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Preface 

Heat transport over a stretching surface in the expanse of stagnation point flows 

have wide applications in fiber sheet manufacturing, glass production, polymers, 

paper production, metal spinning, continuous casting and many others. 

According to the opinion of researchers, various fluids are chemical engineering 

and biomedical sciences are in nature. One usually comes across the situations 

where the flow of non-Newtonian fluids occurs. These fluids have relevance 

particularly in cosmetic products, biological liquids, butter, toothpaste, certain oils, 

grease, shampoos etc. Such material cannot be described in general by the classical 

Newtonian' s law of viscosity. Thus various mathematicians, engineers and 

computer scientists have devoted their attention to the modeling and simulation of 

such flows. At present, the non-Newtonian fluids are characterized under three 

cases namely the differential, the integral and the rate. Although numerous works 

have been reported for the differential type fluids but the rate type classes are not 

given proper attention. Especially, the boundary layer flows in rate type fluids are 

not much studied. Various investigators in the field examined the unidirectional 

flows of Maxwell and Oldroyd-B fluids. Besides these, the appealing feature of 

micropolar theory is that it can additionally predict the microrotation effects. 

Specifically, the micropolar fluid deals with the mathematical and behavior of 



various fluids such as liquid crystals, exotic lubricants, animal blood and ferro­

liquid etc. 

In view of the above mentioned discussion, this thesis is structured in the following 

forms. 

Chapter 2 deals with the incompressible and unsteady flow of viscous fluid. Mixed 

convection flow in the vicinity of stagnation-point flow near a stretching surface is 

analyzed in second chapter. Free stream velocity has occupied time-dependency . 

The conservation laws are reformed into ODEs after employing the appropriate 

transformations. Analytical technique(HAM) is used to solve the nonlinear 

problem. The numerical values of skin friction coefficient and local Nusselt 

number for various pertinent parameters are tabulated. It is noticed that the 

magnitude of skin friction coefficient decays with the increasing values of 

radiation parameter and mixed convection parameter. Such observations are 

published in "International Journal of Numerical Methods and Flu ids, 68 

(2012) 483-493". 

Chapter 3 addresses the mixed convection flow of viscous fluid towards stagnation 

point over a linearly stretching surface when fluid is magnetohydrodynamic 

(MHD). Series solutions are constructed for assisting and opposing flow cases. 

Moreover the effects of velocity and thermal slip parameters are scrutinized 

carefully. Physical parameters involving in governing problem are plotted. This 



research has been submitted for publication III the "Journal of Aerospace 

Engineering" , 

MHD stagnation-point flowof viscous fluid is discussed in chapter 3. The flow is 

generated by the linearly stretched surface. Suitable transformations are applied for 

partial differential equations to convert these in the coupled set of ordinary 

differential equations. The thermal radiation effect has been considered through the 

Rosseland approximation. Slip conditions are applied to model the problem. 

Influences of different physical parameters are obtained by graphical and tabular 

results. It is observed that skin friction coefficient becomes larger when Hartman 

number increases. The skin friction and local Nusselt number decrease for large 

values of velocity slip parameter. Such results are submitted in "Zeitschrift 

Naturforschung A". 

Chapter 4 exposes the solution of non-Newtonian fluid near the stagnation-point. 

Second grade incompressiblefluid invades on the wall orthogonally. The homotopy 

analysis method (HAM) is applied to solve nonlinear problems. The obtained 

convergent solutions have been equaled with numerical solutions. Admirable 

agreement is noticed between both solutions. These results are published in 

"Communications in Theoretical Physics, 57 (2012) 290-294" , 

Chapter 5 investigates two-dimensional mixed convection flow of Maxwell fluid. 

The phenomenon of variable thermal conductivity has been considered. The flow 



is considered near the region of stagnation-point. Analysis of heat transfer with 

thermal radiation and source/sink is also carried out. The solutions of transformed 

differential equations are obtained by homotopy analysis method. Discussion is 

provided for the velocity and temperature profiles. Convergence of series solution 

is examined. Results are compared with the previous limiting studies. This 

research is submitted in "International Journal of Heat and Mass Transfer". 

Chapter 6 provides the analysis of laminar flow for Maxwell fluid . Magnetic fie ld 

effects for the stagnation-point flow near linear stretching sheet are also 

considered. Heat transfer with thermal radiation effect is addressed carefully. 

Convergence of the developed solutions is checked carefully. Appreciable change 

has been noticed for involved physical parameters for velocity and temperature. 

Comparison for local Nusselt number is presented with previous results in limiting 

case. Such observations are published in "Heat Transfer: Asian Research" . 

The flow of an Oldroyd-B fluid with variable thermal conductivity is analyzed in 

chapter 7. The governing equations are modeled and then transformed into the 

ordinary differential equations. Deborah number and thermal radiation effects are 

attended in this chapter. It is found that the stretching parameter assists the velocity 

profile and resists the temperature profile. This work is submitted for 

pUblication in "Thermal Science". 

Chapter 8 examines the micropolar fluid near stagnation-point towards a stretching 



sheet. Attention is gIven to the behavior of various emergmg parameters VIa 

graphs. Numerical values of dimensionless skin friction coefficient and local 

Nusselt number are calculated. In limiting cases, appreciable agreement is made 

lmown with numerical solutions. Further, it is noted that temperature profile 

decreases by increasing microrotation parameter. The results of this problem are 

submitted in "International Journal of Numerical Methods for Heat and Fluid 

Flow". 
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Chapter 1 

Introduction 

The dynamics of viscous fluid with stagnation-point flow specially near stretching surfaces has re­

cently attracted the attention of mathematicians, engineers and numerical simulists. It is because 

of the fact that such flows appear extensively in several industrial and engineering processes. Such 

flows specifically occurs in the processes like extrusion, glass fiber, metal spinning, insul a tillg ma­

terials et c. The steady stagnation point flow was initially discussed by Hiemenz [lJ. The study of 

stagnation point flow over a linearly stretched sheet is considered by Chiam [2J . He concluded that 

boundary layer does not exist near the surface when plate stretching rate and constant rate of stag­

nation point flow are equal. Such layer depends upon the ratio of stretching and free stream rates. 

Although the relevant literature for such flows under different physical conditions is quite extensive 

but we here refer the readers to few very recent studies by Mahapatra and Gupta [3], 1 0k et al. [4], 

Ishak [5], Nadeem et al. [6J and Bachok [7J. The study of boundary layer How combined with heat 

transport phenomenon has applications in technological process including metal and polymer ex­

trusion, drawing of plastic sheets, cable coating, continuous casting, drawing of plast ic sheets . The 

quality of final product in the manufacturing processes is highly dependent upon t he rate of cooling. 

Such cooling rate can be controlled by considering thermal radiation with magnetic field. Further , 

consideration of boundary layer flow in presence of applied magnetic field is significant especially in 

metallurgy. Although ample investigations are presented for steady and unsteady Hows Oll this topi c 
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but Chiam [8) made an interesting study for the stagnation-point flow of viscous fluid in the region 

of stretching sheet. The thermal conductivity in this attempt is taken variable. Stagnation-point 

flow with heat transfer for both steady and unsteady cases has been studied by Mahapatra and 

Gupta [9], Pop et al. [10], Sharma and G. Singh [11], Abbas and Hayat [12] etc. A numerically 

scheme is applied on the stagnation-point flow over melting stretched surface by Bachok et al. [13]. 

The analysis of heat radiation is investigated over a porous stretching sheet with the existence of 

unique and dual solutions by Bhattacharyya and Layek [14], Fang et al. [15] discussed incompress­

ible and unsteady stagnation point flow with mass transfer. Dual solutions are constructed under 

the assumption of chemical reaction and mass transfer by Bhattacharyya [16]. 

The topic of heat transfer in mixed convection process is the fo cus of several recent investigations 

during the last few years. This is due to its vast applications in the design of cooling systems for 

electronic devices, in field of solar energy collection etc. Further , the convection flow problems 

in context of magnetohydrodynamics are of great value due to its industrial applications such as 

geothermal reservoirs, cooling of nuclear reactors , petroleum reservoirs , thermal insulation etc. 

Such problems normally appear in electronic packages and microelectronic devices during their 

operations. Few attempts regarding such flows for the time-dependent and time-independent cases 

with stagnation-point over stretching flows have been reported in the references [17 - 20]. III 

continuation, various investigations concerning the stagnation-point flows of Newtonia n and nOI1-

Newtonian fluids have been also reported by Mahapatra and Gupta [21], Labropulu and Li [22], 

Mustafa et al. [23], Robert et al. [24], Gorder and Vajravelu [25], Mahapatra et al. [26] and Hayat 

et al. [27]). 

There are many materials such as blood, dyes, shampoo, ketchup, certain oils and greases, mud, 

paints, clay coating which do not follow the Newton's law of viscosity. Different from the viscous 

fluids , a single constitutive equation is not sufficient to describe such types of fluid flows. The 

appearance of rheological parameters in constitutive equations differ these fluids from the v iscous 

fluids. The corresponding expressions of Cauchy stress tensors in non-Newtonian fluids give rise to 
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complicated and higher order differential equations in comparison to the Navier-Stokes equations. 

T herefore, the study of non-Newtonian fluids is an active topic of research for t he mathematicians, 

engineers , physicists, modelers and numerical simulists. Extensive previous researches are llOW 

available on this topic. Majority of the existing investigations in non-Newtonian Huid mechanics 

dealt with the Hows of differential type fluids. Less attention is paid to the rate type non-Newtonian 

fluids. T he rate type fluids are capable for the prediction of relaxation and retardation t imes effects. 

T he rate type fluid (i.e . Maxwell model) is useful to examine the relaxation t ime variation. T his 

type of flow configuration has promising applications in polymer processing, fiber industry and 

boundary layer along material handling conveyers, aerodyn amics et c. Some relevant recent studies 

involving Maxwell fluid model include the works of refs. [28 - 39J. An electro osmotic and time 

periodic electro osmotic flows of generalized Maxwell are studied by Jian et al. [40J and Liu et 

al. [41J . Zheng et al. [42J discussed the heat transfer flow of generalized Maxwell fluid caused by 

accelerating plate. Bhatnagar et al. [43] has done t he seminal work on boundary layer flow of an 

Oldroyd-B fluid with free st ream velocity. T hey have obtained a perturbation solution valid for the 

small values of viscoelastic parameter. Hayat et al. [44,45J discussed simple unidirectional Hows alld 

hydromagnetic rotating flow of Oldroyd-B fluid . Tan and Masuoka [46J obtained the exact solution 

of viscoelastic Huid for Rayleigh's problem. Husain et al. [47J looked at the analytical solutions 

for invariable and variable accelerated flows of an Oldroyd-B fluid. Sajid et al. [48J developed a 

mathem atical model for the boundary layer st agnation-point flow past a stretching surface. An 

explicit finite difference scheme is implemented for the computation of numerical solutions of the 

resulting differential syst em. Some fundamental unidirectional flows of an Oldroyd-B fluid are 

analyzed by Fetecau and Fetecau [49], Vieru et al. [50J and Fetecau et al. [51J. 

The hyp othesis of micropolar fluids was initially proj ected by Eringen [52J. T his theory descr ibes 

the microrotation effects of the microstructures. It also explains the flow of various complex fluid 

systems including the polymer fluids, colloidal solutions, animal blood, liquid crystals and fluids with 

additives. Salient features of t his theory h ave been explained by Ariman et al. [53 ,54J and in the 
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books by Lukaszewicz [55J and Eringen [56J. Micropolar fluids have also received great attention 

in t he past . For example the flow of micropolar fluid over permeable stretching sheet has been 

examined by Kelson and Farrel [57J. Influence of viscous dissipation and internal heat generation 

in the flow of micropolar fluid over a stretching sheet has been reported by Mohammadein [58J. 

Nazar et al. [59J numerically analyzed the micropolar fluid near stagnation-point using Keller-box 

method. Analytic solutions for boundary layer flow of micropolar fluid bounded by nonlinearly 

stretching sheet have been obtained by Hayat et al. [60J. St agnation-point flmv of micropolar fluid 

towards a stretching/shrinking surface with convective boundary conditions is studied by Yacob and 

Ishak [61J. Yacob et al. [62J also described the influence of melting heat transfer in the stagna tion-

point flow towards a linearly stretching/shrinking sheet. Hayat et al. [63J considered the thermal 

radiation effects and chemical reaction in the mixed convection flow of micropolar fluid . R ashidi et 

al. [64J provided the homotopy solutions of micropolar fluid with heat transfer immersed in porous 

medium. 

1.1 Fundamental expressions 

The research presented in this thesis will be modelled through the laws mentioned below. 

1.1.1 Law of conservation of mass 

The continuity equation for unsteady flow is 

ap at + V. (pV) = O. (1. 1 ) 

Eq. (1. 1) for incompressible flow reduces to 

V .V = O, (1.2) 

where p, V respectively denote the density and velocity of the fluid , t the time and V the operator. 
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1.1.2 Law of conservation of linear momentum 

The momentum equation in mathematical form is represented by the following expression 

eN 
Pdt = Y".T + pb , (1.3) 

T = -pI + 8, (1.4) 

where T , b , p, I , dj dt and 8 denote the fluid density, velocity of the fluid , the Cauchy stress 

tensor , the body force, the pressure, ident ity tensor , the material derivative and extra stress tensor 

respectively. 

1.1.3 Law of conservation of energy 

The energy equation with radiation effects is expressed as follows: 

dT 2 
PCPdt = kY" T + T .L + pr, (1.5) 

in which cp depicts the specific heat at constant volume, k the thermal conductivity, pr the coefficient 

of mass diffusivity and T the temperature. 

1.1.4 Fick's law 

Mathematical form of Fide's law is given by 

dC 2C Cn ill = D eY" - kn , (1.6) 

in which L , C , De and kn the velocity gradient, the radiant heating, the concentration, and the 

reaction rate. 
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1.1.5 Maxwell's equations 

These equations includes the equations listed below. 

(i) Gauss's law 

(ii) Gauss's law for magnetism 

(iii) Faraday's law 

(iv) Ampere's law 

(v) Ohms' law 

'V.E = Pc. 
co 

'V .B = O. 

J = (J(E + V x B) , 

(1 .7) 

(l.8) 

(1.9) 

(l.10 ) 

(l.11) 

with Pc, co, B , E , /-La, J and (J the charge density, electric constant, magnetic field, electric field, 

magnetic constant, current density and conductivity of the fluid. 

1.2 Two-dimensional boundary layer equations 

The concept of boundary layer is attributed primarily to Ludwing Prandtl. The boundary layer 

flows in a region of stagnation-point are very important in engineering and industrial applications. 

Precise forms of related equations with stagnation-point in cases such as viscous, second grade, 

Maxwell , Oldroyd-B fluid and micropolar fluid are mentioned below. 

1.2.1 Boundary layer equations for second grade fluid 

Cauchy stress tensor (T) and extra stress tensor (8) in second grade fluid satisfy [81J: 
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T - pI + S, (1.12) 

S (1.13) 

where J-L , AI , A 2 , al and a2 denote the dynamic viscosity, the first two Rivlin-Ericksen tensors and 

material parameters respectively. The thermodynamic constraints related to second grade fluid arc 

[82J : 

(1.14) 

The two Rivlin-Ericksen tensors are defined as [84] : 

(1. 15) 

in which L + LT = grad V + (gradVf. The velocity field in two-dimensional flow is 

V = (u(x, y, t), v(x, y, t), 0). (1.16) 

The expression of Cauchy stress tensor T is 

T= r TXX Txy j 
Tyx Tyy 

( 1.17) 
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with 

[ 2 ( a'. 8'. 8'. ) 1 ( 8u ) 8x8t + Uaxr + v 8x8y + 
Txx - p+2fL - + CXI 

8x 2 
4 ( 8U ) + 2 (8u) 2 + 2 8u 8u 8y 8x 8y 8x 

[(8U)' (au) ' (8") ' 8V8"] + CX
2 4 8x + 8y + 8x + 2 8y 8x ' 

(a ) [ 2 ( a', + va', + u a', ) + 1 2 V 8y8t ayr ox8y 
Tyy -p+ fL - +CXI 

8y 4 ( au ) 2 + 2 ( 8U r + 2 8u au 
oy 8y oyox 

[(8" ), (8U)' (8")' 8U8"] + CX
2 4 8y + 8y + 8x + 2 8y 8x ' 

82u 82u 82u 82u 
8y8t + oxoy + Vayr + 8x8t + 

Txy (8u 8v ) T yx = 1-£ 8 y + 8x + CXI u 02u + V 8
2
u + 3 8u 8u + axr ox8y oy ox 

3 8u 8u + 8u 8u + 8u 8u 
8x 8y 8x 8x 8y 8y 

[ 8u 8u 8u 8v 8u 8v 8v 8V ] 
+ CX 2 -- +-- + - -+--

8x 8y 8x 8y 8y 8y 8x 8y , 

Tzz -p, Txz = Tyz = O. 

The scalar forms of equation of motion are 

du 
P dt 

dv 
P dt 

dw 
Pdt 

8Txx 8 Txy 8Tzz b 
-8 +-8 +-8 +Px, x y Z 

8Tyx 8Tyy 8Tyz b ax + BY + 8z +p y, 

8Tzx 8Tzy 8Tzz b 
-8 +-8 +-8 +p z, x y z 

11 

(1.18) 

(1.19) 

(1. 20) 

(1.21) 

( 1.22) 

( 1.23) 

(1.24) 



where bx , by, bz are the body forces in the x, y and z directions. Inserting Eqs. (l. 18) to (l. 21) into 

Eqs. (l.22) - (l.24) and then using the boundary layer approximations, we have 

au au au 
-+u-+v­
at ax ay 

o 

1 ap a2u (Xl [ a3u a3u au a2u EJ3,u] 
- p ax + v ay2 + p ay2at + u axay2 + ax ay2 + v ay3 

uB2u ___ 0_ 

P 
1 EJp 

-p ay' 

(l.25 ) 

(l.26) 

where u and v are the velocity components in the x- and y- directions and body force has been 

employed in terms of magnetic force through const ant applied m agnet ic field Bo. I-Iere u deno tes 

the magnetic permeability. From above equation we note that p =1= p(y). 

1.3 Boundary layer equation for upper-convected Maxwell (UCM) 

fluid 

Expression of extra stress tensor in an upper-convected Maxwell (UCM) fluid is defined as 

( l. 27) 

in which Al defines the relaxation time and D / Dt is the covariant differentiation . The firsL Ri vlin-

Ericksen tensor Al is given below 

28u 
8x 

8u + 8u 
8y 8x 

8U+
8V

1 8y 8x . 

28v 
8y 

The momentum equation in the absence of pressure gradient is 

12 

(l. 28) 

(l. 29) 



The general form of covariant derivative D I Dt is [67J 

For i = 1, we have 

with 

The above equations yield 

For i = 2, one has 

du au Ott 
-=u-+v-
dt ax ay' 
dv av av 
- = u-+v-. 
dt ax ay 
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(1.30 ) 

(1.31) 

(1.32) 

( 1.33) 

(1.34 ) 

(1.35 ) 

(1.36) 



The boundary layer admits the order relationship 

u , X, Al '" 0(1), y, v", 0(5). ( 1.37) 

Hence the boundary layer equation in absence of pressure gradient is 

( 1.38) 

1.4 Boundary layer equation for micropolar fluid 

In absence of without body force and body couple fundamental equations are 

(1.39) 

')'* V (V.N) -')'* v x (V x N ) + K,V X N - 2K,N , (1.40) 

where V, N, j , ')'* and K, depicts the velocity, the microrotation vector , the gyration parameter of 

fluid, spin , the gradient viscosity and vortex viscosity. We write 

N = [0,0, N(x , y)], 

where N the microrotation parameter. T he scalar forms of equations of motion are 

The resulting scalar equations are given as 

au au 
u - +v­ax ay 

av av 
u-+v­ax ay 
aN aN 

u- +v-ax By 

14 

(1.41 ) 

(1.42) 

( 1.43) 

(1.44) 



The above equations subjected to boundary layer approximations are simplified to 

OtL ou 
u-+v-ox oy 

1 oj) ( K) 02u K oN - -- + v+- -+--
P ox P oy2 P oy , (1.45 ) 

oN oN 
u-+v-ox oy 

ry* 0
2 
N K ( ou ) --- - - 2N+- . 

pj oy2 pj oy ( 1.46) 

1.5 Basic idea of homotopy analysis method (HAM) 

In 1992, the trustworthy analytical technique named as the homotopy analysis method (HAlVI) was 

introduced by Liao [65]. This technique is quite useful in the development of series solutions for 

algebraic, ordinary and partial differential equations. The procedure holds for both weak and strong 

nonlinear problems [66 - 80] . Considering nonlinear equation 

A(v) + f(x) = 0, (1.47) 

in which A is the nonlinear operator , f(x) known function, v unknown function , the homotopic 

equation is expressed as 

(1 - q)L[v(x, q) - vo(x)] = pn{A[v(x,p) - vo(x)]}, ( 1.48) 

vo(x) the initial guess , L an auxiliary linear operator and n is auxiliary parameter. 

For q = 0 and q = 1, we have 

v(x, O) vo(x) , ( 1.49) 

v(x,l) v(x) . ( 1.50) 

Obviously when variation of q is accounted from 0 to 1 then v(x, q) varies from the initial approxi-
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mation to final solution. Taylor's series represents that 

v(x, q) 

and the subjected problems at kth order are 

wit h 

00 

vo(x) + L Vk(X)qk, 
k=l 

1 okv(x,q) 
k! oqk Iq=o, 

16 

IiRk(X) , 

[ 

0, k :S 1, 

1, k > 1, 

(1.51) 

(1.52) 

(1. 53) 

(1. 54) 

(1. 55 ) 



Chapter 2 

Unsteady stagnation point flow over a 

stretching surface with mixed 

convection 

This chapter looks at the stagn ation-point flow towards a stretching sheet with mixed convectiOll. 

Analysis has been carried out for time-dependent free stream over a stretching sheet . The mo­

mentum and energy equations become the ordinary differential equa tions after applying similari ty 

transformations . Series solution is first constructed and then analyzed for convergence. Physical 

quantit ies like skin frict ion coefficient and local Nusselt number are computed and examined. 

2.1 Mathematical description 

Here we consider two-dimensional, unsteady and incompressible flow of viscous fluid with mixed 

convection. The stagnation-point flow over a stretching ::;heet is modelled for time-dependent free 

stream. The stretching and free stream velocities are respectively defined by uw(x , t ) and U(x, t). 

The wall and surface temperature are denoted by Tw and T = respectively. Note that the x - axis 

is taken along the sheet while y - axis normal to it . The gravitational force acts in the x-direct. ion. 

17 



T he boundary layer equations for the present flow are 

The relevant governing equations of the flow are 

AU ov 
!'l +!'l = 0, 
ux uy 

o'U au au au au 02v r 

at + u ax + v oy = u ax + at + V oy2 + g/3T (T - Too) , 

aT aT aT o2T oqr 
pCPat + 'U aX + v oy = k oy2 - oy ' 

(2.1) 

(2.2) 

(2.3) 

where 'u and v are t he velocity components, T , v = (p,jp), p and k represen ts the fluid temperature, 

the kinematic viscosity, the density of fluid and the thermal conductivity respectively. 

T he relevant boundary condit ions are defined as follows 

cx 
u = U w (x , t) = --, v = 0, T = Tw at y = 0, 

1 - o:t 

bx 
u = U (x , t) = 1 _ o:t ' T = Too as y -> 00, 

here 0:, band c have dimensions of (time)-l. 

If 'If; is the stream function then setting 

o'lf; o'lf; 
10 = oy ' v=--

ax ' 

T)(y , t) [ f/2 
v (1 ~ o:t) y , 

'If; (x, y , t ) [ f/2 (1 ~Co:t) Xf (17), 

()= T - Too 
Tw - Too' 
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(2.4) 

(2.5) 

(2 .6) 

(2.7) 

(2 .8) 

(2.9) 



with 

1 
Tw - Too= 2 ' 

(1 - a t) 

Incompressibility condit ion is automatically satisfied and the Eqs. (2 .2 - 2.5) give 

f'll + (f + ~7]a*) 1" + (a* - 1') f' + E2 - w * + Ale 

(1 + ~Rd) e" + Pr (f + ~rJa* ) e' + 2Pr a*e 

f 0, 1' = 1, e=l at7]= O, 

l' E, e = 0 at 7] = 00 . 

0, 

0, 

(2.10) 

(2.11 ) 

(2.12) 

(2.13) 

(2 .14) 

b "e G f3(T -T. )x 3 / v 2 . In above equations E = - Pr = t:::::.E. a* = Q: Al = ~ G7' = 9 W 00 Re = ~ and 
c' K, , C ' Rex) x lL~x2 / v 2 , x v 

4u*T3 
Rd = ~ define the ratio of constants, the Prandtl number, the parameter , the mixed convec-

tion parameter, the local Grashof number, the local Reynolds number and the thermal radiation 

parameter respectively. 

2.2 Solutions by homotopy analysis method 

f and e (which represents dimensionless velocity and temperature respectively) in the set of base 

functions 

{7lexp( - n7]), k 2: O,n 2: O}, (2 .15) 

takes the following form 
00 00 

f(7]) = ag,o + L 2=>~"n7]k exp( -n7]) , (2.16) 
n=Ok=O 

00 00 

e(7]) = L L b~,n7]k exp( -n7]) , (2.17) 
n=Ok=O 
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in which a~,n and b~l ,n are the coefficients. Moreover , the initial guesses and linear operators arc 

chosen as follows 

fO(TJ) 

eo (TJ) 

ETJ + (1 - E) (1 - e -'7) , 

-'7 + '!l( - '7) e 2 e . 

The auxiliary linear operators 

L f = fill - f' , Lo = e" - e, 

have the properties as follows: 

in which Ci (i = 1 - 5) are the arbitrary constants. 

Nonlinear operators Nf and No are defined by 

N f [f(TJ,p), e(TJ ,p)] 

Ne[e(TJ ,p), f(TJ ,p) ] 

+2 PI' a*e(TJ , p). 

Zeroth order problems take the form 

(1 - p) Lf [J(TJ ;p) - fO(TJ)] 

(1 - p) Le [B(TJ ;p) - eO(TJ)] 

20 

phfNf [J(17;P), B(TJ,p)] , 

phoNe [J(17 ;P),B("7,P)], 

(2 .18) 

(2.1 9) 

(2.20) 

(2 .21) 

(2 .23) 

(2.24) 

(2.25) 



j(O ;p) = E, 1'(O;p) = - I , 1'(oo;p) = 0, 8(O,p) = I , 8(oo,p) = 0, (2.26) 

in which p , h f and ho are termed as the embedding parameter and non-zero auxiliary parameters. 

By taking p = 0 and p = I, one has 

j("7; 0) = fO(7]) , 8("7,0) = 80(77) and j("7 ; 1) = f("7) , 8("7 , 1) = 8C/7 ). (2.27) 

When p lies between 0 to 1 then f("7 ,p) and 8("7,p) vary from the initial guesses fo("7) , 80 (77 ) to the 

final solutions f("7) and 8(77). By Taylor 's series, we have 

CXJ 

f(77,P) = fO(77) + L: fm("7)p171 , (2.28) 
m=l 

CXJ 

8("7,p) = 80 (77) L: 8m ("7)p171 , (2.29) 
m=l 

f ( ) - ~ 8171f("7;p) 8 ( ) = ~ 8m8("7;p) 
m"7 - ' !:1m , m"7 '!:1 m m. U"7 p=O m. U77 p=O 

(2 .30) 

The non-zero aux iliary parameters hf and ho are taken in an appropriate manner where both series 

converge at p = 1. Hence 

CXJ 

f("7) = fo("7) + L: fm("7) , (2 .3] ) 
m=l 

CXJ 

8(77) = 80("7) + L: 8m(77)· (2.32) 
m=l 

The problems at the rnth order are given by 

(2 .33) 

(2.34) 

(2.35 ) 
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m-I 
+£2 (1 - X1lJ - w*(l- Xm) + Al L em-I, 

k=O 

l 0, m ::; I , 
Xm = 

I , m > 1. 

Denoting f~t(17) and e~t(1]) as the special solutions we have the general solutions as follows: 

2.3 Convergence criteria 

(2 .36 ) 

(2 .37) 

(2 .38) 

(2 .39) 

(2.40) 

Series solut ions (2.28) and (2.29) depend upon the nonzero auxiliary parameters til and tio to 

m aintain the convergence of the HAM solutions. To check the for admissible values of til and 170 , 

the ti-curves are plotted for 23Td-order of approximations. It is evident that Fig. 2. 1 admits the 

appreciable range for til' and tie i.e., - 0.75 ::; tif ::; - 0.2 and - 0.85 ::; tio ::; - 0.1. F\lrthermore, it is 

shown that the series converge in the whole region of 1] when tif = tie = - 0.5 . 
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Table: 2 .1. Convergence of series solution when 

a * = Rd = 0.3 , E = 0.2, Al = PI' = 0.5 

and fit = fio = - 0.5. 

Order of approximations - /,,(0) - B'(O) 

1 0.65875 0.38056 

5 0.48878 0.23125 

10 0.47149 0.19983 

15 0.47035 0.19687 

20 0.47054 0.19709 

25 0.47054 0.19715 

30 0.47054 0.19715 

35 0.47054 0.19715 

40 0.47054 0.19715 

24 



0.8 

0.6 
.--.. 
:::-
~ .... 

0.4 

0.2 

0 

0.8 

0.6 
,...... -<5' 

0.4 

0.2 

0 

0 

0 

Pr = 0.7, Q'" = 0.5, '\1 = 0.5, Rd = 0.3 

~ .. 
~"' ''' . ,,, 

~" " 
~' ''''''' 

E = 0.0 
E = 0.1 
E = 0.2 
E = 0.3 

~,'~" ........................................... . 
.... 
~ ---------------

2 4 6 8 

" 

Fig. 2.2 . Effect of E on velocity profile ff. 

Pr = 0.7, Q ' = 0.5, '\ 1 = 0.5, Rd = 0.3 

2 4 6 

" 

E = 0.0 
E = 0.1 
E = 0.2 
E = 0.3 

8 

10 

10 

Fig. 2.3. Effect of E on temperature profile B. 

25 



0,8 

0.4 

0,8 

0,6 
t; 
Q;' 

0,4 

0,2 

° 

Pr = 0,7, Q' - = 0,5, '\1 = 0,5, E = 0,2 

o 2 4 6 

Rd = 0,0 
Ro = 03 
Rd = 0,6 
Rd = 09 

8 

Fig. 2.4. Effect of Rd on velocity profile fl, 

Pr = 0.7 , Q"' = 0.5, AI = 0,5, E = 0,2 

° 2 4 6 
1] 

Rd = 0,0 
Rd = 05 
Rd = 1,0 
Rd = 1,5 

8 

Fig. 2.5. Effect of Rd on temperature profile e, 

26 

10 

10 



1 . 

0.8 

,..... 

\ .... \ 

" " 

\' .... , " , " 

\ ' .... , " 

Pr = 0.7, a" = 0.5, Rd = 0.3, E = 0.2 

'\1 = 0.0 
'\1 = 0.5 
'\1 = 1.0 
.\1 = 1.5 

~ 0.6 \ \ ... 
..... 

~ 
'-' 
'l:) 

0.4 

, .. ,'. 
\ ' ... , " 

\. , .... 
\. " . " , " .. ~ .. 

~ .. 
O. 2 L_~~~:::=:::::::::~::::::::::::::::::::::::::::==::=:::=J 

o 2 4 6 8 10 

F ig. 2.6. Efl:'ect of )1} on velocity profi le 1'. 

Pr = 0.7, (1" = 0.5, Rd = 0.3, E = 0.2 

'\1 = 0.0 
'\1 = 0.5 

0.8 '\1 = 1.0 

,\1 = 1.5 
~ 

0.6 '~ 
'~ 
~ 

0.4 "~~ 
.. ~ 

'l-

0.2 
.. ~ 
'~ 

" ~~ 
';':1: 

0 
'~.~. 

0 2 4 6 8 10 

17 

F ig. 2.7. Efl:'ect of Al on temperature profile e. 

27 



0.8 

,-.. 

.;:; 0.6 .... 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

~'. 

~', 
~, 

~~" 
\" 

~. \. 

Pr = 0.7, '\1 = 0.5, Rd = 0.3, E = 0.2 

~ ~, 
~ 

Q' = 0.0 
Q ' = 0.2 
Q' = 0.4 
Q' = 0.6 

0 2 4 6 8 10 

'I 

Fig. 2.8, Effect of a* on velocity profile f' , 

Pr = 0.7, AI = 0.5, Rd = 0.3, E = 0.2 

o 2 4 6 

'/ 

(7 ' = 0.0 
Q ' = 0.2 
a ' = 0.4 
Q' = 0.6 

8 

F ig. 2.9. Effect of a* on temperature profile e. 

28 

10 



0.8 

~ 0. 6 
..... 

0.4 

0.2 

0.8 

0.6 

:s 
<::> 

0.4 

0.2 

0 

Q.- = 0.5, '\1 = 0.5, Rd = 0.3, E = 0.2 

o 2 4 6 
1/ 

Pr = 0.0 
Pr = 1.0 

Pr = 2.0 
Pr = 3.0 

8 

Fig. 2.10. Effect of Pr on velocity profile fi 

Q" = 0.5, '\1 = 0.5, Rd = 0.3, E = 0.2 

0 2 4 6 
1] 

Pr = 0.1 
Pr = 0.5 
Pr = 1.0 
Pr = 1.5 

8 

F ig. 2. 11. Effect of P r on temperature profil e e. 

29 

10 

10 



Table: 2.2. Comparison for different values of f. on 1"(0) rela tive to the results by Pop et al. 1101 

and Sharm a and Singh [llJ. 

f. 

0.1 

0.2 

0.5 

1.0 

2.0 

1"(0) 

Pop et al. [lOJ Sharma and Singh [llJ Present outcomes 

-0.9694 -0 .969386 -0.969386 

-0.9181 -0.918107 -0.918107 

-0.6673 -0 .667263 -0.667264 

2.0174 2.01749079 2.01895 

4.7290 4.72922695 4.72654 

Table: 2.3. Values of 1" (0) for different values of a* , Al 

and Rd when f. = 0.2 and Pr = 0.5. 

a* Al Rd - 1"(0) 

0.0 0.5 0.3 0.5885 

0.3 0.4704 

0.5 0.3914 

1.0 0.1905 

0. 3 0.0 0 .8452 

0.4 0.5384 

1.0 0.1 589 

1.5 0.1242 

0.0 0.5022 

0.5 0.4543 

0.8 0.4350 

1.0 0 .4244 
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2.4 

Table: 2.4. Values of e' (0) for different values of 0:*, A1 

and Rd when E = 0.2 and Pr = 0.5. 

0:* A1 Rd _ tl'(O ) 

0.0 0.5 0.3 0.3720 

0.3 0.1969 

0.5 0.0738 

1.0 -0.2519 

0.3 0.0 0.1183 

0.4 0.1856 

1.0 0.2407 

1.5 0.2722 

0.0 0.2452 

0.5 0.1763 

0.8 0.1538 

1.0 0.1426 

Graphical results and discussion 

To monitor the effects of several non-dimensional parameters, namely ratio of constant parameter E , 

mixed convection parameter A1 , radiation parameter Rd, parameter 0:* and Prandtl number PI' on 

the velocity profile f' and temperature field e', we have prepared the F igs. 2.2 - 2.11. The values 

of skin friction coefficient and local Nusselt number for several values of emerging parameters are 

also given in the Tables 2.2 - 2.4. 

Fig. 2.2 gives the variations of E on the velocity f'. It is seen that velocity f' is enlarged [or E. 

Fig. 2.3 represents the effects of E on the temperature field e. For large values of E, thermal boundary 

layer becomes weaker. F igs. 2.4 and 2.5 show the distributions of velocity f' and temperature field 
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e for different values of Rd. Obviously, the fluid velocity and temperature increase by increasing 

Rd· Influence of A} on velocity l' and temperature e is shown in the F igs. 2.6 and 2.7. We observed 

that the velocity l' increases by increasing )1} and t emperature field e decreases by increasing )1]. 

Figs. 2.8 and 2.9 indicate the effects of a * on both l' and e. We observe that both the velocity and 

temperature increase by increasing a* . Figs. 2. 10 and 2.11 are plotted just to see the variations of 

Pr on both the velocity and temperature fields . We noticed that initially both fluid velocity and 

temperature increase but after 'T) = 0.25 , these decrease. 

2.5 Conclusions 

The main observations are listed below. 

• Dimensionless velocity l' is an increasing function of E. 

• The velocity and temperature has quite opposite effects for E. 

• Both l' and e increase by increasing Rd and a* while Al gives the reverse effects . 

• Skin friction coefficient tends to decrease when a*, A} and Rd are increased. 

• Magnitude of heat transfer increases when )1} increases. 
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Chapter 3 

Slip effect in stagnation-point flow 

with thermal radiation 

This chapter describes the magnetohydrodynamic (MHD) stagnation point flow over a stretching 

sheet. The problems formulation involve the consideration of both the velocity alld thermal sli p 

conditions. Appropriate transformations reduce the governing parti al differential equations int.o 

the ordinary differential equations. Series solutions and related convergence an alysis arc presented. 

Results for velocity and temperature are plotted and studied. Further, the values of skin fri ction 

coefficient and local Nusselt number are computed and analyzed. 

3.1 Development of the problems 

Here we consider steady, stagnation point flow of magnetohydrodynamic (MHD ) viscous fluid to­

wards a stretched surface at y = O. An incompressible fluid occupies y > O. The fluid is conducting 

only in t he presence of an applied magnetic field Bo. Induced magnetic field is not taken into 

account . This sit uation is plausible when magnetic Reynolds number is small . Applied magnetic 

field acts in the y-direction. The heat t ransfer is considered in view of Rosseland approximation 
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for thermal radiative effect. The resulting boundary layer equations are 

(3. 1) 

AU au _ " dUoo 02U aB5 
u!:) + v!:) - Uoo (x )-d- + LI ~ 2 + - (Uoo - U), 

uX uy X uy p 
(3 .2) 

[
aT aT] a [( 16a*T! ) aT] 

u ax + v oy = oy pCp 3K* + a oy , (3 .3) 

in which u and v are the velocity components along the x and y-axes respectively, Uoo the stagnation 

point velocity in the inviscid free stream assumed to vary proportional to distan ce x, // the kinematic 

viscosity, p the fluid density, a the thermal diffusivity, cp the specific heat , T the fluid temperature, 

Too the ambient temperature, a* the Stefan- Boltzmann constant and J(* the mean absorption 

coefficient. Eq. (3.3) has been developed after using the Rosseland approxima tion for radiative 

heat flux. 

The boundary conditions corresponding to velocity and thermal slips are 

u 
aT 

T = Tw(X) + J( oy at y = 0, (3.4) 

u ~ as y ~ 00, (3.5) 

where t he linear stretching surface and ambient velocities are taken as Uw = ax and Uoo(x) = bx, f.-i 

being the dynamic viscosity, the stretching surface temperature Tw = Too + cxn (n is constant and 

c > 0) and Nand K are the dimensional slip parameters. 

Defining the appropriate transformations for stream function 'ljJ and Tare 

(
a)1 /2 

TJ = - y , 
LI 

T - Too 
8(17) = T - T. ' 

w 00 

(3 .6) 

in which TJ being the similarity variable. The stream function relation with velocity component.s 

satisfy 
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B'Ij; 
u= By ' (3.7) 

Now the continuity Eq. (3.1) is identically satisfied and Eqs. (3 .2) and (3.3) take the followi llg form 

fill + f 1" - 1'2 + £2 + M (f. - 1') 

(1 + ~Rd) e" + Pr (fe' - n1'e) 

0, 

o. 

(3.8) 

(3.9 ) 

Here prime denotes the derivative with respect to 17 , the Hartman number Iv! = a B'6 / pa , the ratio of 

rate constants £ = b/ a, the radiation parameter Rd = :;7(*, T!, the Prandtl number Pr = ex/ p,cp and 

n the temperature index parameter. In addition, the reduced boundary conditions aft er applying 

transformations are 

f (0) 0, l' (0) - SJi" (0) = 1, l' (1]) ----; f. as 1] ---> 00, 

e (0) 1 + sTe' (0), e (1]) ----; 0 , as 17 ---> 00. 

The coefficient of skin friction and local Nusselt number are defined below 

(Bll) 
T w = p, 8 ' 

y y=O 

~ C . Re1/
2 = f" (0) 2 j x , 

qw = -k -(BT) 
By y=o' 

Nux! Re;,f2 = - 8' (0) . 

(3.10) 

(3.11) 

(3.12) 

(3. 13) 

(3 .14) 

Here the physical quantities involve the wall shear stress T w, the heat flux qw, the thermal conduc-

tivity k and the local Reynolds number Rex = Uwx/v . 

35 



3.2 Series solutions 

To utilize the set of base functions are classified as 

{7/exp(-nTJ), k ~ 0,71, ~ O}, 

we have 
<Xl <Xl 

f(TJ) = ag,o + L L>~,nTJk exp( -71,'17), 
n=Ok=O 

<Xl <Xl 

e(TJ) = L L b~n ,nTJk exp( - 71,'17) , 
n=Ok=O 

where a~n n and b~ n are the constant coefficients. , , 

Initial guesses and auxiliary linear operators are selected in the forms: 

( 
1 - E ) fo = ETJ + --s-. (1 - exp( - '17)), 

1 + f 
eo = (~s ) exp( - '17) , 

1 + T 

These operators satisfy 

d2e 
Lo[e(TJ)] = -d 2 - e. 

17 

Le [C4 exp(TJ) + Cs exp( - '17) ] = o. 

The corresponding problems at zeroth and mth orders are 

1(0;p) =0, 

(1 - p)Lf [1(TJ;p) - fO(TJ)] 

(1 - p) Le [O( TJ ;p) - eO(TJ)] 
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phfNf [1(77;P ), 61( TJ ;p)] , 

phoNe [O (TJ ;p), 1(TJ;p)] , 

'17 = 0, 

(3.15) 

(3. 16) 

(3 .17) 

(3 .1 8) 

(3 .19) 

(3.20) 

(3.21) 

(3 .22) 

(3 .23) 

(3.24) 



oj 
O'T] ('T]) = E, fJ('T]) ------+ 0, when 77 ------+ 00, (3.25) 

(3.26) 

(3.27) 

(3 .28) 

(3 .29) 

in which Itf and Ito are the non-zero auxiliary parameters, p E [0, 1] the embedding parameter and 

the resulting nonlinear operators of the problems are 

Nf[J('T],p)] 

No[fJ[('T];p)] 

(3.30) 

(3.31) 

!::I3 m-l !::I2f 1n-l !::I f' !::I f !::If 
R . () = u fm-l ~ f . U m-i-l _ ~ U m-i-l U i _ l\1f~ [2 M ] (1 _ ) 

1,m 77 0 3 + ~ t 0 2 ~ 0 0 0 + E + E \m ' 
'TJ i=O Y i=O Y Y 'T] 

(3.32) 

R () ( 
4 ) 02em_1 1~ (1' Oei Ofm- l -i e ) 

O,m 'T] = 1 + 3Rd 0 2 + PI' ~ m-i-1 8 - n 0 i· 
'TJ i=O 'T] 'T] 

(3.33) 

Through Taylor's series 

00 

fo ('T]) + L fm('T])pm; (3,34) 
m = O 

00 

eo (7]) + L em(7])pm ; (3 .35) 
m=O 
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with 

j('T},O) (3.36) 

(3.37) 

where the embedding parameter p increases from 0 to 1 then j('T}, p) and 8('T} , p) are taken into 

account. We get the init ial guesses 1'0(17) and eo('T}) by letting p = 0 and final solu tion f('T} ) and 

e(17) by letting p = 1 respectively. The values of auxiliary parameters Itf and 11,0 are taken in such 

a manner that t he Taylor's series of j( 'T} ,p) and 8('T} ,p) converge at p = 1 i.e. 

00 00 

(3 .38) 
m=l m=O 

The general solutions can be expressed as 

(3 .39) 

(3.40) 

where the involvement of particular solut ions f,*" and e;,. can be easily solved by Mathematica 

software up to the order Tn = 1,2,3 .... 

3 .3 Convergence of the homotopy solutions 

Obviously, Eq. (3.35) includes t he auxiliary parameter Itf and Ito. These parameters are very helpful 

and provide a simple way in order to find the convergence and rate of obtained series solutions . The 

It-curves for velocity and t emperature fields with and without velocity and thermal slip are plotted 

in Figs. 3. 1 (a and b). These Figs. show that the 20 th order of approximations are enough for good 

agreement regarding convergence. To guarantee convergence, we take the values of hI and 17,0 are 
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equal to -1. T he convergence of - f" (0) and - B' (0) by varying the value of Hartma ll Ilumber .~J 

(while other parameters are fixed) is carried out in Table 3.1. From this table, it is observed that 

convergence of series solutions is sufficient at 20th order of approximations. 
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Table: 3.1. Convergence of series solutions for different order of approximations. 

Order of approximation M = O.O M = 0.3 M = 0.5 

- f" (0) - 8' (0) - f" (0) - 8' (0) - f" (0) - 8' (0) 

1 0.41625 0.438519 0.450000 0.438519 0.4725 0.438519 

5 0.416549 0.367609 0.450588 0.354157 0.469159 0.346999 

10 0.416546 0.360951 0.450587 0.343306 0.469133 0.333959 

15 0.416547 0.360509 0.450587 0. 342068 0.469133 0.332191 

20 0.416547 0.360479 0.450587 0.341918 0.469133 0.331931 

25 0.416547 0.360477 0.450587 0.341899 0.469133 0.331893 

30 0.416547 0.360477 0.450587 0. 341897 0.469133 0.331887 

35 0.416547 0.360477 0.450587 0.341897 0.469133 0.331887 

40 0.416547 0.360477 0. 450587 0.341897 0.469133 0.331887 
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Table: 3.2. Values of skin-friction coefficient - f"(0) 

for the parameters M, Sf and E. 

M Sf E - f"(0) 

0.0 5.0 0.1 0.139074 

0.5 0.148789 

1.0 0.153834 

1.1 0.154577 

0.5 0.0 0.1 1.158340 

2.0 0.302388 

10 0.081151 

20 0.042617 

30 0.028912 

50 0.017599 

100 0.008898 

0.2 50 0.02 0.018893 

0.04 0.018557 

0.1 0.017494 

0. 2 0.013720 
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Table : 3.3 . Comparison of skin-friction coefficient - f" (0) 

for various values of Sf when /1'1 = E = O. 

[26] HAM [26] HAM 

Sf j ' (O) f"(0) 

0.0 1.0000 1.000000 1.0000 1.000000 

0.1 0.91 28 0.91 2792 0.8721 0.872082 

0.2 0.8447 0.844725 0.7764 0.776377 

0.5 0.7044 0.704402 0.5912 0.591195 

1.0 0.5698 0. 569840 0.4302 0.430162 

2. 0 0.4320 0.432041 0. 2840 0.283981 

5.0 0.2758 0. 275799 0.1448 0.144840 

10 0.1876 0.187583 0.0812 0.081242 

20 0.1242 0. 124203 0.0438 0.043789 

50 0.0702 0.070590 0.0186 0.018588 

100 0.0450 0.045080 0.0095 0.009557 
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Table: 3.4 . Values of -8'(0) for parameters M, Rei 

and PI' when Sf = ST = 0 and E = n = 0.1. 

M Rei Pr - 8'(0) 

0.2 0.2 1.0 0.530639 

0.4 0.535615 

0.6 0.525914 

0.5 0.1 1.15834 

0.3 0.49661 

0. 5 0.44208 

0.2 0.2 0.6 0.3894 

0.72 0.43994 

1.1 0.581372 

1.2 0.615003 

1.3 0.64745 
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Table: 3.5. Values of skin-friction coef-ficienL - /,, (0) and - B' (O) 

when Pr = I , Rd = 0. 2, ST = 0.5 and n = 0.1. 

M E Sf - /,,(0) -B'(O) 

0.0 0.1 2. 0 0.274326 0.329742 

0.3 0.292911 0.309954 

0.5 0.302388 0.30001 

0.7 0.310268 0.29191 

0.1 0.01 1.0 0.445660 0.32610 

0.02 0.444257 0.32929 

0.1 0.428882 0.353734 

0.2 0.401170 0.038190 

0.5 0.1 0.0 1.158340 0. 419372 

5.0 0.148789 0.262772 

7.0 0.111513 0.2521 

10 0.081151 0.2427 

15 0.055872 0.23429 

52 



Table: 3.6. Comparison of local Nusselt number - 8'(0) for some values of NI, Pr and n 

when Rei = E = 0 = Sf = Sr· 

3.4 Discussion 

M 

0.0 

0.3 

0.5 

0.8 

1.0 

0.5 

0.5 

Pr 

2.0 

1.0 

1.1 

1.3 

1.5 

2.0 

1.0 

n 

0.1 

0.2 

0.1 

0.3 

0.5 

1.0 

3.0 

5.0 

HAM[25] - 8'(0) 

0.981991 0.981707 

0.950257 0.950258 

0.931430 0.931430 

0.905665 0.905665 

0.889917 0.889855 

0.625690 0.625689 

0.669087 0.669087 

0.750773 0.750773 

0.82675 0.82675 

0.997713 0.997713 

0.58183 0.58183 

0.66843 0.66843 

0.750784 0.750782 

0.94090 0.94089 

1.55041 1.55041 

2.02104 2.02104 

In this section we look for the variations of the slip parameter Sf, the Hartman number NI, the 

ratio parameter E, thermal slip parameter Sr, Prandtl number Pr and radiation parameter Rei on 

t he velocity and temperature fields. This can be achieved by plotting the Figs . 3.2 - 3.14. Fig. 

3.2 presents the effect of Sf on the velocity f ' . It is observed from this Fig. that boulldary la.yer 
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thickness decreases by increasing Sf. Fig. 3.3 displays the velocity profile for various values of 

Hartman number M. The qualitative effects of l lf1 are found sim ilar to that of Sf . Fig. 3.4 gives 

the variation of E on the velocity component fl . The velocity component l' is an increasillg function 

of E. It is found that e increases when M increases (Fig. 3.5). The variation of Prandtl number 

Pr is sketched in Fig. 3.6. As expected, it is found that e decreases when Pr is increased . Fig. 

3.7 gives the variation of Sf on t he t emperature field. It is observed from this F ig. that thermal 

boundary layer thickness decreases by increasing Sf. From F ig. 3.8 we have seen that e increases 

by increasing Sf. Fig. 3.9 gives t he effect of radiation parameter Rd on the temperature field. It 

has opposite result when compared with F ig. 3.6. F ig. 3. 10 examines the effect of n parameter on 

the temperature profile. An increase in this parameter decreases the temperature. Fig. 3.ll clearly 

indicates that an increase in parameter E decreases the temperature. To au thenti cate our H AM 

solution, a comparison is given in the F igs. 3. 12 - 3.14 with already existing result in the literature. 

These solutions are in excellent agreement. 

Table 3.1 shows that 15th order of approximations are sufficient for the convergent series solution. 

From Table 3.2 it is noticed that the magnitude of skin-friction coefficient increases for large values 

of J\ll while it decreases by increasing Sf and E. Table 3.3 indicates that HAM solution has a good 

agreement with the existing exact solution [26J. Tables (3.4 - 3.6) are prepared for t he variations 

of skin-friction coefficient and local Nusselt numbers and the comparison with the work in ref. [25J. 

It is obvious from t hese tables t hat magnitude of - el (0) decreases by increasing fill and n. 
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Chapter 4 

MHD mixed convection flow near a 

stagnation-point towards a stretching 

sheet 

This chapter addresses the magnetohydrodynamic (MHD) stagnation point flow near a stretching 

surface. The radiative effects which are high in temperature regime are also accounted. Both 

assisting and opposing flow cases are examined. The velocity and thermal slips are considered. 

Nonlinear mathematical analysis is performed using homotopy analysis method. COll\rergence of 

velocity and temperature are explicitly analyzed. The skin friction coefficient and local NusseJt. 

number are examined in detail. 

4.1 Mathematical description 

We consider the MHD mixed convection stagnation-point flow of viscous fluid over stretching sheet. 

Electrically conducting fluid under uniform magnetic field Bo has been taken. Here uniform mag­

netic field acts in the y-direction. Induced magnetic field is neglected for small magnetic Reynold 

number. The electric field is taken zero. Further, the gravitational force is taken parallel to the 
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x-axis. Velocities of stretching surface and free stream are denoted by Uw and Uoo . Mathematicnl 

expressions governing the present flow situation are given by 

8u 8u dUoo 82u aB5 
u-

8 
+ v-

8 
= Uoo(x)-d- + //8 2 + -(Uoo - u) ± g{3T (T - Too), 

x y x y p 

[ 
8T 8T ] _ ~ [(16a*T! ) 8T ] 

p Cp u 8x + v 8y - 8y 3/(* + a 8y , 

v = V w , 
8T 

T = Tw(x) + /( -8 at y = 0, 
y 

T ------) Too as y ------) 00 . 

(4 .1 ) 

(4.2) 

( 4.3) 

(4.4) 

(4 .5) 

In above equations the velocity component u is along the x-axis and v along y-axis, 9 the grav-

itational acceleration, 1/ the kinematic viscosity, p the fluid density, (3T the thermal expansio ll 

coefficient, a the thermal diffusivity, cp the specific heat , T t he fluid temperature, Too the ambient 

fluid temperature , a* the Stefan- Boltzmann constant and f{* the mean absorption coefficient , the 

surface temperature Tw(x) = Too(x) + cxn with Tw > Too, J-L the dynamic viscosity and Nand J( 

the dimensional velocity and thermal slip parameters. F\lrther the ± signs in Eq. (4.2) correspond 

to the assisting and opposing flow. Defining 

(a) 1/2 
1] = - y, 

1/ 

One finds that Eq. (4.1) is automatically satisfied while Eqs.(4.3) and (4 .4) yield 

8'1j; 
V =- -

8x ' 
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(4 .7) 



1'" + if' - J'2 + £2 + M (£ - J') +- )'le 

( 1 + ~ Rd) e" + PI' (fe' - nJ' e) 

0, 

o. 

(4.8) 

(4.9) 

The pertinent parameters which occur in Eqs. (4.8) and (4.9) are named as t he Hartman number 

fIr[ (= aB5/pa), the ratio of rate constants £ = bfa, Al = Grx/Re; the buoyancy or mixed con-

vection parameter, Grx = g(3(T - Too) x 3/v 2 the local Grashofnumber , Rex = Uwx/v, the local 

Reynold number, the radiation parameter Rd = :;'{. T!, the Prandtl number P I' = 0./ fJ-cp and n 

the temperature index paramet er. Now the dimensionless boundary condit ions with velocity ami 

thermal slips are 

f (0) 50, J' (0) - 5Il" (0) = 1, J' (77) --> £ as 7] --> 00, (4 .10) 

e (0) 1 + 5Te' (0) , e (7]) --> 0 , as 7] --> 00, (4. 11) 

in which 50 = -vw / (cv)I/2 and 50 > 0 corresponds to suction case whereas 50 < 0 yields blowing. 

The skin friction coefficient and local Nusselt number are 

( 4.12) 

(au) Tw=fJ- -ay y=o' 
qw = - k - . (aT ) 

ay y=o 
(4.13) 

Substitution of Eq. (4. 12) into Eq. (4.13) yields 

(4. 14 ) 
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4.2 Homotopy analysis solutions 

The solutions defined by set of base functions 

{r/ exp( - n17) , k ~ 0, n ~ O}, (4.15 ) 

are given by 
<Xl <Xl 

!(17) = a8,0 + L L a~l,n17k exp( -n17) , ( 4.16) 
n=Ok=O 

<Xl <Xl 

8(17) = L L b~1,n7l exp ( - n17), ( 4.17) 
n=Ok=O 

where a~ n and b~ n are the coefficients. The following initial guesses and auxiliary linear operators , , 

are chosen for the preferred solutions 

( 
1 - E ) !o=SO+E17+ l+Sf (l-exp(-17)) , 80 = (1: ST) exp( - 77), (4. 18) 

(4. 19) 

The auxiliary linear operators defined in above equation possess the properties given below 

(4.20) 

(4 .21) 

where Ci(i = 1 - 5) are the integral const ants. Moreover , the problems at zeroth and mIlL orders are 

j(O; p) = So, 

(1 - p)L) (1(17 ;P) - !0(7])) 

(1 - p)Le ( e(7];p) - 80 (17)) 
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ph)Nf (1(7] ; p) , B(7]; p)) , 

phoNe ( e(77;P)'!(17;P)) ' 

De 
8(0; p) = 1 + ST-;:;-(O; p) , 

U77 

(4.22) 

(4.23) 

17 = 0, (4 .24) 



when 77 ----7 00, (4.25) 

(4 .26 ) 

(4.27) 

fm( O) = 0, f:n(O) = 0, (4.28 ) 

f'm(ry) = 0, 8m (ry) = 0, when 77 ----7 00, (4. 29 ) 

where lif, lif) and p E [0, 1] are the non-zero auxiliary and embedding parameters. The expressioll 

of nonlinear operators are 

Nf[j(ry,p)] 

Nf)[B[(ry;p)] 

3 m-l 2 m - l 
R .m(ry) = 8 fm-l + '" Ii 8 fm-i-l _ '" 8fm-i-l 8fi 

1. 8ry3 ~ 8y2 ~ 8y 8y 
t=O t=O 

The velocity and temperature fields in view of Taylor's series are 

(Xl 

. 1 8m j ( ry , p) 
f (ry;p) fo (ry) + L fm(77)pm , fm(ry ) = - , 8 m Ip=o, 

rn=O 
m. p 

(Xl 

8 ( ) _ ~ 8m
e(ry,p) I 8 (ry;p) 80 (ry) + L 8m(ry)pm , m ry - , 8 m p=O . 

m=O 
m. p 
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(4 .31) 

( 4.32) 

(4.33) 

(4.34) 

(4.35 ) 



It is obvious that 

](ry , 0) fo(ry), e(ry, 0) = eo(ry) , ( 4.36) 

](77, 1) (4 .37) 

At P = 1 both series converge by assuming the suitable values of auxiliary paramet.ers hf clllc.l ho· 

Thus 
00 00 

f (ry) = fo (77) + 2:= fm(77) , e (77) = eo (77) + 2:= em(77 ), (4.38) 
m=l m=O 

and the general solutions fm(77) and em(ry) are 

(4 .39) 

e:n(ry ) + C4 exp(ry) + C5 exp( - 77 )· (4 .40) 

Here the particular solutions are denoted by f:n and e:", 

4.3 Homotopy solutions 

It is clear that the series solutions enclose the auxiliary parameters n'f and lie which helps us to 

manage the convergence region and adj ust the rate of approximate series solutions. The noj and 

lie - curves are plotted in Fig. 4.1 at 18th order of approximations. From this Fig. we see that 

-1.26 :s lif :s - 0.18 and -1.4 :s lio :s -0.20 are the acceptable values of lif and lio. The analysis 

of series solutions converge by putting the value of lif and lie equal to - 1. The effects of Hartman 

number M on the magnitude of f"(0) and e(O) are computed in Table 4.1. 
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Table: 4.1. Convergence of series solutions for different order of approximations. 

Order of approximation M = O.O M = 0.4 M = 0.6 

- J" (0) - ()' (0) - J" (0) - ()' (0) - J" (0) - ()' (0) 

1 0.5620830 0.660741 0.607083 0.660741 0.629583 0.660741 

5 0.568342 0.653916 0.588574 0.6495 0.598247 0.647772 

10 0.568572 0.653994 0.58817 0.649325 0.596059 0.647423 

15 0.568581 0.653992 0.588173 0.649318 0.596324 0.64745 

20 0.568582 0.653992 0.588171 0.649318 0.596281 0.647447 

25 0.56858 0.653993 0.588171 0.649319 0.59629 0.647447 

30 0.568584 0.653998 0.588173 0.64932 0.596284 0.647446 

35 0.568584 0.653998 0.588188 0.649325 0.596284 0.647447 
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Table: 4.2. Values of skin-friction coefficient - 1"(0) 

for the parameters M , Sf and f. 

M Sf E -1"(0) 

0.0 5 0.1 0.139074 

0.5 0.148789 

1.0 0.153834 

1.1 0.154577 

0.5 0.0 0.1 1.158340 

2.0 0.302388 

10 0.081151 

20 0.042617 

30 0.028912 

50 0.017599 

100 0.008898 

0.2 50 0.02 0.0188931 

0.04 0.0185569 

0.1 0.0174941 

0.2 0.01372 
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Table : 4 .3. Comparison of skin-friction coefficien t - f" (0) 

for diverse values of Sf when M = So = )'1 = E = O. 

[19] HAM [19] HAM 

Sf 1' (0) 1"(0) 

0.0 l.0000 l.000000 l.0000 1.000000 

0.1 0.9128 0.912792 0.8721 0.872082 

0.2 0.8447 0.844725 0.7764 0.776377 

0.5 0.7044 0.704402 0.5912 0.591195 

l. 0 0.5698 0.569840 0.4302 0.430162 

2.0 0.4320 0.432041 0.2840 0. 283981 

5.0 0.2758 0.275799 0. 1448 0.144840 

10 0.1876 0.187583 0.0812 0.081242 

20 0.1 242 0.124203 0.0438 0.043789 

50 0.0702 0.07059 0.0186 0.018588 

100 0.0450 0.04508 0.0095 0.009557 
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Fig, 4,6, Influence of Sf on velocity profile 1'. 
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Fig. 4.10. Influence of Rd on temperature profile e. 

0.8 

0.6 

0.4 

0.2 

0 

ST = S, = 0.5. E = 0.1. n = 0.2, So = '\1 = 0.2. Ra = 0.4, M = 1 

o 2 4 
I] 

6 

Pr = 0.5 
Pr = 0.7 
Pr = 1.0 
Pr = 1.2 

8 10 

Fig. 4.11. Influence of Pr on temperature profile e. 

68 



<5 
N 
;:,. 

" 

0.8 

0.6 

0.2 

Ra = n = 0.2, Sf = 0.7, E = 0.1, So = 0.3, Pr = 0.5, M = '\1 = 0.4 

\ 
\ \ 

\ ", \ \ 
' . \ \ 

" \ 
" " '\... 
", " , ', " ...... 

' . " .......... . . . ....... ........... 

ST = 0.0 
ST = 1.0 
ST = 2.0 
Sr = 3.0 

' .. ':"-. =-:,:;--........ ~r:;-. 
OL-__ ~ ____ ~~~~~======~ 

o 2 4 6 8 10 
T] 

Fig. 4.12. Influence of ST on temperature profile B. 

ST = S, = 0.5, E = 0.1, Rd = 0.5, So = n = 0.2, Pr = 1.0 

-0.5 

-1 

/,1; 
Q) ~~ a:: -1.5 

(:,j-11, M= 0.0 

"7/ 
M = 0.2 

-2 ~ / M = 0.4 
/ M = 0.6 

/ M =0. 8 

- 2.5 
M= 1.0 

-2 - 1 a 2 
'\ 1 

F ig. 4. 13. Influence of M on Re~/2 CJ . 

69 



0.4 

0.3 

0.1 

-2 

0 

- 0.5 

<J 
~ -1 

" Q) 

0:: 

-1.5 

-2 

-2 

Sr= Sf = 0.5, E =0.1. Ret = 0.5, So = n= 0.2. Pr = 1.0 

-1 

M = 0.0 

M= 0.2 

M = 0.4 

M = 0.6 

M = 0.8 

M = 1.0 

Fig. 4.14. Influence of M on Nux Re;,/2 . 

Sr = Sf = 0.5. E = 0.1, Ret = 0.5. So = n = 0.2. M = 0.4 

- 1 

Pr = 0.0 

Pr = 0.2 

Pr = 0.4 

Pr = 0.6 
Pr = 0.8 

Pr = 1.0 

Fig. 4.15. Influence of Pr on Re;,/2 Cf . 

70 

2 

2 



~ 
v 

Q) 

a:: 
" ::;, 

<: 

Sf = Sf = 0.5, E = 0..1. M = 0..5, So = n = 0..2. Ra = 1.0. 

0..3 

0..2 - -
0..1 

0. 

Pr = 0..0. 
Pr = 0..1 

Pr = 0..2 
Pr = 0..3 

Pr = 0..4 
Pr = 0..5 -0..1 

~--~--~--~~====~ 
-3 -2 -1 a 2 

Fig. 4.16. Influence of Pr on Nux Re;/2 . 

71 



Table: 4.4. Values of - 8'(0) for parameters M, Ret, So and n 

when Sf = ST = 0, E = 0.1, Al = 0.2 and Pr = 1. 

M Rd So n -8'(0) 

0.1 0.2 0.4 0.1 0.77779 

0.3 0.768694 

0.5 0.760436 

0.7 0.752891 

0.9 0.74596 

0.2 0.0 0.4 0.5 1.074460 

0.2 0.907940 

0.4 0.793023 

0.6 0.747740 

0.2 0.2 0.2 0.1 0.666714 

0.3 0.719025 

0.5 0.828924 

0.6 0.886293 

0. 2 0.2 0.4 0.4 0.875372 

0.6 0.939829 

1.0 1.061210 

1.5 1.201130 

2.0 1.330410 
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Table: 4.5. Values of skin-friction coefficient - 1"(0) and -8' (0) 

when Pr = I , ST = 0.5 and n = E = 0.1. 

M So Al Rd Sf - 1"(0) -8'(0) 

0.0 1.0 0.2 0.2 1.0 0.50022 0.67302 

0.2 0.51555 0.66923 

0.4 0.52893 0.66595 

0.6 0.54073 0.66307 

0.5 0.1 0.1 0. 2 0.5 0.646438 0.403532 

0.3 0.683541 0.465849 

0. 5 0.721271 0.528051 

0.7 0.759171 0.589035 

0.9 0.79681 0.64801 

0.5 0.2 0.1 1.0 0.466658 0.410795 

0.2 0.446499 0.421359 

0.5 0.392488 0.446116 

0.2 0.6 0.1 0.0 0.3 0.86056 0.659842 

0.1 0.858098 0.616144 

0.3 0.853654 0. 546673 

0.5 0.849743 0.493664 

0.4 0.5 0.696141 0.506919 

1.0 0.482523 0.488838 

1.2 0.430602 0.483975 

3.0 0. 220863 0.461827 
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Table: 4.6. Comparison of local Nusselt number - B' (O) for some values 1\.1 , 

Pr and n when Rd = E = Al = 0 = Sf = So = ST. 

M 

0.0 

0.3 

0.5 

0.8 

1.0 

0.5 

0. 5 

Pr 

2.0 

1.1 

1.1 

1.3 

1.5 

2.0 

1.0 

4.4 Results and discussion 

n 

0.1 

0.2 

0. 1 

0.3 

0.5 

1.0 

3.0 

5.0 

HAM [5] - B'(O ) 

0.981991 0.981707 

0.950257 0.950258 

0.931430 0.931430 

0.905665 0.905665 

0.889917 0.889855 

0.62569 0.625689 

0.669087 0.669087 

0.750773 0.750773 

0.82675 0.82675 

0.997713 0.997713 

0.58183 0.58183 

0.66843 0.66843 

0.750784 0.750782 

0.94090 0.94089 

1.55041 1.55041 

2.02104 2.02104 

This section aims to explore the effects of different relevant parameters on velocity and temperat ure 

fields. For this pmpose the F igs. 4.2 - 4. 16 are prepared. F ig. 4.2 plots the effects of E on the velocity 

field 1'. The velocity field f' increases with an increase in E significantly. Influence of m agnetic 

parameter M for assisting and opposing flow cases are port rayed in Fig. 4.3 . For assist ing flow 
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(>'1 > 0), the velocity field f' decreases for positive values of M whercas for opposing flow PI] < 0) , 

the velocity field l' increases with an increases in M. Since in assisting flow case (>'1 > 0), the 

positive values of gravitational forces 9 and magnetic field M simultaneously act as thc retarding 

forces which result a decrease in the velocity field. From physical point of view when magnetic 

field is applied on any fluid then the apparent viscosity of the fluid increases. Thus the motion of 

fluid can be controlled by varying magnetic field which gives rise to m any engineering applications 

including MHD power generation and electromagnetic casting etc. 

Fig. 4.4 plots the influence of assisting flow case (AI > 0) and opposing How case (AI < 0) 011 

f'· Al > 0 causes reduction in f' while Al < 0 magnifies it . Fig. 4.5 predicts the efl'cct of 80 on 

f' . It is obvious that the reason of reduction in f' is suction 8 0 near the boundary but [or 77 > 2 it 

reveals opposite behaviour. Fig. 4.6 elucidates the variation of velocity slip parameter 8f on the 

velocity field f'. This Fig. illustrates the slip parameter 8f retards the fluid How. 

F igs. 4.7 - 4.12 illustrate the inHuences of M , 80, Rd , Pr and 8T on the temperature profile e. 

It is observed from Figs. 4.7 and 4.8 that the temperature field e and associated thermal boundary 

layer decrease with an increase in magnetic parameter M for both assisting (AI > 0) and opposing 

(AI < 0) flow cases. The change in temperature field e for suction parameter 8 0 is demonstraLed 

in Fig. 4.9. This Fig. shows that suction So causes a rapid decrease in the temperature field and 

associated boundary layer thickness . F ig. 4.10 plots the variation of radiation parameter Rd on 

e. This F ig. clearly points out that e increases by increasing Rd. Fig. 4.11 presents the effects o[ 

Prandtl number Pr on temperature field e. It is noted that an increase in PI' resul ts a decrease in e. 

This is reason able in the sense that larger Prandtl number corresponds to weaker thermal difl:'usi vi ty 

and thinner boundary layer. The influence of thermal slip parameter ST on temperatme field e is 

shown in Fig. 4.12. Since slip effects cause a decrease in fluid motion which means lessor molecular 

interaction. Thus due to lesser molecular interaction, the temperature field e rapidly decreases by 

increasing slip parameter. F igs. 4.13 and 4.14 indicate the inHuence of magnetic parameter !vI with 

mixed convection parameter AI . So the skin friction coefficient and local Nusselt number have the 
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similar efl'ects and increase in assisting flow and decrease for opposing flow. F ig. 4. 15 is prepared 

to show the efl'ects of Prandtl number on skin friction coefficient Re;/2 Gf . The dift'erence between 

assisting and opposing flows can easily visualized in this Fig. Further , the skin fri ction coeffi ciellt is 

decreasing in assisting case and increases in opposing case. Since the physical qu antity local Nusselt 

which is used for heat t ransfer from the wall and from Fig. 4.16, it is noticed that [or particular 

values of Prandt l number for assisting flow, the local Nusselt number is increased and qui te opposite 

for opposing flow. 

From Table 4.2 it is originat ed that the magnitude of - 1"(0) decreases for huge values of Sf· 

Table 4.3 presents a comparison of - 1"(0) with the numerical result reported in [19J for various 

values of Sf when M = So = Al = E = O. The magnitude of local Nusselt number and skin-fri ction 

coefficient are given in the Tables 4.4 and 4.5. It is visible from these tables that the magni t ude of 

- 8'(0) decreases for larger values of M and Rd. Table 4. 6 is constructed to show t he com parison 

of local Nusselt number - 8' (0) in limit ing case [5]. This table indicates that m agnitude of - 8'(0) 

increases when PI' and n are increased. 

4.5 Concluding remarks 

• T he identical behavior of m agnetic parameter JI/I on f' in both cases assisting and opposing 

flows are observed but Al has difl'erent eft'ect, it shows an increasing efl'ect for assisting and 

decreases in opposing flows. 

• The results of suction, velocity slip , Prandtl and thermal slip parameters So, Sf , P r and ST 

on f' and 8 are similar. Here both velocity f' and temperature 8 decrease with an increase in 

these param eters but the influence of Rd on 8 is reverse. 

• Magnitude of local Nusselt number decreases for large values of J'l! and Rd. 

• Local Nusselt number is an increasing function of So and n . 
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Chapter 5 

Series solution for stagnation-point 

flow of second grade fluid 

T his chapter reports the homotopy solution for stagnation point flow of a non-Newtonian fluid . 

An incompressible second grade fluid impinges on the wall either orthogonally or obliquely. The 

resulting nonlinear problems have been solved by homotopy analysis method (HAM). Convergence of 

the series solutions is checked. Such solutions are compared with the numerical solutions presented 

in a study [22]. Excellent agreement is noted between the numerical and series solutions. 

5.1 Mathematical analysis 

The continuity and momentum equations are 

divV* 0, (5 .1 ) 

. * 
pV divT, (5.2) 
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where the constitutive equation for Cauchy stress tensor in a second grade fluid is 

T - p*I + P,AI + a l A2 + a2Ai , (5.3) 

Al (grad V*) + (grad V*)T , (5.4 ) 

A2 dAI ( *f ( *) dt + gradY Al + Al gTadV , (5.5) 

where V* denotes the velocity vector, I the identity tensor , p* fluid pressure , p" the dynamic 

viscosity, AI, A2 the Rivlin Ericksen tensors , al and a2 the normal stresses and body forces arc 

absent . The two-dimensional steady flow equations are 

ou* ov* 
- + - = 0 
ox* oy* ' 

ou* ou* 10p* 
u*-- + v*-- + ---

ox* oy* p ox* 

a2 0 +-­
P ox* 

( 

[
4 (01£* ) 2 + ( Ov* + 01£* ) 2] , 

ox* ox* oy* 
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(5.6) 

(5 .7a) 



av* av* 1 ap* u* - +v* - +--ax· ay· p ay* 

+--- 4 - + - + -ct2 a [( av* )2 (av* au* )2] 
P ay* ay* ax* ay* ' (5 .8) 

where as t erisk indicates the dimensional quantity, fit the material time differentia tion and p the Huid 

density. The following similarity transformations have been used to m ake the problem dimensionless. 

x * r:e * r:e x v-;; , y=y v-;; , (5 .9) 

u 1 * 1 * 1 * JV73 U , v = .fV1J v , p = pl/f3 P , (5. 10) 

in which l/ is the kinematic viscosity. Dimensionless form of How equations are 

(5 .11) 

a [ ( au) 2 ( av au) 2] + A ax 4 ax + ax + ay , (5 .12) 
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(5.13) 

Using Eq. (5.11), we take the stream function 'if; (x, y) such that 

(5. 14 ) 

By substituting Eq. (5.14) into Eqs. (5.12) and (5.13) and resulting equations become after elimi-

nation of pressure by using Pxy = Pyx, we have 

(5. 15) 

where We (= ad3 / pl/) is the Weissenberg number , ..\( = 0'.2(3/ pl/) and \12 = 8 2
/ 8x2 + 8 2

/ 8y2. 

5.2 Orthogonal flow 

The infinite plate is considered at y = 0 and fluid occupies the entire upper half plane y > O. 

F\lrthermore we assume that the streamfunction far from the wall thus the boundary conditions are 

~~ = 0, at y = 0, 'if;(x , y) '" y as y '" 00, (5.16 ) 

with slip condition 

( 5.17) 

where 'Y the slip parameter and 

'if; = xf(y )· (5.18) 
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Using Eq. (5.18) in Eqs. (5.15) - (5.17), we get 

f(O) = 0, 1'(0) = , f"(O) , 1'(00) = 1. 

Now integrating the above equation with respect to y, we obtain 

- 1, 

f(O) = 0, 1'(0) = , f" (O), 1'(00) = 1. 

5.3 Oblique flow 

T he stream function far from the wall is defined as 

'If; (x, y) rv ky2 + xy, 

where k is the constant. Thus stream function has the form 

'If; (x, y) = xf(y) + g(y), 

with 

f(O) 0, 1'(0) = , f"(O) , g(O) = 0, 9 (0) = , g"(O) , 

f (y) y, 9 (y) rv ky2 as y ----) 00. 

(5.19) 

(5 .20 ) 

(5.21) 

(5.22) 

(5 .23) 

(5.24) 

(5.25 ) 

Employing Eq. (5.23) in Eq. (5 .15) and we obtain an equation with terms of 0 (x) and 0 (1). The 

terms of 0 (x) stand for ODE for f (y) and the terms of 0 (1) stand for an equation 9 (y). Thus the 

second grade incompressible fluid invaded on the wall either orthogonal and oblique. Nlathematical 
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problems for orthogonal flow is 

- 1, (5.26) 

f(O) = 0, 1'(0) = "11"(0) , 1'(00) = 1, (5 .27) 

where the slip parameter "I = Ap$v and f3 has units of inverse time. For oblique flow we have 

- 1, ( 5.28) 

f(O) = 0, 1'(0) = "11"(0) , 1'(00) = 1, (5 .29 ) 

" + J' J' W (f" f'" + f'" f"' ) 9 9 - g- e 9 - 9 9 - 9 0, (5.30) 

g(O) = "Ig'(O), g'( oo) = 1. (5.31) 

Note that the constant of integration in Eq. (5.30) is taken zero. Here tangential component of flow 

is g. 

5.4 Series solutions 

Choosing the set of base functions 

(5 .32) 

one writes the solutions 
00 00 

f(7]) = ag,o + L L a~,n7]k exp( - 7117) , (5 .33) 
n=Ok=O 

00 00 

8(77) = L L b~,n7]k exp( - n7]) , (5 .34) 

n=Ok=O 

in which a~,n and b~n,n are the coefficients . 
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The selection of initial guesses and linear operators are 

fa _ (_1_) + Y + _1_ exp( _y) , 
1 +1' 1 +1' 

(5.35) 

(-I' - 1) + Y + exp( - 2y) , (5.36 ) 

L f [f(y )] 
83 f 8f 

(5.37) 

Lg [g(y)] (5 .38) 

through the properties 

0, (5.39) 

Lg [C4 exp(y) + C5 exp( - y) ] 0, (5.40) 

where Ci(i = 1 - 5) are the constants. The zeroth and m th order problems are given below 

(1 - p)Lf [](y ;p) - fo(Y)] plif Nf[](y; p)], (5.41) 

(1 - p)Lg [.§(y;p) - go(y)] pligNg[.§(y;p) , ](y;p) ], (5.42) 

](O;p) 
8] 82 ] 

0, a(O;p) = I' 8 2 (0; p), y y 
(5.-13 ) 

g(O;p) 
89 

I' 8y(0;P) , y = 0, (5 .44) 

8] 
8y(y) 

8[; 
1, 8y (y ) -t 1 when y -t 00, (5 .45) 

Lf [Jm(Y) - Xmj~n- l (Y)] lifRf,m(Y) , (5 .46) 

Lg [gm(Y) - Xmgm-l(y)] ligRg,m (y), (5.4 7) 

fm(O) 0, f:n( O) = I'f:~(O) , gm(O) = I'g;n(O) , ( 5.48) 

f:n(Y) 0, g;n(Y) = 0, when y -t 00, ( 5.49) 
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where fiJ and fig are the non-zero parameters , p E [0 , 1] is the embedding parameter ami 

Note that 

~ m-1 g m-1 gj' 
u gm-1 ~ j. ugm-i-1 _ ~ u m-i- 1 . 

{) 2 + ~'{) ~ {) g, 
Y i=O Y i=O Y 

m - 1 m - 1 
~ j .a3gm_i_l _ ~ !!.lia29m -i-l 
~'ay3 ~ a y ay2 
i=O i=O 
m-1 m-1 

+ ~ a
2 
Jm-i -l !22i. _ ~ a 3 

fm-i - l G' 
~ ay2 ay ~ [)y3 g, 
i=O i=O 

J(y;O) 

J(y; 1) 

fo(Y), g(y; 0) = 90(Y) , 

f(y), g(y; 1) = g(y). 

The general solutions after following the methodology in the previous chapter are 

j ,*,.,(y) + C1 + C2 exp(y) + C3 exp( - y) , 

where f:n and g:n indicate the special solutions. 
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(5.52) 

(5 .53) 

(5.54 ) 

(5.55) 

(5.56) 
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5.5 Analysis of solutions 

It is known that an auxiliary parameter plays a vital role in the convergence region and rate of 

approximation of the series solution. In view of adequate values of auxiliary parameters fif and 

fig the Ii-curves in Figs. 5.1 and 5.2 are depicted. The admissible regions are formed to be 

- 2.0 ::; fif ::; - 0.5 and - 1.6 ::; fig ::; - 0.2. Further , homotopy Pade-approximation is employed for 

the values presented in the Tables 5.1 and 5.2. These tables clearly indicate that convergence of the 

series solutions is accelerated through homotopy Pade approximation. 

0.5 

0 

~ 

'+--
-0.5 -- We= 0.2 

- 1 

- /.5 

- 2 

-2.5 -2 -"1.5 -0.5 a 0.5 

Fig. 5.1. fi-curve for f" (0) at the 22n d-order of approximation 

with We = 0.2 and I = 0.1. 
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Fig. 5.2. It-curve for g" (O) at the 22nd-order of approximation 

with Itf = - 1.7, We = 0. 2 and , = 0.3. 
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20 

Table : 5.1. Convergence of series solut ions of f" (0) with the various 

values of We and , by using homotopy-P ade approximation. 

W e = 0 We = 0.1 W e = 0.2 We = 0.3 

[22] [HAM] [22] [HAM] [22] [HAM] [22] [HAM] 

1.23259 1.2326 1.13425 1.1341 1.05818 1.05818 0.99689 0.99684 

1.04258 1.0426 0.96871 0.96872 0.91085 0.91085 0.86361 0.86361 

0.88634 0.88634 0.83155 0.83155 0.78785 0.78786 0. 75169 0.75170 

0.76428 0.7643 0.72290 0.72291 0.68939 0.68939 0.66131 0.66131 

0.66896 0.66897 0.63696 0.63696 0.61068 0.61068 0.58844 0.58844 

0.59346 0.59346 0.56810 0.56810 0.54706 0.54706 0.52909 0.52909 

0.37588 0.37589 0.36556 0.36556 0.35671 0.3567 0.34895 0.34895 

0.17726 0.17726 0.17494 0.17494 0.17289 0.17289 0.17105 0.1711 

0.09402 0.09403 0.09338 0.09338 0.09279 0.09279 0.09226 0.09226 

0.04847 0.04847 0.04829 0.04829 0.04814 0.04814 0.04799 0.04799 
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We = 0.4 We = 0.5 We = 1 Hie = 2 

'Y [22] [HAM] [22] [HAM] [22] [HAM] [22] [HAM] 

0.0 0.94588 0.94588 0.90248 0.90248 0.75276 0.75276 0.59677 0.59677 

0.2 0.82393 0.82393 0.78989 0.78988 0.67021 0.67021 0.54170 0.54170 

0.4 0.72098 0.72098 0.69437 0.69437 0.59900 0.59900 0.49323 0.49323 

0.6 0.63721 0.63721 0.61616 0.61616 0.53933 0.53933 0.45154 0.45154 

0.8 0.56919 0.56919 0.55225 0.55225 0.48943 0.48943 0.41575 0.41575 

1.0 0.51343 0.51343 0.49956 0.49956 0.44743 0.44743 0.38488 0.38488 

2.0 0.34203 0.34203 0.33578 0.33578 0.31125 0.31125 0.27945 0.27945 

5.0 0.16936 0.16937 0.16782 0.16782 0.16144 0.16144 0.15241 0.15241 

10 0.09177 0.09177 0.09131 0.09131 0.08939 0.08939 0.08655 0.08655 

20 0.04786 0.04786 0.04773 0.04773 0.04720 0.04720 0.04640 0.04640 

Table: 5.2. Convergence of series solutions of g' (0) with the various 

values of We and 'Y by using homotopy-Pade approximat.ion. 

We = 0.0 We = 0.1 vVe = 0.2 

'Y [22] [HAM] [22] [HAM] [22] [HAM] 

0 1.40643 0.570 1.36622 0.517 1.33539 0.477 

0.2 1.09253 0.511 1.07934 0.475 1.06938 0.445 

0.4 0.87852 0.445 0.87974 0.420 0.88121 0.394 

0.6 0.72933 0.379 0.73788 0.359 0.74541 0.356 

0.8 0.62130 0.332 0.63352 0.322 0.64422 0.315 

1 0.54015 0.288 0.55413 0.282 0.56643 0.275 

2 0.32442 0.124 0.33851 0.140 0.35120 0.139 

5 0.14650 0.003 0.1 5514 0.007 0.16313 0.008 
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We = 0.3 We = 0.4 We = 0.5 

'Y [22] [HAM] [22] [HAM] [22] [HAM] 

0.0 1.31046 0.445 1.28971 0.418 1.27217 0.396 

0.2 1.0613 0.422 1.05456 0.396 1.04887 0.386 

0.4 0.88263 0.384 0.88392 0.366 0.885206 0.355 

0.6 0.75201 0.345 0.75781 0.355 0.76307 0.311 

0.8 0.65362 0.283 0.66191 0.285 0.66943 0.277 

1.0 0.57730 0.272 0.58694 0.268 0.59571 0.255 

2.0 0.36270 0.999 0.37312 0.144 0.38276 0.141 

5.0 0.17056 0.008 0.17747 0.009 0.18398 0.001 

0.8 

0.6 
~ 

'i-. 

0.4 We= 0.0 
We= 0. " 

0.2 
We= 0.2 
We = 0.3 

0 2 3 4 5 6 7 

'/ 

Fig. 5.3. Influence of l' with different values of We when 'Y = O. 
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Fig. 5.4. Influence of f' with different values of W e when 'Y = 1. 
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Fig. 5.5. Influence of f' with different values of 'Y when W e = 0.2. 
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Fig. 5.6. Influence of g' with different values of "Y when We = 0.2. 
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Fig. 5.7. Infiuence of g' with different values of r;Ve when "Y = 1. 
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Fig. 5.8. Influence of g' with different values of We when 'Y = 0.4. 

5.6 Discussion 

Here Figs. 5.3 and 5.4 display the effects of Weissenberg number We on i ' when ') = 0 and r = L 

respectively. It is seen that i' is an increasing function of T¥e. Further, i' in no-slip case is less 

than the slip case. From Table 5.1 it is further found that 1"(0) in no-slip situation is greater than 

the slip case. This observation is true for both viscous and second grade fluids. However r (0) 

in viscous fluid is larger than the second grade fluid for both slip and no-slip cases. Further the 

variations of'Y and We on 1" (0) are similar in a qualitative sense. It is interesting to note that. 1" (0) 

decreases when We increases. Decrease in 1"(0) by increasing Hie is less when comparee! with that 

of 'Y. This table also depicts that a comparison between the present series solution by homotopy 

analysis method and numerical solution in ref. [22] is in complete agreement . The variations of 'Y 

and We on g'(O) are computed in Table 5.2. It is found that g'(O ) in slip situation is less than for 

no-slip case. Further g'(O) in viscous fluid is greater than second grade fluid . More, t he parameters 
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'Y and We on g' (0) have similar role qualitatively. The variation of'Y on 1" is shown in Fig. 5.5. 

This Fig. depicts that l' increases when 'Y increases. In view of Figs. 5.5 and 5.6 it is notice 1 that 

the variations of 'Y on f' and g' are quite opposite. From Fig. 5.7 it is found that there is slight 

increase/decrease in g' near the wall when 'Y varies. 
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Chapter 6 

Stagnation-point flow of Maxwell fluid 

with thermal radiation and 

source / sink 

T he objective of this chapter is to examine the magnetohydrodyn amic (MHD) mixed convection 

flow near a stagnation point over non-conducting stretching surface. Analysis has been modeled 

with thermal radiation and heat source/sinks. T hermal conductivity is taken variable and radiation 

heat flux is approximated under the Rosseland approximation . The par t ial differen t ial equatiolls 

are t ransformed into the ordinary different ial equations. T he solu tions have been comp uted with 

t he help of homotopy an alysis method. Comparison with previous published results is presented in 

the special cases . Influence of various paramet ers of interest is discussed. Local Nusselt number is 

computed and an alyzed. 

6.1 Mathematical model 

We consider the mixed convection flow of MHD Maxwell fluid with variable thermal conductivity. 

T he stagnation point flow near a stretching sheet is considered. The x - and y-axes in the Cartesian 

94 



coordinate system are chosen along and perpendicular to the sheet , respectively. Further , the 

analysis is carried out in the presence of heat source/sink and thermal radiation. A uniform magnetic 

field Eo is applied in the y-direction and induced magnetic field is not considered in terms of 

assumption of small magnetic Reynold number. The gravitational force acts parallel to .c - axis . 

The equations governing the boundary layer flow are 

(6. 1) 

(6.2) 

(6.3) 

where 1/, and v the velocity components parallel to the x and y axes respectively, ,\ the relaxation 

time, p the fluid density, 1/ kinematic viscosity, 9 gravitational force per unit mass, {3T thermal 

expansion coeffi cient, cp specific heat at constant pressure and term (T-Too) shows that temperature 

of sheet is higher than ambient temperature. Eq. (6.3) is derived by using Rosseland approximation . 

Expression of variable t hermal conductivity is defined as [(* = [((1 + EB) where J( denotes the 

uniform thermal conductivity, a* Stefan-Boltzmann constant , [(1 mean absorption coefficient and 

B dimensionless fluid temperature. 

The above equations are solved subject to the following boundary conditions 

1/, Uw(x) = ax , v = 0, T = Tw(x) at y = 0, (6.4) 

T ~ Too as y ~ 00 . (6.5) 
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Considering 

(a) 1/2 
7J = - y , 

1/ 

8( ) = T - Too 
7J T - T, , 

w 00 

o'lj; 
v=--ox· 

The continuity equation (6.1) is automatically satisfied and Eqs. (6.2) and (6.3) yields 

1'" - 1'2 + f I" (1 + M (3 ) - M l' + (3 (2f l' I" - f21"') + (E2 + Jl!fE) ± )\18 

E*8'2 + (1 + ~Rd) ((1 + E* 8) 8" + Pr f8' - Pr S8 

The boundary conditions are given by 

f (0) 0, 1'(0) = 1, 1'(7J) ~E as 7J ~ 00, 

8 (0) 1, 8 (0) ~ 0, as 17 ~ 00, 

(6.6 ) 

(6 .7) 

0, (6.8) 

o. (6 .9) 

(6.10) 

(6 .11) 

where prime stands for the derivative with respect to 17, the Hartman number M = a B'6 / pa, the 

Deborah number (3 = Aa, the ratio of rate constants E = b / a, Rd = ;f(** T! the radiation parameter, 

the buoyancy or mixed convection parameter Al = GTx/ Re;, GTx = g(3 (T - Too ) x3/v2 the local 

Grashof number, Rex = Uwx/v the local Reynolds number and the Prandtl number Pr = E/ f.i Cp . 

Here a and b signify the rates of dimension time-I . Local Nusselt number is defined as 

qw = -K (~T) . 
Y y=o 

(6.12) 
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6.2 Homotopy analysis solutions 

In order to obtain the series solution, the leading expressions of 1 and B are easi ly defined by the 

set of base functions {rlexp( -m7)lk ~ 0, n ~ O} in the following types 

00 00 00 00 

1(17) = ag,o + I: I: a':,.,nrlexp( -17k ) , 
n=Ok=O 

B(7]) = I: I: b':,. n7]k exp( -- 17k), 
n=Ok=O ' 

(6.13) 

where a':,. nand bm
k n are the coefficients. For the sake of HAM solut ions, the following initial guesses , , 

and auxiliary linear operators are selected as follows 

10 = E7] + (1 - E) (1 - exp( - 17)) , Bo = exp( -7]), (6. 14 ) 

(6.15) 

The operators have the following properties 

Lo [C4 exp(17) + C5 exp( - 7]) ] = 0, (6.16) 

in which Ci ( i = 1 to 5) are the integral constants. Such integral constants can be determined Llsing 

the boundary conditions. We construct the problems at zeroth and mth orders. These are 

(1- p)Lf [j(7] ;p) - 10(7])] 

(1- p)Lo [e(17;p) - BO(7])] 

pltfNf [j(7] ;p),e(17;p) ] , 

pnoNo [e(17 ;p), j(7];p )] , 

j(O;p) = 0, 
oj 
07] (O;p) = 1, B(O;p)= l , 7] = 0, 

when 7] ---t 00, 
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( 6.18) 

(6.19) 

(6.20) 



(6.21 ) 

(6.22) 

fm( O) = 0, f:n( O) = 0, (6.23 ) 

f:n( ry ) = 0, Bm(ry ) = 0, when 77 ---> 00, (6.24) 

where p E [O, lJ is the embedding parameter and nf and no the nonzero auxiliary parameters. T he 

nonlinear operators are 

(6.25) 

(6.26) 

3 m - l m - l 2 a 
Rj,m(ry) = a fm-l _ L afm-i-l ali + (1 + M2(3) L fi a fm-i - l _ M2 fm - l 

a773 . ary ary . ary2 a77 
, = 0 ,=0 

m-l i ( a f a2f a3 f) i-I i J I 2 + (3 L fm-i- l L 2-
a
-[i2 - li-l {i3 + [E + ME] (1 - X71J ± Al B, 

i=O 1= 0 ry ry ry 
(6. 27) 

( )

2 m-l ( ) a2 m- l ( aB ) * aBm - 1 * 4 Bm-i - l. i 
Ro.m(ry ) = E -a- + L (1 + E Bi ) 1 + - Rd a 2 + P r L fm-i-lfj + SBi . 

ry i=O 3 ry i=O ry 

(6.28) 

T he defini t ion of Xm is defined as 

{ 

0, 
X,n = 

I , 

m - 1, 

m > 1. 
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For P = 0 and P = 1, one obtains 

j('T],O) (6.29) 

j(17,1) ( 6.30) 

According to the Taylor's series we have 

00 

(6.31) 
rn=O 

00 

Bo ('T]) + :L Bm('T])pm , (6.32) 
m=O 

The values of auxiliary parameters nf and no are chosen in such a way that the Taylor series of 

j('T] ,p) and e('T] ,p) for p = 1. Rence 

00 00 

f ('T]) = fo ('T]) + :L fm( 'T] ), B ('T]) = Bo ('T]) + :L Bm(17)· (6 .33) 
,n=l m = O 

General solutions j;n('T]) and Bm('T]) are given by 

(6.34) 

(6.35) 

where the constants are determined using the Eqs. (6 .23) and (6.24). 

6.3 Analysis of solutions 

It is well established argument that the convergence and rate of approximation for RANI solutions 

depend upon the values of involved atDciliary parameters nf and no . In order to get the admissible 

values of non-zero auxiliary parameters nf and no , we plotted the nf and no - curves at the 20t h 
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order of approximations in Fig. 6.1. The admissible range for hf and ho are - 0.96 :s tif < - 0.1 

and - 1 :s ho :s - 0.1. Suitable values of hf and ho are - 0.7 respectively. 
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M = 1.0. S = 0.1. Pr = 0.7. Rd = 0.3. E- = 0.2 = E, '(I = 0.3, f3 = 0.2 

o 
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Fig. 6.1. n-cUl'ves for 201.h order of approximations . 
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Fig. 6.2. Variation of M on the velocity j ' (ry). 
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Fig. 6.6. Variation of Pr on the velocity f(1)). 
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Fig. 6.7. Variation of Pr on the temperature B(ry) . 
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Fig, 6.8. Variation of M on the temperature B(ry). 
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Fig. 6.9. Variation of Rd on the temperature B(-T)) . 
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Fig. 6.10. Variation of S on the temperature tJ('T)) . 
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Fig. 6.11. Variation of Al on the temperature B(ry). 
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Fig. 6.12. Variation of E* on the temperature B(ry). 
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Table: 6.1. Convergence of HAM solutions for different order of approximations 

when f3 = E = 0.2 = Rd, S = 0.1, Pr = 0.7, E* = 0.3 and ;\] = 1.0. 

Order of convergence - 1"(0) - 8'(0) 

1 0.87074 0.46333 

5 0.74315 0.35061 

10 0.73646 0.33929 

15 0.73707 0.3401 2 

20 0.73718 0.34033 

25 0.73718 0.34033 

30 0.73718 0.34033 
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Table: 6.2. Comparison of 1"(0) for difl'erent values of ex and M when (3 = 0 = AI . 

- 1"(0) 

E = 0.1 E = 0.2 E = 0.5 

M [I1J HAM [I1J HAM [I1J HAM 

0.0 0.969386 0.969386 0.9181069 0.9181069 0.667263 0.667263 

0.1 0.97350851 0.973509 0.921466 0.921466 0.666102 0.666102 

0.5 1.067898 1.067898 1.00469 1.004692 0.71189085 0.711887 

1.0 1.321111 1.321111 0.2156222 0.215587 0.83215208 0.832652 

1.5 1.66020742 1.662587 1.50849937 1.508986 1.00168146 1.001253 

6.4 Discussion 

Our interest here is to analyze the efl'ects of Hartman number NI, Deborah number (3, local buoyancy 

parameter AI, parameter E, Prandtl number Pr, thermal radiation Rd , heat source/sink parameter 

Sand E* the perturbation parameter on velocity f' and temperature B. Therefore Figs . (6.2 - 6.13) 

have been plotted. Fig. 6.2 gives the variation of Hartman number NI on the flow. It is found that 

the velocity profile decreases due to increase in Hartman number when E < 1. This is in view of the 

fact that an increase of M signifies the increase of Lorentz force thereby decreasing the m agnitude 

of velocity. Magnetic field is a powerful mechanism for controlling the momentum of the boundary 

layer regime flow in actual applications. Hence magnetic field can control flow characteristics. The 

velocity profile for difl'erent values of Deborah number (3 is plotted in Fig. 6.3. It is observed that 

boundary layer thickness increases because of an increase in (3 . T he variations of parameters E and 

Al on the velocity are shown in the Figs. 6.4 and 6.5. It is found that f' is an increasing function of 

both parameters E and AI. When E = 0 there is no stagnation point flow . Infact increasing values 

of /\1 corresponds to the stronger buoyancy force which causes an increase in flow velocity. Fig. 
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6.6 describes the effects of Pr on 1'. Prandtl number Pr decreases the velocity profile. Infact an 

increase in the Prandtl number leads to an increase in fluid viscosity which causes a decrease in the 

flow velocity. 

The effects of Prandtl number Pr on the temperature is shown in Fig. 6.7. It is revealed 

from this Fig. that t he thermal boundary layer thickness is reduced when Pr increases . A higher 

Prandtl number fluid has a thinner thermal boundary layer and this increases the gradient of the 

temperature. F igs. 6.8 and 6.9 are presented for the variations of Jill and radiation parameter Rd· 

These Figs. depict that the t emperature profile increases by increasing M and Rd. Thus r adia tion 

should be minimized to have the cooling process at a faster rate. The increasing fri ctional drag due 

to the Lorentz force is responsible for increasing the thermal boundary layer thickness. Fig. 6.10 

elucidates that with the increase in the value of S, the temperature profile increases. Further, we 

conclude that t he effect of volumetric rate of heat generation/absorption reduces the temperat ure 

B for low Prandtl number. Effects of Al and c:* on the temperature are displayed in t he Figs . 6. 11 

and 6.12 . These Figs. indicate that t he temperature profile decreases when there is an increase in 

Al and has opposite behavior for c:*. Fig. 6. 13 elucidates the influence of (3 on temperature field 

B. It is obvious that temperature field increases by increasing (3. Table 6.1 is displayed to examine 

the convergence of series solut ion which indicates that convergence is achieved at 20t.h order of 

approximations. Tables 6.2 shows the comparison of the values of HAM solution with the numerical 

solution in the limiting cases. 
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Chapter 7 

MHD stagnation point flow of 

Maxwell fluid with radiation effects 

Two-dimensional stagnation point flow of Maxwell fluid over a stretched surface with heat transfer 

is examined in this chapter. The fluid is electrically conducting in the presence of uniform applied 

magnetic field. Radiation effect in Lhe euergy equation is taken into account. The arising nonlinear 

problem is solved by a homotopy analysis method (HAM). Convergence of the series solutions is 

checked. The values of skin friction coefficient and local Nusselt number are computed and discussed. 

7.1 Problem Statement 

We consider the stagnation point flow of magnetohydrodynamic (MHD) fluid bounded by a st retch­

ing surface. A magnetic field of strength Bo is exerted in the y-direction. The magnetic Rey nold 

number of the flow is taken to be small enough so that the induced magnetic field is negligible. 

The electric field is negligible. Here we consider Tw (x) = Too + cxn as the prescribed tempera­

ture of sheet (where Too is taken as ambient fluid temperature) , c and n are constants with c > 0 
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(heated surface). The equations which can govern the present flow are 

(7. 1) 

(7 .2) 

[ aT aT] _ ~ [(16a*T! ) aT] 
pCp u ax + v oy - oy 3k* + ex oy , (7.3) 

in which the velocity components u and v are taken along x-and y - directions. v , p, AI , a , cp , ex 

and T are the kinematic viscosity, the density of fluid , relaxation time, the electrical conductivity, 

specific heat having constant pressure, the thermal diffusivity and the temperature of fluid. Note 

that Eq. (7.2) holds only if the velocity of outer flow Uoo (x) is linear dependent on x coordinate. 

The simplified form of Eq. (7.3) for radiative heat flux has b een achieved after applying Rosseland 

approximation. The relevant boundary conditions for the present flow are 

u Uw(x) = ax, v = 0, T = Tw(x) at y = 0, 

T ---'> Too, as y ---'> 00, 

'ljJ 
f(r;) = (av)l /2x' 

Letting equation (7.1) is satisfied while Eqs. (7.2) - (7.5) are reduced as 

(7.4) 

(7.5) 

(7. 6) 

f'" - 1'2 + ff" (1 + M(3) - M1' + (3 (2f f ' f" - f2 f"') + (E2 + ME) = 0, (7.7) 

(1 + ~Rd) e" + Pr (fe' - nf'e) = 0, (7.8) 
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f (0) 0, f' (0) = 1, e (0) = 1, (7.9) 

f' (1]) -t E, e (0) -t 0, as 1] -t 00, (7.10 ) 

in which prime points out the derivative with respect to the variable 1] , M the magnetic parameter, f 

the velocity ratio parameter, Rd the radiation parameter and Pr the Prandtl number. The definitions 

of these variables are 

4a* 
M = aB5 l pa, E = bla, Rd = aK*T! , Pr = a l p,Cp· (7.11) 

The mat hematical expressions of physical quantities such as skin fri ction coeffi cient and local Nusselt 

number are 

(7. 12) 

Here T wand qw are the wall skin friction and wall heat flux i.e. 

Tw = J.i (~u) , 
y y = O 

qw = -k (~T) . 
Y y=O 

(7. 13) 

In dimensionless form we have 

~c· Re1/ 2 = f" (0) 2 j x , (7.14) 

where the local Reynolds number is Rex = Uwxlv . 

7.2 Solution by Homotopy Analysis Method 

The set of base functions are 

{ 1]k exp ( - n1]) , k 2': O,n 2': O} , (7.15) 
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lead to the following expressions 

<Xl <Xl 

1("1) = ag,o + L L a~> ,nryk exp( -71,"1), (7.16) 
n=Ok=O 

<Xl <Xl 

B(ry) = L L b~,nryk exp( - 71,"1) , (7.17) 
n=Ok=O 

in which a~,n and b~n,n are the coefficients. 

The initial guesses and linear operators are as follows 

10 ("I) = (1 - E) (1 - exp( - "I)) + 0 7, (7 .18) 

(7.19) 

(7.20) 

(7.21) 

The relations which satisfies the following linear operators are 

(7 .22) 

(7 .23) 

In above Eqs. C1 - C5 are the arbitrary constants. Now the expressions of zeroth alld m lh order 

problems are 

(1 - p)Lf[j(ry;P) - 10(ry)J 

(1 - p)Lo[8(ry;p) - Bo(ry)J 

j(o;p) = 0, 
8j 
8"1 (O;p) = 1, 
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(7 .24) 

(7.25) 

B(O;p) = 1, (7.26 ) 



when 77 ------) 00, 

fm(O) = 0, f;"(O) = 0, 

No[8[(7]; p) ] 

where p, Itf and Ito indicate the embedding and aux iliary parameters . Further 

!(7],0) 

!(77, 1) 

fO(7]), 8(7],0) = 80 (7]) , 

f(7]) , 8(77,1) = 8(77)· 

(7.27) 

(7 .28) 

(7.29) 

(7.30) 

(7.31 ) 

(7.32) 

(7.33) 

(7.34) 

(7 .35) 

(7 .36) 

(7 .37) 

It is noticed that when p increases from 0 to 1 then !(7],p) , 8(77 ,P) approach to fO(77) , 80(7]) and to 
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the final solutions f('T}) and 8('T}) respectively. Taylor series of j('T};p) and e('T};p) converge at p = 1. 

By Taylor series 

00 

f (TJ ) (7 .38) 
m = l 

00 

8 (TJ) 80 (17) + L 8m (TJ) , (7.39 ) 
,n=l 

lom j(17 ,P) 
m! opm !p=o, (7.40) 

1 ome(TJ;p) 
m! op7n !p=o. (7.41) 

The general solutions are computed as follows: 

(7.42) 

8:r,(TJ) + C4 exp(TJ) + Csexp( - TJ ), (7.43) 

where f:" and 8:r, are the special solutions. With the use of boundary condi tions one finds that 

C = oj-:" (0) 3 ,::) , 
u17 

(7.44 ) 

7.3 Analysis of solutions 

For convergence we plot the It-curves at 18th order of approximations. The admissible values of 

non-zero auxiliary parameters of 1"(0) and 8'(0) are shown in the Figs. 7.1 and 7.2. The acceptable 

values of fif and fie are - 0.81 ~ fif ~ - 0.46 and - 1.5 ~ fie ~ - 0.2 . The series converge in 

the region when Itf = - 0.7 and fio = - 0.8. Table 7.1 depicts that 10th order approximations are 

sufficient for the convergent series solutions. 
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p= 0.2, E = 0.1 . M = 1 
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- 1.3798 

-1.3799 

- 1.38 

-1.3801 
-1 - 0.8 -0.6 - 0.4 - 0.2 

hI 

F ig. 7.1. n.-curves for 18th order of approxima tions. 

fJ = 0.2. € = 0.1. ,11,1 = 1. Pr= 0.5. Rd = 0.2. Ii= O. 1 
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-7. 5 

<::t> 
- to 

-12.5 

-15 

- 17.5 

- 2 - 1.5 - 1 - 0.5 0 0.5 
110 

Fig. 7.2. n.o-curves for 18th order of approximat ions. 
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F ig. 7.3. Velocity profile j'(ry) vs ry for different values of E. 

/3 = 0.3, E = 0.5 

------- M = 0.0 

0.8 
---- M = 0.5 

- - - M = 1.0 

- M= 1.5 
0.6 

0.4 

0.2 

o 1 2 3 4 

'/ 

Fig. 7.4- Velocity profile !,(ry) vs ry for different values of M . 
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M = 1, E = 0.2 

-------. 13 = 0.0 
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Fig. 7.5 . Velocity profile f'(7]) vs 7] for different values of (3. 
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Fig. 7.6 . Temperature 8(7]) vs 7] for d ifferent values of Pr. 
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Pr = 1.4, E = 0.1, f3 = 0.3, Ra = 0.2, n = 2.3 

-------. M= 0.0 

0.8 
- - - M = 0.5 

- - M = 1.0 

0.6 
,-... 
~ 

\ -- M = 1.3 

~ 
'-' 
<:l:> 

0.4 ~~ 
'~ 
\~ 

0.2 \:<" \ 

0 

',,, -........ 
''- .... :::-- -- -

... -::-: - -:::-:. -~.::;:. -';::;:---=""-~--- - -

0 2 4 6 8 10 

'1 

Fig. 7.7. Temperature e(17) vs'T) for various values of M. 
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Fig. 7.8. Temperature e('T)) vs 'T) for various values of Rd· 
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M = 0.5, E = 0.1, f3 = 0.3, Pr= 1.4, Ra = 0.2 
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Fig. 7.9 . Temperature B(T/) vs 7) for various values of n. 
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Table: 7. l. Convergence of HAM solut ion at different order of approximaLions 

when M = I , f3 = 0.2, Pr = l.l , Rd = 0.4, E = 0.1 and n = 2. 

Order of approximation - f" (0) -8'(0) 

1 l.32021 l.21567 

2 l.35615 0.96209 

5 1.37975 l.01800 

8 1.38008 l.01632 

10 1. 38008 l.01639 

15 1.38008 l.01640 

20 1.38008 l. 01640 

25 l. 38008 l.01640 

30 l. 38008 l.01640 

35 l.38008 1.01640 

40 1.38008 1.01640 
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Table: 7.2. Values of - B'(O) for some values of n, M, PI' , Rei 

when f3 = 0.2 and E = 0.1. 

n M PI' Rd - B'(O) 

1.3 0.5 1.1 0.2 1.18269 

1.5 1.03886 

1.7 1.09783 

2. 0 1.18269 

2. 1 1.21010 

2.3 1.26369 

2.5 1.31577 

1.3 0.5 0.97775 

0.7 0.96406 

1.0 0.94546 

1.3 0.92881 

1.5 0.91862 

2. 0 0.5 0.0 1.36690 

0. 2 1.18269 

0. 4 1.05005 

0.5 0.99639 

0.6 0.94903 

0.7 0.90685 

1.1 0.2 1.18269 

1.3 1.31045 

1.5 1.42927 

1.7 1.54077 
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Table: 7.3. Comparison of local Nusselt number - G'(O) for some values of fill , PI' and n 

when Rd = (3 = E = 0 = Sf = ST· 

M 

0.0 

0.3 

0.5 

0.8 

1.0 

0.5 

0.5 

Pr 

2.0 

1.0 

1.1 

1.3 

1.5 

2.0 

1.0 

11 

0.1 

0.2 

0.1 

0.3 

0.5 

1.0 

3.0 

5.0 

7.4 Graphical results and discussion 

HAM [5] - G' (O) 

0.981991 0.981707 

0.950257 0.950258 

0.931430 0.931430 

0.905665 0.905665 

0.889917 0.889855 

0.62569 0.625689 

0.669087 0.669087 

0.750773 0.750773 

0.82675 0.82675 

0.997713 0.997713 

0.58183 0.58183 

0.66843 0.66843 

0.750784 0.750782 

0.94090 0.94089 

1.55041 1.55041 

2.02104 2.02104 

In this section Figs. 7.3 and 7.4 describe the effects of E and the magnetic parameter JVI on fl Fig. 

7.3 shows that by increasing the value of E the boundary layer thickness increases whereas Fig. 7.4 

shows the opposite behavior for increasing lvI . Table 7.2 represents the values of - G' (0) for different 

values of n, Hartman number M, Prandtl number Pr and radiation number Rd when (3 = 0.2 and 
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E = 0.1. Table 7.3 shows the comparison of Nusselt number given in the study [5] . 

Fig. 7.5 is plotted for different values of Deborah number f3 on f'. Here we can observe that 

boundary layer thickness for f' decreases when f3 increases. The variations of !If , Fr, nand Rd 011 

e have been shown in the Figs. 7.6 - 7.9. The temperature profile e decreases by increasing Pr 

and increases by increasing M (see Figs. 7.6 and 7.7). Fig. 7.8 shows the effects of Rd on e. Here 

temperature profile e increases when Rd increases but Fig. 7.9 shows the opposite behavior. 
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Chapter 8 

Stagnation point flow of an Oldroyd-B 

fluid with variable thermal 

conductivity 

This chapter is concerned with the boundary layer flow of an Oldroyd-B fluid near the stagna tion­

point towards the stretching sheet with thermal radiation. Variable thermal conductivity and surface 

temperature considered. Suitable transformations are invoked to convert the partial differential 

equations into the ordinary ones. The flow is governed by the Deborah numbers ((31 and (32) , the 

velocity ratio (E), the Prandtl number (Pr) and the radiation parameter (Rd). The dimensionless 

expressions of velocity and temperature are constructed in a series form by a homotopic approach . 

The results indicate a decrease in the temperature and the thermal boundary layer thickness with an 

increase in the fluid parameter ((32) . This reduction is associated with the larger heat t ransfer rate 

at the stretching sheet. Numerical values of local Nusselt number for different values of paramet.ers 

are computed . 
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8.1 Governing problems 

We consider the two-dimensional stagnation-point flow of an incompressible Oldroyd-B fluid over 

a stretching surface with thermal radiation and variable thermal conductivity. We choose a Carte-

sian coordinate system in such a way that x-axis is along the stretching surface and the y- axis 

perpendicular to it. In view of the boundary layer approximations, the governing equations for flolV 

and temperature are 

au au 
u-+v­ox ay 

with boundary conditions 

(
aT aT) = ka

2
T _ aq,. 

pCp u !:Ix + V !:Iy 2 ' u u, ay ay 

u = cx, v = 0, T = Tw(x) = Too + DxO'. at y = 0, 

u = ax, T = Too as y -) 00 . 

(8 .1 ) 

(8 .2) 

(8.3) 

(8.4) 

(8 .5) 

The velocity components u and v are taken along the x - and v - directions, Al and A2 are the 

relaxation and retardation times, respectively, 1/ = (,4 p) is termed as the kinematic viscosity, T is 

named as the fluid temperature, p is the density of fluid , k the thermal conductivity, cp the specific 

heat at constant pressure and q,. the radiative heat flux. After utilizing the appropri ate Rosseland 

approximation t he mathematical expression for radiative heat flux q,. is 

40"* aT4 

qr = ----. 
3k1 ay (8.6) 
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Here, a* and kl are used for the Stefan-Boltzmann constant and the mean absorption coefficient. 

T he relation of T4 in view of Taylor's series can be defined as 

(/5.1) 

By employing Eqs. (8 .6) and (8 .7), Eq. (8.3) t urns into 

pc [u aT + v aT ] = ~ [k aT ] + 16aT!, a
2T 

P ax ay ay ay 3k* ay2 
(8.8) 

The associative similarity transformations are expressed as 

1 c.: fC T-Too 
u = cx j (ry ), v = - V Cl/ j ( 77 ) , ry = y V ;;, e ( 77) = T w - Too ' (8.9) 

where Tw is the variable wall temperature and e(ry) is the non-dimension al form of the temperature. 

We consider T = Tw(x) = Too + Dxo:e(ry) at ry = O. T he variable thermal conduct ivity is k = 

koo (1 + EOe) (here D and a are positive constants, koo is the fluid free stream conduct ivity) and EO 

is given by 

(8.10) 

where C is a constant and prime denotes the differentiation with respect to ry. 

Equations (8.2) - (8.5) yield 

(8 .11) 

(8.12) 

j = 0, j' = I , e' = 1 at 77 = 0, (8.13) 

l' = E, e = 0 as 77 ---t 00, (8. 14 ) 
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where /31 = >'1 c and /32 = A 2C are the dimensionless fluid material factors, E = % rat io parameter, 

Pr = ef!ov the Prandtl number and Rd = ~r: the radiation parameter. 

T he local Nusselt number and heat flux expressions are 

qw = -k ( ~T) . 
Y y=O 

(8 .15 ) 

In dimensionless form we have 

Nu/Re~/2 = - 8'(0). (8.16) 

8.2 Homotopy analysis solutions 

We can express 1 and 8 by a set of base functions 

{7/k exp(- n7/) , k 2: O, n 2: O}, (8. 17) 

as follows 
00 00 

1(17) = a8,0 + L L a':r"n7/k 
exp( -n7/), (8.18) 

n=Ok=O 

00 00 

8(7/) = LLb~n,n 7/kexp(-n7/), (8. 19) 
n=Ok=O 

in which a':r"n and b~n,n are the coefficients. Further the initial approximations and aux iliary linear 

operators are 

10(7/) = E7/ + (1 - E) (1 - exp( - 7/)) , 80(17 ) = exp( - 17), (8 .20) 

L f = 1''' - 1', L() = 8" - 8, (8.21 ) 

with 

(8.22) 

where C i (i = 1 - 5) represent the arbitrary constants. 
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The problems at zeroth order deformation are 

(1- p)Lo [e(ry;p) - 80(77)] = qhoNo [](77 ;P),e(ry,p)], (8.24) 

](O;p) = 0, j'(O;p) = 1, j'(oo;p) = E, e'(O,p) = 1, e(oo ,p) = 0, (8 .25) 

The nonlinear operators N f and No with embedding parameter p are expressed as 

f)3 ](17, p) _ f'( ) f)2 ](17, p) _ (f)] (17 , p) ) 2 + 2 

f) 3 ry ,P f)2 f) E 
17 77 17 

+(3 [2]( )f)](ry,p)f)2](ry,p) _ (] ( ))2 f)3](ry,p)] 
1 17, P f)77 f)ry2 17, P f)773 

+(3 [ 
f)2 ] ( 77, p) _ f'( ) f)4 ] ( 17 , p) ] 

2 f)ry2 17 , q f)ry4 ' (8 .26) 

( 4R ) f)2e(ry, p) 8' ( , ) f)2e(ry, p) (f)O (I]. P)) 2 
1 + "3 d f)ry2 + EO 17, P f)ry2 + EO f)77 

P . 8' ( ) f)](77, p) P j~( ) f)e(77, p) 
- I a ry,p f)ry + r ry ,p f)ry . (8 .27) 

By setting q = 0 and q = 1, we have 

](17; 0) = fo(ry), 61(77,0) = 80 (17) and ](17 ; 1) = f(ry) , 61(77,1) = 8(77), (8.28) 

and when p increases from 0 to 1 then f(77, q) and 8(17 , q) vary from fo(ry) , 80 (17) to f(ry) and 8(77)· 

In view of Taylor's series we can expand 

CXJ CXJ 

f(ry, q) = fO(77) + l: fm(77)pm, 8(17, p) = 80 (17) l: 8m(77)pm, (8 .29) 
m=l m= l 
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j' ( ) = ~ amj(ry;p) I e ( ) = ~ am
ec'7;p) I ' 

mry I ~m ,171"1 I ~m 
m, ury p=O m, u17 p=O 

(8 ,30) 

The convergence of above series strongly depends upon auxiliary parameters hI and 17,0, The values 

of hf and hI) arc preferred in such way so that Eqs, (8,23) and (8,24) converge aL p = 1 and finally 

00 00 

j(ry) = fo(ry) + ~ fm(ry) , 8(17) = eo(ry) + ~ em(77), (8 ,31) 
m=1 7n=1 

The problems at mth-order are 

(8,32) 

(8 .33) 

Rj(ry) f~~-I(ry) + mtl [fm-I-kf~ - f,',. -I-kfC] + £2( 1 - Am) 
k=O 

+,81 [7~ fm - l -k t 2fLdf' - !Ie-dtll
] 

k=O l=O 
m-I 

+,82 ~ [f~'-I-k f~ - fm-l -k f~"] , (8.34) 
k=O 

m-l m-I 

-a Pr ~ em- I-k f£ + Pr ~ e:n-1 -k f k, (8 .35) 
k=O k=O 

r 
0, m:::; 1, 

Xm= 

1, m> 1, 

(8 .36) 

The general solutions with the contribution of special solutions can be written in the following forms 

(8.37) 
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8.3 Convergence of homotopy solutions 

As we know that the auxiliary parameters nf and no playa vital role to adjust and control the 

convergence of the homotopy solutions (see Liao [67]) . For the range of admissible values of fiI a nd 

no, the n- curves have been plotted at 15th-order of approximations. Figs. 8.1 and 8.2 indicate 

that the range of admissible values of nf and no are - 1.4 :S nf :S - 0.2 and - 0.8 :S ri-o :S - 0.5 

respectively. The series solutions converge in the whole region of 77 when nf = - 0.8 and 17.0 = - 0.7. 

-0.96 

r--- -0.97 
a 
~ .. 
...... -0.98 

-0.99 

1 ("(01 

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 
ft, 

Fig. 8.1. !i-curve for the function f. 
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-0.5 

-0.6 
6' 

q;, -o.?' 

-0.8 

I e'(~ I 

-1 -0.8 -0.6 -0.4 -0.2 o 

Fig. 8.2. Ii-curve for the function e. 

Table: 8.1. Convergence of homotopy solution for d ifferent order of approximations 

when /3 ] = 0.1, /32 = 0.2 = EO, Rd = 0.3 = E, a: = 0.5 , lif = - 0.8 and /7,0 = - 0.6. 

Order of approximation - f"(0) - e'(O) 

1 0.786485 0.6850 

5 0.805344 0.659984 

10 0.805412 0.659871 

15 0.805435 0.659872 

20 0.805751 0.659811 

30 0.805751 0.659811 
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Table 8.2: Numerical values of local Nusselt number - B' (O) for different values of 

EO, Pr , a and Rd when {31 = 0.1 , {32 = 0. 2 and E = 0. 3. 

EO PT a Rd - B' (0) 

0.0 0.7 0.5 0.3 0.56045 

0.3 0.48757 

0.7 0.42024 

0.2 0.3 0.30872 

0.8 0.55063 

l.0 0.62742 

0.0 0.39071 

0.4 0.50911 

l.0 0.65845 

0.0 0.63003 

0.5 0.49053 

0.8 0.43879 

133 



Fig. 8.3. Influence of /31 on velocity profile 1'(17). 
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Fig. 8.4. Influence of /32 on velocity profile f'(1]). 
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F ig. 8.6 . Influence of (31 on temperature field. 

135 

, 1 

8 
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Fig. 8.7. Influence of (32 on temperature field . 
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Fig. 8.8. Influence of f on temperature field. 
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8.4 Graphical results and discussion 

In this section the representative results for velocity, temperature and local Nusselt number have 

been provided (see Figs. 8.3 - 8.12 and Tables 8 .1, 8.2). Table 8.1 shows that the series solutions 

converge at only 15th order of approximations. The effects for different values of EO, Pr , ex and 

Rd when (31 = 0.1, (32 = 0.2 and E = 0.3 on local Nusselt number - BI (0) have been presented 

through Table 8.2. From this t able, we an alyze t hat local Nusselt number increases due Lo increase 

in Pr and ex and decreases by increasing radiation parameter Rd and EO. In other words as the 

radiation process intensifies, the heat transfer rat e at the sheet decreases which corresponds to a 

thicker t hermal boundary layer. 

F ig. 8.3 shows that velocity and boundary layer thickness are decreasing funct ion of fluid 

paramet er (Deborah number) (31' The behavior of fluid parameter (32 on the velocity field l' is 

opposite to that accounted for (32 (see Fig. 8.4). It is noticeable that small Deborah number 

((312 « 1) represents the liquid-like behavior. However large Deborah number ((312 > 1) indicates , , 

the solid-like behavior. Keeping this fact in mind the graphical results are only provided for small 

values of (31 and (32' It is clear t hat velocity decreases monotonically from 77 = 0 to C0 for all the 

values of parameters . Fig. 8.5 elucidates the influence of velocity ratio parameter E on the velocity 

field 1'. T he velocity field fl being a strong function of E appreciably increases with an increase 

in E. The boundary layer t hickness increases with an increase in E when the free stream velocity is 

less t han the velocity of the stretching sheet . However the boundary layer thickness is a decreasing 

function of E when the free stream velocity exceeds the stretching sheet velocity. 

Fig. 8.6 indicates that temperature and the thermal boundary layer thickness increase with an 

increase in (31' However both temperature and thermal boundary layer thickness are decreasing 

functions of (32 (see F ig. 8.7) . From here we expect that a decrease in the thermal boundary layer 

thickness will be compensated with the higher rat e of heat t ransfer at t he stretching sheet. Fig . 8.8 

shows that a larger free stream velocity decays the thermal boundary layer thickness rapidly. T he 
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influence of Prandtl number Pr on the temperature is seen in Fig. 8.9 . The temperature decreases 

as Pr increases. The smaller values of PI' (<< 1) represents liquid-like materials having low viscosity 

and high thermal conductivity. However high viscosity oils are associated with larger values of PI' 

(> 1). Therefore as Pr increases this corresponds to a thinner thermal boundary layer and larger 

rate of heat transfer at the stretching sheet (as observed earlier in discussing the numerical data of 

Table 8.2). Fig. 8.10 characterizes the effects of a on the temperature. An increase in the values 

of a results in the increment of surface heat transfer which thins the thermal boundary layer. The 

occurrence of EO in the energy equation is due to the variable thermal conductivity. It is clear from 

Fig. 8.11 that temperature e is an increasing function of EO . From the physical point of view, the 

larger the dependence of t hermal conductivity on t he temperature, the greater the temperature 

and the thermal boundary layer thickness. The dimensionless parameter Rd characterizes the efl'ect 

of t hermal radiation. It is obvious from F ig. 8. 12 that an increase in the radiation effect greatly 

increases the temperature and thicker t he thermal boundary layer. 
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Chapter 9 

Effect of heat transfer on stagnation 

point flow of micropolar fluid with 

variable thermal conductivity and 

heat source/sink 

T his chapter addressed with the magnetohydrodynamic (MHD) flow of micropolar fluid near the 

stagnation-point towards a stretching sheet . The characteristics of heat transfer with variable 

thermal conductivity and heat source/sink are also addressed. Analytic expressions for velocity, 

microrotation and temperature are computed by applying homotopy analysis method (HAM). At­

tention has been given to the behaviors of key parameters which include the micropolar parameter 

(K) , the Hartman number (M) , the Prandtl number (Pr) and the heat source/sink parameter. 

The dimensionless expression of skin fri ction coefficient and local Nusselt number are evaluated and 

discussed . We observed that the velocity and microrotation fields are increasing functions of (K) . 

Moreover there is a decrease in the thermal boundary layer thickness when the micorotation effects 

are increased. The present results are found in an excellent agreement with the numerical solutions 
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in the limiting cases. 

9.1 Mathematical model 

Consider the steady incompressible flow of micropolar fluid near stagnation-point towards a stretch-

ing sheet. The fluid is electrically conducting in the presence of applied magnetic field of uniform 

strength Bo . The induced magnetic field is neglected for the small m agnetic Reynolds consider-

ation. Heat transfer analysis is carried out in the presence of variable thermal conductivity and 

heat source/sink. The velocity of the stretching sheet is Uw(x) = ex (where e > 0 is a positive 

constant) while the velocity of external flow is given by Uoo(x) = bx. Tw is the constant wall 

temperature and Too is assumed to be ambient t emperature. Thus the governing equations are 

fJu fJv _ 0 
fJx + fJy - , 

fJu fJu udUoo ( "' )fJ2u ",fJN' (JB~ u- + v- = 00-- + // + - -- + --- - --'u, 
fJx fJy dx P fJy2 P fJy p 

u--+v--=--- -- 2N +-fJN* fJN* 'Y* fJ2 N* '" ( * fJu) 
fJx fJy pj fJy2 pj fJy , 

By substituting'" = 0, the results for viscous fluid can also be obtained. 

The relevant botmdary conditions are described by 

u Uw(x) = ex, v = O, N*=-no~~ , T = Tw(x)aty= O, 

U ----t Uoo(x) = bx, N * ---> 0, T ----t Too as y ----t 00. 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

Here v , p, j = (v/c), 'Y* = (J-L + k/2)j , N* , A, T , Cp, C = ~(1 + f.T) and Q represents the kinematic 

viscosity, the fluid density, microinertia density, the spin gradient viscosity, the microrotation or 

angular velocity, the fluid temperature , the specific heat at constant pressure, the temperature 
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dependent thermal conductivity and the volumetric rate of heat. The boundary parameter no 

E [0, 1]. However turbulent flows is taken into account for the case no = 1 but here the cases 

no = ° and no = 1/2 are considered. Further no = ° or evenly N* = ° at the wall proceeds 

that the concentrated particle flows in which the microelements near to the wall surface are not 

able to rotate. This is also known as strong concentration of microelements. The case no = 1/ 2 

corresponds to vanishing of antisymmetric part of shear stress and known as weak concentration of 

rnicroelements [52]. 

T he proceeding solution is obtained as a result of the following dimensionless quantities 

(
C) 1/2 

rJ = - y , 
v 

The following relation is satisfied by stream function 

(9.8) 

Now Eq. (9.1) is usually satisfied while the resultant transformed ordinary differential equations 

with allied boundary conditions are 

(1 + K)flll - J'2 + f f" - M J' + (E2 + lvlE) + Kg' 

( 1 + ~) gil + f g' - J' 9 - 2K 9 - K f" 

(1 + Ere)e" + Ere,2 + Pr e' f + Pr se = 0, 

0, 

0, 

f (0) 0, J' (0) = 1, g(O ) = -nof" (O), e (0) = 1, 

as rJ ---> 00. 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9 .13 ) 

In above expressions prime denotes the derivative with respect to rJ, the Hartman number !l1 = 
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CJB5/pa, the ratio parameter E = b/c, the Prandtl number Pr = a/{LCp , heat source/sink parameter 

S = Q/cpcp and K = K-/ {i the material fluid parameter. 

T he expression of skin friction coefficient Gfx and local Nusselt number Nux are 

(9.14) 

which after using Eq. (9.7) are reduced as 

R 1/2 G ex fx [1 + (1 - no)K] 1" (0), (9.15 ) 

NuRe- 1/ 2 
x - 8' (0), (9 .16) 

where Rex = ax2 / v is the local Reynolds number. 

Statute of solution expressions with concerned boundary conditions inform us to go for the initial 

guesses and auxiliary linear operators which are given below 

(9.17) 

(9.18) 

The close interval from 0 to 1 is the range of embedding parameter p with the contribution of 

auxiliary parameters n f' ng and no. The generalized homotopic equations analogous to Eqs. (9 .9) 

to (9 .13) are 

(1 - p)Lf [J(17;P) - 10(17)] pnfNf [J(17 ;P)] , (9.19 ) 

(1- p)Lg [§( ry ;p) - go(ry)] pngNg [J(17;P) ,§(ry;p)] , (9 .20) 

(1 - p)Lo [B(ry ;p) - 80(17)] pnoNo [J(17 ;P) ,B(ry ;p)] , (9.21) 
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oj , 02j 
j(O;p) = 0, O'T] (O;p) = 1, 9(0;P) = - no 0'T]2 (O;p), 8(0;p) = 1, 'T] = 0, (9 .22) 

oj 
O'T] --> E, §('T] ;p) --> 0, e('T];p) --> 0 when 'T] --> 00, (9.23) 

(9.24) 

Ng [j('T],p ), §('T] ,p)] (9 .25) 

(9. 26) 

The expressions of j , § and e about p by means of Maclaurin 's series we get 

00 

f ( ) - ~ omj(77,p) I j ('T] ;p) ~ fm( 'T] )pm, (9.27) m 'T] - , 0 m p=o, 
m=O m . p 

00 
1 omg(r/ ,p) 

§ ('T];p) ~ 9m('T])pm, 9m('T]) = - , 0 m Iv=o, (9 .28) 
m=O m. p 

00 

e ( ) = ~ ome('T] ,p) I e ('T]; p) ~ em('T])pm, (9 .29 ) m'T] ' 0 m p=o· 
m=O 

m. p 

By taking p = 1, the expressions of Eqs. (9.27) to (9. 29) are derived by using Eqs. (9.17) to 

(9.21) . Explicit ly m th-order deformation equations corresponding to the problems (9.17) to (9. 21) 

are 

(9.30) 

(9.31 ) 

(9 .32) 
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Im(O) = 0, gm(O) = 0, (9 .33) 

when T/ ----> 00, (9.34 ) 

R m(T/) = (1 + K) m-l _ "" m-i-l _i +"" Ii u Im-i-l _ NI Ufm- 1 03f m-l (Of Of) m-l ;:,2 ;:, . 

f, 0T/3 £0' OT/ OT/ £0' 0172 OT/ 

Ogm-1 [ 2 ] +K~ E +ME (I-Xm) , (9.35 ) 

R ()= (1 K) 02gm_1 ~(f. Ogm-i- 1 .0Im-i-1 ) _K (202gm- l 021m_1 ) 
g,m T/ + 2 0 2 + ~ t 0 + gt ;:, ;:, 2 + 0 2 ' 

T/ i=O T/ uTI uTI T/ 

(9.36) 

( 
;:,2e ) 7n-l;:,2 711- 1 ( ) U m-l U 8m - i - 1 ,08i 

Re,m(T/) = 0 2 + ET L 8i 0 2 + Pr L fm-i-la + Pr S8m- 1 , 

T/ i=O T/ i=O T/ 
(9.37) 

{ 

0, 
Xm= 

1, 

m = 1, 
(9 .38) 

m> 1. 

9.2 Analysis of solutions 

Obviously, we know that the series solutions (9.27) to (9.29) contain the non-zero alL-xiliary para-

meters Itf , Itg and Ite. In order to see the convergence of derived solutions with the help of these 

non-zero auxiliary parameters, we plot t he Itf, Itg and Ito curves at 20th order of approximations. 

The It curves for velocity, microrotation and temperature are sketched in Fig. 9.1. This Fig. shows 

that the range of admissible values of Itf , Itg and Ito are - 1. 72 ::::; Itf ::::; - 0.23, - 1.67 ::::; Itg ::::; - 0.03 

and - 1. 58 ::::; Ito ::::; - 0.11. Further, the series solutions converge when we take the sui table values of 

Itf' Itg and Ito in the neighborhood of - 0.8. Table 9.1 indicates that the convergence of homotopy 

series solutions is achieved at 15th order of approximations. 
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Table: 9.1. Numerical values for the convergence of HAM solutions 

of - /,,(0), - g'(O) and - B'(O). 

Order of convergence - /,,(0) -g'(O) -B'(O) 

1 1.044 0.486 0.603333 

5 1.02959 0. 47741 0.463773 

10 1.02959 0.477408 0.459717 

15 1.02959 0.477408 0.459588 

20 1.02959 0.477408 0.459581 

25 1.02959 0.477408 0.459581 

30 1.02959 0.477408 0.459581 

35 1.02959 0.477408 0.459581 

Table: 9.2. Numerical values for skin-friction coefficient Cf x Re~/2 . 

E J( = 0 J( = 1 

Present Nazar et al.[59] Present Nazar et al.[59] 

0.01 - 0.998024 - 0.9980 - 1.365247 - 1. 3653 

0.02 - 0.995784 - 0.9958 - 1.362221 - 1. 3622 

0.05 - 0.987579 - 0.9876 - 1.351193 - 1.3512 

0.10 - 0.969386 -0.9694 - 1.326808 - 1.3268 

0. 20 - 0.918107 - 0.9181 - 1.257922 - 1. 2579 

0.50 - 0.667262 - 0.6673 - 1.917505 - 1.9175 
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Table: 9.3 . Numerical values for skin-friction coefficient G/x Re;/2 . 

E f{ = 1 f{ = 2 

Present Nazar et al. [59] Present Nazar et al. [59] 

0.01 - 1.22232 - 1.2224 - 1.41142 - 1.4116 

0.02 - 1.21958 - 1.2196 - 1.40825 - 1.4084 

0.05 - 1.20953 - 1.2095 - 1.39665 - 1.3967 

0. 10 - 1.18725 - 1. 1872 - 1.37092 - 1.3709 

0.20 -1.12445 - 1.1244 - 1.29840 - 1.2984 

0.50 - 0.81723 - 0.8172 -0.94365 -0.9437 
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Table: 9.4. Values of skin-friction coefficient 

- f"(0) for various values of K , NI and E. 

1/2 1/2 
CjxRex CjxRex 

K M E 

no = 0.0 no = 0.5 

0.0 0.5 0.1 - 1.15834 - 1.15834 

0.5 - 0.934076 - 1.03982 

1.0 -0.794557 - 0.95666 

1.2 -0.752390 - 0.92932 

1.0 0.0 1.0 -0.663404 - 0.81091 

0.1 -0.691433 - 0.84237 

0.3 -0.744626 - 0.90158 

0.5 -0.794556 - 0.95666 

0.7 - 0.841746 - 1.00831 

1.0 -0.908242 - 1.08054 

1.0 0.5 0.0 - 0.839152 - 0.99199 

0.1 - 0.794556 - 0.95666 

0.2 - 0.739515 - 0.90883 

0.3 -0.674900 - 0.84960 
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Table: 9.5. Values of -B(O) for different values of parameters. 

K M E S no ET Pr -B(O) 

0.0 0.5 0.1 0.1 0.5 0.2 1.2 0.499128 

0.5 0.523666 

1.0 0.542980 

1.2 0.484229 

1.0 0.0 0.1 0.1 0.5 0.2 1. 2 0. 576500 

0.1 0.569229 

0.3 0.555569 

0.7 0.531295 

1.0 0.515201 

1.2 0.505440 

1.0 0. 5 0.1 0.0 0.5 0.2 1.0 0.530320 

0.1 0.446481 

0.2 0.343977 

0.3 0.205744 

0.5 0.5 0.1 0.1 0.5 0.4 1. 2 0.434250 

0.6 0.391075 

0.8 0.356597 

1.0 0.328194 

0.5 0.5 0.1 0.1 0.5 0.2 0.7 0.327100 

1.0 0.428597 

1.3 0.518079 

1.5 0.509110 

1.7 0.555000 
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9.3 Results and discussion 

Here we study the behaviors of pertinent parameters on the velocity 1" , microrotat ion 9 allCl te ITl­

perature profile e. The velocity field 1" significantly increases when there is an increase in £ as 

can be seen from Fig. 9.2. We underst and that increase in £ accompanies with the larger free 

stream velocity which t ends to increase the fluid velocity. The boundary layer thickness is also an 

increasing function of £ for E < 1. However when E > 1, the boundary layer thins as we increase the 

values of E. The behavior of E on fl is similar in the case of strong concentration of microelements 

(no = 0) when compared with t heir weak concentration (no = 0.5) (see Fig. 9.3) . The variation 

of velocity field fl with J( can be visualized from Figs. 9.4 and 9.5. There is an increase in the 

velocity and the boundary layer thickness with an increase in K. This increase is prominent in the 

case of no = 0 when compared with no = 0.5. Figs 9.6 - 9.11 show the effects of parameters on 

the microrotaion field g(T/). We observed that microrotation effects decrease with an increase in }l,1[ 

and E. However g(T/) is an increasing function of K . Moreover the microrotation profiles show a 

parabolic distribution for the case no = O. Further it can be seen that the microrotation effects are 

dominant near the stretching boundary. 

Figs. 9.12 - 9.17 are plotted to see the variations of e with the embedding parameters. There 

IS a slight decrease in the temperature e when the microrotation effects are increased (see Fig. 

9.12). However the decrease in the temperature is more pronounced when the velocity ratio E is 

increased as can be seen from Fig. 9.13. Thus it is inferred from this observation that thermal 

boundary layer thins as the free stream velocity is increased. F ig. 9.14 indicates that there is 

a minor increase in the temperature field as the magnetic field efl'ect intensifies . tloreover Lhe 

temperature profiles are negligibly affected for large values of Hartman number. The behavior of 

heat source/sink parameter S on the temperature can be depicted from Fig. 9.15. As expected 

the temperature e appreciably rises and thermal boundary layer thickness increases with a gradual 

increase in S . It is quite obvious that an increase in ET corresponds to increase in the thermal 
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conductivity which is, t herefore, associated with the larger temperature and the thermal boulldary 

layer thickness. This fact can be visualized from Fig. 9.16. Fig. 9.17 shows t hat temperature e is 

a decreasing function of Pr. This is because of the fact that a higher Prandtl number fluid has a 

relatively lower thermal conductivity which reduces conduction and thereby increases the variations 

of thermal characteristics. This results in the reduction of the thermal boundary layer thickness 

and increase in the heat transfer at the stretching surface. 

Table 9.4 shows the behavior of parameters on the skin friction coefficient when the magnetic 

field effects are present. In accordance with the observations noted in [59] the wall shear stress 

uniformly decreases with an increase in K and E. However skin friction coefficient is an increasing 

function of the Hartman number. The values of local Nusselt number corresponding to various 

values of the parameters are given in Table 9.5. There is an increase in the rate of heat transfer at 

the sheet when the microrotation effects are increased. As seen earlier in F ig. 9. 15, the increasing 

values of S moves the profiles away from the boundary causing an enhancement in the thermal 

boundary layer thickness. This results in the smaller rate of heat transfer at the stretching sheet 

surface. 

9.4 Conclusions 

Here the stagnation point flow of micropolar fluid is developed. Series solutions are obtained and 

the m ain results are 

• The results in limiting case are presented in excellent agreement. 

• With the increasing microrotation parameter both the effects of velocity and boundary layer 

thickness increases. 

• The convergence of velocity, microrotation and temperature profile by HAM are obtained at 

15th order of approximations. 
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• Another fact is found that for high volumetric rate of heat transfer the thermal boundary 

layer thickness increases. 

• The temperature profile causes the reduction for positive values of PI' , J( and E. 

• The microrotation profile g('TJ) contains the opposite effect for both case (i) strong concentra­

tion (ii) weak concentration. 
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