on temperature is quite significant. 
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Figure 4.2a: Variat ions of temperature distribution e for different values of Brinkman num-

bel' BT when E1 = 1, E2 = 0.5, E3 = 0.3, E = 0.15 , k = 3, :1; = 0.3 and t = 0.05. 

Figure 4.2b: Variations of temperature distribution e for different values of curvature para­

meter k when E1 = 1, E2 = 0.5, E3 = 0.1, E = 0.2, B7' = 1, x = 0.3 and t = 0.05 . 

. -c=o 
4> ,= 0.1 

3.5r 1 • ,= 0.15 \ 
I t -If-- E = 0.2 
I 

3 ~ 

2.5f 
~ 2r 

1 . 5 ~ 
/ 

, 
\ , 

1 ~ I ___________ -- \ 
• I i _______ 

0.5 rj , . ____ -

¥' .--------°V~~~ ~~_ ~ ____ , __ ~ 
- 1 - 0.5 o 

r 
(c) 

0.5 

i 

1 ", 

--- \ j 
, ,/ . \ \ j 

I , / ~ ~ I 
1[ ____ -- I 
I , - --0.5 , __ - -• I _________ -

o -
-1 - 0.5 0.5 · 1 

(d) 

Figure 4.2c: Variations of temperature distribution e for different values of occlusion para-

meter E when E1 = 1, E2 = 0.5, E3 = 0.3 , BT = 3, k = 3, x = 0.3 and t = 0.05. 

Figure 4.2d: Variations of temperature distribution e for different values of elastic parame-
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ters when E = 0.15 , B7· = 2, :1: = 0.3, k = 3 and t = 0.05 . 

The results presented in Figures 4.3 (a - cl) indicate the behavior of /'; , E, E1 , E2 , E3 and 

B1· on the heat transfer coefficient Z . These figures display the typical oscillatory behavior of 

heat transfer which may be due to the peristaltic phenomenon. F igures 4.3 (a - cl) describes 

the absolute value of the heat transfer coefficient . This coefficient increases by increasing k , E, 
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Figure 4.3a: Variations of heat transfer coefficient Z for different values of curvature para-

meter k when El = 0.5, E2 = 0.3, E3 = 0.1, E = 0.05, BT = 1 and t = 0.25. 

Figure 4.3b: Variations of heat transfer coefficient Z for diff"erent values of Brinkman number 

BT when El = 0.5, E2 = 0.15, E3 = 0.1, E = 0.05, k = 2 and t = 0.25 . 
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Figure 4.3c: Variations of heat transfer coefficient Z for different values of occlusion para­

meter f. whell E l = 0.5 , E2 = 0.1 5, E3 = O.I ,k = 2, BT = 1 and t = 0.25. 

F igure 4.3d: Variations of heat transfer coefficient Z for different values of elastic parameters 

when E = 0.05, k = 2, Br- = 1 and t = 0. 25. 

The formation of an internally circulating bolus of fluid by closed streamlines is shown in 

Figures 4.4 (a - c)-4.6 (a - c). Figures 4 .4 (a - c) display the effect of curvatme parameter k 

on the streamlines for fixed values of the other parameters. This Figure shows that the size 

of the trapping bolus increases when k increases. From Figures 4.5(a - c) and 4.6(a - c) , we 

observe that the streamline increases with an increase in the occlusion parameter f. and the 

elastic parameters E l , E2 and E3 respectively. 
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(a) (b) 

(c) 

Figure 4.4: Streamlines for (a) k = 2, (b), k = 15, (c) k = 500. 

The other parameters chosen are (c = 0.1, El = 0.02, E2 = 0.15, E3 = 0.05 and t = 0) . 
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Figure 4.5: Strea~lines for (a) E = 0.01, (b) E = 0.02, (c) E = 0.03. 
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The other parameters chosen are (k = 5, E1 = 0.3 , E2 = 0.5, E3 = 0.3 and t = 0) . 

-01 0 01 02 0 J 04 05 06 07 0 B -01 0 01 02 0 J 04 05 06 0.7 0 B 

(a) (b) 

I 
I 
I 1 

I 

I -0 

i I -1 

I 
I -1 
I I -01 0 01 02 03 04 05 06 07 0 B 

I 

Figure 4.6: Streamlines for 

(a) E1 = 0.04, E2 = 0.02 , E3 = 0.01. 

(b) E1 = 0.06 , E2 = 0.04 , E3 = 0.02 . 

(c) E1 = 0.08, E2 = 0.06, E3 = 0.03. 

The other parameters chosen are 

(c: = 0.13, k = 3 and t = 0.1) . 

(c) 
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4.5 Final remarks 

Vve studied the compliant wall effects on t he peristaltic How of viscous fluid in a curved channel 

with heat transfer. The influence of heat transfer is also discussed. The maiu points of the 

presented analysis can be summari7.ed as follows: 

• In view of increase in occlusion and elastic parameters, the longitudinal velocity increases 

in the neighborhood of the walls and at t he centre of t he channel. 

• There is an increase in the temperature when the wall parameters are increased . 

• The eHects of Brinkman number, occlusion and the elastic parameters on the temperature 

are quite similar , i.e. the temperature increases by increasing such parameters. 

• T he effect of curvature k on the temperature is opposite when compared with the other 

parameters. 

• The absolute value of the heat transfer coefficient increases 111 the upper part of the 

channel when the curvature parameter is increased. 

• Our results for hydrodynamic fluid and no-slip condition are in good agreement with the 

study in ref. [97J which can be obtained as the limiting cases of present analysis by taking 

k ~ 00. 
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Chapter 5 

Peristaltic motion of an Oldroyd-B 

fluid in a channel with compliant 

walls 

The peristalt ic flow of a subclass of ra te type fluid in a channel with compliant walls is discussed. 

Consti t utive expressions for an Oldroyd-B fluid are used in the ma thematical development of 

flow equations. The flow is induced by t he sinusoida l waves on the channel walls. Series 

solu t ion of the result ing boundary value problem is derived under small amplitude assumption . 

Emphasis is given for the analysis of various embedded parameters on the flow quantities of 

interest. 

5.1 P roblem definition 

Consider a two-dimensional channel of uniform width 2h filled with homogenous Oldroyd-B 

fluid. The fluid motion in the channel is induced by imposing small amplitude sinusoidal waves 

on the compliant walls of channel. The geometry of the walls is described by the equation 

y = ±h ±TJ (5.1) 
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in which t he vertical displacement 77 of the upper wall from its normal position is defined as 

27r 
71 = acos~ (x - ct) . (5.2) 

Here a is the wave amplitude, c is t he constant wave speed, /\ is the wavelength, for lower wall 

·'1 is replaced by -rJ and in Cartesian coordinate system , x is measured in the direction of wave 

propagation and y is taken in the direction normal to the x-axis. The equation of the compliant 

wall is [95] 

(5.3) 

In above equation, Tn indicates the plate mass per unit area, d is the wall damping coefficient, 

B is the flexural rigidity of the plate, T is the longitudinal tension per unit width, J( is the 

spring st iffness and Po is the pressure on the outside surface of the wall. Assuming Po = 0 

and the channel walls inextensible so that only their lateral motions normal to the undeformed 

positions occur. The horizontal displacement of the walls is assumed to be zero and so the 

boundary conditions are 

and at JJ = ±h ± 77 , 

where the stream function w(x, y, t) is defined through the following expressions 

8w 
U= 8y' 

8w 
v=--

8x' 

where u and v are the x- and y- components of the velocity V respectively. 

(5.4) 

(5.5) 

The equations governing the flow of an incompressible fluid in a bsence of body forces are 

divV= O, 

dV 
Pdi = - V'p+ eliv S, 

(5.6) 

(5.7) 

where p is the pressure, S is an extra stress tensor for which an Oldroyd-B fluid satisfies the 

following constitutive relation 
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(5.8) 

In above equation, f..l is the dynamic viscosity, Ai (i = 1 - 2) are material constants associated 

with Oldroyd-B fluid , Al is the first Rivlin-Ericksen tensor and D / Dt is the upper convected 

time derivative. It is pointed out that t he model represented by (5 .8) reduces to a Maxwell 

model for A2 = 0, a second grade fluid for Al = 0 and a viscous fluid model when Al = A2 = 0 

as the limiting cases. 

In component form, Eqs.(5.6)-(5.8) give 

(
a,u au au) ap asxx asxy p -+u-+v- =--+--+--at ax ay ax ax ay ' 

(
av av av) ap as"y asyy 

p - +u- +v- = - - + --+--at . ax ay ay ax ay ' 

[ ( a a a ) au au] sxx + Al at + 'l.l ax + v ay sxx - 2 ax sxx - 2 ay Sxy 

2f..l- + 2f..lA2 - + u- + v- - - 2 - - - - + -au [( a a a ) au (au) 2 au (a,u av ) ] 
ax at ax ay ax ax ay ay ax ' 

[ ( a a a ) av au] Sxy + Al -a + u-a + V-a Sxy - -a Sxx - -a Syy 
t x Y x Y 

f..lA2 -+u- +v- -+- -2 --+--[( a a a ) (a,u av ) ( au av au ov) ] 
at ax ay ay Dx ax ax ay ay 

(
a'l.l av) +f..l -a +-a ' y x 

[( a a a ) av av ] Syy + Al at + u ax + v ay Syy - 2 ax Syx - 2 ay Syy 

2f..l- + 2f..lA2 - + 'u- + v- - - 2 - - - - + - . av [( a a a ) av ( av ) 2 av ( av au) 1 
ay at ax ay ay ay ax ax ay 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

The complete formulation of the problem allows the continuity of stresses which requires that 

at the interfaces of the walls and the fluid, p must be the same as that which acts on the fluid 

at y = ±h ± T) [95). Employing Eq.(5.9) , we obtain 

a [ a2T) aT) a4T) a277 ] 
ax m at2 + d at + B ax4 - T ax2 + K T) 

- p (\]i yt + \]i y \]iyx - \]i x \]iVY) + Sxx ,x + Sxy,y, (5.14) 
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where subscripts indicate partial differentia tion and the incompressibi lity condition (5,6) IS 

identically satisfied . 

T he governing equations are non-dimensionalized by the following variables 

( 5.15) 

The resulting non-dimensional governing equat ions and boundary conditions after dropping 

the hats are: 

a 2 2 2 1 at v W + Wy V Wx - Wx \l Wy = R (Sxx,xy + Sxy,yy - Sxy,xx - Syy ,xy) , (5 .16) 

Sxx + Al (Sxx,t + WySxx,x - WxSxx,y) - 2A1 (W3;ySxx + WyySxy ) 

(5.17) 

(5.18) 

Syy + A1 (Syy ,t + WySyy,x - WxSyy ,y) + 2Al (WxxSyx + WxySyy ) 

-2Wxy + 2A2 (-WXyt - Wylll xxy + W3:llI xyy - 21l1; y + IlI xx (Wyy - Wxx )) , (5 .19) 

T) = E cos a (x - t) , ( 5.20) 

W y = 0 and W x = =faE sin O! (x - t) at y = ± 1 ± T) , (5.21) 

a [ 8217 d 8T) B 84
T) T 82

T) J( ] 1 
8x m 8t2 + R 8t + R28x4 - R28 x2 + R2 T) = R (Sxx,x + Sxy,y) 

at y = ±1 ± T) , (5.22) 

where E = al h is t he amplit ude ratio, a = 2nhl A is t he wave number , R = chi v is t he Reynolds 

number and v = (J.l- I p) is t he kinematic viscosity. 
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5.2 Methodology of solution 

Following the approach of ref. [7], we expand the flow equations in powers of E as 

W Wo + EW l + E2
W2 + ... , (5 .23) 

ap ( ap ) ( ap ) 2 ( ap ) (5.24) ax ax 0 + E ax I + E ax 2 + ... , 
Sxx Sxxo + ESxxl + E'l. Sxx2 + ... , (5.25) 

Sxy SxyO + ESxyl + E2 Sxy2 + ... , (5.26) 

Syy SyyO + ESyy [ + E2
S yy2 + ... , (5 .27) 

where the first term on t he right-hand side in Eq.(5.24) corresponds to the imposed press ure 

gradient and the other terms correspond to the p eristaltic motion. Invoking the above equations 

into Eqs. (5.16)-(5.22) and then collecting terms of like powers of E, we obtain three sets of 

coupled differential equa tions with the corresponding boundary conditions in EO, EI and E2. 

In actual practice EO set of differential equations with steady parallel flow and transverse 

symmetry assumption when pressure gradient is constant in the x-direction corresponds to t he 

classical Poiseuille flow , i.e. 

Wo(y) (5.28) 

1(0 

with Cl as an arbitrary constant. 

The second and t hird sets of differential equations in WI and W2 can be written in the forms: 
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WI (X, y , t) = ~ [<1>1 (y) eia(x-t) + <1>~ (y) e-ia(:r--t)] , 

Sxxl = ~ [<1>2 (y) eia(x-t) + <1>2 (y) e- ia(X-t) ] , 

Sxyl = ~ [<1>3 (y) eia(x- t) + <1>3 (y) e -ia(X- t)] , 

S - 1 [<1> ( ) eia(x- t) + <1>4* (y) - ia(X- t)] yyl - 2" 4 Y e, 

W2 (X , y, t) = ~ [<1>20 (y) + <1>22 (y) e2ia(x- t) + <1>22 (y) e-2ia(X - t)] , 

Sxx2 = ~ [<1>30 (y) + <1>33 (y) e2ia(x-t) + <1>h (y) e - 2ia(X - t)] , 

Sxy2 = ~ [<1>40 (y) + <1>44 (y) e2ia(x - t) + <1>~4 (y) e-2'ia(X - t)] , 

Syy2 = ~ [<1>50 (y) + <1>55 (y) e2ia(x-t) + <1>~5 (y) e-2ia(X - t)] 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5 .34) 

(5.35) 

(5.36) 

ill which the asterisk denotes the complex conjugate. Invoking above equations into the differ­

ential equations and their corresponding boundary conditions in WI and W2, we have three sets 

of coupled linear differential equations with their corresponding boundary conditions which are 

fourth-order ordinary differential equations with variable coefficients and the boundary condi­

tions are not all homogeneous and the problem is not an eigenvalue problem. For free pumping 

case (oP / ox)o = 0 which means Ko = 0 and hence we have 

[ 
d'2 ] ioR dy2 - a 2 <1>1 (y) = ia<1>~ (y) + <1>~ (y) + a 2 <1>3 (y) - ia<1>~ (y) , 

(1- ia AI) <1>2 (y) = 2ia (1 - iaA2) <1>~ (y), 

fJ- (1 - iaAl) <1>3 (y) = (1 - iaA2) (<1>~ (y) + a 2<1>l (y)) , 

fJ- (1 - iaAl) <1>4 (y) = -2ia (1 - iaA2) <1>~ (y) , 

<I>~ (±1) = 0, 

'iaR<1>~ (±1) + ia<1>2 (±1) + <1>~ (±1) = R8, 

8 = - ia (a2 R 2m + iaRd - a4 B - a 2T - K) 
R2 ' 
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(5.38) 

(5.39) 

(5.40) 

(5.41 ) 

(5.42) 



ip~O (y) = i~R [ipi (y) ip~ (y) - ipl (y) ipi" (y)]' , (5.43) 

ip30 (y) = - iQ2Al [ipi (y) ip2 (y) - <PI (Y) <P 2 (y)]' + iQAl [<l>~ (y) <l>2 (y) - ip2 (y) <l>i' (y)] 

+A1 [<l>~ (y) ip; (y) + ipi" (y) ip3 (y)] - Q2 A2 [ipl (y) ip7" (y) + <l>i (y) <l>~ (y) 

+6ip~ (y) ipi' (y)] - A2 [ip~ (y) (ipi" (y) + a2<I>~ (y)) + <Pi" (y) (<p~ (y) + a2<I>1 (y))] ,(5.44) 

ip40 (y) = 'iQ;l [ipl (y) ip; (y) - ipi (y) ip3 (y)]' + Q
2

2
Al [(<I>1 (y) ip2 (y) + <1>i (y) <1>2 (y))] 

+ ~1 [ip~ (y) ip~ (y) + ipi" (y) ip4 (y)] - 'iQ;2 [ipl (y) <1>i" (y) - ipi (y) ip~ (y)]' 

+ iQA2 [ip~ (y) (ipi" (y) - a 2ipi (y)) - ipr" (y) (ip~ (y) - Q2ipl (y) )] + ip~O (y) , (5.45) 

<P50 (y) = iQ2A1 [ipi' (y) <I>4 (y) - ip'l (y) ip~ (y) - ipi (y) <1>~ (y) + ipl (y) <1>~* (y)] 

+Q2 Al [(<1>1 (y) ipS (y) + ipi (y) ip3 (y))] - 2Q4 A2ipl (y) ipi (y) - 2Q2 A2ip~ (y) ip~* (y) ,(5.46) 

<1>;0 (±1) = 1=~ [ip~ (±1) + ipi" (±1)] , (5.47) 

iQ 1 
ip~o (±1) = 1="2 [<1>; (±1) - <1>;' (±1)] 1="2 [<1>~ (±1) + ip;" (±1)] 

iQR iQR 
--2- [ipl (±1) ipi" (±1) - ipi (±1) ip~ (±1)] 1= -2- [ip~ (±1) - ipi" (±1)] , (5.48) 

2iQR [ d~2 - 4·Q:.l] ip22 (y) = i~R [ip~ (y) ip~ (y) - ipl (y) <1>~' (y)] - ip~4 (y) - 4Q2<1>44 (y) 

-2iQip~:J (y) + 2iaip~5 (y) , (5.49) 
iQAl , 

(1- 2iQAl) ip33 (y) = -2- (ipl (y) ip2 (y)) + Al<1>'{ (y) <1>3 (y) 

+4iQ (1 - 2iQA2) ip;2 (y) + Q2 A2 (ipl (y) <1>~ (y)) ' - A2<1>'{ (y) (<1>~ (y) + Q2ip l (y)) , (5.50) 
iQA2 

(1 - 2i(J~ Al) ip44 (y) = -2- (3ip~ (y) ip~ (y) - <1>1 (y) <1>~' (y)) 

- iQ2A2 [ip~ (y) ip3 (y) - ipl (y) ip~ (y)] + (1 - 2iQA2) ip~2 (y) + 4Q2 (1 - 2iQA2) ip22 (y) 

+ ~1 [<1> '{ (y) <1>4 (y) + Q2ip l (y) ip2 (y)] - i Q3 A2<1>1 (y) ip~ (y) , (5.51) 

(1 - 2iaAd ip55 (y) = '
iQ

2
A1 

[<1>1 (y) <1>~ (y) - 3<1>~ (y) <1>4 (y)] + Q2 /\1 <1>1 (y) <1>3 (y) 

-4iQ(1- 2'iQA2) <1>;2 (y) - Q4A2<1>i (y) -I- 3Q2 A2<1>~ (y) <1>~ (y) - 2Q2A2<1>1 (y)<1>~ (y), (5.52) 

<1>;2 (±1) = 1=~<1>~ (±1), (5.53) 

69 



2<1>~4 (±1) = +'iaR<1>~ (±1) <1>~ (±1) - 4ia<1>33 (±1) =F <1>~ (±1) =F ia<1>; (±1) 

-4'iaR<1>;2 (±1) =F 'iaR<1>~ (±1) - iaR<1>1 (±1) <1>'! (±1) , 

where primes signify differentiation with respect to y. 

The solutions of Eqs. (5.37)-(5.42) are given as 

<1>1 (y) 

<1>2 (y) 

<1>3 (y) 

<1>4 (y) 

A3 sinh al'Y + B3 sinh {31 y , 

where 

Al = _ io 
a 2 cosh a' 

A2 = 2ia2 r AI , 

A3 = 2a2rA1 , 

{32 = a2 _ iaR 
r ' 

The solution of Eqs. (5.43)-(5.48) is 

The peristaltic mean flow can be written as 

u (y) 

B 
_ iO 

1-
a{3 cosh {3' 

B2 = 2ia{3r Bl , 
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(5.55) 

(5.56) 

(5 .57) 

(5.58) 

(5.59) 

(5.60) 



where 

D = -~ [(AI + A~) a 2 sinh a + Bd32 sinh (3 + Bj (3*2 sinh (3*] , 

(Au + Ail) . Bll . Bl i . * 
C I = 2 smh a + -2- smh (3 + -2- smh (3 , 

~ (3 
All = 2 [iaRAl - iA2 - aA3J , Bll = -2 ['ia R(3B 1 + iaB2 + (3B3J , 

F (y) = 81 cosh 2ay + 82 cosh (a + (3 ) y + 83 cosh (a - (3 ) y + 84 cosh (a + (3*) y 

+ 85 cosh (a - (3* )y + 86 cosh (fJ + (3*) y + 87 cosh ((3 _. (3*) y, 

iaAI (A*A A A* ) 8] = -4- 1 3 - I 3 , 
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The critical reflux condition it is zero at y = 0 [95] and so invoking E q.(5.60) , we get 

/u2 _ H5 + V H5 - 4H6 
Tcrilical reflux - 2 - , 

[ 
hI (h2 + h3) (h4 + h5) 

H = oA cosh2 a + 4a3 f3 cosh a cosh f3 + 4a3 f3* cosh a cosh f3* 

(h6 + h7) ] 
+ 4a2 f3 f3* cosh f3 cosh f3* , 

a 2 

HI = - [2a tanh a - f3 tanh f3 - f3* tanh f3* + a 3 (1 - a) (f + f *) tanh a 
2 

_ i; (L5 f3 tanhf3-L;f3* tanh f3* )] , 

(5.61 ) 

H2 = ~ [(L4 + L~) a tanh a - L4 f3 tanhf3 - L~f3* tanhf3* + a3 (1 - a) (f L4 + f * L~)] , 

H3 = ~: [aR(L4 - L~) tanh a - L4L5 f3 tanh f3 - L~L;f3* tanh f3*], H4 = H2 + H3, 

R2 [2a
4 
H L3] R2 [a

2 
H L4L~ ] 

H5 = a 6 H R2 + HI, H 6 = a 6 H R2 + H 4 , 

[
if ] L3 =a2R2m -a4B - J(, L4 =iaRd+L3 , L5= R+2ioT --;- (a2+ f32 ) , 

h I = 2ia3 >'1 (1 - cosh 2a) (f - f *) , 

{ 
R (a - f3) 

h2=[1-cosh(a+f3)]ia (a+f3) +Ad-f (a2 +f3)+2a2f*] 

+ 2aAl f* (f3 - a) + A2 (f3 - a)2}, 

. { - R(a+ f3 ) 2 h3 = [1 - cosh (a - f3 )] 'W (a _ f3 ) - Al [- f (a + f32 ) + 2a2f*] 

+ 2a Alf* (a + f3) - A2 (f3 + a)2}, 

{ 
- R (a - f3*) 

h4 = [1 - cosh (a + f3*)] ia (a + f3*) - Al [- r * (a 2 + f3*2) + 2a2f] 

- 2aAlf (f3* - a) - A2 (f3* - a)2 } , 
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h5 = [1- c:osh(a - ,B* )]ia { ~~a_+;;) + Al [- r * (a2 + ,B*2 ) + 2a2r] 

- 2aA1r (a + ,B*) + A2 (a + ,B*)2 } , 

h6 = [1 - cosh (,B + ,B*)] 'la { - ~~~ ~:) + A] [r (a2 + r-P) - r * (a2 + ,B*2)] 

* * ((32 - ( 2) ((3*2 - ( 2) (2a2 _,B2 - ,B*2 ) (,B - ,B*) } 
- 2A l ,B r ((3* + (3) + 2Al(3r ((3* + (3) + A2 ((3* + (3) , 

h 7 = [1 - cosh ((3 - ,B* )J ia { ~;*_--1~) - Al [r (a2 + (32 ) - r * (a 2 + (3*2 )] 

* * ((32 - ( 2 ) ((3*2 - ( 2 ) (2a2 - (32 - (3*2 ) ((3* + (3 ) } 
- 2Al(3 r ((3 _ (3*) + 2Al (3r ((3* - (3) + A2 ((3* - (3 ) . 

5.3 Discussion 

In order to tiee the variations of various flow pa rameters, the graphical results are presented 

in this section. Therefore, the mean velocity at t he boundaries of the channel D, and th e 

time-averaged mean axial velocity d istribution u (y) are computed when ](0 = O. The constant 

D which init.ially arises from the no-slip condition of the axia l-velocity on the wall is due to 

the value of CJ?20 (y) at the boundary. The mean-velocity a t t he boundaries of the chanm~l is 

u (±1) = ~([>20 (±1) = ~D [95J. Figure 5.1a shows the variation of wall damping d on the 

constant D. This figure indicates that D is a decreasing function of d. Figure 5.1b is made to 

see the influence of TOll D . It is observed t hat t he values of D increase by increasing T. Figures 

5. 1c and 5.1d reveal that the mean velocity at the boundaries decreases by increasing relaxation 

time Al and increases with an increase in the ret ardat ion time A2 . The effects of d, T and Al 

on the mean velocity distribution and reversal flow are presented in the Figures 5.2(a - c) . I t is 

found that the possibili ty of flow reversal increases by increasing these parameters while in case 

of A2 the situation is reversed (Figure 5.2d) . In the expression (5 .60) along with the constant D 

and a parabolic distribution -C1 (1 - y2) there is a perturbation term F (y) - F (1) . Following 

Fung and Yilt [7J, we define the mean-velocity perturbation function G (y) as 

200 
G(y) = - a 2R 2 [F(y) - F(l)J. (5.62) 
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T he mean velocity perturbation fUllction is plotted with Cl' for various values of d, T, Al and A2 

in the Figures 5.3(a - d). It is observed from these F igures that G (y) increases by increasing d, 

T and AI . However, it decreases by increasing A2 . It is further observed from these Figures that 

G (y ) is maximum near the centre of the channel and remains constant over a certain range of 

0' . Figure 5.4a illustrates that critical value of T decreases with an increase in AI. The effects 

of A2 on critical value of T are quite opposite to those of Al (Figure 5.4b) . We further note 

that t he critical value of T is very high for small values of the wave number a when compared 

with its large values. 

Cl 0.04 
,; 

. ~ 
~ 0.02 

2 
~ 
1U i -0.02 

~ -0.04 I r-_ --;-d =-'0"'.0""'0 
~ - - d= 0.05 

....... 

" 

....... 
....... 

....... 

" " " ~ - 0.06 .... d = 0.35 
~ ~--=d==~O=.~~ __________________ ~ ....... 

o 0.2 0.4 0.6 0.8 
Wave number. ,. 

(a) 

Cl 
vi 

.~ 
~ - 0.02 

~ 
~ -0.04 . 

1U 
,Q 
~ - 006 
~ 
<:: 

~ - 0.08 

~ 

- T=O.O 
- T= 1.0 
.... T = 2.0 
- - T dO 

o 0.2 O.~ 0.6 0.8 
Wave number. " 

(b) 

Figure 5.1a. The variation of D with wave number a for different values of wall damping d 

with m = 0.01, B = 2, T = 1, K = 1, R = 10, Al = 0.8 and A2 = 0.5. 

Figure 5.1b. The variation of D with wave number a for different values of wall tension T 
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with 7n = 0.01 , B = 2, J( = 1, R = la, d = 0.5, A1 = 0.8 and A2 = 0.5. 
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Figure 5.1c. The variat ion of D with wave number Ct for different values of relaxation time 
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Figure 5.1d. Th~ variation of D with wave number Ct for different values of relaxation time 

A2 with m = 0.01, B = 2, T = 1, K = 1, R = 10, d = 0.5 and Al = 0.8 . 
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and A2 = 0.5 . 

Figure 5.2b. The variation of mean-velocity distribution and reversal flow for different values 
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of wall tension T with m = 0.01, B = 2, K = 1, R = 1, d = 0.5, a = 0.5, E = 0.15, >'1 = 0.8 

and A2 = 0.5. 
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Figure 5.2c. The variation of mean-velocity distribution and reversal flow for different values 

of relaxation time A1 with m = 0.01 , B = 2, T = 1, J{ = 1, R = 1, d = 0.5 , a = 0.5 , E = 0.15 

Figure 5.2d. The variation of mean-velocity distribution and reversal flow for different values 

of relaxation time A2 with m = 0.01 , B = 2, T = 1, J{ = 1, R := 1, d = 0.5 , a = 0.5 , E = 0.15 

a nd Ai = 0.8. 
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Figure 5.3a. The variation of mean-velocity perturbation function G (y) for different values 
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of wall damping d with m = 0.01 , B = 2, T := 1, [( = I , R = 2, a = 0.5 , Al = 0.8 and A2 = 0.5. 

Figure 5.3b. The variation of mean-velocity perturbation function G (y) for different values 

of wall tension T with Tn = 0.01 , B = 2, J( = 1, R = 2, d = 0.2, a = 0.5, Al = 0.8 and A2 = 0.5. 
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Figure 5.3c. T he variation of mean-velocity perturbation function G (y) for diffei'ent values 

of the relaxat ion time Al with m = 0.01 , B = 2, T = 1, J( = 1, R = 2, d = 0.2, a = 0.5 and 

A2 = 0.5. 

Figure 5.3d. The var iation of meall -velocity perturbation f1.lnct ioll G (y) for different values 

of the relaxatioll time A2 with m = 0.01 , B = 2: T = 1, J( == J , R = 2, d = 0.2 , a = 0.5 and 

Al = 0.8. 
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Figure 5.4a. The variation of critical values of the wall tension T with wave number a for 

diHerent values of the relaxation time Al with Tn = 0.01 , B = 2, [{ = 1, d = 0.5, R = 7 and 

A2 = 0.5. 

Figure 5.4b. The variat ion of critical values of the wall tension T with wave number a for 

different values of the relaxatioll time A2 with m = 0.01 , B = 2, [{ = 1, d = 0.5, R = 7 and 

Al = 0.7. 

5.4 Final remarks 

T he presented work in t his chapter is focused on t he analysis of peristaltic flow of an incompress­

ible Oldroyd-B fluid. T he equations for an Oldroyd-B fluid are modeled and free pumping case 

is considered for t he analysis. T he performed analysis leads to the following main observa tions. 

• T he constant D decreases with an increase in d and AI. 

• T he value of D increases when T and A2 are increased. 

• T he flow reversal decreases by increasing A2. However, it increases when d, T and Al are 

increased. 

• The corresponding results of viscous fluid [95] can be deduced when A1 and A2 are equal 

to zero. 
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Chapter 6 

Peristaltic transport of MHD 

Johnson-Segalman fluid in a channel 

with compliant walls 

This chapter aims to discuss the mathematical model for magneto hydrodynamic (MHD) fl ow of 

Johnson-Segalman fluid in a compliant wall channel. The flow is engendered due to sinusoidal 

waves on the channel walls. A series solution is developed for the case in which the amplitude 

raLio is small. Our computations show that the mean axial velocity in Johnson-Segalman fluid 

is smaller than that of a viscous fluid. The variations of various interesting dimensionless 

parameters are sketched and discussed. 

6.1 Problem definition 

Consider a Johnson-Segalman fluid in a two-dimensional channel of uniform width 2h. The 

homogeneo us fluid is electrically conducting in the presence of a constant applied magnetic 

field Eo only. The induced magnetic field is absent . There is no electric field . The motion in a 

channel is induced by choosing small amplitude sinusoidal waves on the compliant walls of the 

channel represented by 

y = ±h ± 7] , (6.1) 
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where the vertical displacement 71 of the upper wall from its normal position can be expressed 

as follows 
211" 

'II = acos- (x - ct) A . (6.2) 

III above equation , a is the amplitude of the wave, c is the constant wave speed , A is the 

wavelength, for lower wall , 7/ is replaced by - 71 and ill Cartesian coordinate system x is taken 

ill the direct ion of wave propagation and y is measured in the direction normal to t he x-axis . 

If V is the velocity, then the resp ective velocity components ill x a nd y directions are denoted 

by u and 'U. The equati~)!1 that corresponds to t he compliant wall is 

. (6.3) 

Here 'ih denotes the plate mass per unit area, d is the wall damping coefficient , B is the fl exural 

rigidity of the plate, T is t he longitudinal tension per unit width , [( is t he spring st'iffness and 

Po is the pressure on t he outside surface of the wall. Selecting Po = 0 and the channel walls 

inextensible so that only their lateral motions normal to the un deformed positions occur. The 

horizontal displacement of the walls is assumed to be zero and so t he boundary conditions are 

and at y = ±h ± 7]. (6.4) 

T he velocity components in term of stream function w(x, y , t) are expressed by the following 

equations 
ow 

u= oy' 
ow 

v=--ax (6.5) 

while the equations governing the MHD flow of an incompressible Johnson-Segalman fluid are: 

divV=O, 

P~ = divT - O'BgV , 
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T = -pI + 211,D + S, 

S + m (~~ + S(W - ID) + (W -ID)TS) = 2~D, 
(6.8) 

(6.9) 

ill which J-L and ~ are the viscosities, Tn is the relaxation time, 1 is the slip parameter and the 

tensors D , Wand L are 

L = grad V , 

where p being the density of the fluid, d/ dt t he material time derivative, p the pressure, rJ the 

electrical conductivi.ty of the fluid , I the identity tensor and S the extra stress tensor. 

Equations (6.7)-(6.9) in scalar forms are represented by the following expressions 

whence 

(
au au au ) ap 2 asxx asx"!} 2 

p - +u- +v- = -- +J-L\1 u+ -- + -- -rJBou, 
at ax ay ax ax ay 

(
av av av) ap 2 asx"!} as"!}"!} 

p -+u-+v- =--+ 11,\1 v+--+--, 
at ax ay ay ax ay 

asxx asxx asX'C av ( ) au) 
sxx + m(-a- + u-

a
- + V-a' ) + 711.((1 - I)-a - 1 + 1 -a Sxy 

t x y x y 
au a'u 

-2lm-Sxx = 2~-, 
ax ax 

asxy asxy asxy m au av 
Sxy + m(-a- + u-

a
- + v-

a
-) + - ((1 - l)-a - (1 + l)-a )Sxx 

t x y 2 y x 

m av au (av au) 
+"2((l-l)ax -(l+l)ay)Syy =~ ax + ay , 

( 
asyy asyy asyy au) av 

Syy + m -a + u-
a 

+ v-a ) + rn((l-l)-a - (1 + l -a )Sxy 
t x Y y x 

av av 
- 2lm-Syy = 2~ay' ay 

2 a'2 a'2 
\1 =-+­ax2 ay2' 

(6.10) 

(6.11) 

(6.12) 

(6,13) 

(6,14) 

In order to complete problem formulation, we allow the continuity of stresses requiring that at 

the interfaces of the walls and the fluid p must be the same as that which acts on the fluid at 

81 



y = ± h ± 7]. Utilizing Eg. (6.10), one can write 

8 [8 2
T) 87/ HI ,!] 82

,,] '1 
8;r; 7n 8t2 + d 8t + B 8:;~ - T 8x:! + f{77 

= 1J.,\!2iI1 y - P (iIl Yf + iIlyiIlyx - iIlxiIlyy) + SXJ: ,x + SX!},y - aB5iI1y, (6.15) 

in which the subscripts denote partial derivative and the Eg. (6.6) is identically sat isfi ed. 

Introducing the following dimensionless variables and parameters 

,x, y , 'U , v, ct , p , 77 
x = h' y = h' U = ~' v = ~' i = h ' p = pc2' 77 = h' 
, iII ~ ih , dh , B , Th ' f{ h3 

iII -- ih-- cl - - B - --T - - K=--
- ch' - ph ' - PI/' - phv2 ' - pv2 ' (J//2 ' 

, hSxx ' hSxy ' hSyy 
Sxx = --, Sxy = --, S'JY = --

~c ~c' ~c 

and then eliminating the pressure gradient and dropping the hats, one arrives at 

D2 2 2 1[ 4 
8t'\! iII + iIly'\! iIl x - iIl x '\! iIly = R '\! iII + S xx,xy + S XY,yy - Sxy ,xx 

-Syy,xy] - M 2iI1 yy , 

Sxx + We (Sxx,t + iIlySxx,x - iIlxSxx ,y) - We ((1 -I) iIl xx + (1 + I) iIlyy) Sxy 

-2lTtVeiIl xy Sxx = 2~iIlxy, 
~ 

W e 
Sxy + We (Sxy,t + iIlySxy,x - iIlxSxy,y) + -2- ((1 + I) iIlxx + (1 - 1) iIlyy ) Sxx 

We e 
--2- ((1 - I) iIl X1: + (1 + I) iIlyy) Sy!) = ft (iIlyy - iIl xx ) , 

Syy + W e (Syy ,t + iIlySyy,x - iII xSY1l ,Y) + Hie ((1 + l ) iII xx + (1 - I) iIlyy) Sxy 

~ +2lTtV eiJ! xy8yy = -2- iII xy, 
. ~ 

77 = E cos Cl' (x - t) , 

(6.IG) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

iIly = 0 and iIl x = =t=Cl'E sin Cl (:c: - t) at y = ± 1 ± 77, (6.22) 

8 [ ;"'. 82
T) d 8T) B 8 4

7/ T 82r/ f{] 2 

8x m 8t2 + R 8t + R2 ox4 - R 2 8x2 + R 2 1"1 + M iII y 

1 
= R [,\!2iI1y + Sxx,x + SXY ,y] - (iIlyl, + l]iyiIlyx - iIl x iIl yy) at y = ±1 ± T). (6.23) 

In above equations, E = a/h denotes the amplitude ratio, a = 2'rrh/)" shows the wave number, 
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R = ch/v is the Reynold number , We = cm / h is the Weissenberg number and M = jerBo h/ pc 

is the Hartman number and v = ({L/ p) and ~/ P are the kinematic viscosit ies. 

6.2 Solution procedure 

Here t he solution of t he problem is const ructed as expansiolls wi t h £ and therefore 

1]1 

ap 
ax 

1]10 + £1]11 + £2 1]1 2 + ... , 

( ~~ ) 0 + £ ( ~~ \ + £2 ( ~~ ) 2 + ... , 

S xxo + £S x'C l + £2 S x x 2 + ... , 

SxyO + £S x yl + £2 S x y2 + ... , 

SyyO + £Syy l + £2 Syy2 + ... . 

adopting the procedure of previous chapter , we have 

1]10 (Y ) 2[(0 [ sinh ry ] 
RN2 Y - r cosh r + Cl , 

K o - ~ ( ~: ) o' 
where r = !vI J (:':f.) and Cl denotes an arbitrary constant. 

For second and third sets of differential equations in 1]11 and 1]1 2, we write 

83 

(6.24) 

(6.25) 

(6.26) 

(6. 27) 

(6.28) 

(6 .29) 



WI (X, y, t ) = ~ [<PI (y ) eia(x- t) + <Pi (y) e-ia(X- t)] , 

S 1 [ "'"' ( ) eia(x-t) + (T)2* (y) - ia(X- t) ] x :d ="2 '*'2 y :l e , 

Sxy l = ~ [<P3 (y) eia(x- t) + <P3 (y ) e- ia(X- t)] , 

Syyl = ~ [<P4 (y) eia(x-t) + <P~ (y) e- ia(X- t)] , 

W2( X,y, t) =~ [<P20(Y) + <P22(Y) e2ia(x- t) + <P;2 (y) e- 2iQ
(X- tl ] , 

S xx2 = ~ [<P30 (y) + <P33 (y) e2icr(x - t) + <P33 (y) e-2ia(X- t)] , 

S xy:2 = ~ [<P40 (y) + <P44 (y) e2ia(x- t) + <P~4 (y) e-2ia(X- t)] , 

S 1 [", () + '" () e2ia(x- t) + "'5*5 (y) e-2ia(X- t)] . yy2 = "2 '*'50 Y '*'55 Y 'l! , 

(6. 30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6 .37) 

In above expressions, the asterisk is used for the complex conjugate. Upon making use of above 

equations into the differential equations and boundary conditions in WI and W2, one obtains 

three sets of coupled linear differential systems. Note that the resulting ordinary differential 

equations are fourth order with variable coefficients and the boundary conditions are not a ll 

homogeneous and the problem is not an eigenvalue problem . In view of the free pumping case 

for which (8p / 8x)0 = 0 meaning that Ko = 0 and thus one get s 

[d~2 - 0:
2 + iO:R] [d~2 - 0:2] <P I (y) = RM2 <I>~ (y) + io: <P~ (y) - io:<P; (y ) 

_<p~' (y) - 0:2 <P3 (y) , (6.38) 

J1. (1 - io:W e) <P2 (y) = 2io:(<P~ (y) , (6.39) 

J1.(l - io:We) <P3 (y) = ( (<p~ (y) + 0:2 <P1 (y)) , (6.40) 

J1. (1 - io:We) <P4 (y) = - 2io:(<P~ (y) , (6.41) 

<P~ (±1) = 0, (6.42) 

<p ~' (±1) - 0:2<p~ (±1) + io:R<p~ (±1) + 'io:<P2 (±1) + <P; (±1) 

-RM2<p~ (±1) = Ro, (6.43) 

(j = - ; (0:2 R2ih, + io:Rd - 0:4B - 0:2T - K) , 
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io.R , 2 
<P~~ (y) + <P~O (y) = -2- [<pi (y) 1>~ (y) - <1>[ (y) 1>~" (y)] + RN <P~o (y), (6.44) 

<P30 (y) = - io.~e [1>i (y) <P2 (y) - <p] (y) 1>; (y)]' + io. lWe [1>~ (y) <P; (y) 

We 
- <P2 (y) <Pi' (y)] + -2- [(1 + l) (<p~ (y) 1>3 (y) + <Pi" (y) <P3 (y)) 

_0.2 (1-1) (<PI (y) <P~ (y) + 1>i (y) <P3 (y))] , (6.45) 

<P40 (y) = -- [<PI (y) <P3 (y) - <PI (y) 1>3 (y)] - - (1 - l) io.We * * , We { ( <p~(y)<P2(y) ) 
2 4 +<pi" (y) <P2 (y) 

+0.2 (1 - l ) (1)1 (y) <P4 (y) + 1>i (y) <P4 (y)) - (1 + l ) (<p~ (y) <P4 (y) + <Pi" (y) <P4 (y)) 

_0.2 (1 + l) (<PI (y) <P; (y) + <Pi (y) <P2 (y))} + { <p~o (y) , 
J.L 

(6.46) 

<P50 (y) = -- [<PI (y) <P4 (Y) - <Pi (y) <P4 (y)] - - (1 - l ) 'io.We , We { ( <P~(Y)<P3(Y) ) 
2 4 +<pi" (y) <P3 (y) 

2 ( <Pi' (y) <P4 (y) ) -a (1 + l)(<pJ(y)<P3(y) + <Pi(y)<P3(y))} + i o.lWe , 
- <P~ (y) <P4 (y) 

(6.47) 

1 
<P;o (±1) = =f2 [<p~ (±1) + <Pi" (±1)] , (6.48) 

io.R 
<p% (±1) = --2- [<pJ (±1) cpr" (±1) - <Pi (±1) <P~ (±1)] 

1 0.2 

=f2 [<p~" (±1) + <Pi"" (±1)] ± 2" [<p~ (±1) + <Pi" (±1)] + RM2<p;0 (±1) 

io.R RM2 
=f-2- [<p~ (±1) - <Pi" (±1)] ± -2- [<p~ (±1) + <Pi" (±1)] 

io. 1 
=f2" [<p; (±1) - <P;' (±1)] - <P~o (±1) =f 2 [<p~ (±1) + 1>3" (±1)] , (6.49) 
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[d~2 - 4cx
2 + 2'iCXR] [(~2 - 4CX

2
] <P22 (y) = RM2 <P~2 (y) 

+ 'i~R [<p~ (y) <P~ (y) - <pJ (y) <p~1 (y)] -- <P~4 (y) - 4CX2 <P44 (y) 

- 2icx<P~3 (y) + 2icx<P~5 (y) , (6.50) 

(1 - 2icxWe) <P33 (y) = 4 ~icx <1?~2 (y) - iaWe [<1?~ (y) <P2 (y) - <PI (y) <P~ (y)] 
J..L 2 

W e 
+icxlWe<p~ (y) <P2 (y) + 4 {(I + I) <P~ (y) <1>3 (y) - cx2 (1 - I) <PI (y) <P3 (y)} , (6.51) 

( 1/ 2 we { (1- 1)<p~(y)<1?2(Y) } 
(1 - 2icxWe) <1?44 (y) = - (<P22 (y) + 4cx <P22 (y)) - - . 

J..L 4 _cx2 (1 + I) <PI (y) <P2 (y) 

'icxTIVe[<I/()<I() 'h. ()iF.. /()] w e { ( 1 + 1)<1?~(Y)<P4(Y) } . 
- -- )1 Y )3 Y - '1'1 Y '1'3 Y + - , 

2 4 -cx2 (1 - l) <PI (y) <P42 (y) 

(1 - 2'icxWe) <P55 (y) = -4 (icx <P~2 (y) - icxWe [<p~ (y) <P4 (y) - <PI (y) <P~ (y) ] 
J..L 2 

-icxlWe <p~ (y) <P4 (y) + ~e {cx2 (1 + I) <PI (y) <P3 (y) - (1 - 1) <P~ (y) <P3 (y)} , 

I ) 1 /I <P22 (±1 = =f'2<PI (±1) , 

2<P~~ (±1) = 4cx (2cx - iR) (I>~2 (±1) + 2RM2<I>~2 (±1) - 2<P~4 (±1) =f <P3 (±1) 

4icx<I>3 (±1) =f icx<P~ (±1) =f <p~1/ (±1) =f cx (iR - cx) <I>~ (±1) ± RM2<p~ (±1) 

-icxR<P1 (±1) <1?~ (±1) + icxR<P~ (±1) <P~ (±1) , 

in which prime denotes the derivative with respect to y. 

Solving Eqs. (6 .38)-(6.43), one can write 

<PI (y) = Al sinh CXIY + BI sinh ,BJ Y, 

<P2(Y ) = A2coshcxly+B2cosh,B1Y' 

<P3(Y) = A3sinhcxIy+B3sinh,BIY, 

<P4 (y) -A2 COShCXIY - B2 coSh,B1Y' 
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(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6 .56) 

(6.57) 

(6 .58) 

(6 .59) 



whence 

F:rom Eqs. (6.44)- (6.49) , we have 

<I>~o (y) = F (y) + 2C1 (COSh ry - cosh r) + (D _ F (1)) (COSh r y ) (6.60) 
P cosh r cosh r 

and thus the peristaltic mean flow is 

u (y) 
€2 
2<I>~o (y) 

€2 [F() 2C ( coshry - coshr) (D - F()) ( coshry )] 
2 y + 1 r 2 cosh r + 1 cosh r ' (6.61) 
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where 

1 [A 2· h A* *2 . 1 * B (32 . 1 (3 B*(3*2' h (3*] D =-2" la1sm a1+ lal sllllal + 1 I sm1 1+ 11 sm l ' 

C\ = - r2 D + A33 s inh al + A;iJ sinh ai + B33 sinh (31 + Bj3 sinh (3i, 
2 

2 2 
A 1a 1f.L [2 2 ' ] B I (3 1f.L [2 (32 ' R] 

All = 2 (f.L + 0 a - a 1 - wR, Bll = 2 (f.L +~) cy - I - ~a , 

_ J-La1 (a1 A 3 + iaA 2 ) B _ f.L(31 ((31 B 3 + iaB2 ) 

A22 - 2 (f.L + 0 ' 22 - 2 (f.L + ~) , 
A - All - A22 B- _ Bll - B22 

33 - 2 ' 33 - 2 ' 

F (y) = 81 cosh (a1 + an y + 82 cosh (a1 - a;) Y + 83 cosh (a1 + (3i) y 

+ 84 cosh (al - (3i) y + 85 cosh (ar + (31 ) y + 86 cosh (CYi - (31) y 

+ 87 cosh ((31 + (3i) y + 88 cosh ((31 - (3 ~) y, 

f.L (a1 + ai) [ , R ( *) A A* W ( 2 2) A A * 81 = [ ] 'La a 1 -- a 1 1. 1 + e a 1 - a 1 2 
4(f.L+~) (al +ai)2- r 2 

- iaWe (al + an (AlA; - A~A3) + We (aj2 - cy
2

) AiA2] , 

f.L(a1 - a i) [ , R( *)A A* LV (2 2)A A* 82 = [ , ] -~a al + al 1 1 + v eal - a 1 2 
4(f.L+~) (a1-ai)2-p 

+ 'iaWe (a1 - an (AlA; - AjA3) - W e (ai2 - ( 2
) AiA2] , 

f.L(a1 +(3i) [ , R( (3*) A B* W (2 2)A B* 
83 = [ ] 'La a 1 - 1 1 1 + e a1 - a 1 2 

4(f.L+O (al+(3i)2-r2 

- iaWe (a1 + (3i) (A1Bj - B~ A 3) + W e ((3i2 - ( 2) Bj A2] , 

f.L (aJ - (3i) [ , R ( (3*) A B* TXT ( 2 2) A B* 84 = [ ] -'La ' . al + 1 1 1 + vv e a 1 - a 1 2 
4(f.L+~) (al-(3n2 - r2 

+ iaWe (al - (3i) (AIBj - BjA3) + W e (a2 - (3;2 ) BjA2] , 

f.L(aj+(31) [, R((3 *)BA* W ((32 2)BA* 85 = [ ] ta 1 - al 1 1 + e 1 - a 1 2 
4 (J-i +~) (ai + (31)2 - r 2 

- iaWe (ai + (31) (B1A; - AiB 3) - W e (a2 
- ai2) AiB2] , 

f.L(aj-(31) [ , R( * (3 )BA* W ((32 2)BA* 86 = [ ] ta a 1 + 1 1 1 - e 1 - a 1 2 
4 (f.L + 0 (ai - (31)2 - P 

- iaWe ((31 - ai) (BIA3 - AiB3) - W e (a 2 - ai2) AiB2] , 
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For critical reflux condition , u is zero at y = 0 [95] and therefore by using Eq. (6.61), one can 

write 
H3 + JH§ - 4H4 

T cr itical reflllx = 2 ' (6.62) 

with 

H = [ (hI + h2 ) + (h3 + h4 ) 

a ] a~ cosh al cosh ar al.Bi cosh a ] cosh .B! 

(h5 + h6) (h7 + hs) ] 
+ a~.B l cosh ai cosh .B1 + .B l .Bi cosh.B1 cosh .Bi ' 

. :3 

HI = '~2 [h9a 1 tanhal - hLO ai tanhai - hll .B1 tanh .B I + hl2.Bi tanh.Bi], 

H2 = ia [L4h9a1 tanhal - L:h1oai tanhai - L4hU.B1 tanh .B1 + L: h12.Bi tanh .Bi], 

H = R2 [a
4 
H (L4 + L:;) R2 H ] H = R2 [a

2 
H L4L:; H] 

3 aG H R2 + 1 , 4 aG H R2 + 2 , 

L3 = a 2 R2ih - a4B - K, L4 = iaRd + L3 , L: = - 'ioRd + L3 , 
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h5 = (ai + (31) 91 [1 - cosh(ai + {3d ] { -iaR((3 _ a* ) + 2iaai~We (13i - (
2
) 

[(ai+{31)2_ r 2] coshr 1 1 fL(l+i a W e) 

+ ia~We (ai + (31) [( a
2 

+ ai2 ) _ ( a 2 + (3i )] 2 'ia{31 ~We (a 2 
- O:i2 )} 

fL l +iaW e 1 - io:W e + fL(l -io:W e) , 

h6 = -=--2-(a~i,--~{3. ~1 ):...::9:...::.1 ----=- [1 _ cosh (ai - (31) ] { - 'iaR (0:* + (3 ) _ _ 2 'i_·0:_0:-.::i_~_W_e_(,--13....:.i_-_a_2-,-) 
[(O:i-{3])2_ r 2] cosh r 1 1 fL(1 +iaW e) 

+ ia~We ({31 - ai) [( a 2 + ai2 ) _ ( 0:2 + (3i )] 2io:{3 1 ~We (0:2 - 0:(2) } 
fL 1 + io: We I - 'io: W c + fL (1 - ia We) , 

h7 = ({31 + (3!) 91 [1 _ cosh (13 1 + {3n ] { iO:R ({3 _ *) _ 2'ia{3i ~W e ({3~ - 0:2) 
[({31+{3i)2_p] coshr 1 (3 1 fL(l+io:We) 

_ ia~We ((31 + (3i) [( 0:2 + (3i
2 

) _ ( 0:2 + (3i )] + 2'io:{31 ~W e ({3i
2 

- 0:2) } , 
{ L 1 + w We I - ~o: W e {L (1 - io: We) 

h 8 = ({31 - (3i) 91 [1 _ cosh (131 - (3i) ] { -iO:R ({3 + (3*) _ 2ia{3i ~W e ({3i - 0:2) 
[({31-(3i )2_ r 2] coshr 1 1 fL(l + ia W e) 

+ ia~We ({31 - (3i) [( a
2

:- (3i
2 

) _ ( a
2 ~ (3i )] _ 2ia{31~We ({3i

2 
- (

2
)} 

fL l + ~o:We l -~aWe fL(l - ia W e) ' 
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J-LR (1 - ia We) [J-L (1 - cosh r) ( ~ (a2 
- aI) ) - 1] 

h
g 

= 2 (13~ _ aI) [~+ J-L (1 - iaWe)) (/-i +~) r 2 coshr 92 + J-L (1 - 'iaWe) , 

_ J-LR(1-iaWe) J-L (l - coshr) , ~ a -131 -1 
[ ( 

( 2 2)) 1 
hll - 2 (131 - aI) [~+ /-i (1- iaWe)) (J-L +~) r 2 coshr 93 + J-L (1 - iaWe) , 

htO = hg, hI2 = hil' 

[ 

/-i3 R2 (1 + a 2 We.2
) 1 

91 = 4 (J-L +~) (f3f - aD (f3i2 
- ai2) [e + 2J-L~ + J-L2 (1 + a 2We2 )] , 

92 = [a (a - iR) - an ' 93 = [a (a - iR) - f3i] . 

6.3 Results and discussion 

Here our interest is to compute the mean velocity at t he boundaries of the channel and the 

time-averaged mean axial velocity distribution and reversal flow when Ko = O. It is noticed 

that D appears in view of the no-slip condition of the axial-velocity on the wall is due to the 

value of <I>;o (y) at the boundary. Mean-velocity at the boundaries of t he channel is defined 

by U (±1) = .e;<I>~o (±1) = .e;D [7]. Figure 6.1a is prepared for the variation of wall damping 

d on the boundaries D. It is found from this Figure t hat D is decreases when d increases. 

The variation of T on D with a is shown in Figure 6.1b. Here D is an increasing function of 

T. Figure 6.1c lists that the mean velocity at the boundaries increases with increasing wall 

elastance. Figure 6.1d displays the mfluence of D with n for various values of the Weissenberg 

number W e. It is worth mentioning here that for large a the values of D increase by increasing 

We . In order to show the efI'ects of viscosit.y ratio U J-L and the magnetic parameter 111, we 

prepared the Figures 6.1e and 6.1£. As can be seen from these Figures that D increases when 

the viscosity ratio and M are increased. The effects of d on the mean velocity distribution and 

reversal flow are presented in Figure 6.2a. It is revealed that the possibility of flow reversal 

decreases by increasing d while in case of M and T, the situation is reversed (Figures 6.2b and 

6.2d). Figure 6.2c illustrates the effects of mean velocity distribution with y for various values 

of J( . Here the possibility of flow reversal increases by increasing J(. Figures 6.2e and 6.2f 

depict that flow reversal decreases by increasing t he Weissenberg number We and the viscosity 

ratio ~/ J-L. Figures 6.3a and 6.3b illustrate that the critical value of T increases with an increase 

in Rand Jv! respectively. However, it decreases with an increase in We and ~/ J-L (Figures 6.3c 
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and 6.3d). We further note that the critical value of T is very high for small values of the 'Nave 

number a when compared with its large values. 
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Figure 6.1a. T he variation of D with wave number a for different values of wall damping d 

when m = 0.01 , B = 2, T = I , J( = I , R = 10, M = 1.0, We = 0.1 and UP, = 1.0. 

Figure 6.1b. The variation of D with wave number a for different values of wall tension T 

when m = 0.01, B = 2, d = 0.5, K = I, R = 10, M = 1.0, We = 0.1 and ~/p, = 1.0. 
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f{ when Tn = 0.01 , B = 2, d = 0.5, T = 1, R = 10 ,111 = 1.0 , We = 0.1 and UJ-L = 1.0. 

Figure 6.1d . The variat ion of D with wave number a for different values of Weissenberg 

number We when m = 0.01, B = 2, d = 0.5, J( = 1, R = 10, III! = 0.5, T = 1 and U /-L = 1.0. 
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Figure 6.1e. The variation of D with wave number a for different values of viscosity ratio 

~I!-L when m = 0.01 , B = 2, T = 1.0, d = 0.5, f{ = 1, R = 10, M = 1.0 and We = 0.1. 

Figure 6.1£. The variation of D with wave number a for different values of magnetic pa­

rameter M when m = 0.01 , B = 2, T = 1, R = 10, d = 0.5, f{ = 1.0, ~/ J-L = 1.0 and 

We = 0.1. 

- 0.6 ' 

- O.B ' 

- 1 

- 1.8 - 1.6 - 1.4 -1 .2 - 1 -O.B - 0.6 -0.4 
The mean ve/oc~y distribution function, u(y ~ 10·' 

(a) 

93 

1 l_______________ - _ 1 

0.8 r ~-'--_' j 
0.6!._ , "" 1 

0.4I,[- r:0 I '. \ 1 
~ ';,: :;:. ) ': i 

-0.2 - ;' 1 
- 0.4 1- ./ I 1 
-0,6 f ./ 

~t--~~~--- , , I 
-4.5 -4 -3.6 -3 -2.6 -2 

The mean velocity disiribution function, u(y~ 10" 

(b) 



Figure 6.2a. The variation of mean-velocity distribution and reversal flow for different values 

of wall damping d when m = 0.01 , B = 2, T = 1, ]( = 1, R = 10, M = 0. 5, a = 0.5 , E = 0.15 , 

W e = 1.0 alld ~/J-l = 1.0. 

Figure 6.2b. The variation of mean-velocity distribution and reversal flow for different values 

of wall tension T when m = 0.01 , B = 2, d = 0.5, ]( = 1, R = 10, M = 0.6 , a = 0.5, E = 0.15, 

We = 1.0 and f,,/J-l = 1.0. 
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Figure 6.2c. T he variation of mean-velocity distribution and reversal flow for different values 

of wall elastance }( when '111 = 0.01 , B = 2, d = 0.5, T = 1, R = 10, 1\11 = 0.5, a = 0.5, E = 0.15, 

W e = 1.0 and f,,/J-l = 1.0. 

F igure 6.2d. The variation of mean-velocity distribution and reversal flow for different values 

of magnetic parameter M when m = 0.01, B = 2, d = 0.5, }( = 1, R = 10, W e = 1, T = 1, 
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a: = O.S, E = O.lS and ~/ /-l = 1.0. 
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Figure 6. 2e. The variation of mean-velociLy distribution and reversal flow for different values 

of Weissenberg number vVe when Tn = 0.01 , B = 2, T = 1.0, d = O.S, J( = 1, R = 10, a: = O.S , 

E = O.lS, U/-l = 1.0 and M = O.S. 

Figure 6.2f. The variation of mean-velocity distribution and reversal flow for different values 

of viscosity ratio U /-l when Tn = 0.01, B = 2, T = 1, R = 10, d = O.S, M = O.S, K = 1.0, 

Cl' = O.S, E = O.lS and We = 1.0. 
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Figure 6.3a. The variation of critical values of the wall tension T with wave number Cl' for 
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different values of the Reynolds number R when Tn = 0.01, B = 2, K = 1, d = 0.5, M = 0.8, 

W e = 0.5, ehL = 0.5 and E = 0.15. 

Figure 6.3b. The variation of critical values of the wall tension T with wave number a for 

different values of the magnetic parameter 111 when 171 = 0.01, B = 2, d = 0.5 , J( = 1, R = 7, 

W e = 0.5, e! /-L = 0.5 and E = 0.15. 
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Figure 6.3c. The variation of critical values of the wall tension T with wave number a for 

different values of the Weissenberg number vVe when 171, = 0.01 , B = 2, J( = 1, d = 0.5 , R = 7, 

M = 1.0, e/ /-L = 0.5 and E = 0.15. 

F igure 6.3d. The variation of critical values of the wall tension T with wave number a 

for different values of the viscosity ratio (/ /-L when m = 0.01 , B = 2, J{ = I , d = 0.5 , R = 7, 

M = La, E = 0.15 and W e = 0.7. 

6.4 Conclusions 

The effects of compliant walls on the MHD peristaltic flow of a J ohnson-Segalman fluid are 

examined. The main observations of this study are listed below. 

• Constant D is decreasing function of d and W e. 

• Effects of M, T, J{ and e / /-L on D are opposite to that of d and W e. 
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• On the other, hand flow reversal is an increasing fUllct ioll of Nl, T and J(. 

• ResultH of hydrodynamic viscous fluid [95] are recovered when M , ~ and We are equal to 

zero. 

• Results of hydrodynamic Johnson-Segalman fluid are obtained for M = o. 
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Chapter 7 

Peristaltic transport of power-law 

fluid in an asymmetric channel with 

compliant walls 

Effects of compliant wall properties on the peristaltic flow of a non-Newtonian fluid in an 

asymmetric channel have been investigated in this chapter. The rheological characteristics have 

been characterized by the constitutive equations of a power-law fluid . Long wavelength and 

low Reynolds number approximations have been adopted in the presentation of mathematical 

developments. Exact solutions have been established for the stream function and velocity. 

The streamlines pattern and trapping are given due attention. The salient features of the 

key parameters entering into t he present flow are displayed and important findings have been 

pointed out. 

7.1 Mathematical model 

Here we assume that the power-law fluid is confined in an asymmetric channel with width 

d1 + d2 . The channel is fi lled with an incompressible power law fluid and an infinite wave trains 

of velocity c with different amplitudes and phases are travelling along the channel walls which 

induce asymmetry. Furthermore the channel walls are compliant such as spring-backed plate 

and constrained to move only in the vertical direction [95]. If "71 and 'f/2 denote the vertical 
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displacements corresponding to the upper and lower walls, then the walls of asymmetric channel 

are given by 

1/1 = d1 + U1 cos ( 2/; (x - ct) ) , 7)2 = d2 + a2 cos [2/; (x - ct) + e] , 

where A is the wavelength , c is the wave speed, al a Ild a2 are the wave amplitudes, () is the 

phase difference which varies in the range 0 S e S 7r and x and yare the Cartesian coordinates 

with x in the direction of the wave propagation and y in a direction normal to the mean position 

of the channel walls. It should be noted that e = 0 corresponds to symmetric channel with 

waves out of phase, e = 7r with phase, and further a 1, a2 , d1 , d2 and e satisfy the condition 

af + a~ + 2ala2 cos e S (d1 + d2f 
The two dimensional flow equat ions are 

(7.1.) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

subj ected to t he boundary conditions 

(7.7) 

(7.8) 
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where u and v are the velocity component~ ill x and y directions respectively and p, t , P and f.L are 

the fluid density, the time, the pressure and the dynamic viscosity respectively. Furthermore, 

L = m~ + c %t + B~ - T ::2 + k , T is the elastic tension in the membrane, rn is the mass 

per unit area, C is the coefficient of viscous damping, B i~ the flexural rigidity of the plate ane! 

k is t he spring stiffness coefficient. It is further noted that the equations (7.1) to (7 .6) describe 

shear thinning fluids for m < 0, Newtonian fluids for 111 = 0 and shear thickening fluids for 

1n > o. 
. On setting 

oW 
U=­

oy' 
oW 

v=--
o~/; 

and defining the following non-dimensional variables and parameters 

x* 

S* 

incompressibility condition (7.1) is identically satisfied and Eqs.(7.2)- (7.8) under long wave­

length and low Reynolds number are reduced to 

02Sxy =0 
oy2 ' 

Sxx = 0, 

_ (02\lt ) 2m+l 
S X11 - oy2 ' 

SY11 = 0, 

oW =0 
oy 

{ :: } at y = { 
171 

'172 

1 + a cos 27r (x - t) } 1 
h+bcos[27r(x - t) +11] , 

m which asterisks have been suppressed for simplicity, \It is a stream function, a 

b = addl and h = d2 /d l . 
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(7.10) 

(7.11) 

(7.12) 

} ,(7.13) 

(7.14) 



7.2 Solution of the problem 

Exact solution of Eqs. (7.9)-(7.14) is 

in which 

Expression of longitudinal velocity is llOW computed by the following expression 

u 
OW 
oy 

G:: ~) Qi~+' {[Y + (" 2; ry,) rm _ (ry,; ry2) (::m }. 

7.3 Discussion 

(7.16) 

Graphical description of the longitudinal velocity and stream function have been analyzed in 

this section. Effects of various parameters are displayed in the Figures 7.1 (a - c)-7.7 (a - b). 

Effect of the phase difference e on the longitudinal velocity 'U is plotted in the Figures 7,1 (a - c). 

vVe observe that velocity decreases in the lower part of the channel when compared with the 

upper part of the channel. There is an increase in the plJase difference e for the shear-thinning, 

Newtonian and shear-thickening fluids (Figures 7.1 (a - c)). However the magnitude of the 

velocity increases for all the fluids by increasing e. Moreover it is observed that the magnitude 

of the velocity is maximum for the shear-thinning fluids (Figure 7.1a) when compared with the 
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shear-thickening flu~ds (Figme 7.1c). 
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F igure 7.1: Variations of the longitudinal velocity u for different values ofthe phase difference 

e when (a) m = ~0 . 05, (b) m = 0, (c) m = 0.05. The other parameters chosen are a = 0. 5, 

b = 0.3, h = 0.5, El = 0.7, E2 = 0. 5, E3 = 0.1, Etl. = 0.3 , E5 = 0.1, x = 0.3 and t = 0.2. 

Effect of the compliant wall parameters E l , E2, E3, E4 and E5 are displayed in Figures 

7.2 (a ~ c). These F igs. represent an increase in the longitudinal velocity with the increase in 

these parameters. Here maximum velocity is observed for the shear-thinning fluids (Figure 7.2a) 

when compared with the Newtonian fluids (Figure 7.2b). 
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Figure 7,2: Variat ions of the longitudinal velocity u for different values of t he wall parameters 

when (a) Tn = - 0.05, (b) m = 0, (c) m = 0.05. The other parameters chosen are f) = 7f /4, 

a = 0.5, b = 0.3, h = 1, :E = 0.3 and t = 0.25. 

F igures 7.3 (a - c) reveal t he effect ofthe power-law exponent m on the longitudinal velocity 

for the fixed values of the other parameters. It is observed that the velocity is greater for the 

shear-thinning fluids t han the Newtonian and shear thickening fluids . Moreover velocity is 

maximum in the lower part of the channel in comparison to the upper part of the channel. 
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Parabolic behavior of velocity is noticed in all these graphs. 
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Figure 7.3: Variations of the longitudinal velocity u for different values of the power-law 

index m when (a) () = 0, (6) () = n/4, (c) () = n . The other parameters chosen are a = 0.5 , 

b = 0.5, h = I , E1 = I , E2 = 0.5, E3 = 0.1, E4 = 0.3, E5 = 0.1 , x = 0.5 and t = 0.2. 

The phenomenon of trapping is illustrated in the Figures 7.4a - 7.76. Figures 7.4 (a - c) 

display the efrect of power-law exponent m on the stream function for fixed values of the 

other parameters. These Figures show that the number of streamlines is larger for the shear­

thinning fluids (Figure 7.4a) when compared with the Newtonian and shear-thickening fluids 

(Figures (7.4b - 7.4c)) . 

104 
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(c) 

Figure 7.4: Streamlines for (a) 'In = -0.05, (b) m = 0, (c) 1n = 0.05. The other parameters 

chosen are a = 0.25, b = 0.25, h = 1, f} = 7r /6, t = 0, E) = 0.5 , E2 = 0.05 , E3 = 0.01, E4 = 0.14 

and E5 = 0. 5. 

EfFects of the compliant wall parameters for different values of the power-law exponent mare 

illustrated in the Figures (7.5a - 7.7b). It is clear from Figures (7.5a - 7.5b) that for the shear­

thinning fluids (m < 0) , the number of the stream lines increases when the wall parameters E 1 , 

E2 , E3 , E4 and E5 are increased. 
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(a) (b) 

Figure 7.5: Streamlines for 

(a) El = 0.44, E2 = 0.05 , E3 = 0.01 , E4 = 0.08, E5 = 0.45. 

(b) El = 0.47, E2 = 0.06, E3 = 0.01 , E4 = 0.12 , Er, = 0.5. 

T he other parameters chosen are e = 7r / 6, rn = - 0.05 , a = 0.25 , b = 0.25, h = 1 and 

t = 0.01. 

Again an increasing behavior is seen for the Newtonian fluids (m = 0) (Figures (7.6a - 7.6b)) 

and shear-thickening fluids (m > 0) (Figures (7.7a - 7.7b)) with increasing elastic parameters. 

-0.4 -0.3 -0.2 - 0.1 0 0.1 0.2 0.3 0.4 - 0.4 - 0.3 - 0.2 - 0.1 0 0.1 

(a) (b) 
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Figure 7.6: Streamlines for 

(a ) E1 = 0.44, E2 = 0.05, E3 = 0.01 , E4 = 0.08, E5 = 0.45. 

(b ) E1 = 0.47 , E2 = 0.06, E3 = 0.01, E4 = 0.12 , E5 = 0.5. 

The other parameters chosen are B = 7f / 6, m = 0, a = 0.25 , b = 0.25 , h = 1 and t = 0.01. 

- 0.4 - 0.3 - 0.2 - 0.1 0.1 - 0.4 - 0.3 - 0.2 - 0.1 

(a) 

Figure 7.7: Streamlines for 

(a) E1 = 0.44 , E2 = 0.05 , E3 = 0.01, E4 = 0.08 , E5 = 0.45. 

(b) E1 = 0.47, E2 = 0.06 , E3 = 0.01 , E4 = 0.12, E5 = 0.5. 

0.1 0.2 0.3 0.4 

(b) 

T he other parameters chosen here are B = 7r / 6, m = 0.05, a = 0. 25, b = 0.25, h = 1 and 

t = 0.01 . 

7.4 Concl uding remarks 

We have presented the st udy for peristaltic flow of a power-law fluid in an asymmetric channel 

with compliant walls. The closed form solutions of velocity and stream function are computed. 

The main findings are: 

• The magnitude of velocity increases with an increase in the phase difference B. 

• Maximum velocity is observed for the shear-thickening fluids when elastic/compliant 

wall parameters are increased. 
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• The streamlines increase with the increase in the elastic parameters for a ll the three 

fluids . 

• Number of stream lines decreases in an asymmetric channel when compared with the 

symmetric channel. 
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Chapter 8 

Compliant wall analysis of an 

electrically conducting Jeffrey fluid 

with peristalsis 

This chapter looks at the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid in a 

channel with compliant walls. Conservation laws of mass and linear momentum are employed 

in the modelling of Bow equations. Solution to the arising mathematical problem is derived 

for small wave amplitude. Graphical results are reported for the interpretation of solution for 

various flow quantities. 

8.1 Problem development 

We consider a two-dimensional channel of uniform width 2h filled with homogenous Jeffrey fluid. 

The channel flow is because of small amplitude sinusoidal waves imposed on the compliant walls 
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of the channel. The physical model of the problem is shown in F igure 8.1. 

F igure: 8.1 

T he expressions of Cauchy and extra stress tensors in Jefl"rey fluid is 

T = -pI + S, 

(1 + AI) S = 2J..t (1 + A2 c~t ) AI' 

(8.1) 

(8.2) 

with p t he pressure, I the identity tensor, J..L the dynamic viscosity, Al the ratio of relaxation 

to retardation times, A2 the relaxation time and Al the first Rivlin-Ericksen tensor. It should 

be noted that physical model here is similar to that of chapter 6. In order to avoid repetition, 

the detail regarding problem formulation is omitted. Hence after using Eqs. (6.1) - (6.7), (8.1) 

and (8.2) , we finally obtain 
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(
au au au) ap asxx DSxy B2 

P -+u-+v- =--+ --+ ---0" aU , at ax ay ax ax ay (8.3) 

(
av av av) ap asxy DSyy 

p -+u- +v- = --+--+--, at ax ay ay ox ay (8.4) 

2J-L [ ( a a a )] au 
SX,t = 1 + )'1 1 + A2 at + U ax + v ay ax ' (8.5) 

J-L [ ( a a a )] ( au av ) 
Sxy = 1 + Al 1 + A2 at + U ax + v oy oy + ox ' (8.6) 

S - -- 1 + A2 - + u- + v- -2J-L [ ( a a a )] av 
yy - 1 + Al at ax ay ay' (8.7) 

a [ a2T) aT) a4T) a2rl ] ax m at2 + d at + B ax4 - T ax2 + K 77 
- p ( WYl + WyWyx - ifJ x w yy ) + Sxx ,x + Sxy,y -- O"B5 W y , (8.8) 

' ''Ie define the following dimensionless variables 

, x , y , u, v ' ct, p , 7] 
X = -, ' y = -, ' u = -, 'U = -, t = -, ,p = -2,1'1 = -h' 

1 t c c 1 pc 

, Ill m, dh " B, Th , Kh3 

W = ch' ih = ph' d = PLl' B = phv2 ,T = pv2 ' K = pv2 ' 

, hS" c 
S = -, >'2 = - A2· 

J-Lc h 
(8.9) 
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Now the dimensionless problem takes the form 

%t V2 W + Wy V 2Wx - Wx V 2Wy = ~ (SXX,XI} + Sxy,yy - Sxy,xx - Syy ,Xy) - M 2
Wyy (8.10) 

2 
Sx.1' = 1 + A1 (W Xy + A2 (Wxyt + WyW,rxy -- WxWXyy )), (8.11) 

1 ( ( Wyyt. + WyW Xyy - WxWyyy 
SXy = 1 + A (wY!l - WXX ) + A2 

1 - Wxxt - WyWxxx + WxWxxy 

Syy = ~ ( - W xy + A2 ( - W xyt - W y 1]1 xxv + W x W xyy)) , 
1 + Al 

'r/ = E cos a (X - t ) , 

at y = ± 1 ± 'r/ . 

)) , (8.12) 

(8.13) 

(8. 14) 

(8. 15) 

(8.16) 

Here E = a/ h denotes the amplitude ra tio, (~ = 27rh/ A the wave number , R = ch / v the Reynolds 

number and v = (1-£/ p) t he kinemat ic viscosity. 

8.2 Method of solution 

Following the methodology of solution of chapter G, we obtain the following expressions 

2Ko [ sinh fy ] 
Wo (y) = RM2 Y - fcoshf + CI, (8.17) 

Ko = _ R ( dP) , 
2 dx 0 

f=M JR(l+A I} 
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WI (X, y, t) = ~ [<1>1 (y) eio(x - t) + <1>r (y) e-iO(X - t)] , 

Sxxl = ~ [<1>2 (y) e io (x- t) + <1>2 (y) e - !O (X- t )] , 

Sxyl = ~ [<1>3 (y) e io(x - t) + <1>3 (y) e -io(x- t)] , 

Syyl = ~ [<1>4 (y) eio(x - t) + <1>~ (y) e - ;O(X- t)] , 

W2 (X, y, t) = ~ [<1>20 (y) + <1>22 (y) e2io(x - t) + <1>22 (y) e -
2iO

(X- tJ ] , 

Sxx2 = ~ [<1>30 (y) + <1>33 (y) e 2io(x - t) + <1>33 (y) e-2iO(X - t)] , 

Sxif;. = ~ [<1>40 (y) + <1>44 (y) e2ia(x - t,) + <1>~4 (y) e - 2ia(X - t) ] , 

S = ~ [<1> (y) + <1> (y) e 2ia(x-t) + <1>* (y) e - 2ia (X-t) ] yy2 2 50 55 55 , 

(8,18) 

(8,19) 

(8,20) 

(8,21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

with asterisk being the complex conjugate and Cl the arbitrary constant. Letting Ko = 0, one 

has 

iaR [d~2 - a 2] <1>1 (y) = RM2<1>~ (y) + ia<1>~ (y) - <1>~ (y) 

-a2<1>3 (y) - iO'<1>; (y) , (8,26) 

(1 + Ad <1>2 (y) = 2'iO' (1 - iO'A2) <1>'1 (y) , (8,27) 

(1 + Ad <1>3 (y) = (1 - iO'A2) (<1>~ (y) + a 2<1>1 (y)) , (8.28) 

(1 + Ad <1>1\ (y) = -2ia (1 - 'iaA2) <1>~ (y) , (8,29) 

<1>~ (±1) = 0, (8.30) 

iaR<1>~ (±1) + iO'<1>2 (±1) + <1>~ (±1) - RM2<1>~ (±1) = RJ, (8.31) 

J = - ~ (a2 R2m + iaRd - a4 B - a2T - K) , 
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<P;o (±1) = =F~ [<p~ (±1) + <P~" (±1)] , 

iO'R 2 
<P~o (±1) = --2- [<PI (±1) <Pi" (±1) - <Pi (±1) <P~ (±1)] + RM <P;o (±1) 

=Fi~R [<p~ (±1) - <Pi" (±1)] ± R~if2 [<p~ (±1) + <Pi" (±1)] 

=F~; [<p; (±1) - <P;' (±1)] =F ~ [<p~ (±1) + <P3" (±1)] , 

2inR [ d~2 - 40'2] <P22 (y) = RM2 (fJ ~2 (y) + i~R [<p~ (y) q)~ (y) - <PI (y) <p~' (y)] 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

-<P~4 (y) - 4O'2 <P44 (y) - 2'iO'<P;3 (y) + 2iO'<P~ [j (y) , (8.38) 

0'2 A2 " I LhO' (1 - 2iO'A2) I 

(1 + h) <P33 (y) = (1 + A)) [<Pl (y) <p] (y) - <pt (y)] + (1 + AI) <P22 (y) , (8.39) 

iO'A2 [ (1 - 2iaA2) 
(1 + Ad <P44 (y) = -2- <P~ (y) <p1{ (y) - <PI (y) <p~' (y)] + (1 + AI) <P~2 (y) 

40'2 (1 - 2iO'/\2) cI () 
(1 + AI) )22 Y , (8.40) 

0'2 A2 4'iO' (1 - 2iO'A2) 
(1 + AI) <P55 (y) = - (1 + AI) [<Pl (y) <P~ (y) - <l>~2 (y)] - (1 + Ad <P;2 (y) ,(8.41) 

<P;2 (±1) = =F~<P~ (±1) , (8 .42) 

2<P~4 (±1) = iO'R<P~ (±1) <P~ (±1) - 4iaR<P;2 (±1) - 4iO'<P33 (±1) T <P~ (±1) 

+ 2RM2<p;2 (±1) T iO'<p; (±1) =F iO'R<p~ (±1) - iO'R<Pl (±1) <P~ (±1) 

±RM2 <Pr (± 1) 
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and. the relevant solutions are 

where 

<1>1 (y) 

<1>2 (y) 

<1>3 (y) 

<1>4 (y) 

(8,44) 

(8,45) 

(8,46) 

(8,4 7) 

A _ _ (1 + Ad Ro B _ (1 + AI) Ro 
1 - (1- iO'A2) (fJ i - O'i) 0'1 cosh 0'1 ' 1 - (1 - iO'A2) (fJi - ai) fJ 1 co~h fJl' 

A - 2iaal (1 - iaA2) A B _ 2'iO'fJ l (1 - 'iaA2) 
2- (l+Al) I , 2- (l+Al) B 1 , 

A - (1 - 'iaA2) ( 2 2) A B _ (1 - 'ia'\2) (2 fJ2 ) B 
3 - (1 + AI) a + 0'1 I , 3 - (1 + AI) 0' + 1 I , 

a 2 _ N + JN2 - 40'fJ2 fJ2 _ N - JN2 - 40'fJ2 
1 - 2 ' 1 - 2 ' 

i (a2 - fJ2 ) M2 
N = a 2 + fJ2 - --'----"--

0' 

From Eqs. (8.32)-(8 .37), we obtain 

<1>;0 (y) = F (y) + 2C1 [ COShfY - COShf ] + (D _ F (1)) coshfy . (8.48) 
f2 cosh f cosh f 

Result for peristaltic mean flow can be expressed as 

u (y) 
",2 

= "2<1>;0 (y) 

= ; ",2 [F() 2C (COShfY - COShf) (D-F( ))COShfY] 
2 Y + 1 f2 cosh f + 1 cosh r ' (8,49) 
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1 [A 2· A* *2 . 1 * B (32 . 1 (3 B *(3*2. 1. (3*] D= -"2 J.alsmh al+ lal Slll1al+ 1'l sm1 1+ 11 smll l' 

RJvI
2

(1+Al)D A . h A*' 1 * B . h(3 B*' h(3* C1 = - + 4 SlIl al + 4 SlIl 1 a 1 + 4 sm . 1 + 4 sm l' 
2 

(l+Al) [ . 2· 2] A4 = - 4 2aa1RAI + walA2 + A3 0 j , 

(1 + AI) [. 2· (32] B4 =- 4 w(31 RB1+'w(3jB2+B3 l' 

F (y) = 81 cosh 2ay + 82 cosh (a + (3) y + 83 cosh (a - (3) y + 84 cosh ( a + (3*) Y 

+85 cosh (a - (3*) y + $6 cosh ((3 + (3*) Y + 8., cosh ((3 - (3*) y , 

By cri t ical reflux condition i. e. ii (0) = 0 and Eq. (8.49), one obtains 

H I + J H f -4H2 
Tcril ical reflu x = 2 ' 
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[ 
(hl + h2) (h3 + h4 ) 

H = a ] ai cosh al cosh a~ + ad1~ cosh a I cosh .8~ 
(h5 + h6) (h7 + 17,8) ] 

+ ai.81cosh aicosh .81 + .8I.8~cosh .81cosh .87 ' 

HI = -;. [2L3 + g3 + g3], H2 = ~ [L4L~ + L4g3 + L:g3] , 
a a 

iaR2 (1 + A1)2 

9 = 4 (1 + a 2 AD (.8i - a D (.8i2 
- ai2 ) , 

g1 = - R(l + AI) , [(1-coshr) ( -iaR(1 + AI) ) 1 
2 (1 - iaA2) (.8i - a D r 2 coshr + (1 - iaA2) (a2 _ an - 1 , 

g, ~ 2 (1 - ~,,~,7 trll-"l) [(~~ c:~n ( + (1 ~"i:~:)~;;~ "') ) - 1] , 

iR2 
g3 = - aH [g1 al tanh a1 + 92.8 1 tanh .8 d , 

L3 = a 2 R2m - a4B - I<, L4 = iaRd + L3, 
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8.3 Results and discussion 

This section describes the effects of various emerging flow parameters on the flow quantities of 

interest. For this purpose, the mean-velocity at the boundaries of the channel, the time-averaged 

mean axial velocity distribution and reversal flow are calculated and the results are discussed 

through plots when Ko = O. The variation of wall damping d on D is shown in Figure 8.2a. We 

conclude that D decreases upon increasing d. The effects of Hartman number M on the mean 

velocity at the boundaries have been plotted in Figure 8.2b. It is found from this Figure that 

the mean velocity at t he boundaries increases when Hartman number M is increased. Figure 

8.2c elucidates the effect of the ratio of the relaxation time to the retardation time Al on the 

mean velocity at the boundaries of the chanIlel. It is noticed that D decreases with an increase 

ill A}. However an opposite behavior is observed in Figure 8.2d which shows the effect of the 

retardation time A2 on D. The effects of different fluids on the mean velocity at the boundaries 

of the channel are depicted in Figure 8.3. This Figure shows that the mean velocity at the 

boundaries is greater in the case of the Newtonian fluids when compared to a Jeffrey fluid. It 

is noted that the damping may cause the mean flow reversal at the walls which is not possible 

in the elastic case. For small Q, the damping occurs which indicate some disturbances during 

the motion. The variations of d and filIon the mean velocity distribution and reversal flow 

are plotted in t he Figures 8.4a and 8.4b. Obviously the possibility of flow reversal increases 

by increasing M (Figure 8.4b) while in case of d the situation is reversed (Figure 8.4a). T he 

variations of A} and A2 on the mean velocity distribution and reversal flow are shown in the 

Figures 8.4c-8.4d. It is not iced that t he flow reversal increases by increasing Al and A2 (Figures 

8.4c and 8Ad). The behavior of different fluids on the mean velocity distribution and reversal 

flow is depicted in Figure 8.5. This Figure indicates that the magnitude of the velocity is 

large for the linear Jeffrey fluid when compared with the Newtonian fluid. Following Fung and 

118 



Yih [7], the mean-velocity perturbation function G (y) is defined by 

200 
G(y) = - (X2 R 2 [F(y) - F(I)]. (8.51) 

F igmes 8.6a and 8.6b clearly show that the critical value of T increases when Reynolds number 

R and the Hartman number M are increased. It is seen from Figure 8.6c t hat the effect of t he 

ratio of the relaxation time to the retardation time ).1 on critical value of T is quite opposite 

to that of ).2 (Figure 8.6d). We further note t hat the critical value of T is very high for small 

values of the wave number (X when compared with its large values. Figure 8.7 shows that the 

critical reflux is greater in case of the Newtonian fluid when compared with Jeffrey fluid. 
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Figure 8.2a. The variation of D with wave number (X for difFerent values of wall damping d 

when m = 0.01 , B = 2, T = 1, K = 1, NI = 2, R = 10 , ).1 = 0.8 and ).2 = 0.5 . 

Figure 8.2b. The variation of D with wave number (X for different values of Hartman number 

M when m = 0.01, B = 2, T = 1, K = 1, R = 10, d = 0.5 , ).1 = 0.8 and .A2 = 0.4 
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Figm e 8.2c. T he variation of D with wave number a for different values of ratio of the 

relaxation time to the retardation time /\1 when m = 0.01, B = 2, T = 1, f{ = 1, R = 10 , 

M = 1, d = 0.5 and A2 = 0.2. 

Figm e 8.2d. The variation of D wit h wave number a for different values of retardation t ime 

A2 when 177, = 0.01, B = 2, T = 1, J{ = 1, R = 10, M = 1, d = 0.5 and Al = 1.5 

o 
~ o~~-~-~~-~~========~ 
.~ i - Newtonian fluid ! 
iii -0.01 ' -- Jeffrey fluid 1 

1"0 I 

. § -0.02 ~ 

1
0 I 

i ~ -O.03 ~ 
.c 

I i -0.04 ~ 
~ . 
'u - 0.05 f 

i ~ -O. 06 ~ 
, e I 
' 11l 

I 4> - O.Orr 
E ' 

' 4> I . .c -0. 08 ~c _~--' ____ ..L---, ___ ~~_ 

, I- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
I Wave number a 

Figure 8.3: The variation of D with wave number a for different fluids when m 0.01 , 

B = 2, T = 1, f{ = 1, M = 2, R = 10 and d = 0.5. 

120 



1! 
~ , 

1, 

" 
o.5f " 0.5" - M=O.1 rd .. ' ". 

I 1 ". . . ,. , . . M =0.4 : 
I - - - d o 0,2 I . 

- - - M = 0.5 I I , I .. , d = O .~ ot I I , I >- I' i >- 0, I I \ 
I 

1 \ i , , j , , 
-0.5f 

, 
- o.5f 

-1 
- 1'---- - 0.025 -0,02 -0.01§ - 0.01 - 0.005 

0.8 1 1.2 1.4 1.6 1.8 U(y) D(y) x 10-3 

(a) (b) 
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and A2 = 0.4. 

F igure 8.4b. T he variation of mean-velocity distribution and reversal flow for different values 

of Hartman number M when Tn = 0.01 , B = 2, K = I , T = I , R = I , d = 0.5, a = 0.5, E = 0.15, 

A1 = 0.8 and A2 = 0.4 
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of ratio of the relaxat ion time to the retarda t ion time Al when m = 0.01 , B = 2, T = I , K = I , 

R = I , M = I , d = 0.5, a = 0. 5, E = 0.15 and A2 = 0.4 . 

Figure 8.4d. The variation of mean-velocity distribution and reversal flow for different values 

of retardation time A2 when m = 0.01, B = 2, T = I , J( = I, R = I, IvI = I, d = 0.5, a = 0.5, 

E = 0.15 and Al = 0.4 
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Figure 8.5: The variation of mean-velocity distribution and reversal flow for different fluids 

when m = 0.01 , B = 2, T = 1, K = I , M = I, R = 10, a = 0.5 , E = 0.15 and d = 0.5. 
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Figure 8.6a. T he variation of critical values of wall tension T with wave number a for 

different values of the Reynolds number R when m = 0.01, B = 2, K = I , d = 0.5, M = 0.5, 
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Figure 8 .6b. T he variation of crit ical values of wall tension T with wave number a: for 

different values of Hartman number M when Tn = 0.0], B = 2, K = 1, d = 0.5 , R = 8, A2 = 0.4 

and Al = 0.7 
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Figure 8.6c. The variation of critical values of wall tension T with wave number a: for 

difl'erent values of the relaxation time to the retardation time A] when m = 0.01, B = 2, 

J( = 1, R = 8, M = 0.5 , d = 0.5 and A2 = 0.4. 

Figure 8.6d, The variation of critical values of wall tension 'T with wave number a: for 

different values of retardation time A2 when m = 0.01, B = 2, K = I, R = 8, M = 0.5, d = 0.5 

and Al = 1.5 
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8.4 Closing remarks 

T his study describes the peristaltic flow of all incompressible Jeffrey fluid . The two-dimensional 

equations are modeled and analysis is performed for free pumping case. It is concluded that: 

• There is a decrease in the constant D when Al is increased. 

• The role of A2 on D is quite opposite to that of AI. 

• The flow reversal increases by increasing Al and A2 while the flow reversal decreases when 

d increases. 

• The magnitude of velocity in Jeffrey fluid is greater than that of Newtonian fluid. 

• For Al = A2 = 0, the results of viscous fluid are recovered [95J. 

124 



Chapter 9 

Heat transfer analysis on MHD 

peristaltic motion in a Jeffrey fluid 

with compliant walls and porous 

space 

This chapter reports the magnetohydrodynamic (MHD) peristaltic flow of Jeffrey fluid in a 

channel with compliant wall and heat transfer. The fluid fills the porous space. Mathematical 

modelling is based upon modified Darcy's law. The solutions of stream function, velocity 

and temperature distributions are derived. Finally, the solution expressions are displayed and 

analyzed. 

9.1 Mathematical model 

We consider a channel (of thickness 2d) filled with an incompressible and magnetohydrodynamic 

(MI-ID) Jeffrey fluid. A uniform magnetic fi eld B = (0, Eo, 0) is applied in the y-direction. The 

induced magnetic field is negligible for small magnetic Reynolds number. An incompressible 

fluid occupies a porous space. The temperatures of the lower and upper walls of the channel 

are maintained at To and Tl respectively. Assume an infinite wave train travelling with velocity 
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c along the walls. The walls of the channel are 

y = ±7J = :1: [d + a sin (~~ (x - ct) ) ] , 

where A is the wavelength, c is the wave speed and a is the wave amplitude. The relevant 

equations can be written as 

a'U + av _ 0 ax ay - , 

p -+'U-+v- u=-- +-- +-- -O"Bo'U+Rx, (
a a a ) ap asxx asl;y 2 

at ax ay ax ax ay 

(
a a a ) ap asyx asyy D 

p - + 'U- + V- v = -- + -- + -- +.Lv" at ax ay ay ax ay Y 
a (a) au sxx + Al at sxx = 21-'- 1 + A2 at ax ' 

a ( a) (a'U av ) sxy + A1 at Sxy = /.1, 1 + A2 at ay + ax ' 

a ( a) av SYY + Al at Syy = 2{L 1 + A2 at ay ' 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.G) 

(
a a a ) 2 a'U ( au f)v ) av 

pCp -a +U-a +V-a T=K-V T+Sxx -a +S;cy -f) +-a +SYV-a t x y x y x y 
(9.7) 

while the boundary conditions are prescribed as follows: 

U = 0 at y = ±r} = ± [d + a sin (2; (x - ct) ) ] , 

a ap 
ax L (77) = ax 

= -- + -- - p - + u- + v- 'U - O"Bou + Rx as;J:x asxy ( a a a ) 2 

ax ay at ax ay 
T = To on y = -Tj, 

T = Tl on y = Tj. 

(9.8) 

at y = ±Tj, (9.9) 

(9.10) 

(9.11) 

Here for the convenience of readers , we defi.ne U and v the velocity components in the x and y 

directions respectively and p, t, p, 1-'- , 0" , Cp , K, and T are the fluid density, the time, the pressure, 

the dynamic viscosity, the electrical conductivity, the specific heat, the thermal conductivity 

and the temperature respectively. Furthermore, L = -T~ + m~ + C %t + B-/i:r + k, T is the 
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longitudinal tension per unit width, m is the mass per unit area, G is the coefficient of viscous 

damping, B is the flexural rigidity of the plate and k is the spring stiffness coefficient. 

On the basis of Jeffrey fluid model the expression of Darcy's resistance is: 

1 +/\)- R=-- 1+'\2- V ( 
0 ) ~/'<I> ( D ) 
ot J( ot: ' 

(9.12) 

where <I> (0 < <I><1) and J( (> 0) are respectively the (constant) porosity and permeability of the 

porous medium. 

Setting 
ow 

'U=-
oy ' 

ow 
v- -­- ox' 

* x * Y .TJ * = _w_ t* = et * 7) * d
2
p 

x = >: ' Y = d' "" cd' A ' T) = d' p = ~eA ' 

S* = ~S J(* = J( Nt2 = a Bgd
2 

R = cd E = !:: 
~e ' <I>d2 ' ~' v ' d ' 

d rd3 med3 Gd3 Bd3 

o = >:' E1 = - A 3 ~e ' E2 = A 3 ~ ' E3 = A 2 ~ ' E4 = A 5 ~e ' 

kd
3 

Pr = pvGp , E = __ c2__ () = T - To 
E5 = \ li e' " 

At"" K, Gp (Tl - To) T1 - To 
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equation (9. 1) is automatically satisfied and Eqs . (9 .2)-(9 .12) become 

e = 1 at y = 77 . 

(9.13) 

(9.14) 

(9 .15) 

(9.16) 

(9.17) 

(9.18) 

(9.19) 

(9.20) 

where N = JM2 + 1/ K, M is the Hartman number, K is the porosity parameter, Pr is the 

Prandtl number and E is the Eckert number . 
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9.2 Solution of the problem 

In order to carry out the analysis of perturbation solution , we expand 

w = Wo + 5wI + ... , 

e = eo + 5e l + ... , 

Sxx = Sxxo + 5Sxxl + ... , 

Sxy = SxyO + JSxyl + ... , 

Syy = S.llYO + 5Syy l + ... , 

Z = Zo + 5Z1 + .... 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

(9.27) 

Employing Eqs. (9.22)-(9.27) into (9.13)-(9.21) , and then computing the solutions upto first 

order, we have 

where Br = Pr E is the Brinkman number and the longitudinal velocity is 

u 
aw 
ay 
L (~::~ ~~ - 1) + 5 (Bl + B3N cosh Ny + Ll cosh Ny + LlyN sinh Ny 

(9.28) 

(9.29) 

+2L2Y sinh Ny + L2y2 N cosh Ny) . (9.30) 
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The heat transfer coefficient at the upper wall is 

Z 17:r By 

7)x 2 [rJB7-L2 (4N2ry - 2N sinh 2N1)) + 4 cosh2 Nry] + 07)x [LN
19 

r)2 sinh Nry 
8"7 cosh N ry 

2L j9 . L20 + N2 ry cosh Nry - L31 smh Nry - L31 N17 cosh Nr) + 2N2 ry cosh 2Nr) 

L 20 2 L24 
+ 2N 17 sinh 2N ry + L32 sinh 2N 17 + 2N ryL32 cosh 2N ry + N2 cosh N ry 

+ L~41) sinh Nr/ + ~~ sinh 3Nr) + 2N L33 sinh 2Nry + L34N sinh Nry 

L28 3 L29 2 J +N L35 cosh Nry + 3 ry + 2ry + L3077 + B4 , (9.31) 
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L9 = 'T)}f7L2 (cosh2Nrl- 2N2772), LlO = 4cosh2 N77, L11 = L3 - L7L 8 , 

N 2L2B7' 
L12 = L4 + L5 - L7L8 , L 13 = L6 - L7L lO , L14 = 2' 

2cosh N'T) 

NL2BT 1 
L 15 = Lw = 

27
7' L17 = B3N2 + 2N Ll + 2L2, 

4 cosh2 N77' 

2 2 PI' RLN2 L J 1 
L 18 = LIN + 4L2N, L 19 = , 

coshN77 

BrLL2N3 Pr R (NLLll + LxL15) 
L20 = - L21 = - , 

cosh N'T) , 2N cosh N77 

PrR (L x L I5 - NLLll + 2 (L12 + L I377)) 
L22 = 2N cosh N'T) , 

4L22 + L29 N L _ 2L25 N - 4L20 
N3 32 - 8N3 ' 

6L19 + N 2 L22 - 2N L 26 
N4 

9.3 Graphical results and discussion 

The behaviors of the longitudinal velocity, stream function, temperature and heat transfer co­

effi cient are addressed in this section. In order to achieve this objective, the Figures 9.1 (a - g)-

9.10 (a - d) are displayed. Figures 9.1 (a - g) are p lotted to examine the effect of various 

parameters on the longitudinal velocity u . It is observed from Figure 9.1a that the longitudinal 

velocity u decreases when the Hartman number M increases while it increases when the porosity 
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parameter K i~ increased (Figure 9.1b) . F igures 9. 1c and 9.1d show t he effect of Weissenberg 

numbers A1 and A2 re~pectively. T hese F igures depict that t here is an increase in the veloc­

ity when Al and A2 are increased. Figure 9.1e shows the effect of the wave number 0 on the 

longitudinal velocity. We observed that the velocity increases with increasing wave number. A 

similar effect is scen for the occlusion parameter E 0 11 'U (Figure 9.lf). T he effect of the elastic 

parameters E l , E2 , E3 , E4 and E5 are evident in Figure 9.1g. It may be of interest to note 

from this Figure t hat by increasing the elastic parameters (E 1 , E2, E3 and E5), the velocity 

decreases while it increases when E4 is increased . It is also interesting to note that the velocity 

profile is paraboli c for fixed values of the parameters and its magnitude is maximum near the 

centre of the channel. Moreover, it is noticed that the elas tic tension El and the fl exural rigidity 

E4 has a significant efl'ect on the axial velocity when compared with the mass characterizing 

parameter E2 and the damping nature of the wall E3 . Figure 9.2 is p lotted to see the effect of 

difl'erent fluids on the velocity. From this Figure we observed that the velocity for the J efl'rey 

fiuid is greater than t he Maxwell and Newtonian fluids . In Figures 9.3 (a - g) , the nature of the 

tempera ture profile is also parabolic. Here the tempera ture decreases by increasing the Hart­

man number M (Figm e 9.3a) and the Weissenberg number A2 (Figure 9.3d) . Note tha t t he 

tcmpera ture decreases in the downstream. However , Figures 9.3b and 9.3c illustrate that the 

t emperature increases by increasing the permeability parameter K and t he Weissenberg number 

AI . The vari at ion~ of t he Brinkman number B r and t he wave number 0 on t he temperature are 

sketched in the Figures 9.3e and 9.3f. It is noted from these F igures that t he temperature is 

an increasing function of B T and o. Figure 9.3g shows the effect of t he elastic parameters E1 , 

E2 , E3, E4 and E5 on t he temperat ure. T his F igure reveals tha t the amplitude of t emperature 

increases with an increase in E 1 , E2 , E3, E4 and E5. It is further observed tha t the efl'ect of 

E l and E4 on tempera ture are quite significant. In Figure 9.4 the efl'ect of t emperature profile 

is seen for difl'erent fluids. I t is quite obvious from this Figure that the Maxwell fluid possesses 

very large temperature when compared with the other fluids. T he results presented in Figures 

9.5 (a - h) indicate the variations of M , K , Al , A2, BT , 0, E, E l , E2 , E3 , E4 and E5 on the 

heat transfer coefficient Z . This Figure shows the typical oscillatory behavior of heat transfer 

which may be due to the peristaltic phenomena. Figures 9.5b , 9.5e, 9.5f, 9.5g, 9.5h depict that 

the absolute value of the heat transfer coefficient increases by increasing K BT 0 E El E2 , ", , , 
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E3 , E4 and E5 respectively, while the behavior is quite opposite in the case of M (Figure 9.5a) . 

F igure 9.5c displays the effect of the Weissenberg number Al on the heat transfer coefficient 

Z. It is observed that when x ranges from 0 to 0.5 , Al decreases while it increases when x 

E [0 .5, 1]. The effect of t he Weissenberg number A2 011 Z is quite opposite to the effect of Al on 

Z (Figure 9.5d). In Figure 9.6 we have plotted the heat transfer coefficient for different fluids. 

It is obvious from this Figure that when x ranges from 0 to 0.5, the heat transfer coefficient 

for JefFrey fluid is larger than the Maxwell and viscous fluids and the effect is opposite when x 

E [0.5, 1]. 

T he formation of an internally circulating bolus of fluid by closed streamlines is sketched in 

Lhe F igures 9.7 (a - c)-9 .l0 (a - d). Figures 9.7 (a - c) display the effect of Hartman number M 

on the streamlines for fixed values of t he other parameters. This Figure shows t hat the size of 

trapping bolus decreases with an increase in the Hartman number IVI while the behavior is quite 

opposite in the case of the permeabili ty parameter J( (Figures 9.8 (a - c)) . Figures 9.9 (a - c) 

witness that the behavior of wave number 8 on the streamlines. Here we observed that the 

number of the stre&mlines increases by increasing 8. The effect of t he elastic parameters on 

the streamlines is plotted in F igures 9.10 (a - d). The trapped bolus increases with an increase 

in E1 , E2 , E3 , E4 and E5 . It is worth mentioning to point out that the damping is not much 

effective in the trapping. 
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F igure 9.1a: Variations of the longitudinal velocity 'U for different values of Hartman number 
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1\1 when E) = I , E2 = 0.4, E3 = 0.5 , E4 :.::: 0.3 , E5 = 0.2 , E = 0.1, R = I , 8 = 0.1 , J( = 2, 

Al = 1.5, A:l = 0.8 , x = 0.3 and t = 0.05 . 

Figure 9.1b: Variations of the longitudinal velocity u for dift'erent values of porosity para­

meter J( when El = I , E2 = 0.4 , E3 = 0.5, E4 = 0.3, E5 = 0.2, E = 0.1 , R = 1,8 = 0.1, M = 2, 

Al = 1.5, A2 = 0.8, x = 0.3 and t = 0.05. 
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Figure 9.1c: Variations of t he longitudinal velocity u for different values of Weissenberg 

number Al when El = 1, E2 = 0. 4, E3 = 0.5 , E4 = 0.3, E5 = 0.2, E = 0.1 , R = I , 8 = 0.1, 

!v/ = 2, K = 5, A2 = 0.5, x = 0.3 and t = 0.05. 

Figure 9.1d: Variations of the longitudinal velocity u for different values of Weissenberg 

number A2 when EI = I, E2 = 0.4, E3 = 0.5, E4 = 0.3, E5 = 0. 2, E = 0.1, R = I , 8 = 0.1, 
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A1 = 2, K = 5, A1 = 1.5, x = 0.3 and t = 0.05 . 
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Figure 9.1e: Variations of the longitudinal velocity u for different values of wave number 6 

when E1 = 1, E2 = 0.4, E3 = 0.5, E4 = 0.3 , E5 = 0.2 , E = 0.2 , R = 1, M = 2, J( = 5, A1 = 1.5 , 

A2 = 0.8 , x = 0.3 and t = 0.05 . 

Figure 9.lf: Variations of the longitudinal velocity u for different values of occlusion para­

meter E when El = 1, E2 = 0.4, E3 = 0.5, E4 = 0.3, E5 = 0.2 , 6 = 0.1 , R = 1, M = 1, K = 5, 

Al = 1.5, A2 = 0.8, x = 0.3 and t = 0.05. 
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Figure 9.1g: Variations of the longitudinal velocity u for different values of elastic parameters 

when E = 0.15, R = i, 6 = 0.1, M = 1, K = 5, Al = 1.5, A2 = 0.8, x = 0.3 and t = 0.05. 
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F igure 9.2: Variations of the longitudinal velocity 'U [or different fluids when E1 = 1, 

E2 = 0.3, E3 = 0.5, E4 = 0.4, E5 = 0.2, E = 0.02, R = 1, <5 = 0.05, M = 1.2 , K = 5, x = 0.3 

and t = 0.05 
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Figure 9.3a: Variations of temperature distribution e for different values of Hartman number 

111 when El = 1, E2 = 0.2, E3 = 0.1 , E4 = 0.1 , E5 = 0.2 , E = 0.01 , R = 1, 8 = 0.07 , J( = 0.5, 

A1 = 1.5, /\2 = 0.5, BT = 1, PI' = 1, x = 0.3 and t = 0.4. 

Figure 9.3b: Variations of temperature distribution e for different values of porosity para­

meter K when El = 1, E2 = 0. 2, E3 = 0.1, E4 = 0.1 , E5 = 0.2, E = 0.01, R = 1, 8 = 0.07, 

!vI = 2.5, A1 = 1.5, A2 = 0.5, BT = 1, PI' = 1, x = 0.3 and t = 0.4. 
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Figure 9,3c: Variations of temperature distribution e for different values of Weissenberg 
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Figure 9.3d: Variations of temperature distribution e for different values of Weissenberg 

number A2 when El = I , E2 = 0,2, E3 = 0.1, E4 = 0.1 , E5 = 0.2, E = 0.02, R = I, 0 = 0.3, 

All = 5, K = 5, Al = 1.5 , Br = 3, Pr = I , x = 0.3 and t = 0,4. 

-1~~~-~--~-~-~--~~ ° 0,2 0.4 0,6 O,B 1,2 

o 
(e) 

1". ___ ~ 
;1-5= 0,0 I 

D,S - - . 11= 0,03 1 

° 6tl- l- 5= 0,05 
, . ->-5=~ 

0,4 1 

1 
0,2 t 

>. of 
-0,2 1 

-OAf 

~:': I 
-1~ ° 0,5 1,5 

e 
(f) 

Figure 9.3e: Variations of temperature distribution e for different values of Brinkman num-

137 



bel' BT when El = 1, E2 = 0.2, E3 = 0.1 , E4 = 0.1 , E5 = 0.2, f. 

_H = 4, J( = 5, >'1 = 1.5, A2 = 0.5 , Pr = I , :1: = 0.3 and t = 0.4. 
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Figure 9.3f: Variations of tel1lperature distribution e for different values of wave number 

<5 when E1 = I , E2 = 0.3, E3 = 0.1 , E4 = 0.1, Es = 0.2, f. = 0.03, R = 1, M = 4, J( = 5, 

A1 = 1.5, A2 = 0.5 , Br = 1, Pr = 1, x = 0.3 and t = 0.4. 
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Figure 9.5c: Variations of heat transfer coefficient Z for different values of Weissenberg 

number Al when E1 = 1, E2 = 0.5, E3 = 0.2, E4 = 0.5, E5 = 0.1 , E = 0.01, R = 0.5 , 6 = 0.5, 

!II = 1, J{ = 0.1, A2 = 0.4 , Br = 1, Pr = 1 and t = 0.25 . 

Figure 9.5<1: Variations of heat transfer coefficient Z for different values of Weissenberg 

number A2 when E1 = 1, E2 = 0.5, E3 = 0.2, E4 = 0.5, E5 = 0.1 , E = 0.01, R = 0.5 , 6 = 0.5, 

1\1 = 1, J{ = 0.1, A1 = 1.5, Br = 1, Pr = 1 and t = 0.25 . 
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Figme 9.5e: Variations of heat transfer coefficient Z for different values of Brinkman number 

B7' when E1 = 1, E2 = 0.4 , E3 = 0.3, E4 = 0.3, E5 = 0.2 , E = 0.01, R = 1, 6 = 0.01, !vI = 3, 

J( = 5, Al = 1.5, A2 = 0.5, Pr = 1 and t = 0.25. 

Figure 9.5f: Variations of heat transfer coefficient Z for different values of wave number 6 

when E l = 2, E2 = 0.8, E3 = 0.2, E4 = 0.1, E5 = 0.1 , E = 0.2, R = 1, M = 1, J( = 0.5, 

Al = 1.5, A2 = 0.5, Br = 0.5, Pr = 1 and t = 0.25. 
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Figure 9.5g: Variations of heat transfer coefficient Z for different values of occlusion para­

meter E when El = 1, E2 = 0.4, E3 = 0.3 , E4 = 0.3, E5 = 0.2, (j = 0.01 , R = 1, lVI = 4, K = 5, 
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Figure 9.5h: Variations of heat transfer coefficient Z for different values of elastic parameters 

when E = 0.01 , R = 1, (j = 0.01 , M = 4, K = 5, Al = 1.5, A2 = 0.5, Br = 1, Pr = 1 and 

t = 0.25. 
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Figure 9.6: Variations of heat transfer coefficient Z for different fluids . The other parameters 
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141 



- 0.2 0.2 0.4 O.G -0.2 0.2 0.4 

(a) (b) 

0.2 0.4 0.6 

(c) 

Figure 9.7: Streamlines for (a) M = 0, (b), M = 2, (c) M = 4. 

The other chosen parameters are (€ = 0.1, R = 1, 0 = 0.01, El = 0.7, E2 = 0.5, 
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Ea = 0.2, E4 = 0.01 , E5 = 0.1 , K = 0.04, >'1 = 1.5, >-2 = 0.5 and t = 0) . 
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Figure 9.8: Streamlines for (a) f( = 0.03 , (b), J( = 0.2, (c) f( -+ (Xl. 

The other chosen parameters are (E = 0.1 , R = 1, 0 = 0.01 , E1 = 0.7, E2 = 0.5, 
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E3 = 0. 2, E4 = 0.0 L, E5 = 0.1, M = 0, A] = 1.5. A2 = 0.5 and L = 0) . 

-0.2 0.2 0.4 0.6 
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Figure 9.9: Streamlines for (a) 8 = 0, (b) , 8 = 0.03 , (c) 8 = 0.05. 

The other chosen parameters are (10 = 0.12, R = 1, E1 = 0.5 , E2 = 0.5 , 
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E3 = 0.2 , E4 = 0.01, E5 = O.L M = 3, J( = 0.1 , A1 = 1.5, A2 = 0.5 and t = 0). 
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Figure 9.10: Streamlines for 

(a) E1 = 0.7, E2 = 0.5, E3 = 0.2, E4 = 0. 02, E5 = 0.1. 

(b) E1 = 0.8, E2 = 0. 5, E3 = 0.3, E4 = 0.02, E5 = O.L 

(c) E1 = 0.9, E2 = 0.5, E3 = 0.4, E4 = 0.02, E5 = 0.1. 

(d) E1 = 1.0 , E2 = 0.5, E3 = 0. 5, E4 = 0.02, E5 = 0. 1. 

The other chosen parameters are 

(b) 

(d) 

(E = 0.1, R = I , 0 = 0.01 , J( = 0.4, M = 4, A1 = 1.5, A2 = 0.5 and t = 1) . 
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9.4 Conclusions 

Influence of heat transfer on the magnetohydrodynamic p eristaltic How of a J effrey Huid in a 

channel wi th compliant walls is illustrated. T he porosity effect on t he How is also examined. 

T he main points are summed up b elow: 

• An increase in the Weissenberg number A1 shows an increase in the temperature. Tem­

perature decreases when the Weissenberg number A2 is increased . 

• T he wall parameters increases the temperature. 

• Brinkman number and wave number has simi lar role on the temperature. 

• Hartman number and Brinkman number on the heat transfer coefficient at the upper wall 

have opposite effects. 

• An increase in the absolute value of heat transfer coefficient m the upper part of the 

channel is observed when t he elastic parameters increase. 
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Chapter 10 

Wall compliance effect on the flo.w of 

compressible non-Newtonian fluid 

T his chapter discusses the peristaltic flow of Jeffrey fluid in a microchannel with compliant walls. 

The rheological effects and compressibility of the fluid are given proper attention. Perturbation 

approach has been employed when the ratio of the wave amplitude to the radius of the pore 

is small. Expressions of mean axial velocity distribution, mean velocity at the boundaries and 

critical values are derived. The variations of several pertinent variables are shown and studied. 

10.1 Mathematical model 

Consider a compressible Jeffrey fluid in a symmetric channel of width 2d. The flow in a porous 

space is due to sinusoidal small amplitude travelling waves on the compliant walls of the chan­

nel. We introduce Cartesian coordinates system with the x-axis along the centre line of the 

channel and y-axis normal to it. Let Vx and Vy denote the components of velocity along x­

and y-directions respectively. The compliant wall is modeled as spring-backed plate, it is con­

strained to move only in the vertical direction. If TJ and -TJ denote the vertical displacements 

corresponding to upper and lower walls , then TJ is assumed as follows 
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where a is the wave amplitude, A is the wavelength and c is the wave speed. 

T he equation of motion of the compliant wall is [89]: 

In above equation , m is the p late mass per unit area, d is the wall damping coefficient, I3 is 

t he flexural rigid ity of the plate, T is t he longit ud inal tension per unit width, J( is the spring 

stiffness and Po is the pressure on t he outside smface of the wall. 

T he relevant governing equations for compressible flow are 

(10.1) 

(10. 2) 

(1 0. 3) 

The appropriate boundary conditions are 

avx Vx = =fA ay at y = ± (d + T}) , (slip boundary condition), (10.4) 

aT} 
Vy = ± at at y = ± (d + '1/) , (no permeability condition), (10.5) 

1+A1- -L=- 1+ A1- p -' +vx-+v,-( a ) a ( a) [ ( avx avx avx ) ] 
at ax at at aT 11 ay 

(1 \ a ) [a2v:c a2vx 1 a (aVX avy ) ] +p + /\2- -- + - - + -- -- + - at y = ± (d + 7/) , at ax2 ay2 ' 3 ax ax ay . (1 0.6) 

Here p is the fluid density, ~t is the dynamic viscosity, t is t he t ime, Al is t he relaxation 

time, A2 is the retardation t ime . T he characteristic response of the fluid to a compression is 

described as [103] 

.!. ap _ k 
pap - c, 

where kc is t he compressibility of t he liquid. T he solut ion of the ab ove equation for the density 
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as a function of pressure is given by 

ill which Po is the (constant) density at the reference pressure Pc· 

We now non-dimensionalize the relevant equations by introducing the following quantities 

x * y 
x* = d' Y = d' 

* T) * 
7) = d' P 

T* = Tdpo 
It2 ' 

Tn* 

. * _ Vx 
Ux --, 

c 

T he non-dimensional equations now are presented as 

p = exp(x(p - Pc)), 

* p p =-, 
Pu 

up ap ap (avx avy ) at + V:c ax + Vy ay + p ax + ay = 0, 

* ct 
t = d' 

( a) [ (avx oVx ovx ) ] ( a) ap 1 + A 1 at p at + Vx ax + Vy uy = - 1 + ,\ 1 at ax 

( a) [1 2 1 a (avx Bvy ) ] + 1 + A2 at R \7 Vx + 3R ax ox + ay , 

1+A1 - p -+vx-+v - =- 1+A1- -( a) [ ( avy avy avy ) ] ( a) ap at at ax y ay at ay 
+ 1+A2- -\7 v. +-- --+- , ( B) [1 2 1 a ( avx avy ) ] at R Y 3R ay ax ay 
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in which the asterisks have been suppressed for simplicity. 

10.2 Solution development 

In the case of constant pressure gradient, the solution of Eq. (10.9) for steady flow is 

Rapo 2 
Uo (y) = -'2 ax (1 + 2kn - Y ) 

and for no-slip condition , we have kn ---t 0 and so 

R apo ( 2) 'uo (y) = --- 1 - y . 
2 ax 

In perturbation solution, we have 

P; = EPI + E2p2 + ... , 
2 

Vx = EUI + E U 2 + ... , 

- 1 2 P - + EPI + E P2 + ... , 
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Substit uting Eq. (10. 14) into Eqs. (1 0.7) - (10.12) and then taking into account 

'UI (x , y , t) = U
1 

(y) e LO(x- t) + 0
1 

(y) e-w(x-t), 

VI (x , y , t) = VI (y) ew(x-t) + VI (y) e-w(x -t ), 

PI (x, y , t) = PI (y) ew(x- t ) + Pl (y) e-w(x-t ), 

PI (x ;y, t) = XPI (y) ew(x - t) + XPI (y) e-w(x- t) , 

U2 (x, y, t) = U 20 (y) + U 2 (y) e2w(x - t ) + O2 (y) e-2LO(x - t ) , 

'U2 (x, y, t) V20 (y) + V2 (y) e2LU(x - t ) + V2 (y) e-2LO(x- t ) , 

P2 (x , y , t) P20 (y) + P2 (y ) e 2LO·(x - t ) + P2 (y) e-2w(x-t ) , 

P2 (x, y , t) 

one has the following set of equations from the 0 (10) system as 

i ( /I 2 ) -'P1 (Y) - - U1 (y) - (3 U1 (y) = 0, 
a 

(. ) () (. )' () (1 - WA2) ( /I ( ' ') ()) -w 1 - WAI VI Y = - 1 - WAI PI Y + - R Vl y) _. a-Vi Y 

(1 - iCtA2) (V" ( ) U' ( )) + 3R 1 Y + ia 1 Y , 

(V{' (y) - (32 VI (y)) = , P{ (y) , 

(10.15) 

(10.16) 

(10 .17) 

(10.18) 

(10.19) 

ia 
UI (±1) = =f knU~ (±1) , V i (±1) = =f'2 ' (10.20) 

(1 - w A2)Uf (±1 )- [a
2

( 1 - W A2)-W(1 -WAI)R+ ~2 ( l - W h)] U I (±l ) 

La , +3 (1 - W A2) Vi (± 1) = (1 - W Ad R8, (1 0.21) 

, La ( 2 2 2 4 ) u = - 2R2 -a T + a R m + w Rd - a B - J( . 
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The 0 ((;2 ) system yields 

- P~O (y) + 3~ V~~ (y) = F (y) , U~O (y) = RJ (y) , (10.22) 

V~O (y) = -XH (y) , D 20 (y) = XP20 (y) + X2 PI (y) PI (y) , 

F (y) = UXXPI (y) VI (y) - UXXPI (y) VI (y) + VI (y) V{ (y) + V{ (y) VI (y) 

+WOl (y) VI (y) - uxUl (y) VI (y) , (10.23) 

J (y) = (01 (y) Vl (y) + U1 (y) VI (y))', H (y) = (PI (y) VI (y) + PI (y) VI (y))', 

U20 (±1) ± ~ [U{ (±l) + O[ (±l)] = =fkn [U~O (±1) ± ~ (U~' (±1) + O{' (±1))] , (10.24) 

V20 (±1) ± ~ [V{ (±1) + V; (± 1)] = O. (10.25) 

The solutiolls of Eqs. (10.17) - (10 .21) after omitting details of calcula tions can be expressed 

as follows : 

Ul (y) = jl C l cosh vy + hC2 cosh (3y + XC3, 

VI (y) = C l sinh vy + C2 sinh (3 y , 

C
l 

= - R6 (1 -UXAl ) hg2 
1 - U~A2 G' 

C2 = Rl: (1 -UXAl) jlgl u , C3 = 0, 
1 - UXA2 G 

G 
. L . h . ux . {,(3 

= Jlgl f L2 - J2g2 1, J1 = -, J2 = -, 
v a 

2 2 2 _ (32 _ (3 - ' a 
v - r' 

g1 = cosh v + kn v sinh v , g2 = cosh (3 + kn (3 sinh (3, 

[
I-av 2] [UX(3 ] h1 = 3 + j1 (v - w) cosh v, h2 = :3 + j2 ((32 - w) cosh (3, 

w = 4a
2 

_ l-aR (1 -UXAl), r = 1 _ uxx , (32 = a 2 _ l-aR (1 -UXAl) . 
3 1 - UXA2 'Y 1 - UXA2 
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T he solution of Eqs. (10. 22) - (10 .25) are developed as follows: 

V20 (y) = - x (Pl (y) Vl (y) + P1 (y) VI (y)) + D I , 

rho (y) = RE (y) + D 2 y + D 3 , 

y 

4 J' P20 (y) = - 3R xH (y) + D4 - F (7") d''', 
- 1 

4 -
D1 = O, D" = P20 (- 1) + 3R x H (- 1) ,,B 

(10.28) 

(10.29) 

(10.30) 

1 
D 2 = - 2 (kn + 1) {kn [R (g (1) + 9 ( - 1)) + ,83 + ,8 4l + R [E (1) - E ( - 1) 1 + ,8 I - ,82 } , 

1 
D3 = - "2 {kn [R (g (1) - 9 ( - 1)) + ,83 - ,8 "l + R [E (1) + E ( - 1) 1 + ,8 I + ,82}, 

,61 = ~ [u~ (1) + O~ (1)] , ,82 = - ~ [U~ (- 1) + O{ (- 1)] , 

,83 = ~ [U~' (1) + O~' (1)] , ,84 = -~ [U~' (- 1) + O~' (- 1)] , 

9 (y) = 01 (y) VI (y) + U1 (y) VI (y) , 

< ) _ • C C [ COSh [( v + II) yl cosh [(v - II) Yl ] . c C' [ COSh [(v +,8) yl cosh [(v -,8) Yl] 
E (y -.71 1 1 (V + V) + (v - v) +J2 1 2 (v +,8 ) + (V -,8) 

. -, [ COSh [(!3+ v)Y] COSh [(!3-V)Y]] . - [ COSh [(!3 +13) Y] cosh [(!3-,8) y]l 
+J 1C1C2 (,8+ v) + (13-v) +J2C

2
C

2 (,8+,8) + (,8-,8) J 

"" - [ cosh [(v+v)Yl cosh [(v-v)vl ] "" - [ COSh [(v+!3)y] cosh [(v-!3)Y]] 
+J1 C1C

l (!" + v) + (// _ v) + J2 C
1
C2 (v +,8) + (v -,8) 

"" c C [ COSh [(,8 + v) Y 1 cosh [(,8 - v) Y 1 ] "" C c [ COSh [(,8 + (3) Y] cosh [(,8 - (3) y] ] 
+J1 I 2 (,8+ V) + (,8- V) +J2 2 2 (,8+,8) + (,8-,8) 

The axial velocity (vx ) expression is given by 

:2 (vx ) = E U20 (y) . (10.31) 

10.3 Graphical results and discussion 

This section presents the graphical results in order to discuss the quantitative effects of the 

sundry parameters involved in the analysis. For this purpose, the mean velocity a t the bound-
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aries of the channel, t he mean-velocity perturbat.ion function , the time-averaged mean axial 

velocity distribution , t he reversal fiow and t he critical values of the wall t ension a re calculated 

for various values of t hese parameters for the free pumping case (opal ax = 0) . T he variation 

of the mean velocity at the boundary Dwo.ll (= U20 (1)) with the wave number a is plotted 

fat different values of the compressibility parameter X, K nudsen number k", compliant wall 

parameters d and T and t he relaxation Al and retardation A2 times respectively in F igure 

10.1 (a ~ f) . We observe from Figure 10.la and Figure 10 .lh tha t the mean velocity a t t he 

boundary D wall increases when the compressibility parameter X and t he Knudsen number kn 

are increased. Figure 10.lc depicts tha t increasing the wall clamping d decreases the mean 

velocity at t he boundary. However it increases when the wall tension T is increased (Figure 

10.ld) . Figure 10.le elucidates the variation of D w all with a for various values of the relaxation 

time Al . It is apparent from this Figure that Dwall decreases by increasing the value of relax­

a tion time )1}' The effect of A2 on Dwall is quite opposite to tha t of /\1 on D wall (Figure 10.H). 

The mean-velocity perturbation function G (y) is defined as [7J 

200 
G(y) = - a 2R'2 [E(y) - E (l )J. (10 .32) 

T he mean velocity pert.nrba tion fUIlction is plot ted wit h C\' for the varions values of x, kn , AI, A'2 

and d ill Figures 10.2(a - e). I t is obvious from these F igures t hat G (y) increases by increasing 

d, /';n, and )'1' However, it decreases by increasing X amI A'2' It is further noted from these 

Figures that G (y) is maxim um near t he centre of the channel and remains constant over a 

certain range of a. F igure 10.3a examines the effects of X on t he mean velocity distribut ion and 

reversal flow. It is observed t hat t he mean flow first decreases by increasing X but increases 

when X 2 0.5. However it increases with an increase in the Knudsen number kn (Figure 10.3b). 

F igures 10.3c and 10.3d describe mean velocity distribut ion with y for different compliant wall 

parameters . Here mean fiow decreases when d increases (Figure 10.3c) whereas it increases by 

increasing 1(. Mean flow also decreases when relaxation time At increases (Figure 10.3e). I t is 

found that the effects of Al and A2 on mean velocity distribution are different (Figure 10.3f). 

Figures 10.4( a - f) sketched critical value of T . The critical value increases when there is an 

increase in R ,x and A2 . However, it decreases by increasing kn and AI. Also the critical value 
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of T is very high for small values of the wave Humber Cl in comparison to the large ones . Figure 

10.4f shows the variation of the crit ical values of T with the compressibility parameter X for 

different values of the wave number o. It is observed from this Figure that the critical value of 

T decreases when (} is increased. 
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Figure 10,la: The variation of Dwall with wave llumber (\ for difFerent values of compress­

ibil ity parameter X when m = 0,01 , d = 0,5, B = 2, T = 30 , J{ = 1, kn = 0.2, R = 15, '\1 = 1.2 

and "2 = 0.5. 

Figure 10.1b: The variation of Dwall with wave number (} for different values of Knudsen 

number kn when m = 0.01, d = 0.05, B = 2, T = 10, [( = 0.2, X = 0.001, R = 1, Al = 0.4 and 

A2 = 0.2. 
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cl when 111 = 0.01 , X = 0.001 , B = 2, T = 30 , J( = 1, kn = 0.2 , R = Hi , /\1 = 1.2 and /\2 = 0.5. 

F igure 10.ld: The variation of D wall with wave number ex for different values of wall tension 

T when m = 0.01 , d = 0.05, B = 2, J( = 1, kn = 0.2, R = 10, X = 0.001, /\1 = 0.7 and A2 = 0.3. 
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Figure 10.1£: The variation of Dwall with wave number a for different values of retardation 

time A2 when m = 0.01, d = 0.05, B = 2, J( = 1, T = 30, kn = 0.2, R = 10, X = 0.001 and 

Ai = 0.8. 
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Figure 1O.2a: The var iation of mean-velocity perturbation function G (y) for different values 

of compressibility parameter X when m = 0.01 , 0' = 0.5, d = 0.5 , B = 2, T = 30 , J( = 1, kit = 0, 

R = 100, Ai = 0.7 and A2 = 0.3. 

Figure 10.2b: The variation of mean-velocity perturbation function G (y) for different values 

of Knudsen number kn when m = 0.01, ex = 0.5, d = 0.5, B = 2, T = 10, J{ = 0.1, X = 0.001 , 

R = 10, Ai = 0.7 and A2 = 0.3. 

157 



x 10-' 
3.51- ~ 

, --'-'. " ':;-1 ~. 

1- ·- 1.,' 1.0 

2.5 1 
~. 1., = 1.2 

1 ~- 1.,= 1.4 1 
2 ' 1 

I 

, ~ 1,6 ' I 
(,!) I 

1c I , 
O.5 r i 

I 
O ~ , 

-0 . 5~ 
_c ___ ~ -~ 

0 0.2 0.4 0.6 0.8 1 

Y 
(C) 

I 
i 
I I 
I 2.5 1 

I ~ 
2 ' 

I ~ 1.6 1 
! (,!) 

1 , 

0.5 f 

01 

-0.5 ~ 

0 0.2 0.4 

Y 
(d) 

~o=oll , , 
)',. 0.2 1 
\= 0.4 ! 

____ A, = 0.6 1 

---'----' I 
I 

~~_~I 
0.6 0.8 1 
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R = 100, X = 0.001 and A2 = 0.5. 

Figure 10.2d: The variation of mean-velocity perturbation function G (y) for different values 

of retardation time A2 when 'In = 0.01, a == 0.1, d = 0.5 , B = 2, T = ·10, J( = I, kn = 0.1, 

R = 100, X = 0.001 and Al = 1.2. 
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Figure 10.2e: The variation of mean-velocity perturbation function G (y) for different values 
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R = 100, >'1 = 0.7 and A2 = 004. 
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Figure 10.3a: T he var iation of mean-velocity distribution and reversal flow for different 

values of compressibility parameter X when m == 0.01 , d = 0.5, Q = 0.5, B = 2, T = 10000, 

J( = I , kn = 0, R = 20, Al = 0.7 and A2 = 0.4. 

Figure 10 .3b: The variation of mean-velocity distribution and reversal flow for different 

values of Knudsen ilUmber kn when m = 0.01, d = 0.1, Q = 0.5, B = 20, T = 200, J( = 1, 

X = 0.5, R = 5, Al = 0.7 and A2 = 004. 
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Figure 10.3c: The variation of mean-velocity distribution and reversal flow for different 

values of wall damping d when Tn = 0.01 , kn = 0,0: = 0.5 , B = 20 , T = 200, J( = 0.1 , X = 0.5 , 

R = 10, Al = 0.7 and A2 = 0.4. 

Figure 10.3d: The variation of mcan-velocity dist.ribution and reversal flow for different 

values of spring stiffness K when Tn = 0.01 , kn = 0, 0: = 0.9 , B = 20, T = 20, d = 0.1 , X = 0.5, 

R = 5, Al = 0.7 and A2 = OA. 
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Figure 10.3e: The variation of mean-velocity distribution and reversal flow for different 

values of relaxation time Al whcn m = 0.01 , 0: = 0.9 , d = 0.5, B = 20, I< = 1, T = 20, k" = 0, 

R = 5, X = 0.5 and A2 = 0.4. 

Figure 10.3f: The variation of mean-velocity distribution and reversal flow for different 

values of retardation t ime A2 when m = 0.01 ,0: = 0.9, d = 0.5, B = 20, K = 1, T = 20, kn = 0, 

R = 5, X = 0.5 and Al = 1. 
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Figure 10 .4a: The variation of critical values of the wall tension T for different values of 

compressibi lity parameter X when m = 0.01, d = 0.5 , B = 2, f{ = 1, kn = 0, R = 30, A1 = 0.7 

and A2 = 0.4. 

Figure 10.4b: The variat ion of critical values of the wall tension T for different values of 

Knudsen number kn when m = 0.01, d = 0.5, B = 2, J( = 1, X = 0.001 , R = 20, A1 = 0.7 and 

A2 = 0.4. 

4500~- -. --

4000 ' 

I 35001 

,--'---,--...,.,1 
- A, = 0.7 1 
1-1.,= 0.9 

'~ )·1= 1.2 i 
- x - ),= 1.4 1 

L-......'... I 
1 

I 
i 

I 
iJ:~ 
, '*' : ~ . 1:::~ ~~~~~~ 

0.5 0.6 0.7 0.8 0.9 
Wave number a 

(c) 

. - ' - ),,= 0.6 ; 

~3000~ I 
~ 2500 ~ 

IJ ::::, ,,~.. . 'jl 
I '-......~. x"""x~ .............. 

1000 1 ::----.-:-. ........ . 

I 
r ----.. ____ --~.,,~ I ..... __ .......... M)( 

, 500 ~ _ "-___ • 

r OL __ ~ __ ~-_~ ____ ~_~ 
0.5 0.6 0.7 0.0 0.9 

Wave number a 

(d) 

Figure 10.4c: The variation of critical values of the wall tension T for different values of 
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relaxation time Al when m = 0.01 , d = 0.5 , B = 2, J( 1, kn = 0, R = 30, X == 0.001 and 

A2 = 0.5 . 

Figure lOAd: The variation of critical values of the wall tension T for different values of 

reta rdation time A2 when m = 0.01 , d = 0. 5, B = 2, J( = I, kn = 0, R = 30, X = 0.001 and 

Al = 0.8 and A2 = 0.4. 
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Figure 10.4e: The variation of critical values of the wall tension T for different valueti of 

Reynolds number R when m = 0.01, X = 0.001, B = 2, c1 = 0.5, [( = 1, kn = 0, Al = 0.7 and 

A2 = 0.4. 

Figure 10.4f: The variation of critical values of the wall tension T for different values of 

wave number 0 when m = 0.01 , R = 18, B = 2, d = 0.5, J( = I, kn = 0, Al = 0.7 and A2 = 0.3. 

10.4 Conclusions 

vVe have computed the peristaltic flow of a compressible JefFrey fluid in a channel with compliant 

walls. The important points are described as follows: 

• The constant Dwall decreases with an increase ill d and Al and increases by increasing X, 

kn , T and A2. 

• The mean-velocity perturbation function G (y) increases by increasing d, kn and AI . How-
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ever G (y) decrea1:ies when X and A2 are increased . 

• The mean flow is an increasing function of kn ) J( and A2. T he mean flow decreases by 

increasing x) d and AI· 

• The results of viscous compressible fluid can be obtained by choosing Al = A2 = 0 [103]. 
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