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Preface 

There is a wide use of non-Newtonian fluids in the industrial and teclmological processes. The heat transfer 

has a central role in these processes. No doubt, the behavior of non-Newtonian fluids calmot be analyzed 

through implementation of the classical Navier-Stokes equations. It has been recognized that the complex 

behavior of non-Newtonian fluids in nature cannot be predicted by one constitutive relationship between 

shear stress and rate of strain. Hence many constitutive relationships have been obtained for such fluids. 

The second grade is one of these fluids which have essence to predict the normal stress effects. There are 

fluids like polymeric liquid, crystals, animal blood etc which can be well analyzed using Eringen's theory 

of rnicropolar fluids . In such case, the local effects due to the microstructure and microrotations of the fluid 

have substantial impact on the flow. Bearing all such issues in mind, the present thesis is structured as 

follows. 

Chapter one briefly reviews the existing literature survey related to stretched flows. The equations of 

motion for axisymmetric flow of micropolar fluid are also included here. 

The two-dimensional flow of non-Newtonian fluid in convergent/divergent chalmel is explored in chapter 

two. Rheological expressions of second grade fluid are employed in the development of nonlinear 

differential equation. Resulting nonlinear mathematical problem containing continuity and momentum 

equations is solved by homotopy analysis method (HAM). Convergence interval of the derived solution is 

explicitly identified. Numerical values of skin friction coefficient are tabulated. Results showed that the 

flow quantities of interest are influenced greatly by embedded parameters. Main observations of this 

chapter are published in " Canadian Journal of Physics 88 (2010) 911". 

Chapter three examines the salient features of heat transfer in flow configuration studied in chapter two. 

For this purpose, the energy equation is solved in dimensionless fom1. Related convergence analysis is 

performed. Temperature distribution is analyzed for various pertinent parameters. Especially, the effects of 

angle of inclination between channel walls and Prandtl and Eckert numbers are given due attention. The 

obtained results are published in "International Journal for Numerical Methods in fluids 64 (2010) 

761". 

Chapter four addresses the thermal-diffusion and diffusion-thermo effects in the axisymmetric flow of 

second grade fluid . The fluid is electrically conducting in the presence of a constant applied magnetic field . 

Further, the effects of louie heating and first order chemical reaction are taken into account. The 

mathematical statement of the problem is derived employing four fundamental laws namely the 

conversations of mass, linear momentum, energy and concentration. Transformation procedure reduces the 

partial differential equations into the ordinary differential equations. Homotopic solutions for physical 

quantities are constructed. Skin friction, Nusselt and Sherwood numbers are computed and analyzed in 

details. It is observed that the shear stresses on the surface of stretching sheet increases with an increase in 

magnetic field strength and non-Newtonian parameter of the fluid. Heat and diffusion flu xes are increased 



by increasing Reynolds, Hartman, Schamidt, Soret and Pnindtl numbers. The contents of this chapter 

have been published in "International Journal of Heat and Mass Transfer 54 (2011) 3031". 

Hall and ion-slip effects on three-dimensional flow of second grade fluid over a stretching surface have 

been shown in chapter five. Mathematical formulation is caITied out for small magnetic Reynolds number 

and constant material properties of fluid. Effects of various physical parameters on the dimensionless 

velocity components are examined by graphs. Variation of skin fi:iction coefficients for different involved 

parameters is seen through tabulated values. Skin friction coefficients are found to increase when Hartman 

number and second grade parameter are increased. On the other hand there is a decrease in skin friction 

coefficient when ion slip parameter is increased. These conclusions ar e published in "International 

J ournal for Numerical Methods in fluids 66 (2011) 183". 

Chapter six extends the work ofchapter five in the regime of heat transfer process. Viscous dissipation and 

Joule heating in the energy equation are considered. Effects of Prandtl number, local Eckert number, Hall 

parameter, ion-slip parameter and Hartman number on the dimensionless temperature are analyzed in 

particular. A comparative study between the present and existing limiting results is carefully made. 

Convergence regarding the obtained solution of temperature is shown. Nusselt number is analyzed for 

various values of sundry parameters. The results have been published in "Zeitschrift Naturforchung 

56a (2010) 683". 

Soret and Dufour effects on the mixed convection three-dimensional flow of a second grade fluid over a 

vertical stretching have been considered in chapter seven. Matl1ematical analysis is presented in the 

presence of Hall and ion-slip cUITents. In order to get clear insight of the considered problem, the 

dimensionless velocities, temperature and concentration fields are displayed and numerical computations 

are caITied out for various values of embedded flow parameters. It is observed tl1at boundary layer 

iliickness can be controlled through Hartman number, convection parameters, ion-slip and Hall slip 

parameters. A comparative study between ilie present and previous limiting results is carefully seen. The 

contents of this chapter are published in "International Journal for Numerical Methods in fluids 

67(9) (2011) 1073". 

Chapter eight discusses magnetohydrodynamic flow of a micropolar fluid between ilie radially stretching 

sheets in ilie presence of constant magnetic field. A uni form magnetic field is applied in the transverse 

direction to flow. The governing partial differential equations are transformed into ilie ordinary differential 

equations using similarity transformations. The nonlinear problem is computed. Convergence of obtained 

solutions is checked. The velocity profi les are discussed for the pertinent parameters. The values of skin 

friction and wall couple stress coefficients are obtained for various values of Reynolds number, Hartman 

number and micropolar fluid parameter. These findings have been published in "Zeitschrift 

Naturfor chung 66a (2011) 53". 

The work of chapter eight in the presence of heat transfer is extended in chapter nine. In other words, 

axisymmetric flow of magneto hydrodynamic micropolar fluid between two radially stretching sheets with 

heat transfer is explored. Viscous dissipation, micropolar heat conduction and Joule heating are present. 



Ertergy equation is transformed into the ordinary differential equation by appropriate variables. The 

resulting nonlinear problem is solved for the series solution. It is observed that the rate of heat transfer in 

micropolar fluid is higher than that in a Newtonian fluid. From practical point of view, micropolar fluid can 

be used instead of Newtonian fluid if some one is interested to increase the rate of heat transfer from 

surface into the fluid . This is significant when certain temperature is required to improve the quality of 

product in manufacturing process. The contents of this chapter have been published in "Journal of 

Mechanics, 27 (2011) 607". 

Dufour and Soret effects on axisymmetric two-dimensional flow of an incompressible micropolar fluid 

between radially stretching sheets are studied in chapter ten. The fluid is taken electrically conducting. 

Joule heating and chemical reaction are considered. The energy and concentration laws develop the 

mathematical formulation. The related problems are solved and validity of series solutions is verified 

through residual errors. Dimensionless temperature and concentration are discussed through graphs. 

Behaviors of sundry parameters on skin friction coefficient, wall couple stress coeffic ient, Nusselt and 

Sherwood numbers are analyzed. The contents of chapter ten have been submitted in " Computers & 

Fluids". 

Chapter eleven explores the MHD time-dependent flow problem of a micropolar fluid between two radially 

stretching sheets. Both cases of strong and weak interactions of microelements are considered. The 

equations along with the boundary conditions are solved. The variation of micropolar parameter on axial 

and radial velocity component is opposite to that of Hartmann number. The effect of unsteadiness 

parameter on axial, radial and angular velocity is discussed. The variations of Hartman number and 

micropolar parameter on angular velocity in weak and strong concentrations are opposite. Such results are 

published in "Applied Mathematics and Mechanics; English Edition 32(3) (2011) 361". 
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Chapter 1 

Review and governing equations 

1.1 Introduction 

This chapter includes the review of previous information available on the selected topic. The 

constitutive relationships for second grade and micropolar fluids are presented. Equations of 

motion for axisymmetric flow of micropolar fluid are included. 

1.2 Background of the considered problems 

The flows of an incompressible fluid in divergent / convergent channel are of great interest to the 

recent researchers. This is because of their applications in aerospace, chemical, civil, environ

mental and biomechanical engineering [1]. The pioneering works related to such flows have been 

presented by Hamel [2] and Jeffery [3]. Jeffery-Hamel flow of viscous fluid is available in the text 

book [4]. Sobey and Drazin [5] reported on the bifurcation of two-dimensional Jeffery-Hamel 

flow. The perturbation solution for Jeffery-Hamel flow of viscous fluid is developed by Banks et 

al. [6]. Very recently Domairy et al. [7] derived an analytic solution for Jeffery-Hannel flow of 

a viscous fluid by homotopy analysis method. Joneidi et al. [8] used three analytical techniques 

namely the homotopy analysis method (HAM) , the homotopy perturbation method (RPM) and 

the differential transformation method (DTM) for the development of series solution for the 

Jeffery-Hamel flow in a viscous fluid. Studies mentioned through refs. [1 - 8] discussed the flows 

in a channel with fL'{ed boundaries. However in practice, there are number of situations where 

5 



fi.-x:ed walls do not represent realistic situation. Thus, Sakiadis [9 - 11J presented earliest work 

on boundary layer flow induced over a moving surface. After Sakiadis' work [9 - 11], several 

investigators considered the boundary layer flow over a surface moving with constant velocity. 

For instance Ericksen et al. [12J examined heat and mass transfer characteristics in bOlmdary 

layer flow over a continuously moving surface subjected to suction/injection. Tsou et al. [13J 

conducted an analysis for heat transfer in boundary layer flow engendered by a smface moving 

with constant velocity. Soundalgekar and Murthy [14J studied variable surface temperature in 

the boundary layer flow over a continuously moving plate. Ali and Al-Yousef [15J discussed the 

effects of buoyancy force and suction/injection on the mixed convection boundary layer flow of 

viscous fluid over a vertical surface moving with constant velocity. In continuation to Sakiadis' 

work, the stretching flows have been discussed. Such flows are prominent in aerodynamic extru

sion of plastic sheets, cooling of an infinite plate in a cooling bath, liquid film in condensation 

process, continuous filament extrusion from a dye, the fluid dynamic of a long thread traveling 

between a feed roll and wind-up roll. Crane [16J was the first when discussed the boundary 

layer flow over a stretching surface and derived exact similarity solution of the arising nonlinear 

problem. Afterwards many researchers focused on stretching flows taking various features in 

to accOlmt, for example, Andersson et al. [17J studied thin film flow of a power-law fluid over 

unsteady stretching sheet. Andersson [18J discussed slip effects on the flow of viscous fluid past 

a stretching surface. Wang [19J examined the combined effects of slip and suction on the flow of 

viscous fluid over a stretching surface. Rajagopal et al. [20] looked for the solution of viscoelas

tic fluid flow caused by a stretching surface. Mahapatra and Gupta [21] considered the problem 

regarding stagnation-point flow of a viscoelastic fluid near a stretching surface. They presented 

perturbative solution for momentum equation and Numerical solution of energy equation is ob

tained by finite difference method. Sajid and Hayat [22] established non similar solution for the 

stretching flow of a third-grade fluid. Abass et al. [23J computed both numerical and analytic 

solutions for magnetohydrodynamic flow of a second grade fluid over an oscillating stretched 

surface. Nazar et al. [24] looked at the numerical solution of three-dimensional boundary layer 

flow of viscoelastic fluid over a stretching surface. Few contributions due to radially stretching 

sheet have been also available. Ariel [25J studied the axisymmeytric flow of a second grade 

fluid over radially stretching surface. He fOlmd perturbative solution for small values of vis-
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coelastic parameter and asymptotic solution valid for large values of viscoelastic parameter. 

Mirgolbabaei [26] discussed MHD axisymmetric flow of viscous fluid over a stretching sheet 

using adaptive variational iterative method (AVIM) and compared the obtained results with 

the exact solution. Ariel [27] considered slip effects on the axisymmetric flow of viscous fluid 

over a radially stretching surface. He computed homotopy perturbation solution (HPM) for 

small value of slip parameter and asymptotic solution for large values of slip parameter. It was 

concluded that HPM has good agreement with the exact solution. Hayat et a1. [28] considered 

the same problem as considered by Ariel in [27] through implementation of homotopy analy

sis method (HAM). They compared the results with those given in [27] . They concluded that 

HAM solution has more agreement with the exact solution than HPM solution. The nonlinear 

problem descl'ibing the partial slip effects on aXisymmetiicflow of second grade fluid over a 

radially stretching surface has been solved numerically by Sahoo [29]. He used fourth order 

Ruge-Kutta method. Sajid et al. [30] studied analytically the axisymmetric flow of viscous 

fluid over a surface stretching with linear velocity in a radial direction. 

Heat transfer process occurs extensively in practice. For instance, cooling of the cutting 

tools during machining operations, cooling of the electronic components in computers, the gen

eration and condensation of steam in a thermal power plant, heating and cooling of buildings, 

cooking and the thermal control of re-entering of space craft [31]. Besides this one can find 

the applications of such mechanism in power generators, MHD accelerators, refrigerations coils, 

transmission lines, electric transformers, heating elements, levitation and pumping of liquids in 

mechanical engineering, boundary layer control and transpiration processes in aerodynamics. 

As far as the polymer industry is concerned, the heat transfer is very important mechanism. 

The quality of product, being manufactured, is controlled through many mechanisms like heat 

transfer, using electrically conducting fluid and viscoelsatic properties . In view of above men- ' 

tioned applications, the heat transfer characteristics in Newtonian and non-Newtonian fluids 

have been studied extensively by many several researchers . For example, Hayat and Sajid [32] 

extended the work of ref. [25] to heat transfer analysis through (i) prescribed surface tempera

ture (PST-case) and (ii) prescribed heat flux (PHF-case). The related energy equation is solved 

by homotopy analysis method (HAM). Sajid et a1. [33] discussed the heat transfer in unsteady 

flow of viscous fluid over a radially stretching surface. Ahmed et a1. [34] extended the work in 
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ref. [32] to heat transfer in an unsteady flow of second grade fluid. They developed the solu

tion of resulting nonlinear boundary value problem by employing HAM. Cortell [35] examined 

the heat transfer characteristics through two modes namely (i) constant surface temperature 

(CST-case) (ii ) prescribed surface temperature (PST-case) in the flow of t hermodynamically 

compatible second grade fluid over a stretching surface. Mixed convection flow of second grade 

fluid along a vertical stretching surface with variable surface temperature has been discussed by 

Mushtaq et al. [36]. Cortell [37] examined the effects of suction and external magnetic field on 

the flow and heat transfer of thermodynamically compatible second grade fluid over a stretching 

sheet. Simultaneous effects of viscous dissipation, internal heat generation/absorption, work 

done due to deformation and Joule heating on the flow of a second grade fluid have been consid

ered by Liu [38] . Asymptotic solution of the temperature for large Prandtl number have been 

given. Bataller [39] employed fourth order Runge-Kutta method for the effects of viscous dissi

pation and thermal radiation in the flow of heat generating/absorbing second grade fluid over 

a non-isothermal stretching surface. Hayat et al. [40] performed an analysis for heat transfer 

in the flow of a second grade fluid over a stretching surface with slip and porous mediun1. Abel 

et al. [41] analyzed the effect of non-uniform source/sink on the heat transfer in a second grade 

fluid flow induced by permeable stretching surface in the presence of porous medium. Gupta 

[42] extended the work of Crane [16] to examine the effect of suction/ injection on the flow and 

heat transfer caused by a stretching surface. The effect of variable surface temperature on the 

flow of viscous fluid was examined by Grubka and Bobba [43]. Ali [44] looked at the solution 

of problem describing the effect of suction/injection on heat transfer in the flow of viscous fluid 

over a surface having power law stretching velocity. 

According to Eringen [45] many fluids like polymeric liquids, liquid crystals, animal blood 

and fluids containing small amount of polymeric additives are those for which micro-rotational, 

spin inertia, couple stresses and body torque etc. are significant. The well known classical 

Navier-Stokes equations cannot explain such effects. Eringen [45] was first to present the the

ory of micropolar fluids and proposed the constitutive equations which are capable of describing 

the effects like micro-rotational, spin inertia, couple stresses etc. Afterwards the flows of mi

cropolar fluid have been discussed in various geometrical configurations. For instance, finite 

element solution of micropolar fluid flow and heat transfer between two porous disks has been 
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found by Takhar et al. [4G]. Eldabe et al. [47] successfully employed Chebyshev fini te difference 

method (ChFD) to nonlinear problem dealing with transfer of heat in an electrically conduct

ing micropolar fluid over a permeable stretching surface immersed in porous medium. They 

analyzed the effects of mass transfer, Prandtl number, magnetic field and porosity parameter 

on the velocity and temperature fields and compared the results in limiting sense with already 

existing study [48]. Pal and Chatterjee [49] performed an analysis for heat and mass transfer 

in MHD non-Darcian two-dimensional boundary layer flow of micropolar fluid over a stretch

ing sheet embedded in a porous media with non-uniform heat somce and thermal radiation. 

Mixed convection flow of micropolar fluid over a non-linearly stretching sheet has been studied 

by Hayat et al. [50] . Hassanien et al. [51] solved nonlinear problem for heat transfer in the 

stretching flow of micropolar fluid. Finite element analysis of combined heat and mass transfer 

in the flow of a rnicropolar fluid was performed by Kumar [52] . Ishak [53] analyzed the effect of 

thermal radiation on thermal boundary layer flow of micropolar fluid over a stretching surface. 

Hall current is significant when external magnetic field is strong whereas ion-slip current 

can not be neglected when electron-atom collision frequency is high. Hence in view of such 

importance, Hall and ion-slip effects have been analyzed by few researchers. For instance Pop 

[54] investigated the influence of Hall current on hydromagnetic flow induced by an accelerated 

plate. Katagiri [55] examined the effect of Hall current on boundary layer flow of viscous fluid 

past an infinite flat plate. Gupta [56] extended the work of Katagiri [55] to the flow of viscous 

fluid past a porous flat plate in the presence of Hall cmrent. Hossain [57] studied the effect of 

Hall cmrent on unsteady free convective flow over an infinite vertical porous plate. Hossain and 

Mohammad [58] reported the effect of Hall ClUTent on free convection flow caused by accelerating 

porous plate. Watanabe and Pop [59] investigated the effects of Hall current on steady boundary 

layer flow of an electrically conducting fluid past a serni-infinite plate. They solved the governing 

problem by employing numerical technique namely the difference differential method together 

with Simpson's rule. Abo-Eldahab and EI-Aziz [GO] addressed the Hall and ion -slip effects 

for MHD free convection flow of heat generating fluid past a semi-infinite vertical flat plate. 

Similarity solutions for heat and mass transfer in MHD flow of a gas with Hall and ion-slip 

currents have been computed by Megahed et al. [Gl] . They employed the shooting method. 

Osalusi et al. [62] considered simultaneous effects of Ohmic heating, viscous dissipation, Hall 
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and ion-slip currents and variable properties on the flow caused by rotating porous disk with slip. 

In another work, Osalusi et al. [63] looked for the combined effects of viscous dissipation, Joule 

heating, Hall and ion-slip currents on heat transfer in the flow of Bingham fluid over a porous 

rotating disk. They employed shooting method to solve the governing nonlinear problems. By 

employing network simulation method (NSM), Beg et al. [64] solved nonlinear problem dealing 

with magnetohydrodynamic unsteady flow and heat transfer in a Darcian channel with Hall, 

ion-slip, viscous dissipation and Joule heating effects. The effects of Ohmic heating and viscous 

dissipation on unsteady MHD slip flow on a rotating cone with Hall and ion-slip currents have 

been studied by Osalusi [65]. Rana et al. [66] derived the exact solution for the transfer of 

heat in the Hartman flow' of Burgers' fluid between two parallel electrically non-conducting 

planes. Salem and EI-Aziz [67] considered heat and mass transfer characteristics in steady flow 

of heat generating/absorbirig viscous fluid over a linearly stretching surface in the presence of 

Hall current and chemical reaction. They solved the involved problems by shooting method 

together with fourth order Runge-Kutta algorithm. Elgazery [68] dealt with combined effects of 

Hall and ion-slip currents, heat and mass transfer in the stretching flow of micropolar fluid with 

temperature dependent viscosity and thermal conductivity. Sutton and Sherman [69] derived 

expression for generalized Ohm's law in the presence of Hall and ion-slip currents. 

It has been experimentally verified that the diffusion of energy can be caused by a compo

sition gradient. This fact is known as Dufour effect or diffusion-thermo effect. The diffusion of 

species by temperature gradient is termed as Soret effect or thermal diffusion effect. In most of 

the studies dealing with the transfer of heat and mass, these effects are neglected under the as

sunlption that these effects are smaller order of magnitude as described by Fourier's and Fick's 

laws [70 - 75]. However recent developments show that Dufour and Soret effects are significant 

when transfer of heat and mass occurs in the flow of mL"Xture of gases with very light molecular 

weight (H2, He) and of medium molecular weight (N2, air) [70 -75] . In view of the appli

cations of thermal diffusiori and diffusion thermo in separation of isotopes and separation of 

gases from their mixture, Chapman and Cowling explained these effects and derived the formu

lae for thermal diffusion coefficient and thermal diffusion factor for mono atomic or polyatomic 

gas mixtures. Such effects cannot be ignored when density difference exists. Kafoussias et al 

[70] computed numerical solution for mixed convection flow of viscous fluid over an isothermal 
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semi-infinite flat plate with thermal diffusion and diffusion-thermo effects. Alam and Rahman 

[71] and Rehman et al. [72 - 74] considered thermal diffusion and diffusion-thermo effects on 

the convective (mixed or free) flows over a flat plate. Heat and mass transfer characteristics 

in natural convection flow of an electrically conducting fluid over a vertical surface embedded 

in a saturated porous medium with Dufour and Soret effects have been studied numerically by 

Postelnicu [75] . Lakshami et al. [76] analyzed stability of Soret-driven flow by a linear stability 

analysis. Kairi and Murthy [77] examined the effects of melting heat transfer and diffusion

thermo on the flow of non-Newtonian fluid (Oswald-de-Waele power law model). Osalusi et 

al. [78] considered simultaneous effects of thermal diffusion and diffusion-thermo, viscous dis

sipation and Ohmic heating on mixed convection flow caused by rotating disk. It is worth 

mentioning that Dufour and Soret effects have been investigated by many researchers over a 

solid surface. However fewer studies regrading these effects on the flow induced by stretching 

surface are available. Few amongst these may be mentioned through refs. El-Aziz [79J, Beg 

et al. [80J, Tsai and Huang [81], Afify [82J, Shatey et al. [83] and Hayat et al. [84J. Further, 

the works presented in the studies Menez and Sandall [85J , Hayat et al. [86, 87J , El-Aziz and 

Salem [88] , Cortell [89,90], Andersson et al. [91J and Takhar et al. [92] examined the effects of 

chemical reaction on the boundary layer flows. 

1.3 Constitutive equations of second grade fluid 

Expression of Cauchy stress tensor (T) in a second grade fluid is 

(1.1) 

in which p is the pressure, I is the identity tensor, Cl!i (i = 1 - ' 2) are the material constants and 

Al and A2 are the Rivilin Ericksen tensors defined by 

Al = VV + (VV)*, (1.2) 

A2 = d~l + AI(VV) + (VV) * AI, (1.3) 
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where dj dt is the material derivative and * . denotes the transpose. For thermodynamic analysis 

of the second grade fluid requires that [20] 

(1.4) 

1.4 Constitutive equations of micropolar fluid 

According to Eringen [45] there is a subclass of micro fluids which is known as micropolar 

fluids . These fluids exhibit the micro-rotational effects and micro-inertia. Eringen [45] was first 

to develop the theory of micropolar fluids. A complete set of basic equations for micropolar 

fluids is 

V·V 
dV 

Pdt 
. dfl 

PJdi 

o. 

v . M + E : T1 +pl, 

dT 2 DKT 2 1 
pCp -

d 
= Kc V T + <P + -C \1 C + -J . J, 

t s (J' 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

in which V, T and C are the velocity, temperature and concentration fields respectively, fl is 

the angular velocity field for micro-motion of fluid particles, j is the micro-inertia per unit mass, 

E is the third rank tensor corresponding to the Levi-Civita symbol, n is the order of chemical 

reaction, 1 is the volume couple force per unit mass, T1 and M respectively are the stress and 

couple stress tensors which are defined as follows: 

T1 = >. (trd) I+2~Ld+2kE ' (w - n) , 

M a v (\1 . fl) I+,Bv (\lfl)t + 'Yv \lfl, 

d = ~ [VV + (VVn ' 

1 
w 2: (V x V). 
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(1.10) 

(1.11) 

(1.12) 

(1.13) 



where b' denotes trace of tensor, w is the vorticity vector, A is the bulk viscosity, I-" is the shear 

viscosity, k is the vortex viscosity and C\!", /3", I" are the spin viscosities. FUrthermore, >., 1-", k, 

C\!", /3" and II' satisfy the following constraints [45J 

The viscous dissipation term <I> for micropolar fluid is given by 

<I> = Tl: ("\7V - E' 0) + M: VO. (1.15) 

1.5 Equations of motion for axisymmetric flow in micropolar 

fluid 

Considering 

v = [1£ (1', z ) , 0, w (1' , z)], n = [0, N2 (1', z), 0], T = T (7', z), c = C (1', z) (1.16) 

Eqs. (1.5) - (1.7) along with the constitutive Eqs. (1.10) - (1.15) yield [46J : 

au au au 
-+u-+w
at a1' az 

aw aw aw 
-+u-+w-.
at a1' az 

aN2 aN2 aN 2 
-+u-+w-
at a1' az 
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Using considered forms in Eq. (1. 16) we have from Eqs. (1.8) and (1.9) the following 

expressions 

OT + u oT + w oT = Kc [o2T + ~ OT + o2T] + DKT [02C + ~ oC + 02C] 
at or OZ PCp 01,2 l' or oz2 CpCs 01'2 T 01' oz2 

+ (2~L + k) [(OU)2 + u2 
+ (ow )2 + ~ (ou + OW)2] + ~J2 

PCp or 1'2 OZ 2 OZ 01' a 

+_k_ (~u _ ow _ 2N2) 
2 

_ 2{31J N2 ON2 + k [(ON2)2 + N? + (O.N2 ) 2] , (1.21) 
2pcp OZ aT l' or PCp or 1'2 OZ 

oC 8C OC [o2C 18C 82C ] DKT [02T l OT 82T ] -+u-+w-=D --+--+-- +-- --+--+- -K1C, at or OZ 01'2 l' or oz2 Tm. 01'2 l' or oz2 

(1.22) 

where u and ware the velocity components along the radial (1') and axial (z) directions respec

tively, N2 is the azimuthal component of microrotation vector, J is the ma.gnitude of cmrent 

density, T is the temperatme field, C is the concentration field, cp is the specific heat, a is the 

electrical conductivity of the fluid, Kc is the thermal conductivity, D is the diffusion coefficient, 

Cs is the concentration susceptibility, Kl is the reaction rate, KT is the thermal-diffusion ratio 

and Tm is the mean fluid temperatme. 
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Chapter 2 

Steady flow of second grade fluid in 

convergent / divergent channel 

The aim of this chapter is to describe the flow of a differential type fluid in convergent/divergent 

channel. Constitutive relationships for second grade fluid are invoked in the mathematical 

modelling. Resulting non-linear problem is solved by homotopy analysis method (HAM) . Con

vergence of developed series solution is checked. The effects of different physical parameters 

on velocity profile are shown and discussed. Numerical values of skin friction coefficient for 

different values of parameters are fiTst tabulated and then analyzed. 

2.1 Mathematical analysis 

We consider the steady two-dimensional incompressible flow of second grade fluid in a converg

ing/diverging channel. Flow is driven by a source/sink at the intersection of channel walls. The 

channel walls are inclined at an angle 2a*. SYllunetric nature of flow is taken about the central 

line -B = O. The radial and the axial directions are chosen parallel and perpendicular to the free 

stream flow respectively. Physical model is shown in Fig. 2.1. On defining the velocity field 

(2.1) 
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and invoking continuity and momentum equations in the absence of body force one can write 

a 
~ (ru) = O. 
uT 

Integration of above equation with respect to T gives 

where F (rJ) is a constant of integration. 

au 
u or 

1 
u=-F(rJ) , 

T 
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(2.2) 

(2.3) 

(2.4) 

(2.5) 



where al :::: 0 is the material constant of a second grade fluid . 

. Fig. 2.1. Flow configmation [1 - 8]. 

The corresponding boundary conditions are 

u U au = 0 at {) = 0, 'a{) , 

u = 0, at {) = a* , (2.6) 

where U is free stream velocity at the central line of the channel. 

Introducing 
1 u T {) 

u = -F ({)), U = f (ry), () (ry) = -T ' ry = ---;, 
r w a 

(2.7) 

in Eqs. , (2.2) - (2 .6) and eliminating pressure terms one obtains 

1'" + 4a*2 l' + 2a* Re f l' + 4De (J fill + 4a*2 f f') = 0, (2.8) 

f (0) = I, f (1) = 0, l' (0) = 0, (2.9) 

where Re (= raU/I)), De (= alU/rJ.L) are the local Reynolds number and the local Deborah 
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number respectively. Furthermore 

{ 

a* > 0, 

a* < 0, 

u>o 

U < ° 
for divergent channel, 

for convergent channel. 

It should be pointed out that the problem consisting of Eqs. (2.8) and (2.9) reduce to the case 

of a viscous fluid when De = ° (Domairy et al. [7]). 

The skin friction coefficient C f is defined as 

(2.10) 

The above expression in view of Eqs. (2.7) and (2 .9) becomes 

ReCf = l' (1) . (2.11) 

Now the problem given in Eqs. (2 .8) and (2 .9) is computed by employing the homotopy analysis 

method [93 - 115]. 

2.2 Solution for f (7]) 

We express f (",) by the set of base functions 

(2.12) 

in the form 
00 

f (77) = 2:= an ",2n , (2.13) 
n=O 

where an are the coefficients. The initial guess and linear operator are chosen as follows: 

(2.14) 

(2.15) 
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The above operator satisfies the following property 

where Ci (i = 1 - 3) are the arbitrary constants. 

2.2.1 Zeroth order deformation problem 

The zeroth order deformation problem can be written as 

1(0; q) = 1, 1(1; q) = 0, 

Setting q = 0 and q = 1 in Eq. (2.17), one arrives at 

1(7];0) 

1(7]; 1) 

fa (7]) , 

f (17) , 

(2.16) 

(2.17) 

= 0. (2.18) 

77=0 

It means when q varies from 0 to 1, then 1(17; q) varies from the initial guess fa (7]) to f (7]). We 

further led to define the following nonlinear operator Nf 

(2.19) 

With the help of Taylor's theorem one obtains 

00 

1(7]; q) = fa (17) + L fm (7]) qln, (2.20) 
m=l 

with 

(2.21 ) 

q=0 
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2.2.2 Higher-order deformation problems 

Taking mth order homotopy derivative (d1n jdq7n) jm! to zeroth order deformation (i.e. Eq. 

(2.17)) and setting q = 1 we get t he following mth order deformation problems 

f £ f [fm.('I"}) ,- Xm.fm-1 ('I"})] = "h/Rm (fm-1 ('I"})) , 

fm(O) = 0, fm(l) = 0, f:n(O) = 0, 

in which 

0, m:::; 1, 

I ,m> 1, 

m-1 

f:::- 1 (77) + 4at 2 f:n-1 (77) + 20:* Re L fn (77) 1:n-1-n (r/) 
11=0 

m.-1 

(2.22) 

(2.23) 

+4De L [fn ('I"}) f:::- 1-n ('I"}) + 40:*2 fn (1]) f:n-1-n (77)] . (2.24) 
n=O 

The general solution of boundary value problem given in Eqs . (2.22) and (2.22) is 

(2.25) 

in which f ;l (1]) is the particular solution of problem given in Eqs. (2.22) and (2.23). The 

coefficients C;n(i = 1 - 3) can be determined by the boundary conditions given in Eq. (2.23). 

In order to proceed for the dual solutions, let us make the change of variable y = 4Def in 

Eqs. (2.8) and (2 :9) to get 

ylll + 4Q!*2_y_ + (Q!* Re + 4Q!*2) J!JL = 0, 
1 +y 2De 1 + y 

(2.26) 

y (0) = 4De, y' (0) = 0, y (1) = 0. (2.27) 

Integration of Eq. (2.26) with respect to variable 'I"} yields 

(2.28) 
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where C4 is the constant of integration. Multiplying Eq. (2.28) by y' and then integrating with 

respect to variable "lone can write 

(y,)2+4a*2 [(I+y)lnll+yl-y]+ (~*D~e +4a*2) [y
2

2 
+Y-(I+ Y)ln ll+ YI] 

C4 y + C5, (2 .29) 

in which C5 is also constant of integration. Using the bOlmdary conditions Y (0) = 4De and 

y' (0) = 0 in Eq. (2.29) we get 

4DeC4 + C5 = A, 

with 

A = 4a*2 [(1 + 4De) In 114Del- 4De] + -- + 4a*2 [8De + 4De - (1 + 4De) In 11 + 4Del]. (
a* Re ) 
2De 

Separating the variables and then integrating we have 

J 1 
± r=2=(==C=4=Y =+=C=5=-=4=a=.2=[=(I=+=Y )=In=ll=+=Y=1 =_=Y=] ==) dy = 17 + C6, 

- (~'D~e +4a*2) (V; +y - (1 +y)lnll +yl) 

(2.30) 

where C6 is the constant of integration. 

2.3 Results and discussion 

The convergence of HAM solution (2.25) strongly depends upon the value of convergence control 

parameter (auxiliary parameter) "h1. Therefore we plot the"h1 - curves (Fig. 2.2 ) for different 

values of Deborah number De. Range for convergence of solution in present flow situation 

is - 0.45 ~ "hf ~ - 0.25 when 0 ~ "l ~ 1. The convergence is ensured up to 12th order of 

approximation when "hf is equal to - 0.3. (see Table 2.1 ). Tables 2.2 and 2.3 are constructed in 

order to examine the behavior of dimensionless parameters on skin friction coefficient Rer C f 

in convergent and divergent channels. 

Figs. 2.3 - 2.6 are sketched to examine the influence of different dimensionless quantities, 
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for instance, Reynolds number Re, Deborah number D e and the angle a* between the central 

line {) = 0 and one of the channel walls. Fig. 2.3 shows that dimensionless velocity f (17) 

decreases with an increase of Reynolds number Re in divergent channel whereas f (ry) increases 

in convergent channel as shown in Fig. 2.4. Figs. 2.5 and 2.6 depict the effect of Deborah 

number De on dimensionless velocity f (ry). These Figs. indicate that in divergent channel 

f (7)) is an increasing function of Deborah number De but in convergent channel f (ry) decreases 

as Deborah number De increases. The influence of variation of inclination (2a*) between the 

channel walls on f (77) is analyzed in the Figs. 2.7 and 2.8. It is observed from Fig. 2.7 that with 

an increase in inclination between the walls of divergent channel f (17) decreases . However in 

case of convergent channel, f (77) increases when a* increases (see Fig. 2.8). Tables 2.2 and 2.3 

are constructed to see the effects of Reynolds number Re, Deborah number De and angle a* on 

the skin friction coefficient Rer Cf . Table 2.2 shows that, in divergent channel, the magnitude of 

skin friction coefficient Rer Cf decreases when Reynolds number Re and angle a* are increased 

whereas, in convergent channel, the magnitude of Re,. Cf increases when Deborah number De is 

increased. However, in convergent channel, the skin friction coefficient Re,. Ct is an increasing 

function of Re and a * but Re,. Ct is a decreasing function of De when a * > O. This shows that 

stresses on the walls of divergent channel are increasing function of De whereas stresses on the 

walls of convergent channel are decreased when D e is increased. From Table 2.2 one can see 

that the skin friction coefficient Rer CJ in case of non-Newtonian fluid is higher than that of 

viscous fluid in divergent channel. In convergent channel the skin friction coefficient Rer Ct in 

viscous fluid is higher than that in second grade fluid (Table 2.3) and vice versa in divergent 

channel (see Table 2.2). 
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Fig. 2.2. 11-rcurves of 12th order of approximation of !' (1) for different values of D e. 
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Fig. 2.3. Variation of f (77) for different values of Reynolds number Re in divergent channel. 
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Fig. 2.4. Variation of f (rJ) for different values of Reynolds number Re in convergent channel. 
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Fig. 2.5. Variation of f (rJ) for different values of Deborah number D e in divergent channel. 
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Fig. 2.7. Variation of radial velocity f (ry) for different values of a * 2: O. 
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Fig. 2.8 . Variation of radial velocity f (77) for different values of a * :::; 0. 
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Table 2.1. Convergence of HAM solution when Re = 100, D e = 0.5 and a* = 5° 

order of approximations l' (1) 

1 -1.72644 

5 -1.59923 

10 -1.59413 

15 -1.59389 

20 -1.59388 

25 -1.59388 

30 -1.59388 

Table 2.2. Numerical values of skin friction coefficient Re,. Cf for different values of Re, De 

and a* in divergent channel. 

Re De a* Re"Cf 

40 0.8 2° -1.90964 

80 -1.81347 

120 -1.71881 

160 -1.62295 

100 0.0 2° -1.28910 

0.4 -1.65067 

0.8 -1.76629 

1.2 -1.77509 

100 0.8 00 -2.00000 

2° -1.76629 

4° -1.52330 

6° -1.27140 
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Table 2.3. Nmnerical values of skin friction coefficient ReI' OJ for different values of Re, De 

and a* in convergent channel. 

Re De a * RerOJ 

40 0.8 _2° -2.09020 

80 -2.17999 

120 -2 .26856 

160 -2.35591 

100 0.0 _2° -2.67796 

0.4 -2.33315 

0.8 -2 .24443 

1.2 -2.11700 

100 0.8 0° -2.00000 

_2° -2.24443 

_4° -2.43997 

_6° -2.64644 

2.4 Conclusions 

The flow of second grade fluid in convergent/divergent channel is analyzed by homotopy analysis 

method (HAM) . The effects of different physical quantities are presented via graphs. Following 

points are worth mentioning 

• The effects of Re, De and a* on f ('1]) in divergent channel are quite opposite to the effects 

of Re, De and a* on f (1)) in convergent channel. 

• The dimensionless velocity f ('1] ) in divergent channel is a decreasing function of Reynold 

number Re. However opposite trend are noted for the case of convergent channel. 

• f (17) increases in case of divergent channel when Deborah number De increases whereas 

f ('1]) decreases in divergent channel when a* increases. Furthermore the dimensionless 

velocity f (1) ) of Newtonian (De = 0) fluid is less than that of non-Newtonian fluid (De =f 

0) in divergent channel but in convergent channel the velocity of Newtonian (De = 0) is 

higher than that in non-Newtonian fluid (De =f 0). 
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• The effects of Re, De and a* on the skin friction coefficient ReT Cf m divergent and 

convergent channel are opposite. 

• In case of divergent channel, the magnitude of skin friction coefficient Re,. Cf decreases 

when Reynolds number Re is increased. It means that stresses at the surface of the channel 

walls decreases with an increase in Reynolds number Re whereas in case of convergent 

channel the magnitude of skin friction coefficient Re,. Cf increases when Reynolds number 

Re is increased. Increase in Reynolds number Re means to increase free stream velocity 

(velocity U at the central line of the channel). Hence we conclude that the behavior of free 

stream on the velocity in divergent channel is opposite to that of velocity in convergent 

channels. 

• For non-Newtonian fluid (De =1= 0), the magnitude of stresses at walls of divergent channel 

is higher than Newtonian fluid (De = 0) whereas for convergent channel opposite trend 

is observed. 

• An an increase in angle between channel walls results to decrease magnitude of stresses 

at the surface of walls of divergent channel. However opposite trend has been noted for 

the case of convergent channel. 
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Chapter 3 

Heat transfer effect on the flow of a 

second grade fluid in 

convergent / divergent channel 

This chapter extends the flow analysis of previous chapter in the presence of heat transfer. 

Attention has been focused for the analysis of temperature. The relevant expression is modeled 

by using law of conservation of energy. Dissipation effects are taken into account. Homotopic 

solution along with convergence analysis is presented. Results of dimensionless temperatUl'e are 

presented and discussed. Variation of Nusselt number for the physical parameters is analyzed. 

3.1 Heat transfer analysis 

We consider t he heat transfer analysis for the steady two-dimensional incompressible flow of a 

second grade fluid in a converging/diverging channel. Here source/ sink at the intersection of 

channel walls is responsible for the flow. Both of the channel walls are maintained at constant 

temperatUl'e Tw' The channel walls are inclined at an angle 2a*. Both of the channel walls are 

maintained at constant temperature Tw . Symmetric natUl'e of the flow is t aken into account 

about t he central line {) = O. The radial and axial directions are chosen parallel and perpendic

ular to the free stream flow. Velocity and temperatUl'e fields for the flow under consideration 
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are 

v = [u (1', 19), 0] , T = T (7', 19), (3.1) 

and invoking the energy equation in the absence of Joule heating we have 

(3. 2) 

where al ~ 0 is the material constant of a second grade fluid. The subjected botmdary concli

tions are 
8T 
819 = 0 at 19 = 0, T = Tw at 19 = a*, (3.3) 

where Tw indicates the constant wall temperature. Utilizing the following dimensionless vari

ables 

1( '11, ) ( T 19 
u =;F 19) , U = f ('T) , 8 'T)) = Tw' 77 = a*' (3.4) 

in Eq. (3 .2) we arrive at 

(3.5) 

Boundary conditions (3.3) t.ake the form 

8 (1) = 1, 8' (0) = 0, (3 .6) 

where Re (= mU/lJ), De (= alU/1'j.L), PI' (= j.Lcp/Kc) and Ec (= U2/cpTw) are the Reynold 

number, local Deborah number, Prandtl number and Eckert number respectively and 

{ 

a* > 0, U > 0 for divergent channel, 

a* < 0, U < 0 for convergent channel. 

It is important to note that dimensionless parameters PI' , Ec, De and Re have similar effects on 

dimensionless temperatme 8 (77) in both the convergent and the divergent channels because Eq, 
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(3.5) contains a *2 where a * < 0 characterizes convergent channel whereas a * > 0 corresponds 

to divergent channel. Nusselt number Nu is given by 

(3.7) 

where the heat fitL"X qw through Fourier law of conduction is defined as 

(3.8) 

Equations. (3.4) , (3 .7) and (3.8) yield 

Nu = -B' (1). 

In the next section, series solution of the boundary value problem consisting of Eqs. (3.5) and 

(3.6) will be constructed. 

3.2 Solution for ()(T/) 

The dimensionless temperature B ('T]) in term of base functions 

(3.9) 

can be expressed as 
<Xl 

B (77) = L an 'T]2n, (3.10) 
n=O 

where an are the coefficients. Initial guess and the linear operator are selected as follows: 

cl2B 
£o(B)= -d 2' 

77 
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The above linear operator satisfies 

(3.13) 

where Ci (i = 1,2) are the arbitrary constants. 

3.2.1 Zeroth order deformation problem 

The zeroth order deformation problem is constructed in the following forms 

(3.14) 

B(l; q) = 1, 
8B(ry; q) 

= O. (3.15) 
1)=1 

where q E [0,1] is an embedding parameter. For q = 0 and q = 1, we obtain 

(3.16) 

It is worth mentioning that the initial guess 80(77) approaches 8(17) , when q varies from 0 to 1. 

"With the help of Taylor's series we can express B(7), q) in the form of following infinite series 

00 

B(ry, q) = 80(ry) + L 8m(ry)qm, (3.17) 
m=l 

with 

8 ( ) = ~ 8m
B(ry,q) 

mry I 8m m. q 
q=O 

(3.18) 

and nonlinear operator No is 

" "EJ8 "2 EJj(7);q) 2" [ ( " ) 2] No [8(ry; q), j(7]; q)] = 8r,2 + EcPr 4c/
2 (1(77; q)) + 87] 

" 3" 8j(77; q) + 2De Pr Ec 4Q'2 (/('1; q)) + I(~; q) ( 8~ ) . [ 
" 2] 

(3.19) 
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3.2.2 Higher-order deformation problem 

Differentiating the zeroth order deformation Eq. (3.14) with respect q then dividing by m! and 

then having q = 1, we obtain the following mth-order formation problems 

in which 

0, e~(O) = 0, 

O,m:::; 1, 

I ,m > 1, 

The general solution of the boundary value problem (3.20) is 

em (ry) = e:n (ry) + C1 + C2'ry, 

(3.20) 

(3.21) 

(3.22) 

in which e~t (77) is the particular solution of problem (3.20). The coefficients CITt(i = 1,2) can 

be determined using the boundary conditions given in Eq. (3.20). 

3.3 Convergence analysis for e (17) 

Obviously the series solution (3 .22) has auxiliary parameter "he. As pointed out by Liao [93], 

the convergence of series solution depends upon the suitable choice of "he. Having this in mind, 

"he-curves are plotted for different values of De. These "he - curves depict that the range for 

convergence of solution e (ry) is -1.4 ~ "he ~ -0.6 in the whole domain 0 ~ ry ~ 1 (see Fig. 3.1). 

The convergence is ensured when "he = -0.7. 
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Table 3.1. Convergence of series solution (3.22) when Pr = 5, Re = 100 , De = Ec = 0.5 

order of approximations 8' (1) 

1 -3.3933086 

5 -4.2357855 

10 -4.2674518 

15 -4.2692967 

20 -4.2694280 

· 25 -4.2694391 

30 -4.2694402 

35 -4.2694403 

40 -4 .2694403 

45 -4.2694403 

fzr= - 0.3, Re= 10, a = eP 
-1. 75....-r~--------------.,.., 

- 1.85 

~ - 1.9 ,... 

~ - 1.95 

-2 

\ 
\ 

\ 
\ 
\ 

/ 
/ 

-205 · \ / 
......... - - - - - - _ .. - - - -'" 

-1.8 - 1.6 -1.4 - 1.2 - 1 - 0.8 - 0.6 - 0.4 

he 

Fig. 3.1. he-curves of 8' (1) for different values of Deborah number De. 
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3.4 Discussion 

In this section we have examined the behavior of dimensionless parameters on the dimensionless 

temperature e (77). Variation of Nusselt number Nu against various values of the dimensionless 

parameters is presented in Table 3.2. Since dimensionless parameters have similar effects on 

dimensionless temperature e (7]) for both the cases (i) a* > 0 (ii) a* < 0 (see Eq. (3.5)). 

Therefore temperature proilles are sketched for positive values of a*. Fig. 3.2 reveals that 

dimensionless temperature e (7]) increases when Prandtl number Pr is increased. It is clear 

from Fig. 3.3 that e (77) is an increasing function of the local Deborah number De. This Fig. 

also shows that temperature in second grade fluid (De i= 0) is higher than that of Newtonian 

fluid (De = 0). The dimensionless temperature is an increasing function of Reynolds number 

Re (as shown in Fig. 3.4). It is observed from Fig. 3.5 that dimensionless temperature 

e (77) increases by increasing inclination between the channel walls. Since Ec is the ratio of 

kinetic energy to enthalpy. Thus an increase in Eckert number Ec increases kinetic energy and 

consequently temperature increases. TIllS fact is obvious from Fig. 3.6. Note that Ec = 0 when 

viscous dissipation is negligible and Ec i= 0 is the case when viscous dissipation is significant. In 

other words an increase in Eckert number Ec results to dissipates more heat and so temperature 

increases. Table 3.2 shows the variation of Nusselt number Nu for different values of parameters. 

From Table 3.2 one can conclude that Nu is an increasing function of De, Pr, Ec. It decreases 

with an increase in Re and a*. This Table also depicts that the Nusselt number Nu for second 

grade fluid (De i= 0) is higher than Newtonian fluid (De = 0). 
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Table 3.2. Numerical values of Nusselt number N·u for different values of Re, De, a*, Pr 

and Ee. 

Re De PI' Ee a* - Nu 

40 0.8 5 0.5 5° 5.34102 

80 5.19476 

120 5.09998 

160 5.06849 

100 0.00 5 0.5 5° 2.96815 

0. 25 3.54436 

0.50 4.26952 

0.75 5.03598 

100 0.8 1 0.5 5° 1.02804 

3 3.08413 

5 5.14021 

7 7.19630 

100 0.8 100 0.3 5° 3.08413 

0.5 5.14021 

0.7 7.19630 

0.9 9.25239 

100 0.8 5 0.5 0° 5.46667 

2° 5.28043 

4° 5.16667 

, 6° 5.13443 
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De= 0.4, Re= 1CXl Ec= 0.5, 0" = 5' 
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Fig. 3.2. Variation of dimensionless temperature e ('I) for different values of Prancltl number Pl' . 
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Fig. 3.3. Variation of dimensionless temperature e (1]) for different values of Deborah number De. 
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Fig. 3.4. Variation of dimensionless temperature e (1]) for different values of Reynolds number Re. 
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Fig. 3.5. Variation" of dimensionless temperature e (1]) for different values of a * . 

39 



15 · 

125 · 

10 · 

'E'-
CE" 7.5 

5 

25 · 

- - - - -

--------

R3= 10, Fh 4 cr=!3' 

...... 

---

........ ....... ! - Ec=O I 

""Ulj--- Ec =3 I ---- Ec=6 

..... - - - Ec= 9 ..... 
'" \ 

" " \ 
-------- ------ ------- ----------

o~·~ ____ ~ ______ ~ ____ ~ ______ ~ ______ ~ 
o 0.2 0.4 0.6 0.8 1 

'1 

Fig. 3.6. Variation of dimensionless temperatme e ('/]) for different values of Ec. 

3.5 Concluding remarks 

The work here is concerned with the influence of heat transfer on the flow of a second grade fluid 

in divergent/convergent channel. The presented analysis has following interesting observations . 

• Dimensionless temperature e ('/]) in second grade fluid (De i= 0) is higher than that in 

Newtonian fluid (De = 0). 

• e ('/]) is an increasing function of Re, De, Pr and Ee. 

• Nusselt number Nu increases by increasing De, Pr and Ee. However it decreases with an 

increase in Re and a*. 

• Nusselt number Nu for second grade fluid (De i= 0) is higher than Newtonian fluid 

(De = 0) . 

• Rate of heat transfer from channel walls into the fluid increases when De and Ee are 

increased whereas it decreases by increasing Re . 

• Temperature e ('/]) is an increasing function of angle a* between the walls of channel 

whereas Nusselt number Nu decreases when a * (angle between channel walls) increases. 
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Chapter 4 

Thermal-diffusion and 

diffusion-thermo effects on 

axisymmetric flow of a second grade 

fluid between radially stretching 

sheets 

This chapter investigates the thermal-diffusion and diffusion-thermo effects on two-dimensional 

magnetohydrodynamic (MHD) axisymmertric flow of a second grade fluid. Mathematical analy

sis has been carried out in the presence of Joule heating, viscous dissipation and first order 

chemical reaction. Using momentum and energy equations and Fick's second law, the gov

erning part.ial differential equations have been reduced t.o the ordinary differential equations 

by suitable transformations. Series solutions are constructed by homotopy analysis method 

(HAM). Plots are displayed in order to examine the influence of emerging parameters on the 

dimensionless components of velocity, temperature and concentration fields. Numerical com

putations for skin friction coefficient , Nusselt number and Sherwood number are tabulated. 
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4.1 Problem statement 

We consider heat and mass transfer characteristics on a.xisymmetric flow of an electrically 

conducting second grade fluid between two infinite parallel radially stretching sheets at z = ±L. 

The flow is induced by the stretching of sheets. The flow is considered symmetric about z = O. 

A uniform magnetic field Bo perpendicular to the planes of sheets is applied. It is assumed that 

the magnetic Reynolds number is very small and induced magnetic field is neglected. There is 

no external electric field. Joule heating and viscous dissipation are taken into account. Both 

the sheets have constant temperature Tw and constant concentration at the sheets is denoted 

by CWo Physical model and coordinate system are shown in Fig. 4.1. Flow quantities for the 

problem under consideration are defined by 

V=[u(r, z),O,w(r, z )], T=T(r, z), C=C(r, z). (4 .1) 

By virtue of above definitions, continuity equation, momentum equation (in the absence of 

buoyancy force) , energy equation and advection diffusion equation (with first order chemical 

reaction i.e. n = 1) along with constitutive equations (1.1) - (1.4) give 

au au 
u-+w-aT az 
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(4.2) 

( 4.3) 



( 4.4) 

(4.5) 

BC BC 
u-+w-

Br Bz 
D [B2C 1 BC B2C] DKT [B2T 1 BT B2T] 

Br2 + -:;.a;: + 8z2 + Trn B1'2 + -:;.a;: + Bz2 

-KIC, (4.6) 

where frI (~ 0) designates the material constant, p the density, 11 = (J-I,j p) the kinematic 

viscosity, J-L the dynamic viscosity, Cp the specific heat, (j the electrical conductivity of the 

fluid, p the pressure, J(c the thermal conductivity, D the diffusion coefficient, Cs the concen

tration susceptibility, Tm the mean fluid temperatme, J{T the thermal-diffusion ratio and I<1 
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the chemical reaction constant. 

z-axix. 

~---r-==L 

2L 
Bo 

z = ° 

J-----z=-L 

Fig. 4.1. Sketch of the physical model and coordinate system. 

The associated boundary conditions are 

8'1.£ 8T 8C . 
8z = 0, W = 0, 8 z = 0, 8z =0, at z = 0, 

u = aT, W = 0, T = Tw , C = Cw at z = L , (4.7) 

Employing the following dimensionless variables 

T C z 
u = aT l' (7)), W = -2aLf (7)) , e = Tw ' ¢ = C

w
' 7) = "L . (4.8) 

in Eqs. (4.2) - (4.7) , one obtains 

1"" - Re!vI 1" + 2 Re f 1'" - 2af 1''''' = 0, 
(4.9) 

f (0) = 0, f (1) = 0, I' (1) = 1, 1" (0) = 0, 
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where 

Bc 

e" + 2 Re Pr fB' (rJ) + Pr Ec ((1,,)2 + 24i (1,)2) 

+0: PI' Ec (f' (1,,)2 - 2f I" 1'" - 24i f f' 1") 
+ ReMPr Ec (1,)2 + DuPr cp" = 0, 

e' (0) = 0, e (1) = 1, 

¢" + 2ScRef¢' (rJ) + ScSre" - ReSq¢ = 0, 

cp' (0) = 0, ¢(1) = 1, 

aL2 111 = 0' B5 f-LC Re= -, , Pr =-P 
1) pa J(c' 

(4.10) 

(4.11) 

respectively denotes the second grade parameter, the Reynolds number (Re), the Hartman 

number (M), the Prandtl number (Pr), the Dufour number (Du), the Schmidt number (Sc), the 

Soret number (Sr), the local Eckert number (Ec), the first order chemical reaction parameter 

('Y) and dimensionless length (8). The dimensionless parameters Du and Sr correspond to 

Dufour and Soret effects respectively. It is evident from the expressions for Dufour and Soret 

numbers that these are arbitrary constants provided that their product remains constant. This 

fact is stated in [70 - 74]. Fmthermore D'lL = 0 and Sr = 0 correspond to the situation 

when thermal diffusion and diffusion-thermo effects are of a smaller order of magnitude than 

the effects described by Fourier's and Fick's laws [70 - 74] . There is controversy on the sign 

of Soret number S7' . In some studies [70,71,75], S1' (= DKT (Tw - Too) jvTm (Cw - Coo)) is 

considered as positive dimensionless parameter based on the fact that surface temperature Tw 

and surface concentration Cw are higher than the corresponding temperature and concentration 

at ambient fluid i.e. Tw > Too and Cw > Coo . However some investigators [77,78] have taken 57' 

negative as well. In fact they have considered both the cases when (i) Tw > Too and Cw > Coo 

and (ii) Tw > Too and Cw < Coo. However in present study Sr is taken positive because all 

quantities in the expression for Soret number 51' are positive i.e. Sr = DKTTwjvTmCw. Hence 

all forthcoming computations have been carried out for positive values of Sr. 
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The skin friction coefficient CI , Nusselt number Nll and Sherwood number Sh are 

C Tl·z lz=L 
f = . p (ar)2 

(au 8w) I [a2u a2w a2u] I It 8z + 8r z=L + al 1la:;:az + 1la;:'I + W If?! z=L 

p (ar)2 

[w a2w + au au + awaw _ awau _ au aw] I araz ar ax ar az az az ar ar z- L 
+al 'J-

peart 

R
l (1 + 4a) f" (1), 
er 

(4.12) 

Nu 
L LK aTI 

_~ = _ c Fz z =l = -e'(l) 
KTw KTw ' 

(4.13) 

Sh _ LMw = _ LD ~lz=L = _¢' (1) 
Dew Dew ' 

(4.14) 

where Rer (= ar L /!I) denotes the local Reynolds number. 

4.2 Homotopic solutions 

Here f (ry) , e (ry) and ¢ (ry) in the form of base functions 

( 4.15) 

can be written as 

<Xl <Xl <Xl 

( 4.16) 
n=O n=O n=O 

in which an, bn and Cn. are the coefficients to be determined. The initial guesses fo (ry) , eo (ry), 

¢o (ry) and the linear operators £ I , £ (), £ '" are chosen of the following forms 

( 4.17) 

(4.18) 
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whence 

£ dCl + C21] + C31]2 + C41]3] = 0, £0 [C5 + C61]1 = 0, 

£t/> [C7 + C81]] = 0 

and Ci (i = 1 - 8) are the constants. 

4.2.1 Zeroth-order deformation problems 

The zeroth order deformation problems are constructed as follows: 

i (0; q) = 0, i (1; q) = 0 a ia( 1] ; q) = 1, a
2 

fa' (~; q) 
1] 1] 

ry=l ry=O 

= 0, 

(1 - q)£o [8(7]; q) - BO(7])] = qiLoNo [8 (7]; q) ,i (7] ; q) ,¢ (7]; q)] , 

(4.19) 

(4.20) 

8(1' )=1 a8(7];q) =0 (4.21) ,q , a1] 
ry=o 

(1 - q) £ t/> [¢( 1]; q) - <Po (1])] = q'ht/>Nt/> [8 (7); q) , i (1] ; q) , ¢ (1]; q)] , 

¢(1; q) = 1, a¢(1]; q) 
a1] 

=0. (4.22) 

In above expressions q E [0,1] and 'hf ,9,fp i= 0 are respectively the embedding and auxiliary 

parameters and i(1]; 0) = fo (1]) , 8(1]; 0) = Bo (1]), ¢(1]; 0) = <Po (1]) and fh; 1) = f (1]),8(1]; 1) = 

B (1]), ¢(1]; 1) = <P (1]). When q varies from 0 to 1, then i(1]; q) varies from the initial guess fo (1]) 

to f (1]) , 8(1); q) varies from the initial guess Bo (1]) to B (1]) and ¢(1]; q) varies from the initial 

guess <Po (7)) to <p (7]) . The non linear operators N f , No and Nt/> are given below 

( 4.23) 
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( 4.24) 

( 4.25) 

In view of Taylor's series, one can write 

00 

fo (7]) + L fm (7]) qm, ( 4.26) 
m=l 

00 

eo (77) + L Bm (7]) qm, (4.27) 
m=l 

00 

¢(7]; q) = ¢O (77) + L ¢m (7]) qm, (4.28) 
711=1 

( -.l am j 7);q) I - .l am
O(77;q) I } fm 7]) - m!.,m , em (7]) - m! a,.,m , 

./ q=O ./ q=O 

,I.. () _ .l am ¢(7);q) I . 
V/m 77 - m! a'i m q=O 

(4.29) 

4.2.2 Higher order deformation problems 

Writing 

fm(r]) {fo(r7), fI(7]) , 12(7]), J3(7]) ....... . ·fm(7])}' 

Bm(7]) = {Bo(r7), Bl (r7) , e2(7]), B3(7]) .. ....... em (17)} , 

¢m (7]) = {¢o( 7]) , ¢1 (7]) , ¢2( 7]) , ¢3( 17) ········ ·¢m(r7)} , (4.30) 
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we have the following mth order deformation problems 

£ f [fm(ry) - Xm fm-l(ry )] = "h/ RT (fm-l(ry)) , 

fm(O) = 0, fm(1) = 0, f:n(l) = 0, f::t(O) = 0, 

£0 [8m(ry ) -Xm8m-1(ry )] = "hoR 'iJ (Bm-1(77 ), fm-1(ry ),<Pm-1(7] )) , 

B~n(O) = 0, Bm(l) = 0, 

£ 1/1 [<Pm(7]) - Xm<Pm- l (7])] = "hI/1 R '; (<Pm-l (7]) , Bm -l (7]) , fm.-l (7])) , 

<P~n(O) = 0, <Pm(l) = 0, 

. _ { O,m ::; 1, 
Xm -

I,m > 1, 

m-l 

RT (fm- 1 (7])) = f~:'-l (7]) - Re M f::1-1 (7]) + 2 Re L fn (7]) f.~:-l-n (7]) 
n=O 

m-l 

- 2c¥ Lin (7]) t:2-1-n (7]) , 
n=O 

m-l 

Ret (8m - 1(7] ), fm-1(77 )) = 8:~- 1 (77 ) + 2 Re Pr L fn (77 ) B~,-l -n (77) 
n=O 

n 7n-1 
+c¥EcPr L L [f:n-1-n (7/) f::- l (7]) ff' (7]) - 2im-1- n (7]) f::- l C7]) f[" (7] )] 

1= 0 n=O 
n m -1 m - 1 

24c¥Ec Pr """ """ ( ) ' ) /I ( ) . """ ' ( ) f ' ( ) - 8 ~ ~ fm-1 -n 7] fn - l (7] fl 7] + MPrReEc ~ fn 7] m-l -n ry , 
1=0 n = O n=O 
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( 4.32) 

( 4.33) 

(4.34) 

(4.35 ) 



m-l 

¢m- l ('T}) + 2ReSc LIn ('T}) ¢~'-l-n ('T}). (4 .36) 
n=O 

It is found that problems (4.31) - (4.33) have the following general solutions 

I ('T}) = f* ('T}) + Gill + C7t'T} + C311772 + C4" ''73
, (4.37) 

e ('T}) e* (77) + as" + C6'77, (4.38) 

¢ (77) ¢* (77) + C7" + cg"77, ( 4.39) 

where f* ('T}), e* (77) and ¢* (77) are the corresponding particular solutions of the problems con

sisting of Eqs. (4.31) - (4.33). 

Table 4.1. Convergence of HAM solutions when !VI = 1, Re = 2, Se = Sr = Du = Ee = 

'Y = 0.5, a = 0.1 and Pr = 0.72. 

Order of approximations f" (1) e' (1) ¢' (1) 

1 3.628571429 -1. 72045 7143 0.06666666667 

5 3.582788925 -1.848114903 0.9224303214 

10 3.582255862 -1.856866160 0.9231611758 

20 3.582256365 -1.856873885 0.9231650285 

25 3.582256359 -1.856873885 0.9231650281 

30 3.582256361 -1.856873886 0.9231650278 

35 3.582256367 -1.856873886 0.9231650274 

40 3.582256367 -1.856873884 0.9231650277 

4.3 Convergence of solutions 

The convergence and rate of approximations of series solutions (4.37) - (4.39) strongly depend 

upon the values of amciliary parameters. For tllis purpose, the "h-curves are plotted through 

Figs. 4.2 - 4.4. These Figs. show that the adnlissible ranges for "hj,IJ,rp are -1.3 ~ 'hj ~ -0.5, 

- 1.15 ~ 'hIJ ~ - 0.8 and - 1.2 ~ "hrp ~ -0.65. However all the calculations are made when h 

- f = ~ = 'hrp = -1.0. In order to ensure the convergence of solutions, Table 5.1 is constructed. 
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From this table it is evident that the convergence is achieved at 20 th order of approximations 

up to 9th decimal places. 

M = Re = 1, Q;" = 0.1, 0 = 12 
3.2968 r-----------------, 

,........ 
~ 

'-' 

~ 

3.29678 

3.29676 

3.20074 

3.29672 . 

3.2007 '---'--------------'----' 
- 1.6 - 1.4 - 1.2 - 1 - 0.8 - 0.6 - 0.4 

Pz, 
Fig. 4.2 . hf- curve of 1" (1) at 15th order of approximation. 

- 1.6036 

-1.6008 

- 1.607 . 

;:: -1 .6072 
ii;' 

-1.6074 

-1.6076 

- 1.6078 

M = Re = 1, a= 0.1, Pr= 0.72, Ec= Sc = Sr = Du =y = 0.5, 0 =12 

-1.2 -1 - 0.8 - 0.6 

Fig. 4.3. he- curve for 8' (1) at 15th order of approximatioll. 
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M= Re = 1, Pr = 0.72, Ec = Sc= Sr = D..J =y = 0.5,0 =6 
0.65835 r-t"---,--~--........,...-----------..,..., 

0.6583 . 

0.65825 

0.6582 

~ 
0.65815 

0.6581 

0.65005 

- 1.2 - 1.1 -1 - 0.9 -0.8 -0.7 - 0.6 
fl,p 

Fig. 4.4. hcf>- curve for ¢' (1) at 15th order of approximation. 

4.4 Discussion 

In this section, the behavior of emerging parameters on dimensionless velocities, temperature 

and concentration fields are presented. Numerical computations for skin friction coefficient 

Rer CI , Nusselt number Nu and Sherwood number Sh are also tabulated. Figs. 4.5 - 4.10 are 

displayed to see the variations of dimensionless radial velocity f' (7]) and dimensionless axial 

velocity f (7]) for various values of Hartman munber M, Reynolds number Re and second grade 

parameter a. Effects of Hartman number M, Reynolds number Re, Schmidt number Se, Soret 

number ST, Prandtllllunber Pr , local Eckert number Ee , Dufour number Du, second grade 

parameter a and first order chemical reaction parameter, on the dimensionless temperatme 

e (7]) are shown in Figs. 4.11 - 4.20. Figs. 4.21 - 4.29 depict the variation of dimensionless 

concentration field ¢ (17) for different values of Reynolds number Re, Schmidt number Se, Soret 

number Sr, Prandtl number Pr , local Eckert number Ee, Dufour number Du, second grade 

parameter a and first order chemical reaction parameter ,. It is important to mention here 

that we have varied Du and Sr arbitrarily provided that their product is constant keeping in 

mind the studies [70 - 75] . It is obvious from Fig. 4.5 that with an increase in Hartman number 

M radial velocity f ' (7]) decreases in the vicinity of stretching sheet (0 .5 ~ 17 ~ 1) whereas it 

increases away from the stretching sheet (0 ~ 7] < 0.5). In fact the magnetic field retards the 
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fluid particles and slows down the motion of fluid particles in the vicinity of stretching sheets 

but obviously to satisfy mass conservation constraint a decrease in fluid velocity in the vicinity 

of stretching sheets is compensated by an increase in fluid velocity in the central region. This 

gives rise to a cross-over behavior which is obvious from Fig. 4.5. It is noted D.·om Fig. 4.6 that 

radial velocity l' (ry) is decreasing nmction of Reynolds number Re. Basically Reynolds number 

characterizes the viscous effects which are dominant in the vicinity of stretching sheets and 

consequently I' (77) decreases in the region (0.5 ::; 77 ::; 1) near to the stretching sheet whereas 

it increases away from the stretching sheet (0 ::; 77 < 0.5) in order to satisfy mass conservation 

constraint. In the vicinity of stretching sheet the radial velocity l' (ry) increases by increasing 

second grade parameter O!. However it decreases away from the stretching sheets as shown in 

Fig. 4.7. Again this cross-over behavior of I' (ry) is to satisfy the mass conservation constraint. 

Fig. 4.8 elucidates that the magnitude of a..'<ial velocity 1 (ry) is an increasing function of second 

grade parameter O!. Figs. 4.7 and 4.8 demonstrate that dimensionless velocity components in 

radial and axial directions for second grade fluid (O!::f 0) are higher than those of viscous fluid 

(a = 0). Fig. 4.9 shows that the magnitude of axial velocity 1 (7]) is a decreasing nmction of 

Hartman number AI. The magnitude of axial velocity 1 (ry) decreases by increasing Reynolds 

number Re (Fig. 4.10). Figs. 4.5 - 4.7 depict that the boundary layer thickness in radial and 

axial directions decreases by increasing !vI and Re. However, it increases with an increase in O! . 

Figs. 4.11- 4.18 represent that the dimensionless temperatme e (7]) increases by increasing the 

Hartman number M, Reynolds number Re, Schamidt. number Sc, Soret number S7', Prandt.l 

number Pr, local Eckert number Ec, Dufom number Du and second grade parameter O!. From 

Figs. 4.18 and 4.19, one can see that the effects of destructive chemical reaction b > 0) and 

constructive chemical reaction b < 0) on dimensionless concentration field ¢ (7]) are opposite. 

From Figs. 4.21 - 4.26, we can observe that the dimensionless concentration field ¢ (ry) is 

a decreasing function of Re, Se, Sr, Pr, Ec and Du. Fig. 4.27 reveals that dimensionless 

concentration ¢ (7]) increases with an increase in second grade parameter O! . Fig. 4.28 shows that 

for destructive chemical reaction b > 0) , the dimensionless concentration field ¢ (ry) decreases 

while it increases for 'Y < 0 (generative case) as shown in Fig. 4.28. Comparison of Figs. 

4.11- 4.20 with Figs. 4.21- 4.29 indicates that the effects of Re, Se, Sr, Du, Pr , Ee and 'Y on 

dimensionless temperatme e (7]) and t he dimensionless concentration field ¢ (7]) are opposite. 
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Table 4.2 shows the variation of skin friction coefficient Re,. CJ . From this Table, it is obvious 

that skin friction coefficient Re.,. CJ is an increasing iimction of M, Re and CI!. Table 4.3 is 

prepared for the influence of physical parameters on Nusselt number N u and Sherwood number 

Sh. This Table also shows that the Nusselt number Nu and Sherwood number Sh are increasing 

functions of Re, M, Se, ST, Du, PI', Ee, 'Y and 0:. Hence we can conclude that heat and mass 

transfer rates increase when Re, fYI, Se, ST, Du, PI', Ee, 'Y and 0: are increased. 
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Table 4.2. Variation of skin friction coefficient Rer C f for different values of physical parameters. 

Re M a Re"Cj 

0.5 2.0 0.1 2.295862607 

1.5 2.387369042 

2.0 2.474864952 

3.5 2.558678308 

2,0 ·0,0 ·0.1 2.293711299 

1.0 2.432902547 

2.0 2.558678306 

3.0 2.673843959 

1.0 2.0 0.0 1.000000000 

0.10 2.3873u9042 

0.11 2.524979840 

0.12 2.662392197 
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Table 4.3. Variation of Nusselt number N'lL and Sherwood number Sh for different values 

of physical parameters. 

Re M Du Se S1' Pr Ee J a c5 -Nu Sh 

0.5 2.0 0.2 0.7 0.2 0.72 0.2 0.2 0.1 12 0.5572823525 0.1499488398 

1.0 0.6078896512 0.2314349408 

1.5 0.6582551099 0.3147043200 

2.0 0.7083941054 0.3991814640 

2.0 0.0 0.2 0.7 0.2 0.72 0. 2 0. 2 0.1 0.6032644724 0.3893545426 

1.0 0.6584262697 0.3944533395 

2.0 0.7083941042 0.3991814658 

3.0 0.7542785215 0.4036244986 

2.0 2.0 0.0 0.7 0.0 0.72 0. 2 0. 2 0.1 12 0.6423726011 0.2988010699 

1.0 0.2 1.008135891 0.4429357595 

2.0 0.1 1.296355746 0.3921108526 

2.0 2.0 0.2 0.5 0.2 0.72 0.2 0.2 0.1 12 0.6886926506 0.2792291568 

1.0 0.7391194961 0.5875959691 

1.5 0.7931378557 0.9226377462 

2.0 2.0 0.2 0.0 0.0 0.72 0.2 0.2 0.1 12 0.6423726011 0.29880106699 

0.2 1.0 0.7775600060 0.8495350270 

0.1 2.0 0.7487380201 1.3577841090 

2.0 2.0 0.2 0.7 0.2 0.12 0.2 0.2 0.1 12 0.1093003604 0.3142860256 

0.42 0.3971934827 0.3550788689 

0.72 0.7083941016 0.3991814687 

1.02 1.0463556620 0.4470813137 
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(continuation of Table 4.3) 

Re M Du Se Sr Pr Ee 'Y a 6 -Nu Sh 

2.0 2.0 0.2 0.7 0.2 0.72 0.0 0.2 0.1 12 0.051867388 0.3064548595 

0.5 1.693184181 0.5382713766 

1.0 3.334500972 0.7700878937 

1.5 4.975817764 1.0019044110 

2.0 2.0 0.2 0.7 0.2 0.72 0.2 -1.0 0.1 12 -0.1513052154 -4.552303388 

-0.5 0.4509955418 -1.104145829 

0.0 0.6574373924 0.0979681252 

0.5 0.7680094111 0.7552777471 

1.0 0.8404624491 1.195313802 

2.0 2.0 0.2 0.7 0.2 0.72 0.2 0.2 0.0 12 0.6599550320 0.3919055561 

0.10 0.7083941044 0.3991814628 

0.11 0.7131808691 0.3998987391 

0.12 0.7179577502 0.4006142258 

4.5 Final remarks 

The study here examine the thermal diffusion and diffusion-thermo effects on axisymmetric 

flow of thermodynamically compatible second grade fluid between radially stretching sheets 

when viscous dissipation, Joule heating and first order chemical reaction are present. The main 

findings are. 

• Variation of Re on f ' (1}) and f (7]) are similar to that of M. 

• Magnitude of f' (7]) and f (17) for second grade fluid (a =1= 0) is higher than that of viscous 

fluid (0: = 0) 

• There are opposite effects of Re, Se, Du, Sr, Pr, Ee and 'Y on e (7]) and ¢ (17)· 

• Qualitatively, t he effects of Re, M and 0: on the skin friction coefficient Re,. C f' Nusselt 

number N u and Sherwood number Share similar . 
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• Shear stresses increase on surface of stretching sheet with an increase in magnetic field 

strength and non-Newtonian nature of the fluid. 

• Variation of Re, lvI, Se, Sr, Pr, Ee, Dl£, 'Y and a on Nusselt number Nli and Sherwood 

number Sh are similar. 

• Heat flux and diffusion flux can be increased by increasing Re, M, Se, Sr, PI' , Ee, Du, 

'Y and Q. It means that heat and diffusion fluxes can enhanced by increasing strength of 

applied magnetic field or by using second grade fluid instead of Newtonian one. 

• Boundary layer thickness in radial and axial directions decreases when M increase and 

Re while it increases by increasing a . 
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Chapter 5 

Hall and ion-slip effects on 

three-dimensional flow of a second 

grade fluid 

This chapter describes the effects of Hall and ion-slip currents on three-dimensional magneto

hydrodynamic flow of an incompressible second grade fluid. The partial differential equations 

are reduced into the ordinary differential equations by using similarity variables. The resulting 

problems are solved for homotopy solutions. The convergence of derived solutions is ensured. 

The irifiuence of different puysical parameters on t11e dimensioriless veloCities "is exarriined by 

sketching plots. Variation of skin friction coefficients for different involved parameters is seen 

through tabulated values. 

5.1 Definition of problem 

We examine the steady three-dimensional flow of an incompressible second grade fluid bounded 

by a stretching sheet at y = O. The fluid is electrically conducting whereas the stretching sheet 

is non-conducting. In addition, Hall and ion-slip effects are considered. Due to Hall current, 

there is a force in z-direction which induces a cross flow in that direction and hence flow 

becomes three-dimensional "[60,67, 68]. Furthermore, the magnetic Reynolds number is taken 

small and hence induced magnetic field is neglected. 
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The resulting boundary layer problems are 

01£ · 01£ 
u-+vox oy 

1£ ax, v = 0, w = 0, at y = 0; a > 0, 

U -t 0, as y -t 00. 

(5 .1) 

(5.4) 

Here{tt.,v,w) are the veIocity components ·inthe x-,y- and z-diredions,01. (~O)isthemate

rial constant, p is the density of the fluid, II (= p,/ p) is the kinematic viscosity, p, is the dynamic 

viscosity, a is the stretching rate, 0' (= e2n eT e/?TLe) is the electrical conductivity, /3e (= WeT e) is 

the Hall parameter and /3i (= eneBo/ (1 + ne/na) Kai ) is the ion-slip parameter, T e is the elec

tron collision time, me is the mass of electron, We is the cyclotron frequency, ne is the electron 

number density, na is the neutral particle density, Ka; is the friction coefficient between ions 

and neutral particles and Bo is applied magnetic field. 

In order to non-dimensionlize the problem, we introduce the following dimensionless vari-

abIes 

u = ax!, (77), v = -vavf (7]), w = axg (7]), 7] = jf;y. (5.5) 

With the help of introduced dimensionless variables in above equation, Eqs. (5.1) - (5.4) 
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become 

fill -(1-+ j3e~:)2-+/3; [(1 + /3e/3i) I' +/3eg] + ff" - (.t')2 + a [2I'f'" - ff(iv) + U")2] 

+a [(g') 2 + ggll] = 0, (5 .6) 

f (0) = 0, I' (0) = 1, I' (00) = 0, (5.7) 

gil + (1 + /3e;)2 + /3; [/3e I' - (1 + /3e/3i)g] - I'g + fg' + a [I'g" - fgll'] = 0, (5.8) 

9 (0) = 0, 9 (00) = 0, (5.9) 

where a (= ala/Jt) is the dimensionless second grade parameter and !vI is the Hartman num

ber. It is noted that /3e = 0 corresponds to the case when Hall current is absent and /3i = 0 

leads to the situation when ion-slip current is not present. It is also worth mentioning that 

for /3e = 0 there is no cross flow in z-direction and consequently flow becomes two dimen-

sional i.e. 9 = O. It is also fOlmd from Eqs. (5.6) and (5 .8) the Lorentz force (in the 

presence Hall and ion cUlTents) has two components ( f3 ~J)2 f32 [(1 + /3e/3i ) f' + /3eg] and 
1+ e , + e 

+ (1+f3e;~)2+(3~ [/3ef ' - (1 + /3e/3i) g] . The x-component of Lorent.z force is negative and it in x-

direction behaves as drag force . Since 9 (1)) is very small as compared to f' (17) (See Figs. 

5.3 - 5.10) . Therefore ( f3 ~tf)2 (32 [/3ef' - (1 + /3e/3i) g] is positive. Hence component of Lorentz 
1+ • , + e 

force in z-di.J:ection acts as assisting force and increases the lateral velocity ~q (1]) . 

The skin friction coefficients Cfx and Cgx are given by 

J.L 8u l +a [U 82u +v82u + 28U8u+8W8w] 1 
T xy I y=O 8y y=O 1 8x8y ay;: Bx By 8x By y=O 

P (ax)2 = p (ax)2 

(Rex )-1 /2 (1 + 3a) f" (0) , (5.10) 

T zyly=o 

P (ax) 
2 = 

(Rex )-1/2 (1 + 3a)g' (0) (5.11) 

where Rex (= ax2 / 1/) is the local Reynold number. 
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5.2 Solutions by homotopy analysis method 

In order to proceed for the homotopy solutions we express f(77) and g (17) by the set of base 

functions 

{ 7/" exp (-n17), k 2 0, n 2 0 } (5. 12) 

as follows 

Tn Tn 711. Tn 

f(7]) = ag,o + L L a~~,n7]k exp( -n7]), g(7]) = L L b~~,n7]k exp( - n7]) , (5.13) 
n=1 k=1 n=Ok=O 

in which a~,n and b~,n are the coefficients. The initial guesses after invoking the so called rule 

of solution expression can be written 

fo (7]) = 1 - exp (-17), gO (7]) = O. (5.14) 

The definitions of auxiliary linear operators £ J and £ 9 along with properties are 

d3 f df 
£ J [J (7])] = d7]3 - d7] ' (5.15) 

£g [C4 exp (7]) + Cs exp (-77)] = 0, (5.16) 

where Ci (i = 1 - 5) are the arbitrary constants. 

5.2.1 Zeroth-order deformation problems 

The corresponding problems at this order are 

(1- q)£J [j(77;q) - fO(77)] = q11,f NJ [9(77;q) ,j(17;q)] , 

j(O' ) = 0 8j(7]; q) = 1 8
2 

j(7]; q) = 0, 
, q , 877 ' 87P 

'7=0 "7-+ 00 

(5.17) 

(1 - q) £ 9 [9 (7]; q) - go (77)] = q11,gNg [9 (7]; q) , j (17 ; q)] , 

'(0' )=0 8g(7];q) I =0 g , q , 8 ' 
7] 1)-+00 

(5.18) 
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in which q E [0,1] is the embedding parameter and "hI, "hg are non-zero alL'(iliary parameters . 

Nonlinear operators Nf and Ng are 

(5.19) 

For q = a and q = 1, above zeroth deformation Eqs. (5 .17) and (5.18) give 

(5.21 ) 

](T]; 1) = f (T]) , §(T]; 1) = g (T]) (5 .22) 

Expanding ](T]; q) and [](T]; q) in Taylor's series with respect to q, we have 

00 00 

](77; q) = fo (T]) + L fm (T]) q"t, §(77; q) = go (T]) + L gm (77) qnt, (5 .23) 
m=1 m=l 

where 

q=O 

1 amg(T]; q) I 
gm (T]) = - , ant · 

m. T] q=O 
(5.24) 
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5.2.2 Higher order deformation problems 

The associated problems at this order are 

Rfn (f711-l (7] ), gm-l (7])) 

R~ (fm- l (rl ), gm- l (7])) 

g111.(O) = 0, gm( OO) = 0, 

I _ { O, m:::; 1, 
Xm -

I , m > 1, 

m-.l 

+2: [1n (77) 1:'n-1-n (rJ) - 1~ (7]) 1:n- 1-n (7])] 
n=O 
m-l 

+0: L [21:l (7]) 1:::-1-n (7]) - 1:1, (7]) 1:!t'-I-n (7])] 
71.=0 

/I () M [ (3e1:n-l (7)) ] 
gm-l 7] + 2 2 

(1 + (3e(3;) + (3e " - (1 + (3ef3.i ) gm- l (7)) , 

m-l 

+0: L [1:1, (rJ) g;;1.-1-n (77) - 171. (7]) g;;~,- I -n (7])] 
n=O 

17l-1 

(5.25) 

(5 .26) 

+ L [111. (7]) g~t-l-n (7]) - 1~ (7]) gm-l-n (7])] , (5 .28) 
n=O 
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The general solutions of problems given by Eqs. (5.25) and (5 .26) are given by 

1(7}) = J*(7}) +Cr+Cfexp(7})+Q"exp(-7}) , 

9 (7}) . g* (7}) + C4' exp (1]) + 05" exp (-7}) , 

(5.29) 

(5.30) 

where f * (1]) and g* (7}) are the particular solutions of the problems consisting of Eqs. (5.25) 

and (5.26) . 

5.3 Convergence of HAM solutions 

It is clear that the derived solutions consist of auxiliary parameters. The convergence and rate 

of approximation of series solutions given by Eqs. (5 .29) and (5.30) strongly depend upon the 

values of auxiliary parameters. Hence the "hl,g-curves are plotted (Figs. 5.1 and 5.2). These 

Figs. elucidate that the admissible values of "hI and"hg are -1.05- S "hl S -0.65 and -1.2- S 

lI'g S -0.6. All computations are performed when iII = il'g = - 0.9. In order to ensme the 

convergence of solutions, Table 4.1 is made. This Table clea.rly shows that the convergence is 

obtained at 25th order of approximations. 

Table 5.1. Convergence of HAM solutions when },if = (3i = (3e = 0.5, a: = 0.1 and "hI = h 

- 9 = -0.9. 

Order of approximations 1" (0) g' (0) 

1 -1.205344828 0.1241379310 

5 -1.177879701 0.1128106267 

10 -1.178433731 0.1130714946 

15 -1.178434982 0.1130721427 

20 -1.178434970 0.1130721353 

25 -1.178434970 0.1130721354 

28 -1.178434970 0.1130721354 
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5.4 Results and discussion 

The purpose of this section is to see the influence of Hartman number M, second grade para

meter G, Hall parameter f3 e and ion-slip parameter f3i on the dimensionless tangential velocity 

l' (17) and lateral velocity 9 (17)· Figs. 5.3 - 5.6 describe the effects of M, G, f3 e and !3i on the 

dimensionless tangential velocity l' (77) and Figs. 5.7 - 5.10 show the variation of dimensionless 

lateral v.elocit.Y ·9 (17.) Jar various values ofM,G, f3i .and {3.t!.' .Fig. 5.3 shows .that .dimensionless 

tangential velocity f' (17) decreases with an increase of Hartman number A1. This Fig. also 

indicates that the boundary layer thickness decreases when ]vI is increased. Actually when 

M increases the drag force -(1+.Be~~)2+.B~ [(1 + f3ef3i) l' + (3eg) increases and consequently f' (17) 

decreases. From Fig. 5.4 one can see that l' (17) increases when second grade parameter G 

increases and consequently the bOlmdary layer thiclmess increases. Dimensionless tangential 

velocity f' (17) is an increasing function of Hall and ion-slip parameters (Figs. 5.5 and 5.6). Fig. 

5.7 witnesses that the lateral velocity 9 (17) increases with an increase in Hartman munber 111. 

In fact assisting force (1+,Be~~)2+.B; [{3ef' - (1 + f3ef3i) g) increases when M is increased. Fig. 5.7 

also shows that dimensionless lateral velocity 9 (7)) = 0 for M = 0 (f3e = 0) which is expected 

since the flow in z-direction is due to Hall force. Fig. 5.8 depicts that 9 (7)) decreases near 

the stretching sheet by increasing second grade parameter G but it increases away from the 

stretching . sheet . . Fig. 5.9 represents .that .the dimensionless .lateral v.eloci ty . 9 (77) increases when 

Hall parameter f3e is increased. Furthermore, it is also noted from Fig. 5.9 that for !3e = 0 

(in the absence of Hall current) 9 (17) = O. Lateral velocity 9 (77) is a decreasing functions of 

ion-slip parameter f3i (see Fig. 5.10). Table 5.2 is constructed to analyze the influence of para

meters on the skin friction coefficients (Rex )1/2 CJx and (Rex )1/2 Cgx in the x- and z-direction 

respectively. From this Table one can further see that the skin friction coefficients (Rex )1/2 Cjx 

and (Rex )1/2 Cgx increase when M and G are increased but decrease with an increase of f3i' 

Fl:om this table one can also see that effect of f3e on (Rex )1 /2 Cfx and (Rex )1/2 Cgx is opposite. 
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M = f3e = f3;. = 0.5, a = 0.1 
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Fig. 5.1. hf-curve of f" (0) at 13th order of approximation. 
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Fig. 5.2. hg-curve of g' (0) at 13th order of approximation. 

79 



1 

0.8 

0.6 
_s 

-'<-

0.4 

0.2 

0 
0 1 

fJe = fJi = a = 0.5 

2 3 4 

- M = 0.0 

- - - M= 1.0 

5 

M = 20 
. M=25 

6 7 

Fig. 5.3. Influence of Hartman number J\ll on dimensionless tangential velocity l' ("I) . 

1 

0.8 

0.6 
'B 
~~ .... 

0.4 

0.2 

0 
0 1 2 3 4 

17 

1- "' - 0.0 1 I U-. I 

1- - - a = 0.2 1 
\ - - a=0.4 1 
j' . a=G6 1 
I ' 

5 6 7 
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Fig. 5.5. Infiuence of Hall parameter f3e on dimensionless tangential velocity f' (7]) . 
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Fig. 5.6. Influence of ion slip parameter f3i on dimensionless tangential velocity l' (7]) . 
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Fig. 5.8. Influence of second grade parameter a on dimensionless lateral velocity g (7]). 
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Table 5.2. The va.riation of skin friction coefficients for various values of M, a, f3 e and f3i 

when iiI = ·hg = -0.9. 

M a f3e f3i - (Rex )1/2 G/x (Rex )1/2 Cgx 

0.0 0.1 0.5 0.1 1.17479 0.000000 

0.5 1.38741 0.112205 

1.0 1.57482 0.190247 

1.5 1.74309 0.252128 

1.0 0.0 0.5 0.5 1.30575 0.118612 

0.1 1.53197 0.146994 

0.2 1.73331 0.172694 

0.3 1.91639 0.196193 

1.0 0.1 0.0 0.5 1.65837 0.000000 

0.5 1.63573 0.044114 

1.0 1.61020 0.080085 

1.5 1.58361 0.108541 

1.0 0.1 0.5 0.0 1.58674 0.203916 

0.2 1.56338 0.177857 

0.4 1.54197 0.156350 

0.6 1.52240 0.138434 

5.5 Closing remarks 

In this chapter we have discussed the Hall and ion-slip effects on three-dimensional MHD steady 

flow of an incompressible second grade fluid. The salient features of the conducted analysis can 

be summarized in the points given below. 

• Effects of M and a on dimensionless tangential velocity f' (7]) are opposite. 

• EffeCts cif f3e and Pi on f ' (rj) are sirriilarin qualitative sense. 

• Dimensionless lateral velocity 9 (7]) is an increasing function of M. 

• Behaviors of M and f3i on the dimensionless lateral velocity 9 (7]) are opposite. 
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• Behavior of a on the dimensionless tangential velocity f'(17) and lateral velocity g(77) is 

. different . 

• Skin friction coefficients (Re:c)1/2 C fx and (Re:c)1/2 Cgx are increasing functions of !vI and 

Q. However (Rex )1/2 Cfx and (Rex //
2 Cgx decrease when (3i is increased . 

• Behavior of (3c on (Rex)1/2 Cfx and (Rex )1/2 C gx is opposite. 
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Chapter 6 

Hall and ion slip effects on 

magnetohydrodynamic 

three-dimensional flow of a second 

grade fluid with heat transfer 

The flow analysis of previous chapter with heat transfer is analyzed here. Energy equation 

including viscous dissipation and Joule heating results in the relevant mathematical expres

sion. The modelled differential system is solved for convergent series solution. The effects of 

Prandtl number (Pr), local Eckert number (Ec) , Hall parameter ({3e) , ion-slip parameter ({3i) 

and Hartman number (M) on the dimensionless temperature are analyzed graphically. A com

parative study between the present and existing limiting results is carefully made. Convergence 

regarding the obtained solution is discussed and shown. Nusselt number is analyzed for various 

values of stmdry parameters. 

6.1 Problem formulation 

Weconsiderheattrallsfercharacteristics in steady, laminar and three-dimensional MHDflow 

of an incompressible second grade fluid over stretching surface coinciding at y = O. The fluid 
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is electrically conducting and stretching surface is electrically non-conducting. A uniform mag

netic field Bo is applied parallel to y-axis. The effects of Hall and ion-slip currents are taken 

into account. Due to Hall current, there is a force (Hall force) in z-direction which induces 

a cross flow in that direction and hence flow becomes three-dimensional (see [60 ,67,68]). Fur

thermore, viscous dissipation and Joule heating are considered. The steady thermal boundary 

layer equation after taking into account the energy equation is expressed as 

aT aT 
1L- +V ax ay 

with appmpriate conditions 

T Tw , at y = 0; 

T --> Too as -y --> 00. {B.2) 

Here for the convenience of readers we define 1L, v and w as the velocity components in x, y 

and z directions , O!l (2: 0) is the material constant , v is the kinematic viscosity, p is the density 

of fluid, (J (= e2neTe/me ) is the electrical conductivity, (3e (= weTe) is the Hall parameter, (3i 

(= eneEo/ (1 + ne/na) Kai) is the ion-slip parameter, Te is the electron collision time, me is 

the mass of electron, We is the cyclotron frequency, 71e is the electron number density, 71a is the 

neutral particle density, Kai is the friction coefficient between ions and neutral particles, ]{c is 

the thermal conductivity and cp is the specific heat of the fluid . 

The following ~imilarity variables 

I r::-:: ) T - Too fa 
u = ax! (ry), v =-yav!(ry), w =axg(ry), B(ry = Tw-Too' ry = y-;;Y , (6.3) 
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along with E qs. (6 .1) and (6.2) provides 

8"+Prf8'+ PrEcM [(fl) 2+ 2] PrEc[(f,, )2+( ,)2] 
(1 + ,Be,BJ2 + ,B; . 9 + . 9 

+aPr Ec [f' (g,) 2 - fg'g" - ff"f'" + f' U,,) 2] = o. (6.4) 

8(0) = 1, 8(00) = 0, (6.5) 

Here 
ala ~1 = aB5 J.Lcp (ax) 2 

a = -;;:' m pa ' Pr = Kc' Ec = Cp (Tw - Too)' 

respectively are called the second grade parameter (a), the Hartman number CN!), the Prandtl 

number (Pr) and the local Eckert number. Here it is worth mentioning that the case for ,Be = 0 

corresponds to tbe situation wben Ra1l currenfis absent and ,Bi = 0 corresponds to tbe situation 

when ion-slip current is not present. Ec = 0 leads to the situation when Joule heating and 

viscous dissipation are not significant. It is also noted that Joule heating is proportional to 

M and inversely proportional to,Be and,Bi (see expression (1+~::i)~~f3~ [U')2 + g2]). Hence it 

is expected to increase dimensionless temperature with an increase in 1.1 whereas temperature 

decreases by increasing ,Be and ,Bi . 

The physical quantity of interest is Nusselt number Nux which is defined by the following 

expression 

_ xqw _ :z; .r aT I _ ( )1/2' ( ) 
Nux - K - - K (T _ T ) Rca - - Rex 8 ° , 

c c w 00 Y y=O 
(6.6) 

where the local Reynolds number Rex = ax2 / /J . 

6.2 Solutions by homotopy analysis method 

6.2.1 Zeroth-order solutions 

HAM solution for 8 (r,) in the form of base functions 

.{ T,k exp (-nT/) , k ~ 0, n ~ o} 1 (6.7) 
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can be expressed by the following infinite series 

m m 

8(7)) = L I>~,n7l exp( -11,77) , (6.8) 
n=1 k=l 

where C~," is the coefficient. By rule of solution expression, the initial guess eo (T)) and linear 

operator £ earechosen .as 

eo (T)) = 7)exp (-7)) + exp (-7)), 

d2e 
£() [eo (T))] = -d 2 - e. 

77 

Above mentioned linear operator £ e satisfies the following property 

£e [C1 exp (7)) + C2 exp (-77)] = 0, 

whereCi(i = I, 2}arethearbitraryconstants. 

6.2.2 Zeroth order deformation problems 

The problem statement here is 

e (0) = 1, 8(00) = 0, 
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(6.9) 

(6.10) 

(6.11) 

(6.13) 



while th€ddinitionsofnonlinearoperatof Neis 

In view of Taylor's theorem, one can expand 

DO 

B(7]i q) = eo (7]) + L Bm. (7]) qm, 
n=l 

6.2.3 Higher order deformation problems 

We write the deformation problems at the mth-order in the following expressions: 

£0 [Bm(7]) - XmBm-l(7])] = 7z.gR?n (Bm- 1 (7])), 

Bm(O) = 1, Bm(oo) = 0, 

{

o,rn:S;l, 
X = 

m 1,nt> 1, 
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(6.15) 

(6 .16) 

(6.17) 



m-1 

B~,.-1 (rJ) + Pr L f.1t (7]) B~.-l-n (7]) 
71.=0 

111-1 

+ Pr Ec L [I:: (7]) f:~-l-n (7]) + g:t (7]) g:n- 1- n (7])] 
n=O 

n m-"1 

-:aPrEcLL !m- 1- n(7]) !::'~I(7]) if." (7]) 
1=0 n=O 
n 111-1 

+a PI' Ec L L f~l-l-n (1)) f:~-I (1)) ff' (7)) 
1=0 n=O 

71. 111.-1 

+a Pr Ec I: I:J~-l-n (7])9:1-1 (7])9/(7]) 
1=011.=0 
n 111-1 

-a Pr Ec L L fm-1-n (7]) 9:1- 1 (7]) 9i' (7]) ) 
·1=0 n=O 

If B* (7]) denotes the particular solution of problem (6 .17) then general solution is 

(6.18) 

(6.19) 

where Ct and CIt aTe the arbitrary constants which are determined by using the boundary 

conditions (6.17). 

-6.-3 -Convergence of HA-M solutions 

This section aims to discuss the convergence of series solution (6.19). As pointed out by Liao 

[93] the convergence of HAM solution(s) and its rate of approximation strongly depend upon 

the values of auxiliary parameter(s). Hence 7to-curve for temperature is plotted in Fig. 6.1. 

This Fig. clearly indicates that the admissible range for 7t() is -1.25 :::; 71.() :::; - 0.45. Table 

6.1 is constructed just to ensure the convergence of solution. The tabulated values show that 
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convergence is achieved at 40th order of approximation. 

M = 1,,Be = ,Bi = 0.5, Ec = 0.2, Pr = 0.72, Q:' = 0.2 
O.--------------------------------n 

-0.2 ' . 

~-O.3 · 

...:OA · 

-'0:5 

- 1.5 - 1.25 -1 - 0.75 - 0.5 - 0.25 0 
lie 

Fig. 6.1. he-cUl've of 8' (0) at 12th order of approximation. 
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Table 6.1. Convergence of HAM solution when M = 1, /3e = /3i = Ec = 0.5, a = 0.1, 

Pr = 0.72, 'hf = 'h9 ='ho = - 1. 

Order of approximations _at (0) 

1 0.121434 

5 0.146520 

10 0.141908 

15 0.138153 

20 0.13615 

25 0.13450 

30 0.13451 

35 0.13412 

40 0.13401 

42 0.13401 

44 0.13401 

6.4 Results and discussion 

Here in this section we have examined the influence of pertinent parameters on the dimen

sionless temperature a (!}) . Fig. 6.2 reveals that dimensionless temperature a (77) increasers by 

increasing Hartman number M. This Fig. also shows that thermal boundary layer thickness in

creases when Hartman number Ai is increased. The temperature a (77) increases when Hartman 

number increases. As a result the thermal boundary layer thickness increases. It is found from 

Fig. 6.3 that the fluid temperature a (7]) decreases by increasing Hall parameter /3e. Since tem

perature increases with an increases in Hartman number fYf and an increase in Hall parameter 

/31'. results to a decrease in Hartman number M.(see expression PI' EcM/ ((1 + /31'.(3;,)2 + /3;)). 
Consequently temperature decreases. From physical point of view it can be concluded that Hall 

current prevents Joule heating. Similar arguments for the behavior of ion slip parameter /3i on 

dimen£ionless tempel'atmea(7])canbeestabli£hed (£eeFig.6.4). Itiso bserved ·fl'omFig. 6.5 

that an increase in Pl'andtl munber Pr leads to a decrease in the dimensionless temperature 

e(7]). Note that PI' < 1 cOlTei'!ponds to the fluids for which momentum difi'usivity is less than 
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thermal diffusivity and vice versa for PI' > 1. It is also noted from Fig. 6.5 that an increase in Pr 

r-esults in thinning the thermal boundarylay-er. -Fig.6 ,6-depictsthat dimensionless temperature 

e (1/) increases when local Eckert number Ec is increased. Physically it means that an increase 

in external magnetic field causes to increase kinetic energy of fluid particles. This increase in 

kinetic energy implies an increase in Joule heating (Ohmic dissipation) and viscous dissipation 

and hence give rise in temperature. Thus effect of local Eckert number Ec is opposite to that of 

-PI' on dimensionless temperatuTe B (1]) . Table -6:2 gives the compaTisoll -between the present and 

aheady existing results for a special case when M = (3i = (3e = Ec = O! = O. This Table shows 

an excellent agreement between the present and existing limiting results. Table 6.3. is con

stl'ucted to analyze the effects of diffel'entparameters on local Nusselt number _(Rex) - 1/2 Nux

This Table shows that the local Nusselt Number (Rex)-1/2 N u x is an increasing function of O!, 

(3i and PI' whereas it decreases when JIII, (3e and Ec are increased. In fact heat transfer rate 

increases when O!, (3i and PI' are increased whereas it decreases by increasing NI, (3e and Ec. 
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Fig. 6.5. Influence of Pnl.1ldtl llllllber Pr on dimensionless temperature e (7/) . 
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Fig. 6.6. Influence of local Eckert number Ee on dimensionless temperature () Cry) . 
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Table 6.2. Comparison of the values of e' (0) for various values of Pr when A1 = Pi = pe = 

Be = a = O. 

Pr Gupta and Gupta [42] Grubka and Bobba [43] Ali [44] Salem and EI-Aziz [67] 

0.7 -0.45255 -0.45605 

1.0 -0.5820 -0.5820 -0.59988 -0.58223 

10:0 -2.3080 2.29589 -2 .307£9 

98 

present case 

-0.45394 

-0.58197 

-2.30806 



Table 6.3. Variation of Nusselt number Nux for various values of M, a, f3e ' f3i Pr and Ec 

when "he = "h.f = "hg = - 1. 

M a p f3 i Pr Ec - (Rex )- 1/2 Nux 

0;0 0.1 0."5 0."5 0.12 0."5 0.322"583 

0.5 0.221351 

1.0 0.135440 

1.5 . 0.061121 

1.0 0.0 0.5 0.5 0.72 0.5 0.126223 

0.1 0.136803 

'0.2 0.144720 

0.3 0.150787 

L O' :0.1 . 0:0 . 0.5 . . 0.322583 

0.5 0.221351 

1.0 0.135440 

1.5 0.061121 

·1.0 0.1 · ·0;5 0;0 · 0.72 · 0;5 · ·0.096266 

0.5 0.142932 

1.0 0.174617 

1.5 0.196692 

1.0 0.1 0.5 0.5 0.02 0.5 0.122447 

0.37 0.115851 

0.72 · 0.135440 

1.07 0.151798 

1:0 ·0.1 · ·0.5 0.5 ·0.72 . ·0:0 .. 0.422768 

0.5 -0.134301 

1.0 0.154166 

1.5 0.442633 
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6.5 Final remarks 

This chapter investigated the effect of heat transfer on MHD steady three-dimensional flow of 

an incompressible thermodynamically second grade fluid in the presence of Joule heating, Hall 

and ion-slip currents and viscous dissipation. Main findings of the analysis can be summarized 

as follows: 

• Behavior of lvI is opposite to t hat of f3 e, f3i and Pr on B (7]) but similar to that of Ec. 

• ..Effec.ts of f3.e .and .f3.i .on jl(TJ)andB·(TJ') .are np.posite. 

• Qualitatively, influence of f3i on 9 (77) and B (77) is opposite. 

• Skin friction coefficient (Rex) 1/2 Grc is an increasing function of M and a whereas it 

decreases when f3e and 13i are increased. 

• (Rex)1 /2 Ggo; increases by increasing M , a and 13e and decreases wit h an incr ease in 13'i' 

• Effects of Pr and Ec on B (7]) are opposite. 

• (Rex )-1/2 Nux is an increasing function of a, 13i, P r and Ec but it decreases when f3e is 

-increased. This witnesses that heat -transfer from surface into fiuid increases when a, Pi 

and Pr are increased whereas it decreases by increasing lv!, f3e and Ec. 

• Thermal boundary layer thickness can be controlled through f3e, f3i and Pr. 
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Chapt-er 7 

Soret and Dufour effects on the 

mixed convection three-dimensional 

flow of a second grade fluid subject 

to Hall and ion-slip currents 

Thisffiapterinvestigates the -Soret and Dufomeffects onmi.xedcon vectionboundary layer 

three-dimensionalfiow of an electrically conducting second gradefiuid over alinearly stretching 

vertical sheet. Hall and ion-slip effects are retained in the presence mass diffusion of chemically 

reacting -species. Joule heating is present. The govel'ning pal'tial differential equations are 

transformed into the ordinary differential equations using appropriate transformations. The 

-resultirrg -prubhmIs -are -sulved 'by rwmutopy cLIfalysis 'methud(HAM) _ A l.:urrwan.Ltive ,ItU"dy 

between the present and existing limiting results is shown. The variations embedded flow 

parameters on dimensionless velocities, temperature and concentration field are examined. The 

skin friction coefficients, Nusselt number and Sherwood munber for different values of involved 

parameters are analyzed. 
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7.1 Desc-rip-t-ion -of -t-he :pro-blem 

Here we examine the steady and laminar three-dimensional mixed convection bOlmdary-layer 

flow of a second grade fluid over a linearly stretching vertical sheet at y = 0. T he fluid is 

electrically conducting and stretching surface is insulating. A sheet is maintained at constant 

temperature Twand ·constant ·concentration :Cw . :However, T ooand 'Coo ·arethe temperature 

and concentration regarding ambient fluid respectively. A uniform magnetic field perpendicular 

to sheet isappliedandHall,ion~slipsandbuoyancyeffectsare taken into .account. Magnetic 

Reynolds munber is small and therefore induced magnetic field is neglected. Due to Hall current, 

there is a force (Hall force) in z-direction which induces a cross flow in that direction and hence 

'fluw :Let:UII1BB -three-ililI1l::l11BiuHcd("Bee[60,·67,68]) . :PhyBit:"cil -ulDdl:il 'is -gIvBn'in 'Fig. 7.'1. Vl:iluiity, 

temperature and concentration fields do not depend upon variable z . This assumption is valid 

because stretching sheet is ofin£nitevtidth in z-direction. Hence V = [u (x,y) ,v(x,y) ,w(x,y)] , 

T = T(x , y) ,C =C.(x,y) . Moreover, viscous dissipation,.Jouleheating, higher order chemical 

reaction, therma1-diffusion and diffusion~thermo effects are considered. The steady 'boundary 

layer equations for present flow are 

(7.1) 

102 



x-axix 

1 
j 

u=a.xi 
g-

Bo 

i Tw,C" Too, C", 
0 y-axix 

1 
, Bo 

.U = .llX .1 

Fig. 7.1. GeometJ:y of the problem and coordinate system. 

The relevant boundary conditions are 

u ax , v = 0, w = 0, T = Tw, C = Cw at 

'U --+ 0, T --+ Too , C --+ Ceo as .y --+ 00. 

?l = 0 1:1 , 

(7.6) 

In above equations tt, v and ware the velocity components in the x-, y- and z-directions, 

CYI (20) is the material constant, p is the density of fiuid, a (= e2neTe/me) is the electrical 

conductivity, f3e (= WeTe) is the Hall parameter, f3 i (= eneBo / (1 + 7l.e/na) ]{ai) is the ion

slip parameter, where T e is ·the ·electrollcollision ·time, ·me is the mass ·of ·electl'Oll, We is the 

electron frequency, ne "is the e1ectronnuniber denSity, nais neutralpartiele density, Kai"is the 

frictionc.oefficient .betweenions . and neutral particles, Kc is the thermal .conductivity, J{T .is 

the concentration susceptibility, Tm is the mean temperature of the fiuid, ]{l is the chemical 

reaction constant, D is the coefficient of mass diffusivity, Cp is the specific heat of fiuid, g is 

the gravitational acceleration, f3T is the coefficient of thermal expansion, f3c is the coefficient 

of expansion with concentration and n( n = 1, 2, 3) is the order of chemical reaction. 
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Defining 

u = ax!, ('T}) , v = -vavf ('T}), w = axg ('T}), 

T - Too C - Coo ~ 
8('T})=T -To ' ¢(7])=C -C ' 7]= . ~y, 

W 00 woo · 

-equations. (7.1)- (7.5) can be pl'eSent-edas 

jill _ M [(1 + (3e(3d[ + ~egl + j f" _ (J,) 2 + .GrB +.Gc.¢ 
(1 + (3e(3i) + (3e 

+ a [21' 1'" - ff(iv) + (J,,) 2 + (g,)2 + gg"] = 0, 

" AI ['( ]" 9 + 2 -~ (3ef - 1 + (3e{h) 9 - j 9 + j 9 
(1 + (3e(3i ) + (3e 

+a[.f'g" - }g"'] = 0, 

8" + Pr f8' + Pr Ec~I 2 [(J,) 2 + g2] + Pr Ec [(J") 2 

(1 +.(3e(3i) + (3e 

+ (g') 2] + Pr Du¢" 

+ aPr Ec [f' (g,) 2 - fg'g" - ff" f'" + f' (J,,) 2] = 0, 

¢" + Scf¢' + SrSc8" - Sc,q/l = 0, 

and boundary ·{}onditionsnoware 

in which 

f(O)=O, 1'(0)=1,1'(00)=0, 

g(O) = 0, g(oo) = 0, 

8(0) = 1, 8(00) = 0, 

¢(O) = 1,(/) (00) = ·0, 
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(7.10) 
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are respectively the Hartman number, the second grade parameter, the Prandtl number, the 

local Eckert number, the Schmidt number, the Soret number, the Dufour number, the chemical 

reaction parameter, the local Grashof number due to temperature differences and the local 

Grashof number due to concentration differences. It is worth mentioning to note that the case 

for J3 e = ·0 ·corresponds to the -si tuationwhen Hail · current i-sabsent ·and l3i = 0 . corresponds to 

the case when ion-slip ClUTent is not present. It should be mentioned that 'Y > 0 corresponds 

to destructive chemical reaction, 'Y < 0 indicates a constructive chemical reaction and 'Y = 0 

holds when thP.J·.ei<;nn.rb.emic::al .T.P..8.c.tiDn.o.r.clll'l'iugiu theflnw.T.egi..mB. Ftu.theJ'mor.e,mr Dr >.0, 

Gc > 0 buoyancy forces assist the flow whereas G1' < 0, Gc < 0 corre~ponds to the opposing 

flow. The skin friction coefficients Cr", Cgz ' Nusselt number Nux and Sherwood nUlllber Shx 

are · defined by the following expressions 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

where Rex is -the local Reynolds number , Twx, T wz -shear -stresses in the x- ·and .z-directions,qw 

is the 'heat flux and "fLw is the mass flux at the stretching slirrace. lhese physical quantities are 

defined ·bythefollowinge.xpressions 
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7,2 .solutions by homotopy -analysis -method 

7.2.1 Zeroth-order solutions 

For HAM -solutions we write 1(1]), g(1]) ,0 (1]) and ¢(1]) in the .form·ofbasefunctions 

{rl exp (-:P7]) , k > 0, .p.?:. o} , (7.17) 

by the ·following expressions 

m m 

ag,o + L L ci~~,p7l exp( -prj), (7.18) 
p=lk=l 

m m 

L L b':n,I1]k exp( -P1]) , (7.19) 
p=lk=l 

l1t m 

L E c':n,p7l-exp ( -P7) ), (7.20) 
p=lk=l 

m 7n 

¢(77) L L d':n ,p7lexp( -P1]) , (7.21) 
p=lk=l 

where . a;",p,b~.,p,C~t,p .and . d~.,pare the coefficients. Employing rule of solution . expressions, the 

initial guesses and linear operators £ J, £g, £() and £4> are chosen of the form 

fa (1]) = 1 - exp (-7]) , 

gO (7]) = 0, 

1 
BO(.7)) = '21) exp (-:7)) + exp( -1]), 

1 
¢o (1]) = '21] exp (-:-1]) + exp (-1]) , 
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(7.23) 

.(7.24) 

(7.25) 



£J [f (1))] = 
d3f df 
d173 - d1i ' 

1:9 [g(1))J = 
d2.g 
d1)2 - g, 

£ e -[ 8 (1) )] = d28 
;[2-8, 

,1) 

£¢ [4> (1))] = d24> 
d1)2 - 4>. 

The linear operat ors ..£/, ..£g, ..£eand ..,£.", have t he following .properties 

£1 [01 +02 e>.."]) (1)) + C3 e>.."]) (- 1))] = 0, 

£g [C4 exp (1)) + C5 exp (-1))] = 0, 

£e [C6 exp (1)) + C7exp(-1))] = 0, 

£¢ [Cs exp (17) + C9 exp (-7))] = 0, 

where C i (i = 1 - 9) are the arbitrary constants. 

7.2.2 Zerot-horder 'defornIation problems 

The ·problems ·at the zeroth order -satisfy 

(1 - q)£ j [j(1); q) - fO(1))] = 

(1 - q)£g [g(1); q) - gO(1))] = 

(1 -q)£e [e (7) ;q) - 80(1))] = 

(1 -q)£¢[¢(1);q) - 4>0(7))J = 

q7Lj N j [jeri; q), g(1); q) , e(1); q) , ¢(1); q)] , 

q1LgN g [g( 1); q), j(1); q) , e(1); q), ¢( 1); q)] , 

q11.eNe [e(1) ; q) ,g(7);q), j(1);q), ¢(1);q)] , 

qllyt;N¢ [8.(17;q), g(7) ;q) , j( 1); q) , ;);(7); q)], 

J(O; q) = 
aj(1); q) 0](7); q) 

0, = 1, = 0, .an .a7) 
1)=0 . 1]->00 

9(0; q) ag(1);q) I = 0 
0, .81) . 1]->00 ' 

e(O;q) 1, 61(00 ; q) = 0, 

¢(O; q) 1, ¢(oo; q) =0. 
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.(.72.7) 

(7.28) 

(7.29) 

(7.30) 

(.7:31) 

(7.32) 



The. llillllillear Dp£'J~tDl'B ».j-, .Ng , J.fe, 11Jld »'1 .are £'.xPl"f'J;\s.eci byth.e fol1owing f'.xprf'ssi.ons 

[

A • • A ] a2g [a1('T}i q) a2g('T}i q) • a3g('T}i q)] Ng g('T}; q), f('T}; q), e('T}; q), ¢('T}i q) = Q 2 + a a a 2 - f('T}; q) a 3 
. .u17 .. 7) . 77 . " 1) 

+ f·C· )ag('T};q) - 'C" . )a1C'T}iq ) + M I f3eaj~~;q) J (734) 'T} , q Q 9 77, q a 2 ') , . 
U77 77 (1 + f3 e f3i) + f3; - (1 + f3 e f3i) g(77; q) 

2' • A 

[

• • A , ] a e(17i·q) • aeC'T}iq) 
Ne eC'T}i q), 9C'T}i q), fC'T}; q), ¢C'T} ; q) = a'T}2 + Pr fC'T}i q) a77 

+ PrEcM Tla/(7];q)\ 2.
1

. 2 l 
( f3. (3)2 [32 "l"\ B ) + (9(7, q)) J "1+ e", + ' e " .. 77 " " 

" .. . 

+PrEc .[.(a21(77; q)) 2 + .(ag('T} ; q))2] +aPrEc a](77; q) .(a21(7~; q)) 2 
a'T}2 a'T} a'T} 87r 

. '" . 

+a [prEca1~'T} iq) . ( ag~7 iq))2 _PrEcj("'T};q)a9~'T}iq) a2~C7~q)1 
. 'T} " 'T] " 'T] 'T] . 

2 A. 3 A • 2A . 

P 'E f'( . )a f('T},q) 8 f('T} , q) +P 'D a e(17,q) 
- a I C 'T}, q a 2 a. 3 I 1J, a 2 ' 

' 7] ' T)7] 
(7.35) 

(7.36) 

In " above .expressions "embedding .parameter "qE [0 ,1] . . 11'1 ,11g , 17,0, "andh.p "are non zero .alLxiliary 
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parameters. For q = 0 and q = 1 the above zeroth order deformation equations reduce to 

hI] ; 0) = fO(17) , j(17; 1) = f (17) 

9(17; 0) gO (1]) , 9(7]; 1) = 9 (17) 

-9(17;0) -90 h) , -9(17; 1) -= -9 (1]) 

¢(17;0) ¢O (17) , ¢(17; 1) = ¢ (17) 

Upon making use of Taylor's series we obtain 

00 00 

j(7]; q) = fo (7]) + L 1m (7],) q11t, 9(r/; q) = gO (7]) + L gm (r/) qm , 
m=1 m=l 

00 00 

&(7]; q) = f:Jo (7]) +2.: f:J11t (rj) q~n, ¢(7]; q) = cPo (7]) +2.: ¢m (-I]) q~n, (7.37) 

in which 

m=l 

1 am j(1];q) 
fm (17) = -, a m 

1n. 17 
q=O 

1 am g(7]; q) l 
' gm (17) = -, a In ' 

m. 17 =0 

e () = ~ am
&(7]; q) I' ¢ (1]) = ~ am

¢(1]; q) I' . 

m 1] 111,1 .877m 'm .171! B77m 
q=O q=O 

7.2.3 Higher order defonnation problems 

Thedefol'mationproblems at the mth-order -satisfy 

£ f [1111.(1]) - Xmfm-l (1])] = 1VR,[,l(Im-1 (1]), gm- l(17) , Clm-l (77) , 4>m-1 (1]}) , 

fm(O) = 0, f:n(O) = 0, f~1.(OO) = 0, 

gm(O) = O,gm(oo) = 0, 
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(7.39) 

(7.40) 



£ </J [<Pm(ry ) - Xm¢m-I(77)] = "h</JR f,1(Jm-I(77) ,9m-l(77) ,Bm- 1(77) ,<Pm- I(77Y) , 

<Pm-(O) = 1, <Pm (oo) = 0, 

{

' ,0 ,m < 1 , -, 
Xm = ' 

I , m > 1, 

m-l 

r=O 
m -I 

+a '£ [1;(77) f::' - l - r(ry)+ 21:(7]) f:::- l-r (77) - f r (7]) f:::~I-r (7])] 

m-I 

(7.42) 

+a L [91' (77) g~~1- 1-r ' ( 77 ) + g~(77 ) g~n-I -r (77)] + 'G7'Bm _ 1 (77 ) + 'Gc<Pm_1 (7j) , (7.43) 
,-=0 

Rfn (J m- I (7]) , 9m-1 (7]) , Bm.-l (7]), <Pm.-l (7])) = 9~1-1 (7]) + (1 + ,Be;)2 + f3; X 

[f3ef:n- l (7]) - (1 + (3e(3i) 9m-l(7])] 
m-l 

+ L [ir (7]) 9~n- l -'- (7]) - f:' (7]) 9m-I-r (7])] 

m-1 

+a L '[J:.(7]}g~;t-l-1- (7]) - f,.(rj)g~~- 1 -1· (7])] , 
1'=0 
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-m-1 

+ Pr L f" (ry) 8~n- l -" (ry) + Pr D1UP~~_ 1 (ry) 

m-l 
+ PI' Ee L [J:" (1)) f::t-l-,' (1)) + g", (1)) g"n-l-,' (1))] 

" m - '1 

- aPr Ee L L .fm-l- ,· (7)) J::-z(r;) f{" (ry) 
.1= 0 _r=.o 
r m-l 

+ aPr Ee L L f~t-1-r (ry) f;'- l (7)) f1' (7)) 
1= 0 r=O 

r m-l 

+ aPr Ee LL f:"' - l - r (ry) g~-l (1)) gf (1)) 
l=O r=O 

r 11,-1 

(7.45) 

.,-a PI' Ee L L fm-1-r (7)) g~_1 (7)) g;' (7)) , (7.46) 
1=0 r=O 

R'!n (¢m-1 (ry) , Bm- 1 (1)), fm-1 (1)), gm-1 (1))) = ¢"~t-l (ry) 
. . / \ 

+ Se 'f fr (ry) ¢'m-l-n (ry) - Scr :t 't ( ¢m-l-r (ry) ¢r-I (ry) ¢I (ry) ) . (7.47) 
r=O 1=0 1'=0 +SrSeB~_l (7)) 

The general solutions of problems (7.39) - (7.42) can be expressed as 

f (17) = r (17) + Cr + qn exp (77) + Cr exp ( - ry ) , 

9 (17) = g* (77) + ct exp (77) + CS' exp (- 77) , 

8(1]) B*:(1))+'Cfi-exp(T/)+C7'-exp(-1)) , 

¢ (T/) = ¢* (T/) + qn exp (T/) + crt exp (-T/) , (7.48) 

where r(17), 9*( ry) ,'8* (17) and¢* (7]) are t he particular solut ions of problems given in Eqs. 

(7.39) - (7.42) . 
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7.3 Convergence of homotopy solutions 

The convergence of sel'ies solutions and their rate of approXimations strongly depend upon the 

values of auxiliary parameters. In order to examine the admissible values of "h-curves, Figs. 

7.2 - 7.4 are displayed. These Figs. clearly indicate that the admissible ranges for "hf 119 , 1lf] and 

"h¢ are -1.12::;"hf::; - 0.75, -1.12::; 1z.g ::; - 0.6 and -1.2::; "ho,"h¢::; -O.S. The convergence of 

derived solutions is achieved at 40th order of approximations (see Table 6.1) . 

o 
.~ 

. M =.1 ,.Rr =.0.72,.Sc =.f3.e =·{31 =.0.5,.a =.Ec =.O.2, ·r =.Gc =.Gr =J)u =.Sr =.0.5 
- 0.9 

- 0.95 

- 1 

- 1.05 

-1.5 -1 .25 -1 -0.75 -0.5 -0.25 o 
.hl 

Fig. 7.2. hrcurve of f" (0) at 20th order of approximation. 
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M = 1, Pr = 0.72, Sc = /1. = Pi = 0.5, Q' = Ec = 0.2, r = Gc = Gr = Du = Sr = 0.5 
0.25 ,----,.....---.---.---._-......... --._-.....-----, 

02 

0.15 

··s 
-0> 

0.1 

0.05 

- :1.:5 - :1,25 - ·1 ~ O,15 -0:5 ... 0,25 o 
Pi 9 

Fig. 7.3. hg-curve of 9' (0) at 20th order of approximation. 

M = 1..Be =0.2, a = (3; =1'= 0.1 , Pr = 0.71 , Sc = 0.6, Gc = Gr= 0.5 
0.5 r--T-----------------~ 

\ 

.025\ 
- fJ(O) 

o - - - ¢'(O) 

Ei :e;: - 0.25 . 

6 \---------
~ -"0:5 -----------

- 0.75 

- 1 

-1.25 - 1 - 0.75 - 0.5 - 0.25 o 
hlj,h"4> 

Fig. 7.4.ho,h<J>-curves cif e' (0) and ¢' (0) at 20th order cif approXimation. 
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Table 7.1. Convergence of HAM solutions when 111 = 1, ,Be = f3i = Se = 0.5 , Ee = a = 0.2, 

PI' = 0.72, Du = Sr = Gr = Gc = 'Y = 0.1 and "hJ =7Lg =71'11 ="h", = -1.0. 

Order of approximations - J" (0) g'(O) -8' (0) -¢' (0) 

1 0;98649425 ·· 0.13793103 0.39191724 0.47638889 

5 0.98966383 0.11527065 0.34229330 0.43791050 

10 0.98928526 0.11578203 0.33571741 0.42694004 

15 0.98897231 0.11588232 0.33468969 0.42420425 

20 0.98889839 0.11591094 0.33453559 0.42338530 

25 0.98887654 0.11591943 0.33452482 0.42311680 .. 

30 0.98886972 0.11592212 0.33453139 0.42302427 

34 0.98886775 0.11592290 0.33453553 0.42299563 

35 0.98886747 0.11592301 0.33453626 0.42299144 

36 0.98886724 0.11592310 0.33453690 0.42299903 

7.4 Results and discussion 

In order to get dear insight cif t he considered physical problem, dimensioriless velocities, tem

perature and concentration fields are displayed and numerical computations are carried out for 

various values of pertinent parameters. It is obvious fr'om Fig. 7.5 that velocity component 

l' (T)) in x-direction decreases by increasing Schmidt number. This makes sense because Schmidt 

number Se is the ratio of momentum diffusivity to the concentl"atioll diffusivity and increase 

in Se results to increase in viscosity and consequently l' (7)) decreases. Fig. 7.6 reveals that 

tangential velocity f'(7)) increases when Smetmlllber S1'isincreased. This is due to the .fact 

thatincre.ase .in Srincreases the .difference .betweensurface temperature and .temperature .of 

ambient fluid which reduces the viscosity and consequently tangential velocity i ' (17) increases. 

From Fig. 7.7 one can see that tangential velocity l' (T)) in an increasing function of Dufour 

number Du. Figs. 7.8 and 7.9 represent the variation of tangential velocity l' (17) for various 

values of convection parameters Gr and ·Ge. These Figs. show that the tangential velocity 

l' (1j) increases for Gr > 0 and Ge > 0 while it decreases for Gr < 0 and Ge < O. It means that 

for positive values of convection parameters, buoyancy forces act as favorable pressure gTadient 
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whereas Jar negative values of convection parameters 'buoyancy forces behave like an adverse 

pressure gradient. "Fig. 7.10 illustrates that the generative chemica] reaction (, < 0) erihances 

the motion of fluid in x-direction but for, > 0 (a destructive chemical reaction) the motion 

in x-direction slows down. Figs. 7.5 - 7.10 reflect that boundary layer thickness corresponding 

to the tangential velocity f' (r,) increases when BT, Du, Gr(> 0) , Ge(> 0) and, « 0) are 

increased whereas it decreases for an increase in Be, a, Gr( < 0) , Ge( < 0) and, (> 0) . It is 

clear from Fig. 7.11 and 7.12 that for positive values of convection parameteJ's Gl' and Ge, 

the buoyancy forces assist the flow while buoyancy forces oppose the flow when GT < 0 and 

·Ge < ·-0. Bence .tile 'buoyancy Iorcesplay ·avital ·role :in .contro1ling ·f,hemomentum ~Olmaary 

layer. Effect of Dufour number Du on the dimensionless temperature e (17) is displayed in Fig. 

7.13. Here, one can conclude that dimensionless temperature 8(7]) and thermal boundau layer 

are increased by increasing Du. Figs. 7.14 and 7.15 represent the influence of convection para

meters Gr and Ge on dimensionless temperature 8 (17) . These Figs. illustrate that dimensionless 

temperature 8 (ry) increases when Gr < 0 and Gc < 0 while it decreases for Gr > 0 and Gc > 0 

which shows that the ,buoyancy forces are important in controlling the temperature :and thus 

thermal boundary layer. Fig. 7.16 shows that concentration field ¢ (7]) decreases when Be is 

increased but it increases by increasing BT (Fig. 7.17) . From Figs. 7.18 and 7. 19 we can ob

served that concentration field ¢ (17) increases for Gr < 0 and Ge < O. However, it decreases for 

Gr > 0 and Ge > O. Hence through buoyancy forces the concentTatioll boundaTY layer can be 

controlled. Fig. 7.20 indicates that the dimensionless concentration field ¢ (ry) decreases when 

secondgI'ade ·parameter ·o: i s increased and it increases with ·an increase in Hartmann ·munber 

M (Fig. 7.21). Three-dimensional view of velocity components are given by Figs. 7.22 (a.) - (c) . 

x-component of velocity V i .e. u (x, 17) is maximum nero' the stretching sheet and vanishes away 

from the sheet (as shown in Fig 7.22a) whereas y-component of velocity V i.e. v (x, 17) is zero 

near the stretching sheet but it increases away from the stretching sheet (Fig. 7.22b). Fig. 

7.22c represents the behavior of z-component of velocity V i.e. w (x , 1]). From this Fig. one 

can see that-w (x ,r,) .increases from .zero tomaximul11 value .near17 = 1 .and .then .decreases 

away from .the .stretching .sheet. Tables .7.2 and .7.3 .give the .comparative .study between the 

present and existing limiting results. These Tables show an excellent agreement between the 

present and already published results. Table 7.4 gives the variation of skin friction coefficients 
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- (Rex) 1/2 Gfx and (Rex )1/2 Ggx in x- and z-directions for various values of physical parameters. 

From this Table one can see that - (Rex )1/2 Gf ", increases by increasing lvI, Be, PI', " Gr < 0, 

Gc < 0 and a. However - (Rex )1/2 Gfx decreases for i3e, i3i' Du, Br, Ee, a, Gr > 0 and Ge > O. 

Skin friction coefficient (Rex)1/2 Gyx in z-direction is an increasing function of M, i3e, Du, Sr, 

Ee, a,G, -< '0, and De -<·0 whereasitdeereases when f3.i , Be, Pr, , ·Gr > o and ·Gc > 0 

ro:e :increased. .:It::is :noted frmn T cr.bleti.4 -that ~ex) 1 /2 :G g", = 0. This::is .due -to "the iact iJlat 

M = 0 corresponds to the situation when there is no magnetic field. Consequently Hall force 

is zero and Row becomes two-dimensional (later velocity 9 Cry) = 0). Therefore skin fi:iction co

efficient (Rex/ /2 Ggx in z-clirection is zero. Variation of local Nusselt mnnber - (Rex) -1/2 Nux 

and -Sherwood number - (Rexr 1
/

2 Shx is presented in Table 7:5. This table shows that local 

Nusselt ·number -(Re .) -1,/2 N ,u ·increases with the -increase of f3 STPr ·G1· ·Ge a and 11 x x eJ .1 ) , , 

while it decreases for M, /3i' Be, Du, , and Ee. Local Sherwood number - (Rex)- 1/2 Shx is an 

.incre.asing .function .of /3e,/3i,Se, Be and a but .itdecreases .by incre.asing M,ST , Du, Pr, CT, 

Ge" and n. 
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Table 7.2. Comparison: of the values of 8' (0) for various values of Pr when M = Pi = Pe = 

Be = Q = Gr = Ge = 5'e = 5'1· = Du = Ee = 'Y = u. 

Pr Gupta and Gupta [42] Gmbka and Bobba [43] Ali [44] Salem and El-Aziz [67] 

0.7 - -0.45255 -0.45605 

1.0 -0.5820 -0.5820 -0.59988 -0.58223 

10:0 - -2:3080 ~2.29589 . -2:30789 

Table 7:3. 'Comparison dfthe values of ¢"(O) 'for various values df 'Pr when M = (3. = (3e = 

Ee = Q = Gr = Ge = Be =, Br = Du = Ee = Pr = 0 and "hj ,g,(J,q, = - 1. 

Present CasE 

-0.45394 

-0.58197 

-2:30841 

'Y Be Salem and El-Aziz [67] Taldlar et al. [92] Andersson et al . [91] Present case 

n=l n=2 n=l n=2 n=l n=2 n = l n=2 

0.01 1.0 -0.592 -0.588 -0.59216 -0.58844 -0.59157 -0.58777 -0.591354 -0.587525 

. 0.1 1.0 . -0.669 . -0.636 -0.6.7044 . -0.63724 . -0.66902 . -0.63567 -0.668980 . -0.635464 

1.0 1.0 -1.177 -1.000 1.17761 -1.00100 -1.17649 -1.00006 -1.765003 -1.000000 

10:0 . 1:0 . 3:232 .02:649 -3:23257 ~2:64963 -3:23122 . ~2:65"861 -3:231700 ~2:658822 
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Table 7.4. Variation of local skin friction coefficients - (Rex )1/2 Cr" , and (Rex )1/2 Cg", for 

diffel"ent values of physical parameters. 

M i3e i3'i Be Du Sr Pr Ec , Gr Gc a n - (Re )1/2 C x f x (Rex )1/2 Cg", 

. ·0:0 · 0:5 · 0:5 · 0:5 . ·0.1 • ·0.1 · 0:72 · ·0:2 • 0.1 0.1 · ·0.1 · 0:2 · 1 · 1.1663549 · 0:00000000 

0.5 1.3852115 0.10858296 

1.0 1.5822509 0.18545228 

1.5 1.7612221 0.24589401 

1.0 0.0 0.5 0.5 0.1 0.1 0.72 0.2 0.1 0.1 0.1 0.2 1 1.7321168 0.00000000 

0.5 1.5826413 0.18529386 

1:0 · 1.463518-8 · O.22fr82243 

1.5 1.3872204 0.22203901 

1.0 0.5 0.0 0.5 0.1 0.1 0.72 0.2 0.1 0.1 0.1 0.2 1 1.6473675 0.25655622 

0.5 1.5826413 0.18529386 

1.0 1.5311486 0.13961970 

1.5 1.4900176 0.10880590 

1.0 0.5 f\ 0; f\ 1 n 1 n 1 II '7') II') 0.1 " 1 " 1 " " 1 1.5647110 0.19022608 v.u v .... v .... v .... V.ILo. U .L. V.l. V.l. V . .G 

OJ> . 1.5824632 0.18539396 

0.9 1.5936065 0.18316706 

1.3 1.6006082 0.18212349 

1.0 0.5 0.5 0.5 0.0 0.1 0.72 0.2 0.1 0.1 0.1 0.2 1 1.5837327 0.18511950 

. 0.5 1.5766798 . 0.18662729 

LO 1.5696491 · 0.18807463 

1.5 1.5626383 0.18946375 

1.0 0.5 0.5 0.5 0.1 0.0 0.72 0.2 0.1 0.1 0.1 0.2 1 1.5832224 0.18521013 

0.5 1.5785432 0.18633514 

1.0 1.5738162 0.18743742 

1.5 1.5690418 0.18851717 
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(continuation of Table 7.4) 

M P {Ji Be Du Br PI' . Be ·Gr Ge 1/2 (Re )1/2C f a .'11. -CRe.) Cf .1. . x . :r. .[)x 

LO · 0. .5 . 0.5 0.5 0.1 0.1 0:2 0:0. 0.1 0.1 0.1 0..2 1.5648967 0.190.30.446 

.0.5 L'5.624.293 .0.19.0.70.290. 

~.G ~.5599658 0.1 9ll 0.023 

1.5 1.5575044 0.19149649 

100. ·0.5 · 0..5 0..5 · 0. .1 . 0.1 0.2 · ·0.2 -0.4 . 0.1 0.1 · 0.2 2 1.5493416 0.19277509 

-0 .2 1.5559665 0.19189035 

0,0. 1.560560.6 0.19114576 

0.2 1.5639814 0.19060778 

;0..4 1.'5666749 . ;0.19019655 

LO · ·0.5 · 0.5 · 0..5 · :0..1 :. 0.1 · 0:2 : 0:2 0.1 -LO · 0.1 · 0:2 ·2 2:9757076 0.17105209 

~0 :5 2.H32S67o. ·0.:09269391 

0.0 1.6541914 0.18031099 

0.5 1.2243210 0.22055477 

LO o..-8H397o. 0..24495-816 

1.0 0.5 0.5 0.5 0.1 0.1 0.2 0.2 0..1 0. .1 -La 0..2 2 2.7344675 0.011718916 _ . 
-0..5 2.0.60.5725 0..13666233 

0. .0. 1.6389280. 0..18402560 

0..5 1.2914199 0..20.743536 

La 0..97738185 0..22270.0.61 

1.0 0.5 0..5 0.5 0..1 0..1 0.2 0..2 0. .1 0. .1 0.5 0..0. 2 1.1745120. 0..13187594 

0.1 1.380.8950. 0.16241369 
c 

0..2 1.5655312 0..18980.0.0.3 

0. :3 1.7321162 0:21454441 

1.0 0.5 0. .5 0.5 0. .1 0.1 0..2 0. .2 0..1 0.1 0.1 a. 1 1.3787840 0..16327912 

2 1.3763868 0.16392356 

·3 1.3768225 0..16359519 
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Table 7.5. Variation of local Nusselt number -(B.ex )-1/2 Nux and local Sherwood number 

(Rex )-1 /2 8 hx for different values of physical parameters. 

M f3e f3i Se Du S7" Pr Ec 'Y G7" Ge a n - (Rex )-1/2 Nux - (Rex )-1/2 8h, 

0.0 0.5 0.5 0.5 0.1 0.1 0.72 0.2 0.1 0.1 0.1 0.2 3 0.23942634 0.43416163 

0.5 0.22187514 0.41404857 

1.0 0.20753339 0.39781659 

1.5 0.19558465 0.38468334 

1.0 0.0 0.5 0.5 0.1 0.1 0.72 0.2 0.1 0.1 0.1 0.2 3 0.22218851 0.39888947 

0.5 0. 22919554 0.40331893 

1.0 0.23404018 0.40683697 

1.5 0. 23755164 0.40967385 

1.0 0.5 0.1 0.5 0.1 0.1 0.72 0.2 0.1 0.1 0.1 0.2 3 0.21722203 0.39518044 

' 0:5 . 0.22919504 0.40331893 

1.0 0.23781684 0.41074593 

1.5 0.24321683 0.41606596 

1.0 0.5 0.5 0.1 n 1 n 1 0.72 0.2 n 1 fI 1 fI 1 fit") ') () {)()1)1 1 on r::: 0.39585639 v .... v . ... v.l. v.l. v.l. v.~ v V . ~VVl.l.O::JU 

0.5 0.17651187 0.39739000 

0.9 0.14967781 0.39893176 

1.3 0.12261449 0.40048178 

l.0 · 0.5 · 0.5 . 0.5 . 0,0 . 0.1 ' ·0.72 . 0.2 · 0.1 ' 0.1 0.1 0.2 · 3 0.17756893 0.39490704 

0.5 0.17756893 0.39490704 

1.0 0.17756893 0.39490704 

1.5 0.17756893 0.39490704 

1.0 . 0.5 . 0.5 . . 0.5 . 0.1 . .G.O. .0.72 . 0.2 . 0.1 . . 0.1 0.1 .G.2 . 1 . .0.33356052 0.43225859 

0.5 0.33844636 0.38726267 

1.0 0.34335988 0.34067412 

1.5 0.34830369 0.29245995 
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(continuation of Table 7 5) 

M P i3 i Se Du Sr Pr Ee 'Y G7' Ge a n - (Rex )-1/2 Nux - (Rex )-1 /2 5 

1.0 0.5 0.5 0.5 0.1 0.1 0.02 0.2 0.1 0.1 0.1 0.2 1 0.12858532 0.43759775 

0.37 0.26975829 0.42773699 

0.72 0.40585807 0.41928801 

1.07 0.50725160 0.41365387 

1.0 0.5 0.5 0.5 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.2 0.21255936 0.43208164 

. 0.5 0.13317139 0.43610503 

1.0 0.054001321 0.44011604 

1.5 0.024953293 0.44411478 

1.0 0.5 0.5 0.5 0.1 0.1 0.2 0.2 -0.4 0.1 0.1 0.2 2 0.19062668 0.12391180 

-0.2 0.18750769 0.26097151 

0.0 0.18513262 0.36326801 

0:2 . 0.18320744 · 0.44590223 

0.4 0.18157469 0.51628702 

1.0 0.5 0.5 0.5 0.1 0.1 0.2 0.2 0.1 -1.0 0.1 0.2 2 0.03839030 0.14839565 

":0:5 0.13543195 · 0.30642781 

0.0 0.17982347 0.39358181 

0.5 0.20969153 0.44905966 

1.0 0.22989409 0.48769112 

1.0 0.5 0.5 0.5 0.1 0.1 0.2 0.2 0.1 0.1 -1.0 0.2 2 0.094489580 0.28647815 

-0.5 0.15770562 0.37584591 

0.0 0.18847211 0.42575587 

0.5 0.20717609 0.45790694 

1.0 0.22024252 0.48127050 

LO . ·0;5 · 0;5 · ·0;5 · 0.1 . 0.1 · 0;2 . ·0;2 · ·0.1 · 0.1 · 0.1 . ·0;0 · 2 0.18466328 0.41863866 

0.1 0.18719554 0.42647387 

0.2 0.18932115 0.43327002 

0.3 0.19117455 0.43927908 
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7.5 Final remarks 

The combined effects of thermal-diffusion, diffusion-thermo, v.iscous dissipation, joule heating 

and chemical reaction on boundary layer mL"Xed convection three-dimensional flow of a second 

grade fluid over stretching sheet with Hall and ion-slip currents are examined. Computations 

are performed for the nonlinear analysis. Main findings of the presented analysis are listed 

below. 

• 'Convection parameters G7' and Gehave similar behavior on 1'(7)) and 9(77} . 

• Convection parameters Gr and Ge have similar behavior on e (77) and ¢ (77) in a qualitative 

sense. 

• ¢ (7]) is an increasing function of Sr and M whereas it decreases for Se and C1!. 

• Skin friction coeffici~nt - (Rex) 1/2 Cf., is a.n increasing function of M, Se, PI' , 'Y, 0,. < 0, 

Ce < 0, C\! a.nd n whereas it decreases when f3e, f3i ' Du, Sr , Ee, C e > 0 and C7' > 0 are 

increased. 

• CRex }1/2Cg", increases by increasing Nf, Du, Sr,Ge, 'Gr and C\! while it decreases when 

Se, PI' and 'Yare increased. 

• (Rex )-1/2 Nux is a.n increasing function of Sr, PI', Gr, Ge, C\! and n but it decreases when 

111, Du, Se, Ee and 'Yare increased. 

• (Rex )-1/2 Shx increases with the increase of f3 e, f3i, Se, Du, Ee, 'Y, C7', Ge and C\! whereas 

it decreases by increasing M, S7' and PI'. 

• Boundary layer thickness corresponding to tangential velocity f' (7]) can be controlled 

through Hartman ·number ·and . convection ·parametel'S.Boundar-y -layer ·thickness ·corFe

sponding to latera.l velocity 9 (7]) can be decreased by the ion-slip cun-ent. 

• Thermal boundary layer thickness and concentration bOlUldary layer thickness can be 

controlled through convection parameters G7' and Ge. 
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Chapter 8 

Axisymmetric flow of magnetohydro

dynamic micropolar fluid between 

radially ~stTetching sheets 

This chapter deals with the magnetohydrodynamic axisymmetric flow of a micropolar fluid be

tween the radially stretching sheets in the presence of constant magnetic field. The governing 

partial differential equations are transformed into the ordinary difi'erentia:l equations. The mag

netohydrodynamic (MHD) nonlinear problem is treated using the homotopy analysis method 

(HAM). Convergence of solutions is checked. The velocity profiles are predicted for the perti

nent parameters. The values of skin friction and wall couple stress coefficients are obtained 

for the various values of Reynolds number (Re), Hartman number (M) and micropolar fluid 

parameter (K) . 

.8..1 Mathematical .analy-sis 

Let us consider the steady two-dimensional flow of an incompressible micropolar fluid between 

the ·radially stretching sheets at z = ± L. The velocity is denoted by(u, 0, w) andmicrorotation 

vector by (0, N2, 0) . A constant magnetic field Bo is applied perpendicular to the plane of sheets. 

The induced magnetic field is neglected under the assumption of small magnetic Reynolds 

number. No external electric field is present i.e. E = O. Physical model and coordinate system 
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are shown in Fig. 8.1. The microstructure associated with microrotations is taken into account. 

The equations governing the flow under above st ated assumptions (see Takhar et a1. [46]) are 

au au 
u-+w-ar az 

-ou uow 
-+-+- =0 a7" l' az ' 

1 ap 1 [a2u 1 au a2u u] - p ar + p (p, + k) aT2 + -:;. aT + az2 - T2 
-koN2 oB6 

-------u 
p az p 

uaw +waw = _~ap +~(JL+k)[a2~ +~aw + a2~] _ ~[aN2 + N2], 
ar8z p8z p . 81' r 81' .8z P . 81'1' . 

u aN2 + w aN2 = II> [a2 N2 + ~ aN2 + a2 N2 _ N2 ] _ ~ [2N2 + aw _ au] 
aT az pj aT2 T aT az2 1'2 pj aT az' 

(8.1) 

(8.2) 

(8,3) 

(8.4) 

where u and ware the velocity components along the radial (7') and axial (z ) directions re

spectively and N2 is the azimuth al component of micrOIotatioll vectOI. cr is the electlical 

conauctiVity of tile fhiia , jis the nllcroinertia per uriit mass ana taKen j = 1// a [5"3], p is the 

fluid density, JL and k are the viscosity coefficients and I v is the spin viscosity. 

L 

2L 
Bo z=o 

1------ z = -L 

Fig. 8,1. Physical model and coordinate system. 
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The subjected boundary conditions are 

1L = m', W = 0, N2 = 0 

w = 0, N 2 = 0 

at z = L , }. 

at ;: = O. 
(8.5) 

It is worth mentioning that putting k = 0, Eqs. (8.2) and (8.3) reduce to governing equations 

for classical Newtonian fluid flow inthe presence of constant magnetic field. Basicailythis is the 

case when global motion is unaffected by the microrotations [45] . Since flow in radial direction 

is due to stretching of sheets and flow becomes two dimensional due to viscous nature of fluid. 

Since at free stream fluid behaves like inviscid one and flow becomes unidirectional. Therefore 

axial component of velocity vanishes i.e. w = 0 at z = O. Furthermore, the fluid particles in 

upper region (0 < z < L) . rotate in clockwise direction whereas the fluid particles in lower 

region (-L < z < 0) rotate in anti-clockwise direction. Thus these opposite rotations cancels 

out the effect of each other at z = O. Hence N2 = 0 at z = O. Basically fluid vorticity in the 

flows induced by boundary walls is ma.'<imum near the solid boundaries and zero at central line 

of the channel i.e. N2 = 0 at z = 0 [46]. The arising flow equations and boundary conditions 

are reduced to dimensionless form by introducing the following variables: 

, Gil() Z 
1L = arf (7]), 'W = .-2aLf(7]) , N2 = yg 7] ,7]= I' (8 .6) 

Now dimensionless problems are 

(1 + K) 1"" - Re JvI I" + 2 Re f fill - K il' = 0, (8.7) 

f (0) = 0, f (1) = 0, f' (1) = 1, !" (0) = 0, (8.8) 

( K) . 1 +"2 g" - Re K(2g - f") +Re(2Jg' - l' g) =0, (8:9) 

9 (1) = 0, 9 (0) = 0, (8.10) 

where Eq. (8.1) is automatically satisfied. Here "Iv = (j.t + k/2) j [53] and 

k aL2 B2 
K=-, Re=-- M=~, 

j.t v ' pa 
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Tespectively are called the micropolar parameteT(I{), the Reynolds number (Re) and the Hart

man ·number (M). 

The skin friction coefficient Cf and wall couple stress C9 at z = L are defined by [46] 

C
J 

= Tw (f.L+ -~) .(.au ) I = (l+K) 1" (1), 
p (ar)2 - p (ar)2 az z=L Re," 

(8.11) 

cg = 
L'Y Q!::!:;.. I 

!J 8z z-L 
2 = . 

p(ar) 
(1 + J( /2) '(I) 

'R .g , er 

(8.12) 

where Rer (= ar L / 11) denotes the local Reynolds number. 

8.2 Solutions by homotopy analysis method 

Here f (ry) and g (ry) are expressed by the set of base functions 

(8.13) 

in .the .forms .following series 

00 00 

.t: I \ ~ 2n-+- l I \ ~ , 2'1-+-1 
J \.1]} = Lan'll . , 9\.ry; = L On77 . , (8.14) 

n=0 n=O 

where an and b" are the coefficients. The initial guesses and linear operators £ f and £9 are 

defined by the following expressions: 

1 
fo (ry) = 2" (ry3 - 77) , gO (77) = 0, (8.15) 

(8 .16) 

(8.17) 

with Ci (i = 1 - 6) show the arbitrary constants. The subjected problems at the zeroth order 

are given by 

(8.18) 
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j(O; q) = 0, j(l ; q) = 0, aj(T}; q) 
a7) 

= 1, 
a2 j(rl; q) 

87)2 

(1 - q) £g [g(T); q) - go(T})] = q"hgNg [g (T); q) , j (T); q)] , 

g(l; q) = 0, 9(0; q) = 0, 

= 0, (8.19) 

(8.20) 

(8.21 ) 

in which q E [0,1] is the embedding parameter and "hI -# 0 and"hg =1= 0 are the convergence con.trol 

parameters such that j(T} ; 0) = 10 (T}), 9 (T); 0) = gO (77), j(7]; 1) = 1 (T}) and g (77; 1) = 9 (T}). 

When q varies from 0 to 1, j(T}j q) approaches 10 (T}) to 1 (T}) and 9(7]; q) from gO (T}) to 9 (T}). 

FUrthermore, the nonlinear operators Nt and Ng are given by 

(8.22) 

By using Taylor series we have 

co co 

j (T); q) = 10 (T}) +2: 1m (T}) qm, g(r/j q) = go (T}) +2: gm (rl) q"'t, (8.24) 
m.=l m=l 

_ ~ am j(7]; q) _ ~ am9(77; q) I 
1m (1)) - I am' 9m (7]) - I am· 

m. T] m. T/ . q=O 
q=O 

The deformation problems corresponding to the mth-order are 

£ J [1m(T}) - Xm1m-l (77)] = "htRfn (1m- 1 (7]), gm-1(T})) , 

1m(0) = 0, 1m(l) = 0, 1:n(1) = 0, 1::t(0) = 0, 
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gm(l) = 0, gm(O) = 0, (8 .27) 

0, m ::; 1 

I,m > 1 

R{n (fm(1]) , gm(1])) = (1 + K) f:~'-1 - Re M f::'.-1 + 2 Re 7f ( f~' fm-l-n ) 

n=O -Kg~~_1 ' 

Rf,t (gm(77), f",(77)) (1 + ~) g:~~-l - Re K [2gm- 1 - f~t-d 
m-I 

+Re L [2fng~t-I-n - f:tgm-1-n] . (8.28) 
n=O 

The general solutions at the mth-order are 

(8.29) 

(8.30) 

in which f7;'. (17) andg;;"(77) are the particular solutions of the Eqs. (8.26) and (8.27) . The 

coefficients Cin( i = 1 - 5) are determined by the boundary conditions given in Egs. (8.26) and 

(8.27). The systems (8.26) and (8.27) are solved by employing Mathematica. 

8.3 Convergence of homotopy solutions 

It is a known fact that the convergence of solutions given by Eqs. (8.29) and (8.30) depend 

upon the auxiliary parameters 11'f and "hg • Hence we display the the 11'f,g-cmves ill Figs. 8.2 

and 8.3. In order to show the validity of solutions residual errors both for f (77) and 9 (77) are 

also sketched in Figs. 8.4 and 8.5. It is found from Figs. 8.2 - 8.5 that the convergence region 

for f (77) and f' (1]) is - 0.9 ::;"hf ::; -0.4 and that for 9 (77) is -1.1 ::;"hg ::; -0.6. However the 

whole analysis has been performed when for "hf = "hg = - 0.7. Furthermore, Table 7.1 shows 

that convergence of series solutions is achieved at 20th order of approximations up to 12 decimal 
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3.25 

3.24 r 

~ 3.23 l 
to-

3.22 

3.21 

t 
- 1.2 - 1 - 0.8 - 0.6 - 0.4 - 0.2 

fIf 
o 

Fig. 8.2. hrcurve of 1" (1) at 12th order of approximation. 

-0.23 

- 0.235 

- 0.24 

I 
- 0.245 

f ' 
- 1.4 -1.2 - 1 - 0.8 - 0.6 - 0.4 

Pig 

Fig. 8.3. hg-curve of g' (1) at 12th order of appl'Oximation. 
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1 X 10-7 
M=Re= 1, K=O.2 

7.5 x 10-8 

Ii) 
5x10-8 

c:i 
;;:: 

. 2.5x1 0-8 ' .... 
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~ 0 

<ii 
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.~ 

a:: -5x 10-8 

- 7.5 x 10-8 , 
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hI 

Fig. 8.4. hrcurve for the residual error of f (0.5) . 

1 X 10-B 

7.5 x lO-7 

~ 
5x10-7 

'- 2:5><10-7 
.E 
g 

·0, m m ' 
-5 -2.5 X 10-7 

. ~ 

a::: -5x10-7 

-7.5x lO-7 

M = Re = 1, K = 0.2 

- 1 - 0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 

~ 

Fig. 8.5. hg-curve for the residual error of 9 (0 .5) . 
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Table 8.1. COllveTgente of HAM solutions when Re 

-9 = -0.7. 

OTder of appToJGmations 1"(1) 

1 3.72000000000 

5 3.61057806477 

10 3.61076391320 

15 3.61076396332 

20 3.61076396287 

25 3.61076396287 

30 3.61076396287 

35 3.61076396287 

8.4 Discussion 

M 2.0, f{ 0.5 and iLl =h 

g'(l) 

-0 .700000000000 

-0.738449167223 

-0.738463512754 

-0.738463496869 

-0.738463496789 

-0.738463496789 

-0.738463496789 

-0.738463496789 

In order to illustrate the dimensionless velocity components and microrotation (dimensionless 

angular velocity) for the emerging parameters of interest, we have plotted the Figs. 8.6-

8.14. In addition the numerical computations for skin friction coefficient Rer Cf and couple 

stress coefficient ReI' Cg have been carried out in Table 8.2. It is seen from Fig. 8.6 that 

the magnitude of dimensionless radial component f ' (1)) of velocity decreases by increasing 

the HaJ.tman number lvI. Tills shows -that -LOTentz fmce TetaJ.·ds the ihud motion in Tarnal 

direction and consequently boundary layer thickness decreases. Hence one can conclude that 

boundary layer can be controlled through applied magnetic field . It is observed from Fig. 8.7 

that the magnitude of dimensionless radial component f' (1)) of velocity decreases when the 

Reynolds number Re is increased. Upon increasing the microrotation parameter K, there is 

an enhancement in the magnitude of dimensionless radial component f' (1)) of velocity. The 

boundary layer .thickness also increases (Fig. 8.8) . . Fig. 8.g. depicts .that .the magnitude ·of 

dimensionless axial component f('T)) of velocity decreases for t he various values of Hartman 

nurriber M.The :irifiuenceof Reynolds 'nurriber on the dimensioriless ·a.Xialcomponent 1(17) of 

velocity has been shown in ·Fig. 8.10. It is found from this Fig. that there is reduction in 

the magnitude of f (1)) when Re is increased. However, magnitude of f (1)) increases due to an 

increase in K (Fig. 8.11). The effects of M , Re and K on the dimensionless ang'ular velocity 9 (1)) 
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are shown in the Figs. 8.12 - 8. 14. Obviously the dimensionless angular velocity g ('17) decreases 

by increasing Hartman number A1 (see Fig. 8.12). It is also noticed that dimensionless angular 

velocity g ('17) increases because of an increase in Re and K (Figs. 8.13 and 8.14). The skin 

friction coefficient Re" Cf and wall couple stress coefficient Re" Cg are computed in Table 8.2. 

Tllis demonstrates that Re r Cj and Rer C9 are the increasing hmctions of lvi, Re and K. 
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Fig. 8.6. Influence of Hartman number M on dimensionless radial velocity f' (7]). 
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Fig. 8.7. Influence of Reynolds number Re on dimensionless radial velocity f' (7]) . 

143 



1 r---------------------------~ 

0.8 

0.6 

o 
-0.2 

- K=o.O 
- - - K= 0.2 

1- --- K= 0.4 
I' K=D.9 

___ --;." ~.-t.'" 
:: ;": .-:.-:-. ':"'1 . 

-o.4~----~----~--------~----~ 
o 0.2 0.4 0.6 0.8 1 

1] 

Fig. S.S. Influence of micropolar parameter J{ on dimensionless radial velocity f' (ry) . 
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Fig. 8.9. Influence of Hartman number M on dimensionless axial velocity f (ry) . 
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Fig.8.10. Infl.uenceof Reynolds number .Re ondimensionless .axial velocity j(TJ)·. 
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Fig. 8.11. Influence of micropolar parameter K on dimensionless a.xial velocity f (7/) . 
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Fig. 8.14. Influence of micropolar parameter J( on dimensionless angular velocity 9 (7]) . 

Table ·8.2. Numel'iaal values ·of skinfriction ·coefficient Re,.Cj and wall ·couple stress ·coeffi

cient Re,. Cg . 

M Re J( Re.,.Cf -Re,. Cg 

0.0 1.0 0.5 4.66731025187 0.918676961138 

1.0 5.05533817307 0.920980526582 

2.0 5.41614594430 0.923079370986 

3.0 5.75398731824 0.925002385109 

1.0 1.0 0.5 4.77646547374 0.478773301056 

2.0 5.05533817307 0.920980526582 

3.0 5.33415542042 1.33415055037 

4.0 5.61103357482 1.72430008392 

1.0 1.0 0.0 3.31107413404 0.000000000000 

· 0:2 · ·3:90500594445 · ·0.196869286252 . 

0.4 4.48804832942 0.386227295205 

0.6 5.06319086907 0.570159417698 
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8.5 Concluding remarks 

An analysis for two-dimensional magnetohydIOdynamic flow of an incompressible micropolar 

fluid between the radially stretching sheets has been carried out. Convergent series solution is 

derived through the homotopy analysis procedure. The interesting observations are presented 

below. 

• The velocity components 1 (1)) and l' (77) are decreasing functions of Re. 

• The effect of Re on 1 (1)) and 9 (1)) are opposite. 

• There is a decrease in magnitudes of 1 (77), I' (77) and 9 (77) when M is increased. 

• The applied magnetic field provides a mechanism to control the boundary l(1yer. 

• The skin friction coefficient Rer Cf and wall couple stress coefficient Rer Cg are increasing 

functions of Re, M and K. 

• Qualitative effects of 11-1 and J( on the skin frict ion and the wall couple stress coefficients 

are similar to that cif Re . 
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Chapter 9 

Heat transfer analysis on 

axisymmetric MHD flow of a 

mi-cropolar fluid between th-e 

radially stretching sheets 

The research in this . cha,pter · extends the . contents presented in the previous . chapter in the pres

ence of heat transfer. Effect of heat transfer on axisymmetric fow of magnetohydrodynamic 

micropolar fluid between two radially stretching sheets is considered. Viscous dissipation, mi

cropolar heat conduction and Joule heating are considered. Energy equation is transformed into 

thcordinarydifferentiai-equationbyusing 1luitable variables. The l'eSultingnonlinearproblem 

-r!:> 1:)olvedbyhurnutupy ctualy!:ii!:> -rnethud{HAM). DirnerrsiunlB!:>s terrweratme -lli 'plotted -again1>i; 

various values of dimensionless parameters. Numerical values of Nusselt number are tabulated 

with respect to the influence of several physical parameters. 

9.1 Mathematical formulation of the problem 

Here, we have considered the heat transfer characteristics on a..'<:isymmetric MHD flow of a 

micropolar fluid between two radially stretching sheets at z = ± L. Both sheets are stretching 
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with lineal' velocity aT ( a > 0) and are maintained at constant temperature Tw. Sheets are 

electrically nonconducting whereas fluid is electrically conducting. Micropolar fluid occupies 

the space between the sheets. Flow is engendered by the stretching of sheets. The viscous 

dissipation, the micTopolaT heat conduction and Joule heating aTe consideTed. Physical model 

and coordinate system are shown Fig. 8.1. Due to a."'Cial symmetry, the flow fields (see Takhar 

et al. [46]) are defined as 

V=[u(r,z),O,w(r, z )], n=[O,N2(r, z),O], T=T(r, z), (9.1) 

-wheI-e-'uand 'ware -the velocity componeuts along-the 'Tadial (1') anda."'Cial ( z ) directions -:respec

tively, N2 is the azimuthal component of micro-rotation vectOT nand T is the temperature. 

Using above de:finitions of flow fields in energy equation (1.8) , one obtains 

u_8T +w_aT = _K_c [_a
2
_T +~_8T +_a

2
_T ] + (2fL+k) [(_au)2 + u2 + (_aw)2] 

ar Bz PCp or2 r Dr oz2 PCp OT r2 OZ 

(2fL+ k ) ~ (au aw) ~ (au _ aw -'J .) _? N2 aN2 [ 
2] 2 +- -- . ' !..l + ~l ' + . ~J ~l - N2 · - (3v !..l pCp 2 uZ ur 2pCp u Z ur r ur 

+- - +-+ - +- - - +- - -- +--u. Iv rl~( 8N2 \) 2 Ni ~I 8Hz \)2l

J 
a f

l
8T ~(81'12 N2 \) 8H2 8T1J aB; 2 

pCp Dr r2 az PCp oz ar r az ar PCp 
(9.2) 

where j is the ..micro-inertia .per unit ..mass, p i s the liuid density, p . and k are the viscosity 

coefficients, Cp is the specific heat of the fluid, Kc is the thermal conductivity, a is the electrical 

conductivity, Q is the micropolar heat conduction coefficient and a v, /3v , I v are the spin viscosi

ties. Furthermore, fL, k, a~ , /311 and Ill ' satisfy the constraints given in Eq. (1.14). It is worth 

mentioning that putting k = a v = /311 = Iv = Q = 0, Eq. (9 .2) reduces to energy equation for 

classical Ne,wtonianfluid :with Joule heating. Basically this .is the .case :when global motion .is 

unaffected by the microrotations (Eringen [45]) . 

Appl'opriat-ebounciaryconditionsaFB 

T T L aT =0 = w at z = , 
az 

at z = 0. (9.3) 
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Utilizing the following transformations 

a7' T _ 
'tt = at'/' (7]), w = -2aLf (7/) , N2 = -g (7/) , e = ;:p-, T) = -L' 

L .L", 
(9.4) 

in Eqs. (9 .2) and (9.3) one obtains 

e" + 2Pr Re fe' + Pr Ec (2 + K) 1:2 (J,)2 + ~ (J1I) 2J + ~ Pr Ec [1"2 + 4g2 - 4f"gJ 

( 
K) PI' Ec [2 2 2] B Pr Ec 2 '2 + 1+2" R;- 62g + (g') -2 62 9 +2APrRege'+MPrEcRef = 0, 

e(l) = 1, e'(0) =0. 

Here we have taken "Iv = (f..L + k/2) j and j = II / a [53]. It is important to note that Ec = 0 

corresponds to the case when viscous dissipation and Joule heating are absent whereas Ec =I- 0 

corresponds to the situation when viscous dissipation and Joule heating are of considerable 

magnitude. 

The dimensionlessparamet-el'S -appearing in Eq. (-9.5 )am definedbythefollowingexpressiollS 

K 

Re 

M 

Ec 

B 

!5.., ratio of viscosities called the micropolar parameter, 
I--i 
aL2 

Reynolds number , 
II 

O'B~ftCp 
pa Hartman number, Pr = kc ' Prandtl number, 

(ar)2 
, the local Eckert lllullber, 

c.p'rt" 
f3 ii 

L
V
2' A. = --2 , the dimensionless -material parameters. 

Ii pCpL 

Nusselt number is defined as 

(9 .6) 

where qw (= -Kear /8z, Fomier law of conduction) is the heat flu.x at the wall and Re,. (= a7'L/I/) 

denotes the local Reynolds number. 
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9.2 Solution procedure 

Homotopy solution () (r/) in terms of base functions 

(9. 7) 

can be expressed as 
00 

() (77) = L c,.,.772n
, (9.8) 

11.=0 

where c" are the coefficients. It is important to note that series solution (Eq. 9.8) shows that 

the dimensioriless temperature 'is an oddfundion of 77 and 'has same value in both the region 

o < 77 < 1 and -1 < 77 < O. This is due to the symmetric nature of the flow. 

The initial guess eo (1)) and linear operator £eare given by the following expressions: 

while the operators satisfy 

d2e 
£e [e (77)] = -d 2' 

17 

where Ci (i = 1,2) are the arbitrary constants. 

9.2.1 Zeroth order deformation problems 

TheproblBIDs at the wrothordBr ar-B 

(9.9) 

(9.10) 

(9 .11) 

A oe 
e(l; q) = 1, 077 (0; q) = 0, (9.13) 
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in which q E [0,1] is called embedding parameter and "he is known as convergence control 

parameter (auxiliary parameter) such that 

e (T}; 0) 

B (T};l) 

(}O(T}) , 

(} .(1J.) ., 

i.e. when q varies from 0 to 1, B(r/; q) varies from (}o (T}) to () (T}). The nonlinear operator No is 

defined as 

[ ~ ~ ~ ] 82B(7}; q) ~ 8B(T} ; q) 
No g(T} ; q), f (T}; q) ,() (T}) =8T}2 + 2 Pr Ecf(T}; q) .8T} 

+PrEc(2+K) [~(8j(T};q) ) 2 + ~ (8
2
!(T};q)) 2] 

62 8l) 2 8772 

K [(8
2

j(T};q)) 2 ( ~ ( ))2 82j(T};q)~( )] + 2 Pr Ec 8T}2 + 4 9 77 ; q - 4 8T}2 9 77; q 

_ 2BPrEc( ~ (. ))2 P'E (1 J{)I~( ~ (' ))2 (8g(77 ;q))2] 62 9 T} , q + I C + 2 . 62 9 T} , q + 87] 

~ 8B(T}; q) (8j(7] ; q) \ 2 
+.2AP~·.Re g(7}; q) r, + 111 Y .l"Ec.Re r.l (9.14.) 

07/ \ OT} ) 

By using Taylor series, we can write 

00 

B(7}; q) = eo (77) + L (}m (77) q"" 
11=1 

q=O 

The appropriate mth order deformation problems are 

(9.15) 
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O,m:::; 1 

I ,m> 1 

m-l 

B':n-l + 2 Pr Re L [fnB:n-l-n] 
n=O 

6" I"" m-l[ ] 
+Pr Ec(2 + K) ~ 82fnfm-l-n + 2fnfm-l-n 

111-1 

+ ~ Pr Ec L U::f::1-1-n + 4gngm-l-n - 4f~gm-l -n] 
~ n=O 

BPrEc
m

-
1 ( K) 

-2 (52 Lg,1gm-l-n+ . 1+ 2 . PrEcx 
11=0 

711-1 [ 2 ] .L . 62gngm-l-n + g~1g;n- l-n 
n=O 

m-l 

+2APrRe L [gnB~1.-1-1l.J + MPr EcRe x 
n=O 

m.-l 

L f~f~1.- 1-n · 
n=0 

The general solutions at the mth-order are 

in which 8;'1 (77) is the particular solution of problem and the coefficients Cr'Ci 
determined by the boundary conditions (9.15). 

-9....3 Convergence -of homotopy solution 

(9.16) 

(9.17) 

1,2) are 

We know that the convergence of solution (9.17) strongly depends upon the auxiliary parameter 

-he. Hence we display the 7lr-curve in Fig. (9.1). It is noticed that allowed values of -hI! are -1.3 :::; 

-hI! < -0.6. The whole analysis has been carried out when -hI! = -0.7. Furthermore, Table 9.1 

indicates that convergence is achieved at 20th order of approximations up to 12 decimal places . 
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He-= 1, -K-= O.2,A-=M=-Pr-=Ec-=B=O.5, 0= 1 
- 1.59897 ,-----------------.----0 

- 1.59897 

- 1.59897 

-1.59898 

-1.59898 

-1.2 -1 -0.8 -0.6 

Fig. 9.1. he-curve for a' (1) at 15th order of approximation. 

Table 9.1. Convergence of HAM solution when Re = M = 2.0, J{ = Ec = 0.5, Pr = 0.2, 

A = 1, B = 2,5 = 1 and 116 = -0.7. 

Order of approximations G' (1) 

1 0.0936666666667 

5 0.770075540025 

10 0.774245208620 

15 0.774249837395 

20 0.774249840774 

25 c 0.774249840773 

30 0.774249840773 

-9.4 Results -and dis-cussion 

This section aims to examine the influence of physical parameters on dimensionless temperature 

Bb). Hence Figs. 9.2 -9:6 are plotted. Besides this the numerical computations for Nusselt 

mnnber are presented in Table 9.2. The effects of Prandtl number Pr on dimensionless temper-
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ature f) (7]) is shown in Fig. 9.2. This Fig. shows that dimensionless temperature () (7]) increases 

-with -au -irl'cl'B1UlB-iu Pn:LIrdtl -rlUrnb-el'Pr. The -eife-d uf Juul-e -h-eatirrg -and -visc'Uw:; ilissip-atiuIl un 

dimensionless temperature () (7]) is presented in Fig. 9.3. Ec = 0 is the case when viscous dissi

pation and Joule heating are absent whereas Ec i= 0 corresponds to the situation when viscous 

dissipation and Joule heating are of considerable magnitude. Since E e is the ration of kinetic 

energy to enthalpy. An increase in Ec corresponds to the increase in kinetic energy. Conse

quently temperature increases. This is obvious from Fig. 9.3. The effect of Reynolds munber 

Re on dimensionless temperature () (7]) is described in Fig. 9.4. It is clear from this Fig. that 

the dimensionless temperature () (7]) decreases when Reynolds munber is increased. We noticed 

that Re = 1 corresponds to the case when inertial and viscous forces are of equal magnitude 

and Re > 1 leads to the situation when inertial force is dominant. Fig. 9.4 also depicts that 

when inertial force becomes more and more dominant, there is a decrease in temperature B(77) 

of micropolar fluid. Fig. 9.5 illustrates that temperature increases by increasing micropolar 

parameter K. Here K = 0 corresponds to the Newtonian fluid flow and K i= 0 corresponds to 

the rnicropolar fluid. Fig. 9.5 also indicates that temperature B (77) of micropolar fluid (K i= 0) 

is higher than that of Newtonian fluid (K = 0) and thermal boundary layer thickness can be 

reduced by increasing micropolar parameter K. An increase in dimensionless materialparame

tel' A results in to decrease the dimensionless temperature B (r/) as shown in Fig. 9.6. It is also 

noted that the mat erial parameter B has negligible effect on the dimensionless temperature 

f) (7]) . Table 9.2 portrayed the influence of physical parameters on Nusselt number Nu which is 

capable to measure the rate of heat transfer from stretching sm-face into the fluid. From this 

Table, it is observed that the rate of heat transfer increases by increasing the Hartman munber 

M, the Reynolds munber Re, the micropolar parameter K, the Prandtl number PI' and the 

Eckert number Ec whereas tIle rate of heat transfer decreases when B and A are increased. 

It is also noticed from Table 9.2 that the rate of heat transfer in micropolar fluid (K i= 0) is 

higher than of Newtonian fluid (K = 0) . From practical point of view, the micropolar fluid can 

be used instead of Newtonian fluid if some one is interested to increase the rate of heat transfer 

from surface into the fluid. This is the case when certain temperature is required to improve 
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the quality of -product -beingmanuiactmed. 

M= 1, H:J=3, K= Ec= B= A= 0.5,8=-3 
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Fig. 9.2. Influence of Prandtl number PI' on dimensionless temperature e (1]) . 

M =1, Re = 3, K =Pr =8 = A = 0:5,0 =1 
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Fig. 9.3. Influence of Eckert Number Ec on dimensionless temperature e (-'7) _ 
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Fig. 9.4. Influence of Reynolds mnnber Re on dimensionless temperatme e (17) . 
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Fig. 9.5. Influence of micropolar parameter f{ on dimensionless temperature e ('17) . 
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Fig. 9.6. Influence of A on dimensionless temperature e (-17) . 
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Table 9.2. Numerical values of Nusselt number Nu for different values of parameters. 

M Re K Pr Ec B A {) -Nu 

0.0 1.0 0.2 0.72 0.5 1.0 1.0 1.0 2.31271090137 

1.0 2.33756474587 

2.0 2.36395766706 

3.0 2.39153599402 

1.0 0.5 0.5 0.2 0.5 1.0 1.0 1.0 1.58429310808 

1.0 1.60318474778 

1.5 1.61737721445 

2.0 1.62758253929 

1.0 1.0 0.0 0.5 0.5 1.0 1.0 1.0 1.39185697948 

· 0.2 · L60318474754 

0.4 1.81189076519 

0.6 2.01869393983 

1.0 1.0 0.2 0.12 0.5 1.0 1.0 1.0 0.37675714532 

0.42 . 1.34065368956 . 

" '7"" 2.33756474587 v. 1 .G 

1.02 3.36957908505 

1.0 1.0 0.2 0.5 0.0 1.0 1.0 1.0 0.00000000000 

0.5 1.60318474780 

1:0 3;20636949560 

1.5 4.80955424340 

1.0 1.0 0.2 0.5 0.5 0.0 1.0 1.0 1.60346356189 

0.5 1.60332415485 

1.0 1.60318474780 

1.5 1.60304534076 
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(continuation of table 9.2) 

M Re ]{ Pr Ee B A 6 -Nu. 

LO 1:0 '0:2 '0.5 0.5 1:0 0:0 . 1:0 1:61286336967 

0.5 1.60800646998 

1.0 1.60318474780 

1.5 1.59839789939 . 

9.5 Conclusions 

The heat transfer analysis for in axisymmetric and magnetohydrodynanllc flow of au electrically 

conducting micropolar fl.u.id between the radially stretching sheets is discussed. The following 

'points are worth mentioning: 

• Temperature e (17) is an increasing function of Pr, Ee and ]( whereas it decreases by 

increasing A and Re. 

• Behavior of B on dimensionless temperature e (17) is negligible. 

• Nusselt number Nu is an increasing function of Pr, Ee, M and Re whereas it decreases 

when A and B are increased. Hence rate of heat transfer from sheet into the fluid increases 

when Pr, Ee, M and Re are increased but it decreases by increasing A and B. 
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Chapter 10 

Heat and m.ass transfer in MHD 

axisymmetric flow of a micropolar 

fluid with Dufour and Soret effects 

This study is concerned with Dufour and Soret effects on steady, two-dimensional axisymmetric 

flow of an incompressible micropolar fluid between radially stretching sheets subject to constant 

magnetic field. Joule heating is considered and diffusing species are chemically reacting. in this 

chapter energy equation and Fick's law are made dimensionless and then solved analytically 

using HAM. Validity of series solutions is verified through residual errors. Effects of emerging 

parameters on dimensionless temperatme and concentration are seen through graphs. Skin 

friction coefficient, wall couple stress coefficient, Nusselt and Sherwood numbers are examined. 

10.1 Heat and mass transfer analysis 

We consider heat and mass transfer characteristics on steady, two-dimensional axisymmetric 

flow of an incompressible micropolar fluid between electrically non-conducting sheets. The 

flow is caused by stretching of sheets . Both the sheets have constant temperatme Tw. The 

concentration at the smface of sheets is constant and denoted by Cw . An external magnetic 

field of constant strength Bo = [0,0, Bo] is applied perpendicular to the planes of sheets. 

Induced magnetic field and electric are not taken. Fmthermore, Dufour-Soret effects, Joule 
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heating and first order chemical reaction are considered. If T (1', z) and C (1', .0) (see Takhar et 

al. [46]) denote the temperature and concentration fields for the considered flow then energy 

equation (1.8) in the absence of viscous dissipation (<1> = 0) and advection diffusion equation 

(1.9) in the presence of first order chemical reaction (n = 1) can be Wl'itten as 

aT 8T Kc [8
2
T 18T 8

2
T] DKT [82C 18C 82C] oB5 2 u-+w-=- -+--+- +-- --+--+- +-u (10.1) 

a7' az PCp a1'2 7' a7' 8z2 CpCs a7·2 7' a7' 8z2 PCp' 

8C 8C _ D [8
2C ~ 8C 8

2C] DKT [8
2
T ~ 8T a

2
T] _ y C 

u a +Wa - 82+ 8 +8 2 + T 82+ a +82 \.l, l' Z l' 7'1' Z m 1'1'1' Z 
(10.2) 

in which u and ware the velocity components along the radial (1') and axial (z) directions 

respectively, N2 is the azimuthal component of micro-rotation vector, T is the temperature, C 

is the concentration field, P is the density, Cp is the specific heat , a is the electrical conductivity 

of the fluid, p is the pressure, Kc the thermal conductivity, D is the coefficient of mass diffusivity, 

Cs is the concentration susceptibility, T-m is the mean fluid temperature, ](T is the thermal

diffusion ratio, ](1 is the first order chemical reaction constant, N2 is the microrotation field 

andJ.L and k are the viscosity coefficients. 

The appropriate boundary conditions are 

Using 

T = Tw C = Cw at z = L, a > 0 '} 

BT_O Be 0 t 0 8z - , Bz =, a z = , 

U= ar!'(7]) , w=-2aLf(7]), N2= Lg(17) , 

()-L ..J._..!2. '71='::::'L' 
-TW ,<P-C1U"1 

the above equations finally yield 

()" + 2PrRef()' + MPr EcRef'2 + DuPr¢" (7]) = 0, 

() (1) = 1, ()' (0) = 0, 

¢" + 2ScRef¢' + ScSl'()" - ReSq¢ = 0, 

¢(1) = 1, ¢' (0) = O. 

163 

(10.3) 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

(10.8) 



The dimensionless parameters arising in Eqs. (10."5) - (10.8) are 

aL2 aB2 
, .the .Reynoldsnumber,M = _ _ a., the Hartman number , 

v pa 
.Re 

Pr 
. 2 

J..LKCp, the Prandtl number, Ec = (ar) , the local Eckert number, 
c cpJr11l 

DKTCw lI. 
C 1: ' the Dufour Number, Sc = -, the Schmidt number 

vcp s w D 
Du 

K1 " DKTTw 
the chemical reactlOn parameter, Sr = C' the Soret number. 

pa IITm w 

It is important to note ·thatfor All -=0 ·flowis .termed as hydrodynamic ·flow :whereas it is called 

hydromagnetic if M =I O. It is evident from the expressions for Dufour and Soret numbers 

that these are arbitrary constants provided that their product remains constant [70 - 74]. 

Furthermore Du = 0 and Sr = 0 correspond to the situation when thermal diffusion and 

diffusion-thermo effects are smaller order of magnitude than the effects described by Fourier's 

.and Fick's laws [70 - .74] .. r > .0 .showsfirst order .destructiv.e .chemicalTeaction while r < .0 

corresponds to the generative chemical reaction and 'Y = 0 is the case when there is no chemical 

reaction occurring in the flow regime. Ec = 0 is the case when Joule heating is not considered. 

Physical quantities of interest are Nusselet number Nu and Sherwood number Sh which are 

defined as 

Nu 

Sh (10.9) 

where qw (= -KcoT foz) and tnw (= - DoC foz) are the heat and mass fluxes and Rer (= arLfll) 

denotes the local Reynold number. 

10.2 Homotopy solutions 

Tor homotopy ,solutions {)(ry) and¢{ry)intenns of base functions 

(10.10) 
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can be expressed as 
00 00 

8 (7]) = L C~,7]2n, ¢ (7]) = L dn 7]2n, (10.11) 
71.=0 71.= 0 

where C,l and dn are the coefficients. Corresponding initial guesses are chosen as 

(10.12) 

Linear operators £ () and £,p are expressed as 

(10.13) 

and these linear operators satisfy the following propel'ties 

(10.14) 

where Ci (i = 1 - 4) are the arbitrary constants. 

10.2.1 Zeroth order deformation problems 

The deformation .pro blems .at the .zeroth .order . are .as follows 

(10.15) 

. 8e 
8(1;q) = 1, 8ry (O;q) = 0, (10.16) 

(1 - q) £ '" [~( 7] ; q) - ¢o( ry)] = q'h",N", [g (ry ; q) , j (ry; q) , B( 7]; q), ~(ry; q)] , (10.17) 

• 8~ 
¢(1; q) = 1, 87) (0; q) = O. (10.18) 

In above problems embedding parameter q E [O,IJ and 'he n,p are convergence control parame

ters (auxiliary parameters) such that e (7); 0) = 80 (ry), ~ (7]; 0) = ¢o (ry) and e (7]; 1) = 8 (7)) , 

~ (17; 1) = ¢o (17)· When q varies from 0 to 1, e(7); q) varies from 80 (17) to 8 (7]) and ~(17; q) from 
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¢0(77)tO¢(7]). The nonlinear operators No and N¢are 

a21J(7] j q) +2P'R fA( . )a1J(7]jq) 
a 2 I e 7], q a 

77 7] 

+DuPr a2~(~j q) + MPr EcRe 
17 

x ( 8j~q) )' 

N", [j(7]j q), g(7] j q), 1J (7]) , ¢ (7] j q)] 
.fJ2¢(17 j·q) A ).a¢(7] j q) a 2 +2ScRef(7] j q a 

7] 7] 

a21J(rrq) A 

+ SrSc a; - ReSq¢(r/j q) . 
TJ 

According to Taylor series we expand 

a(7] j q) = a () ~ B () 7n e () 1 am
1J(7]j q) 

0. 77: + L m· 7]··q ., .. m · .7]. = -, a 711, 
.711. . 77 . 

m=l q= O 

-, 

00 Tn 1 am ¢ (77 j q) 
¢0 (7]) + ~ ¢m (7]) q , ¢m(7]) = -, a m 

m=l Tn . 7] 
¢ (7] j q) 

q=O 

10.2.2 Higher order deformation problems 

The mth order deformation problems are 

£0 [8m(7]) - XmBm-1(7])] = "hoR~ (8m- 1(7]) ,9m-1 (7]) , f m-1(7]) , ¢m-1(17)) , 

(10.19) 

(10.20) 

(10.21 ) 

8771(-1) = 0, 8:11,(0)= 0, (10 .22) 

£rp [¢m(77) - Xm¢1lI -1 (7])] ="hcp R~ (8m - 1 (7]), 9m-1 (7]) , fm- 1 (7}), ¢m-1 (7]}) , 

8m (1) = 0, 8:11,(0) = 0, (10.23) 

{ 

O, m ~ 1 

Xm = I ,m > 1 ' 
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m-1 

R~t (gm(r}) , fmC 1)), B (1)) , ¢ (1))) = B":t- 1 + 2 PI' Re L [JnB"n-1 - n] + Du PI' ¢":t-1 
n=O 

m-1 

+MPl' EcRe L f:J~t- 1-n' 
n=O 

The general solutions at the mth-order are 

(10.24) 

(10.25) 

(10.26) 

(10.27) 

in whichB;" (17) and ¢~, (1)) are the particular solutions of problems given in Eqs. (10:22) and 

(10.23) . The the coefficients CI"(i = 1- 4) are determined by the boundary conditions given 

in Eqs. (10 .22) and (10 .23) . The systems given in Eqs. (10.22) and (10.23) have been solved 

by using Mathematica. 

10.3 Convergence of series solutions 

This section deals with the convergence of series solutions (Eqs. (10.26) and (10 .27)). These 

-seri"eB b'Ulutium; bil'Ungly -depend -upun -the -auxiliary -p-ararrreterB 1L() -and 1t<jJ. Hence -we -display 

the "h-curves of the residual errors of B (1)) and ¢ (1)) in the Figs . (10 .1) and (10.2). It is noticed 

that permissible values of"h(} and "hq, are -0.9 ~"h(},"hq, < -0.6. However the whole forth coming 

analysis has been carried out for "ho = 7L<jJ = -0.7. Furthermore, Table 10.1 indicates that 
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convergence of e (77) and ¢ (17) is achieved at 40th order of approximation. 

1x1~ 
M= R= = 1, K= Pr=0.2, Ec = Sc=Sr =DJ = y= 0.5 
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Fig. 10.1. he-curve for residual error of e (77) at 77 = 0.5. 
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0:: -5x10-7 . 

-7.5x10-7 , 
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Fig. 10.2. h4>-clU've for residual error of ¢(n) at T) = 0. 5. 
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Table 10.1. Convergence of HAM solutions when Re = M = 1.0, Du = Sr = Se = K = 

Ee = 0.5, PI' = 0.72, "y = 1 and 110 =1/,q, = - 0.7. 

Order of approximations - ()' (1) ¢' (1) 

1 0.180000000000 0.460000000000 

5 0.254152789818 0.504473160068 

10 0.275842111808 0.517997985130 

15 0.276571089191 0.518477531958 

20 0.276594087908 0.518493503281 

25 0.276594768508 0.518494005309 

30 0.276594787283 0.518494020207 

35 0.276594787759 0.518494020623 

40 0.276594787770 0.518494020634 

45 0.276594787770 0.518494020634 . 

10.4 Results and discussion 

Herein this . section we 'haveexamined the -influence of pertinent 'parameters 'on the 'dimen

sionless temperature e (ry) and dimensionless concentration ¢ (ry). l<urthermore the numerical 

computations for Nusselt number and Sherwood number for various values of dimensionless 

parameters are presented in Table 10.2. Figs. 10.3 and 10.4 are sketched to see the influence of 

Prandtl number PI' on dimensionless temperature () (77) and dimensionless concentration field 

¢ (ry). These Figs. reveal that the effect of Pr on e (ry) is opposite to that of Pr on ¢ (ry). The 

purpose of Figs. 10.5 and '10.6 is to show the behavior of local Eckert number Ee on e(T]) and 

¢ (77) . Here Ee = 0 corresponds to the case when Joule heating is negligible small while Ee i= 0 

leads to the situation when Joule heating is significant. It is noted from Fig. 10.5 that dimen

sionless temperature e (77) increases by increasing Ee. This is due to the fact that an increase 

in Ee results an increase in kinetic energy. Consequently temperature e (77) increases. Fig. 10.6 

depicts that dimensionless concentration field ¢ (77) decreases with an increase in local Eckert 

Ee. Comparison of Figs. 10.5 and 10.6 shows that the effect of Ee on e (77) is opposite to that 

of Ee on ¢ (77) ' It is observed from Fig. 10.7 that e (77) has an increasing trend when Dufour Du 
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is increased whereas ¢ (7]) decreases when Du is increased (see Fig. 10.8). Fig 10.7 also reveals 

that e (7]) decreases when Soret number Sr is increased whereas ¢ (7]) is an increasing function 

of Soret number Sr . It means Soret number Sr shows opposite behavior on e (77) and ¢ (7]). 

Figs. 10.9 and 10.10 are displayed to see the influence of Schmidt number Se on e (7]) and ¢ (7]). 

These Figs. clearly show that Se has opposite effect as that of PI' on e(TJ) and ¢(7]). Tem

peratureB{7]) increases for .the .caseofdestructive . chemical reaction ( '"Y >0) while it decreases 

for generative chemical reaction ('"'( < 0) and vice versa for dimensionless concentration ¢ (7]) as 

shown in Figs. 10.11 and 10.12. It is noted from Fig. 10.13 that by increasing the Hartman num

ber IvI dimensionless temperature e (7]) increases whereas the dimensionless concentration ¢ (7]) 

decreases when the Hartmen number M is increased (see Fig. 10.14). The effects of Reynolds 

number Re on dimensionlel'ls tem,perature e (7]) and the dimensionless concentration ¢(7]) are 

also analyzed. It. iso bserved thatdimensionlesstemperaturee (7/) increases when Reynolds 

number is increased but ¢ (7]) is decreasing function of Re. We noticed that Re = 1 corresponds 

to the case when inertial and viscous forces aJ:e of equal magnitudes and Re > 1 leads to the 

situation when inertial force dominates the viscous force. It is noted that when inertial force 

becomes ·moreand ·more . dominant , there is an increase in .temperature· of .nucropolar ·£luidbut 

vice versa for ¢ (7]). Figs. 10.15 and 10.16 show that temperature of micro polar fluid (K =1= 0) is 

higher than that. of Newtoriian fluid (K =0) but reverse trend is observed for ¢(7]). 'Table 10.2 

portrayed the influence of physical parameters on Nusselt number Nu and Sherwood number 

Sh which are respectively capable to measure the rate of heat transfer and rate of diffusion of 

reacting species from stTetching smface into the fluid. From this Table it is found that Nusselt 

.numb!"..!' .Nu .and Sherwo.o.d.number .S hareincreasing lunctionsof .the .Hartman.number M, .the 

Reynolds number Re, themicropolar parameter K , the Prandtl number Pr, the local Eckert 

numoer Ee, tue'Dufour numoer D'lL, tl1e 'Bcumidt munoer Sc, the 'Boret number Sr. 1n fact tl1e 

rate of heat transfer and rate of diffusion increase by increasing the Hart.man number lvI, the 

Reynolds munber Re, the micropolar parameter K, the Prandt.l number Pr, the local Eckert 

number Ec, the Dufour number Du, the Schmidt number Sc, the Soret number ST. It is also 

noticed from Table 10.3 that heat transfer rate and rate of diffusion of impurities are higher in 
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-nncropolarfltti:cl( K i= '0) -than -those 'of-viscous -flui:cl(I{ =0) . 
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Table 10.2. Numerical values of Nusselt number Nu and Sherwood number 8h for different 

values of dimensionless parameters. 

!vI Re ]{ Pr Ec Du Sc 8r 'Y -Nu Sh 

0.0 1.0 0.2 0.72 0.5 0.5 0.5 0.5 1.0 0.196967377202 0.500216574212 

1.0 0.236713458769 0.509198729447 

2.0 0.274572363419 0.517753418874 

3.0 0.310697250305 0.525915-986054 -

1.0 0. 5 0.5 0.72 0.5 0.5 0.5 0.5 1 0.137959287226 0.271110627134 

1:0 - 0:274572363419 - 0.517753418874 

1.5 0.409440501724 0.743321170314 

2. 0 0.542289190987 0.950701279402 

1.0 1.0 0.0 0.72 0.5 0.5 0.5 0.5 1.0 0.272947830222 0.517155792181 

0.2 0.274572363419 0.517753418874 

0.4 0.275970705362 0.518265878741 

-0;6 · 0:277174457309 • -0:518705617114 -

1.0 1.0 0.2 0.12 0.5 0.5 0.5 0.5 1.0 0.0397275063813 0.464053027637 

0.42 - 0.149427970306 -0.489266-527247 

0.72 0.276594787769 0.518494020634 

1.02 0.425336957988 0.552682488149 

1.0 1.0 0.2 0.5 0.0 0.196572400379 0.499782539157 

0.5 0.276594787770 0.518494020634 

1.0 0.356617175160 0.537205502111 

1.5 0.436639562551 0.555916983588 

1.0 1.0 0.5 0.72 0.5 0.0 0.5 0.0 1.0 0.0728582933407 0.454921614577 

1.0 0.5 0.524407937326 0.575138460037 

2.0 0.25 0 .960074294654 0.564760875122 

3.0 0.167 1.39574064977 0.561301679868 
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(continuation of Table 10 2) 

M Re I< PI' Ee Du Be Br , -Nu Bh 

1.0 1.0 0.5 0.72 0.5 
.. 

0.0 0.1 0.0 1.0 0.113791852253 0.103612556345 

0.6 0.317181328487 0.622656593551 

1.1 0.520794528919 1.14999438899 

1.6 0.728685599389 1.69715747052 

I.D I.D D.5 D.7.2 . D.5 D.D D.D D.D I .D D .D728582933407 . D.4549216I45.77 

0.5 1.0 0.306574759184 0.595893630212 

0.25 2.0 0.197658170280 0.637403971061 

0.167 3.0 0.161352640511 0.678914311273 

1.0 1.0 0.5 0.72 0.5 0.5 0.5 0.5 -1.0 0.216649082245 0.728688930740 

-0.5 0.049861218640 0.309363550576 

0.0 0.0810384681714 0.021226011376 

0.5 0.187514276287 0.291392129234 

1.0 0.276594787770 0.518494020634 

10.5 Concluding remarks 

Dufour and Saret effects on axisymmetric flow of electrically conducting micropolar fluid be

tween the radially stretching sheets with viscous dissipation and Joule heating al·e investigated. 

Variations of Nusselt number and Sherwood munber are computed. Main findings are stunmed 

up as follows. 

• Dimensionless temperature e (7]) increases with an increase in Ee whereas dimensionless 

concentration ¢ (7]) is decreasing function of Ec. Thus Joule heating has opposite effects 

on e (7]) and ¢ (7]) . 

• The effects of Pr, Ee M, Re, Du, BT, Be and I on e (7]) are opposite to that of ¢ (7]). 

• Temperature e (17) increases for the case of destructive chemical reaction b > 0) while 

it decreases for generative chemical reaction (, < 0) and vice versa for dimensionless 

concentration ¢ (7] ). 
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• With an increase in Re, there is an increase in temperatme B (77) of micropolar fluid but 

for concentration ¢ (77) the result is reverse. 

• Rate of heat transfer from sheet into the fluid increases when PI', Ee lVI, Re, Du, Sr and 

Se are increased. 

• Diffusion rate of impurities from surface of sheets into the fluid increases by increasing 

Pr, Ee M, Re, Du, Sr and Se. 

• Heat transfer rate and diffusion rate are higher in micropolar fluid (K =f 0) when compared 

with viscous fluid (K = 0) . 
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Chapter 11 

Axisymmetric 

magnetohydrodynamic flow of a 

micropolar fluid between unsteady 

stretching surfaces 

This chapter explores the time-dependent MHD flow problem of a micropolar fluid between 

two radially stretching sheets. Both cases of strong and weak concentrations of microelements 

are taken into account. Suitable transformations are employed for the conversion of partial 

differential equations into the ordinary differential equations. The solutions of the resulting 

problems are developed by a. homotopy analysis method (HAM) . Angular velocity, skin friction 

coefficient and wall couple stress coefficient are illustrated for various parameters of interest. 

11.1 Mathematical modelling 

We consider the a..'<isymmetric flow of an incompressible micropolar fluid between two parallel 

infinite sheets at z = ±L. The sheets are subjected to the stretching velocity 'Uw = ar (1 - bt) -1 . 

The magnetic field of the form B = Bo (1 - bt) - 1/2 is applied perpendicular to the planes of 

sheets (parallel to z-a.xis) . magnetic Reynolds llllllber is small and induced magnetic field is 
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neglected. No · electric field . (-E = -0 )is · applied. Schematic representation · and · coordinate system 

are shown in Fig. 11.1. Velocity and microrotation fields for unsteady axisymmetric flow can 

be defined by V = [u (" z, t), 0, w (" z, t)] and n = [0, N2, 0, t] (see Takhar et al. [46]). The 

flow tmder consideration is governed by the equations 

(11.1 ) 

(11.3) 

ON2 + u ON2 + w ON2 = "Iv [02 
N2 + ~ 8N2 + 02 

N2 _ N2] _ ~ [2N? + ow _ O'LL] (11.4) 
ot 0, oz pj 0,2 , 0, oz2 ,2 pj - OT OZ' 

in which j is the micro-inertia per unit mass, p is the fluid density, fL and k are the viscosity 

coefficients and av, /3 v, "III are the spin viscosities. Furthermore, fL , k , av, /3v, and "Ill satisfy 

the constraints given in Eq. (1.14) 

z-axlX 

f----,-Z= L 

u .. = ar(l '::bt)-I " 
" . 

L 

2L 
Bo z= o 

~1 11 
f------ z = ~L 

Fig. 11.1. Geometry of the problem and coordinate system. 
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The boundary conditions are 

aul u (1', L, t) = U w , W (1', L, t) = 0, N2 (1', L , t) = -n!:j , 
u Z Z=L 

au(1', z, t)1 ( () 8z = 0, W 1',0, t) = 0, N2 1',0, t = 0, 
z=o 

(11 .5) 

where n (0 ~ n ~ 1) is a constant. Here n = 0 depicts the situation when micro elements at 

the -stretching -sheet-s are unable to rotate(H =-0 at -stretching -surfaces). This is also known 

as the strong concentration of the microelements. When n = 0.5 then anti-symmetric part of 

the stress tensor vanishes and denotes weak concentration of microelements at the sheets. For 

n = lone has turbulent boundary layer flow. In the present flow analysis we have considered 

n = 0 and n = 0.5 [53]. 

We nondimensionalize Eqs. (11.1) - (11.5) by utilizing the following transformations 

and eliminating the -pressure gradient, we have 

(1 + K) filII - SRe r'TJ f"' + 3 {Ill + 2Re {fill - Ka" - Re Mf" = 0, , ~.. 2 L ,.. 01 J J., ~ 

1(1) = .0, l' (1) = 1,1(0) = 0, 1" (0) = .0, 

(1 + l~) gil + ReK[J" - 2g] - s~e [3g + /19'] + Re [2fg' - J'g] = 0, 

9 (1) = -nf" (1), 9 (0) = 0, 

(11.6) 

(11. 7) 

(11.8) 

(11.9) 

(11.10) 

where Eq. (11.1) is 'automatically satisfied and "tv = (p. + k/2) j and j = v(l - bt)/a. [53]. The 

dimensionless quantities 

k aL2 u __ a B6 S __ ~ K = -, Re = -, lV.l , , 
P. 1/ pa a 

respectively indicate the micropolar parameter (K), the Reynolds nurnber(Re), the Hartman 

number (JvI) and the lillsteadiness parameter (8). Note that for the steady case 8 = O. Fur

thermore, Eqs. (11.1) and (11.3) reduce to the classical Navier-Stokes equations when ]( = O. 
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In fact this is the situation when micro-rotation effects are negligible small and do not affect 

the flow. 

The skin friction coefficient Cf and wall couple stress coefficient Cg at z = L are [46] 

Cf = Tw? = (J.L + k) 2 (8U + 8W) I = (1 + K) 1" (1), 
p (uwt p (ar)2 (1 - bt)- 8z 8r z=L Re,. 

L "V !l!:!2.1 
IV 8z z=L __ (I+K/2) '(I) 

2 2 - g, 
pear) (1- bt) - Re,. 

(11.11) 

where Rer (= a1-j v~ denotes the local Reynolds number. 

11.2 Solution of the problem 

For homotopy solutions we .choose the base functions 

(11.12) 

and write 
00 DO 

(11.13 ) 
1".=0 n=O 

where D.n and bn are the coefficients. We take the initial guesses of the form 

fo (ry) = ~ (ry3 - ry) , gO (ry) = -nfl! (1) ry, (11.14) 

and suggest the following linear operators 

.(11-15) 

with the properties given below 

(11.16) 

where Ci (i = 1 - 6) are constants of integration. 
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11.2.1 Zeroth order deformation problems 

'vVe construct the zeroth order deformation problems as "follows: 

(1 - q)£, [f(7] ; q) - fO(1] )] = q1l,f Nf [j (1]; q), g (7] ; q)] , 

f' (I ' ) = 0 aj(7);q) 
, q , 8 . 1] 

2 ' 
g'(I' q) = -n a f(1]; q) 

, 8772 , [;(O;q) = o. 
'7=1 

= 0, 
'7= 0 

(11 .17) 

(11 .18) 

(11.19) 

(11.20) 

In above expressions q E .[0, 1] and 1I",g i= 0 are respectively called the embedding and con

vergence control parameters such that j(1];O) = fa (7]) , 9(1];0) = 90(1]), j(1];I) = f(1]) and 

[; (1]; 1) = 9 (1]). When q varies from 0 to 1, j(1]; q) approaches fa (1]) to f (rJ) and [;(1]; q) from 

90 (7]) to 9 (1]) . The nonlinear operators Nf and Ng are given by 

(11.22) 

Expanding j(77; q) and [;(1]; q) in Taylor series we have 

00 00 

(11.23) 
.=1 .m=l 

(11.24) 
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11.2.2 Higher order deformation problems 

The mth order deformation problems are 

£ f [fm(77) - Xmfm-1(7j)] = 1LfR~, (fm- 1(77) , gm- 1(77)) , 

fm(1) = 0, f:nCl) = 0, fm(O) = 0, f~,CO) = 0, 

9m(l) = 0, gm(O) = 0, 

_ { O,m :::; 1, 
Xm -

I,m> 1, 

( ' ) "" S ·R.e I II /1/ J R Mf" 1 + 1'.,. f",-l - -2- 3fm- 1 + 7]!m-1 - e ",- 1 

7n-1 

+2Re I: f~' fm-1-n - Kg:~_l' 
n=O 

(1 + ~) g:~~-l + ReI< [J~'-1 - 2gm -I] 

S Re [3 '] R ~ [ 2fng~n-l-n 1 --2- 9m-1 + 7]9m-1 + e ~ I . 

,,=0 - fngm-1-n 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

If f:n (7]) and g~, (77) indicate the particular solutions of problems (11.25) and (11.26) then 

solution expressions for mth order deformation problems are 

·(11.29) 

(11.30) 

where ei(i = 1 - 6) are determined by the boundary conditions given in Eqs. (11.25) and 

(11.26) . 
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11.3 -CouvergeIlc-e ·of ·homotopy -sol-ut-iolls 

The series solutions obtained by homotopy analysis method contain convergence control para

meters (auxiliary parameters} The auxiliary parameters are employed in the adjustment of 

convergence regions of the derived series solutions. To examine the effects of auxiliary para

meters we plot the 1I,1,g curves in Figs. 11.2 and 11.3. It can be noted from Figs. 11.2 and 

11.3 that our series solutions converge when -1.2 5,1I,f ' 'hg 5, - 0.45 . However, the forthcoming 

analysis has been presented for fixed value - 0.8 of 'hf and 1I,g. Table 11.1 shows the conver

gence of derived series solutions. This Table shows that convergence is achieved at 20 th order 

of approximations up to 12 decimal places. 

~ ...--

3.30493 

3.30492 

~ 3.30491 

3.3049 

3.30489 

I 

-1.2 

M = Re = 1, S = K = 0.2 

22rd ader d Ef:PUxifT'lCiioo 

-1 - 0.8 
Pi, 

-0.6 - 0.4 

Fig. 11.2. hf-curve of f" (1) at 22nd order of approximation. 
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M = Re = 1, S = K = 0.2 
- 2.35425 .---~-----.-------------;-; 

'22rdadar Chl/:fX",,;malkns :) . 
-2.35425 

-2.35425 

;:::- -2.35426 
'-' 
-0) 

- 2.35426 . 

-2.35426 

- 2.35426 

- 1.2 - 1 - 0.8 - 0.6 - 0.4 
.Pig 

Fig. 11.3. hg-curve of g' (1) at 22nd order of approximation. 
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Table D.l.Convergence cif HAM solutions when Re = M = 2:0, S = J{ = 0.2, n =0.5 and 

"fLy ="fLg =-0;8. 

Order of approximations f" (1) l(l) 

1 3.95085714286 -3.57542857143 

5 3.88696927534 -3.60590455466 

10 3.88710449242 -3 .60605273254 

15 3.88710458228 -3.60605285000 

20 3.88710458233 -3.60605285011 

25 3.88710458233 -3.60605285011 

.30 3.88710458233 -3.60605285011 . 

35 3.88710458233 -3.60605285011 

11.4 Results and discussion 

Here in this section we have examined the influence of Hartman number M, Reynold number 

Re, unsteaainess parameter Sana micropcilar parameter I< on f' (1)) , f (1)) ana 9 (11)' The effects 

of Hartman number M on f (1)) and f' (1)) are shown in t he Figs. 11.4 and 11.5. From these 

Figs. it can be seen that the magnitude of f (7)) cUld f' (-ry) decreases when Hl"_rtman number 

M increases. This is due to the fact that Lorentz force retards the flow both in radial and axial 

directions. Figs. 11,6 and 11. 7 illustrate the effect of magnetic field on the dimensionless angular 

velocity 9 (1)) for both the cases n = 0 (strong concentration of microelements) and n = 0.5 

(weak concentration of microelements). We observe from these Figs. that for the situation when 

micro elements are able to rotate at the stretching sheets (n = 0.5) the effect of Hartman number 

M on 9 (1)) is opposite to 'that of M on 9 (17) when n = 0 (when micro elements are unable to 

rotate at the stretching sheet). The magnitude of f (1)) and f' (1)) is a decreasing function of Re 

. (Figs. 11.8 and 11.9). It .isfound from .Fig. 11.10 .that for .n = .0.5 Reynolds number Re.is .more 

influential on 9 (1)) in the vicinity of stretching sheet whereas it has negligible effect on 9 (77) 

away from the stretching sheet. It is noted from Fig. 11.11 that for n = 0 there is an increase 

in 9 (77) when Reynold number is increased. Upon making an increase in micropolar parameter 

I<, there is an increase in the magnitude of dimensionless axial component f (1)) and radial 

component f' (1)) as shown in Figs. 11.12 and 11 .13. Fig. 11 .14 depicts that the magnitude 
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of angular velocityg(7]) decreases by increasing the micropolarparameter J( when n = 0.5 . 

However it increases when n = 0 as shown Fig. 11 .15. The effects of unsteadiness parameter 5 

on f (ry) , f ' (ry) and 9 (7] ) are shown in the Figs. 11.16 -11 .19. Figs. 11 .16 and 11.17 reveal that 

the magnitudes of f (7]) and f' (7] ) are increasing functions of unsteadiness paranleter 5 whereas 

9 (7]) decreases with an increase in lmsteadiness parameter 5 for both the cases 11 = 0.5 and 

n = 0 (see Figs. 11.18 and 11.19). Table 11.2 represents the variation of skin friction coefficient 

for steady flow (8 =0) and unsteady flow (5 =1= 0) for two cases (i) wben niicroelements dose 

to the stretching sheet are unable to rotate (n = 0) i.e. strong concentration of micro elements 

and (ii) when micro elements close to the stretching sheet are able to rotate (n = 0.5 i .e. weak 

concentration of micro elements). This Table indicates that skin friction coefficient Rer C1 is 

an increasing function of Hartman number M, Reynolds number Re and micropolar parameter 

K. 'FUrthermore, skin fdction coeffiCientRer Cf for unsteady flow (5 =1=0) 'islarger than that 

for steady flow (5 = 0) . The skin friction coefficient fOT the case of strong concentration of 

micro element (n = 0) is higher than that when n = 0.5 (weak concentration). Skin friction 

coefficient ReT' Cf for magnetohydrodynamic flow (M =1= 0) is larger than that for hydrodynamic 

flow (M = 0). Skin friction coefficient Re" Cf increases when Reynolds number Re is increased. 

Fmthennore, Rer CJ for case of dominant inertial force (Re > 1) is higher than that when 

viscous force is dominant (Re < 1). Skin friction coe.:fficient ReT' CJ is an increasing function 

of micropolar parameter K. Obviously skin friction coefficient Rer CJr for micropolar fluid 

(K =1= 0) is higher than that of viscous fluid (1< = 0). Table 11.3 is constructed for the influence 

Of vaiious .parameters on tbe wall couple stress coeffiCient -rt.er C9 . ~his ~able 'indicates that 

the wall couple stress increases by increasing M, Re and I< for both steady flow (5 = 0) and 

unsteady (5 =1= 0) flows. Wall couple stress Re r C9 for steady flow (5 = 0) is larger than that 

of unsteady (5 =1= 0) when n = 0 whereas wall couple stress coefficient Rer C9 fOT unsteady flow 

'ishigherin compadson with Rer C9 for steady flow \.;hen n = Q.15. From Table 11.3 one can see 

that for K = 0 (Newtonian fluid), wall couple stress Rer Cg = 0 both for steady (5 = 0) and 

unsteady (5 =1= 0) flows when n = O. This is due to the fact that for K = 0 Eqs. (11.2) and 

(11.3) reduce to classical Navier-Stokes equations which are unable to exhibit the property like 
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. couple -stress. 

Re = 3, K= 0.5, S= 0.5, n = 0.5 

- M =ao 

- - - M = 0.8 

- 0.05 - - - M = 1.5 

M = 25 
- 0.075 

~ 
-0.1 

- 0.125 

- 0.15 

- 0.175 

0 0.2 0.4 0.6 0.8 1 
'/ 

Fig. 11.4. Influence of Hartman number M on a.xial velocity f (77) when n = 0. 5. 
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Fig. 11.5. Influence of Hartman number M on radial velocity l' ('T]) when n = 0.5. 
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Fig. 11.6. Influence of Hartman number M on angular velocity 9 ("I) when n = 0. 5. 
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Fig. 11.9. Influence of Reynolds number Re on radial velocityj'(7]) when n = 0.5. 
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Fig. 11 .13. Influence of micropolar parameter J( on radial velocity j' (77) when n = 0.5. 
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Fig. 11.15. Influence of micropolar parameter ]( on angular velocity 9 (7]) when n = O. 

196 



- 0.025 · 

- 0.05 

- 0.075 · 

-0.1 · 

- 0.125 . 

- 0.15 · 

- 0.175 . 

o 0.2 

M= Re = 1, S = 0.5, n = 0.5 

- S=o.O 

--- S=0.4 

OA 

S= 0.8 

S= 1.2 

·0.6 
TJ 

0.8 1 

·Fig. 11 .16. Infiuenceofunsteadinessparameter Son axial velocity 1(1]) whenn =0,5. 

1 

0.8 

0.6 

"" 
0.4 

-~ 
."-

0.2 

O· 

- 0.2 

0 0.2 

M= Re = 4, S= 0.5, n = 0.5 

- S = O.O 

- - - S= 0.4 

0.4 

S = 0.6 

S= 1.2 

0.6 0.8 1 

Fig. 11.17. Influence of unsteadiness parameter S on radial velocity f' (1]) when n = 0.5 . 

197 



... _fl.··· •..•. . . 
of " • 

... :..:~~--.--.---........... -....... . ..... 
-. " . o 

- 0.5 

~ -1 

- 1.5 · 

-2-

o 0.2 

..... , ' . 
..... "" I,. '...... " . 

............ , ..... 
"""" ..... ....... . 

I-s- oo I ---S:;4 

...... . It .. 

......... , ... ... 
'''., '" , " '. 
~ ",", 
~ \, .... 
~ \,\ 

I ~n 8",0 I " \'. " ... \. 

·· S=1.2 
\, 

0.4 0.6 0.8 1 
'I 

Fig. 11.18. Influence of micropolar parameter J{ on angular velocity 9 (7]) when n = 0.5 

M= ·~=3, K=o.S, n = D:O 

0.15 

0.1 

'E' 
5i 0.075 

0.05 
--- $=0.2 

0.025 · --- $=0.4 

$ = 0.6 

o 0.2 0.4 0.6 0.8 1 

'I 
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Table 11.2. Numerical values of skin friction coefficient Re,. Cj for steady and ullsteady 

flows when 11 = 0,0 .5. 

M Re I< Re,.Cj 

S = 0 (steady flow) S = 0.2 (unsteady flow) 

·n-= ·O n-=0,5 ·n-== ·O n-= 0,5 

0.0 2.0 0.2 3.82473020238 3.78726691878 3.99120358926 3.94239935089 

1.0 2.0 0.2 4.20445423054 4.16993062067 4.36461630321 4.31907441217 

2.0 2.0 0.2 4.55221064458 4.52012817877 4.70732496512 4.66452549879 

3.0 2.0 0.2 4.87395229220 4.84393067976 5.02494392674 4.98448554625 

2:0 0.5 0.2 3.-84961651365 . 3.-84008453269 . 3:88936488851 . 3:87647501000 · 

2.0 1.5 0.2 4.32555975365 4.30011894660 4.44291661255 4.40883270045 

·:W · 2.5 · 0:2 4.77168425132 4.73368228848 . 4:96386790599 4:91337165356 . 

2.0 3.5 0.2 5.19046130392 5.14241397560 5.45487945055 5.39148143178 

2.0 2.0 0.0 3.95105916698 3.95105916698 4.10439808967 4.10439808967 

2.0 2.0 0.1 4.25481522604 4.24120771227 4.40896348844 4.38954617993 

2.0 . 2 .0 .0.2 4.55221064.458 4.5201281.7877 . 4 . .70732496512 . 4.66452549879 . 

2.0 2.0 0.3 4.84435445313 4.78988331862 5.00051562161 4.93112443178 
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Table 11.3. Numerical values of wall couple stress coefficient Rer Cg for steady and unsteady 

flows when n = 0, 0.5. 

M Re ]( - ReT Cg 

.. 8 = o (steady Jiow.) S = 0.2 (unsteady Jiow) 

n=O n=0.5 n=O n= 0.5 

0.0 2.0 0.2 0.387278980109 3.26295324728 0.383145930553 3.68873785110 

LO · 2.0 0.2 ·0.387543251367 · 3.40770958877 . 0.383603165498 3.83313488447 · 

2.0 2.0 0 .2 0.387797110015 3.54140362983 0.384023949443 3.96665813513 

3.0 2.0 0.2 0.388039304423 3.66608133907 0.384412418868 4.09128293110 

2.0 0.15 0.2 · 0;099220968475 . 2;115103436228 0.0989347234382 2.26476535684 · 

·2:0 1.5 · 0 :2 · ·0:293069065641 ·3:09514318666 · 0:290798273461 ·3.42085657147 · 

2.0 2.5 0.2 0.481151680563 3.97237897188 0.475653829432 4.49361404936 

2.0 3.5 0.2 0.664043350895 4.79342672977 0.654723551751 5.49774642737 

2:0 2:0 0:0 · 0:000000000000 2:tJ7977'83G057 · ·0: 000000000000 3.13G-80549337 · 

2.0 2.0 0.2 0.197854021227 3.11911705925 0.195587393503 3.55847831259 

2:0 2:0 0.4 .. ·0.387797110015 3.54140362983 ·0.384023949443 3;96665813513 

2.0 2.0 0.6 0.571285510760 3.95018724378 0.566534046078 4.36397123775 

11.5 Conclusions 

This work investigated unsteady flow of an incompressible micropolar fluid between the radially 

stretching sheets. The following observations have been noted from the performed analysis. 

• The effect of unsteadiness parameter 8 on 1 (T)), I' (T)) and g.(T)) is similar in qualitative 

sense. 

• The v.ar:iatiollsof Mand .K .on dimensionless .angular velocity g.(r}.) lor .ca.<;e of ~<;trong 

concentration (n = 0) is opposite to that on the dimensionless angular velocity 9 (T)) for 

the case of weak concentration (71. = U.5). However Re ana S11ave sinillar effects on 9 (7/) 

when n = 0 and n = 0.5. 

• Boundary layer is decreased when Hartman number M increases. 
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• Skin friction coefficient Ref· Cf and couple stress coefficient Re,. Cg are increasing functions 

of Re, AI, 8 and J{ when n = 0 and n = 0.5. 

• Skin friction coefficient Re r C f in steady flow (S = 0) is less than that of unsteady flow 

(S "# 0). 

• Wall couple stress Rer C9 for unsteady flow (8 "# 0) is less than that for steady flow 

(8 -= 0) whenn·=O :while the wall couple stress RerCy for unsteady flow is higher than 

the wall couple stress Re r C9 in steady flow when n = 0.5. 
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