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Chapter 1 

1 Introduction 

The recent development in the field of science and technology, nanotechnology has 

proven to be more moderate and beneficial option as an application to the following fields: 

electronics, fuel cells, batteries, solar cells, space, fuels, better air quality, medicine, food, 

cleaner water, chemical sensors, sporting goods and fabric. In the view of all these aspects and 

applications there is an important field known as nanofluid which has contributed significantly 

due to their enhanced thermal performance, potential benefits and applications in several 

important fields such as microelectronics, transportation, microfluidics, manufacturing, medical, 

saving in energy; all these aspects are reducing process time and raising thermal rating as well as 

lengthening the life span of equipment and so on. There are several countries around the globe 

that faci litate research centers for the development sake of nanofluid and heat transfer process. 

Recently, Choi [1] presented an article in which he declared that there is an exponential rise in 

the Science Citation Index (SCI) production as it is found that research scope of nanofluid has 

now, more than ever, the fastest growing rates in scientific papers in nanoscale science and 

technology. 

There is an extensive range of industrial processes in which enhancement and transfer of 

heat energy is most commonly use at any industrial level. In fact it is a major task where heat 

must be removed, added, or transfer of process stream from one to another place and it has 

become an industrial necessity. So this processes required a huge source of energy to handle the 

process of fluid's heating/cooling and the transfer of heat. 
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The improvement in the progress of high thermal system to enhance its thermal 

conductivity and heat transfer rate has become a common issue. A vast amount of research has 

been accomplished to achieve the better heat transfer performance for its industrial applications. 

According to all this theories and research pretend that better heat transfer processes has a 

significant demand for advance technologies to enhance the heat transfer process. 

There are several methods to improve the heat transfer efficiency. One of the ways to 

improve the efficiency of heat transfer is by increasing the thermal conductivity of the working 

fluid. Since very commonly used heat transfer base fluids such as water, engine oil and ethylene 

glycol have comparatively low thermal conductivities as compared to the thermal conductivity of 

solids. So those solids having high thermal conductivity can be used to enhance the thermal 

conductivity of the commonly used base fluid by incorporating very small solid particles to that 

fluid. This tiny solid particle is known as "nanoparticle" which ranges from 1-100nm in diameter 

and structure varies according to shape and size. The homogenous mixture of the base fluid and 

nanoparticle is known as "nanofluid". Main vision of incorporating the nanoparticles within the 

base fluid to enhance the thermal conductivity is introduced by Choi [2] in 1995. Before the 

development of nanofluids, it was found that heat transfer would be excellent but at the cost of 

higher pumping power. Through this vision Choi concluded that an effect of thermal 

conductivity of nanofluid is much better than highly cost pumping power for heat transfer. So the 

vision is not only beneficial for high thermal system but somehow it is cheap economically. 

Nanoparticles are created from different materials, such as oxide ceramics (Al203, CuO), metal 

nitrides (AlN, SiN), carbide ceramics (Sic, Tic), metals (Cu, Ag, Au), carbons in various (e.g., 

diamond, graphite, carbon nanotl}bes, fullerene) and functionalized nanoparticles. Cheng [3] 

discussed the brief concept of nanofluid with heat transfer and the effects of thermal conductivity 
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of various materials like carbon, metallic solids, non-metallic solids, metallic liquids and many 

others . 

The suspension of nanoparticles within the base fluid is not enough to enhance the 

thermal conductivity of base fluid so it is important to analyze the influence of shape and size of 

the particle within the base fluid. According to recent research of Elena et al. [4] in which they 

demonstrated the effect of particle shapes for thermal conductivity enhancement. They presented 

a comparison through performance of thermal conductivity among five different shapes of the 

particles namely: spheres shape particles, bricks shape particles, cylinders shape particle, 

platelets shape particles and blades shape particles. Through this study it is concluded that 

particle shape is like blades have higher thermal conductivity as compare to rest of the shapes. 

Apart of particles shape effects, contributions of nanoparticles materials also have dominant 

effects to enhance the thermal conductivity of base fluid . According to latest study of Murshed et 

al. [5] , carbon nanotubes (CNT) provide round about six times better thermal conductivity as 

compared to other materials at the room temperature. The CNT are allotropes of carbon with a 

cylindrical nanostructure. There are three main characteristics of CNT namely single wall carbon 

nanotubes (SWCNT), double wall carbon nanotubes (DWCNT) and multiple-wall carbon 

nanotubes (MWCNT). 

Currently there is no reliable theory to predict the anomalous thermal conductivity of 

nanofluids. From the experimental results of many researchers, it is known that the thermal 

conductivity of nanofluids depend on parameters including the thermal conductivities of base 

fluid and nanoparticles, the volume fraction, the surface area, shape of the nanoparticles and the 

temperature. There are no theoretical formulas cunently available to predict the thermal 
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conductivity of nanofluids satisfactorily but here we have very common used expression for 

effective thermal conductivity: 

Table 1.1: Analytical models on effective thermal conductivity of nanofluids. 

Investigator 

Maxwell [6] 

Hamilton and 
Crosser [7] 

Jeffrey [8] 

Davis [9] 

Xue [10] 

Expressions (keff / kb ) 

kp +2k" + 2¢(kp - k,,) 

kp +2kb - ¢(k" - k,, ) 

k p + (n - I)kb - (n - 1)(k" - k,,)¢ 

k" + (n - 1)k" +(k" - kb)¢ 

[ 

3{32 9{33 ] 3/P+--+--x 
1 + 3 {3¢ + rjl ' 4 16 

a+ 2 3{34 
--+-6-+'" 
2a+3 2 

. 3(a - 1) (¢ + j(a)¢2) 

1+ (a+2)-(a-1)¢ +O(¢3) 

k k + k 1- ¢ + 2¢ CNT In CNT f 

kCNT - kf 2k f 

k k +k 
1- ¢ + 2¢ f In CNT f 

kCNT - k f 2k f 

Remarks 

relates the thermal conductivity of 

spherical particle base fluid and 

solid volume fraction 

For non-spherical particles, 

k / k, > 100 , n is an realistic p ) 

spherical shape segment 

(n = 3 / If/ , If/ is the sphericity) 

Accurate to order ¢2; 

high-order terms represent 
pair interactions of randomly 

dispersed spheres 

1) Accurate to order ¢2; 

high-order terms represent 
pair interactions of randomly 
dispersed spheres 
2) j(a) = 2.50 for a = 10 ; 

j (a ) = 0.50 for a = 00; 

For CNTs-based nanofluids and 
including the axial ratio and the 
space distribution 

Recently, Buongiorno [11] presented different approach to analyze the effects of 

nanoparticle dispersion with in the base fluid . Before presenting his model, numerous authors 

have attempted to improve convective transport models for nanofluids with two different ways 
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namely; Homogeneous flow models and Dispersion models. But the homogenous flow models 

are in conflict with the experimental observation. So as dispersion models are concerned, heat 

transfer enhancement from nanoparticle dispersion is completely negligible in nanofluids. In the 

view of Buongiorno's approach the effect of the nanoparticlelbase-fluid, relative velocity is 

defined more mechanistically than in the dispersion models. Despite of slip mechanisms 

introduced in the literature Buongiorno proposed seven foremost slip mechanisms named as: 

inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage and 

gravity settling. So constructing the governing equations for nanofluids, the major concern was 

to complete the transport model for nanofluids. It is important to note that all these effects are 

dominant for turbulence. However, in the absence of turbulent effects (in the laminar sublayer 

near the wall), the contribution of Brownian diffusion and thermophoresis effects are more 

important as slip mechanisms, while the gravitational effects may also be negligible. So 

according to the Buongiorno model, the constitutive equations are based on two major effects 

named as; Brownian motion and thermophoresis. 

The interest in the boundary. layer flow over a stretching surface for both Newtonian and 

non-Newtonian fluids is increasing substantially due to the large number of practical applications 

in industrial and manufacturing processes. Examples of such applications are drilling muds, 

polymer processing industries, environmental pollution, biological process, aerodynamic 

extrusion of plastic sheets, glass fiber production of the boundary layer along a liquid film and 

condensation process, plastic polymers, optical fibers, hot rolling paper production, metal 

spinning, cooling of, metallic plates in cooling baths and many others fields. In the year of 

(1961), Sakiadis [12] was the first who discussed the boundary layer flow over a stretching 

surface. He governs the laminar boundary layer behavior over a moving continuous flat surface 
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and determines the numerical solution for the boundary layer equation. Experimental and 

analytical behavior of this problem was completed by TSOlJ et al. [13]. They showed that such a 

flow is physically possible by confirming the data from Sakiadis. Crane [14] extended the work 

of Sakiadis for both linear and exponentially stretching sheet. He discussed the problem of 

steady two dimensional boundary layer flow of an incompressible and viscous fluid caused by a 

stretching sheet whose velocity varies linearly with the distance from a fixed point on the sheet. 

Free convection on a vertical stretching surface was discussed by Wang [1 5]. Heat transfer 

analysis over an exponentially stretching continuous surface with suction was presented by 

Elbashbeshy [1 6]. He calculated similarity solutions for the laminar boundary layer equations 

describing heat and flow in a quiescent fluid driven by an exponentially stretching surface 

subject to suction and evaluated his problem numerically. Viscoelastic MHD flow in the 

presence of heat and mass transfer over a stretching sheet with dissipation of energy and stress 

work was discussed by Khan et al. [17]. Later on many authors extend this concept of stretching 

surfaces for both Newtonian and non-Newtonian fluids [18-30]. 

Initially, Khanafer et al. [31] presented the heat transfer enhancement in a two­

dimensional flow utilizing nanofluids. The Cheng-Minkowycz problem for convection past 

along with the vertical plate through porous medium filled by a nanofluid is studied analytically 

by Nield and Kuznetsov [32]. They used the nanofluid model with the effects of Brownian 

motion and thermophoresis parameter. For the porous medium, the Darcy model is employed. 

The convection problem for boundary layer flow phenomena of a nanofluid along with the 

vertical plate has been studied analytically by Kuznetsov and Nield [33]. They found that the 

reduced Nusselt number is a decreasing function of thermophoresis parameter and Brownian 

motion parameter. Later on, Khan and Pop [34] discussed the steady boundary layer flow, heat 
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transfer and nanoparticle fraction over a stretching surface for a nanofluid. Makinde and Aziz 

[35] studied the influence of convective boundary condition on the flow of nanofluid past a 

stretching surface. After this Nadeem and Lee [36] presented the concept of nanofluid over an 

exponentially stretching surface. Recently, Khan et al. [37] presented an article related to fluid 

flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. More 

recently various authors have discussed various effects of nanoparticles for boundary layer flow 

over a stretching/shrinking surface [38-50]. 

In the understanding of all the above literature, main emphasis of the current thesis is to 

examine the Newtonian and non-Newtonian fluid flow over a stretched surface in the presence of 

nanoparticIes. Throughout the analysis , all the mathematical models are constructed in the form 

of boundary value problem (BVP) for nanofluid flow over a stretched surface. To determine the 

solution of the coupled nonlinear ordinary differential equations, we first convert boundary value 

problem (BVP) into the initial value problem using shooting technique and then Runge-Kutta­

Fehlberg method is applied to obtain the initial guesses. The detail description of this Runge­

Kutta method along with the shooting technique can be found in [51 -56] and the stability 

analyses of this method are mentioned in [57-60]. The thesis is divided into nine chapters in 

which first chapter consist of brief literature survey and other eight chapters are described as : 

Chapter 2 is devoted for the analysis of heat transfer rate for three commonly used base 

fluids (water, engine oil and ethylene glycol) in the presence of Single wall carbon nanotubes 

(SWCNT) and multiple wall carbon nanotubes (MWCNT), when the fluid is flowing over a two 

dimensional stretching surface. The viscous dissipation and magnetic field effects are also 

incorporated in the present phenomena. Slip effects are also considered at the upper surface of 

the wall while convective boundary conditions are considered at the lower surface of the wall. 
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The mathematical model of the problem is built in the fonn of partial differential equations 

which are reduced into the system of coupled ordinary differential equations through similarity 

transfonnations. These set of differential equations are tackled numerically and finally physical 

behavior for both SWCNT and MWCNT are shown graphically for each velocity, temperature, 

skin friction and local Nusselt numbers. Conclusion have been developed and it is found that 

engine oil-based SWCNT provides the better heat transfer rate as compared to the rest of the 

mixtures. This chapter is published in: Physica B: Condensed Matter, Vol 457, pp. 40-47, 

(2015). 

Chapter 3 is the further generalization of previous chapter. In this chapter, problem is 

model for three dimensional flow over a linear stretching surface in the presence of CNTs but the 

effects of slip and viscus dissipation are negligible. Moreover, we have made comparison among 

the effective thermal conductivity proposed by: Xue [10], Maxwell [6] and Hamilton & Crosser 

[7]. The dimensionless velocity and shear stress are obtained in both directions. The 

dimensionless heat transfer is detennined on the surface and it is found that Xue model provides 

the higher heat transfer rate as compare to other two models . These observations have been 

published in: Physica E: Low-dimensional Systems and Nanostructures, Vol. 63, pp. 215-

222, (2014). 

In Chapter 4, results are investigated for the water based flow over a three dimensional 

exponential stretching surface in the presence of metallic particles. Effective thermal 

conductivity of three kind of metallic nanoparticles named as: copper (Cu), alumina (A l203) and 

titanium (Ti02) are incorpurated. Three dimensional exponential type similarity transformations 

are applied for basic boundary layer equations for nanofluid and then transformed into the 

system of ordinary differential equations. Physical behavior of velocities and temperature 

11 



profiles are examined through graphs and discussed for both x -and y - directions. It is finally 

noticed that water-based Copper (Cu) nanoparticle have higher thermal conductivity as compare 

to water- based alumina (Al203) and titanium (Ti02) nanoparticles. These results are published 

in: Alexandria Engineering Journal, Vol. 53(1), pp. 219-224, (2014). 

Two dimensional magnetohydrodynamic (MHD) boundary layer flow of a Casson 

nanofluid over an exponentially permeable shrinking sheet using Buongiorno's model are 

analyzed in Chapter 5. The convective boundary condition is also considered at the lower 

surface of the wall. Main emphasis of the present analysis is to discuss the two major slip 

mechanism presented by Buongiorno [11] named as: Brownian motion and thermophoresis for 

Casson fluid flow. Numerical results for velocity, temperature and nanoparticle volume 

concentration are presented through graphs for various values of dimensionless parameters. 

Effects of parameters for heat transfer at wall and nanoparticle volume concentration are also 

presented through graphs and tables. Results of dual nature solutions which exist for shrinking 

sheet is also examined. At the end, fluid flow behavior is examined through stream lines. Results 

of present analysis are published in: Central European Journal of Physics, Vol. 12(12), pp. 

862-871, (2014). 

Chapter 6 deals the study of three dimensional flow of a Casson fluid in the presence of 

nanoparticle over a linearly stretching sheet. Here we have considered the 

magnetohydrodynamics (MHD) effect normal to the fluid flow and convective condition is 

defined at the lower surface of the sheet. Constructed mathematical model is reduced in to the set 

of nonlinear differential equation for BVP with the help of similarity variables. The reduced 

problem is then solved numerically. Variation of the reduced Nusselt and Sherwood numbers 

against physical parameters are presented graphically. It is found that the reduced Nusselt 
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number is a decreasing function and the reduced Sherwood number is an increasing function of 

Brownian parameter and thermophoresis parameter. The contents of present chapter are 

published in: IEEE Transactions on Nanotechnology, Vol. 13, pp. 109-115, (2014). 

Chapter 7 deals the study of two dimensional boundary-layer flow and heat transfer of 

Maxwell fluid past a stretching sheet. The effects of magnetohydrodynamic (MHD) and 

elasticity on the flow are considered. Moreover, effects of nanoparticles are also investigated 

within the Maxwell fluid model. Similarity transformations are defined to convert the governing 

nonlinear partial differential equation to ordinary differential equations. The reduced boundary 

layer equations of Maxwell nanofluid model are solved numerically. The effects of emerging 

parameters namely: Hartmann number, elastic parameter, Prandtl number, Brownian motion, 

thermophoresis and Lewis number on temperature and concentration profile are discussed. 

Interesting results are shown graphically. The skin friction coefficient, dimensionless heat 

transfer rate and concentration rate are also plotted against the flow control parameters. Results 

of this chapter are published in: Journal of the Taiwan Institute of Chemical Engineers, 

Vol. 45(1), pp. 121-126, (2014). 

In chapter 8, Jeffrey fluid model in the presence of nanoparticles is studied numerically. 

Boundary layer equations are transformed into the set of coupled nonlinear ordinary differential 

equations with the help of similarity transformations. Results are constructed through Runge­

Kutta method. Behavior of emerging parameters are presented graphically and discussed for 

velocity, temperature and nanoparticles volume concentration. Variation of the reduced Nusselt 

and Sherwood number against physical parameters are presented graphically. In conclusion 

section it is found that the reduced Nusselt number is a decreasing function while the reduced 
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Sherwood number is increasing function of Brownian parameter and thermophoresis parameter. 

This chapter in published in: Applied Nanoscience, Vol. 4(5), pp. 625-631, (2014). 

In the chapter 9, we have considered two-dimensional steady incompressible Oldroyd-B 

fluid past a stretching sheet saturated with nanoparticles. The similarity transformation, reduce 

the system of nonlinear partial differential equations into the system of nonlinear ordinary 

differential equations. The coupled governing nonlinear equations are then solved numerically. 

Numerical results are presented graphically to see the physical behaviors of the involved fluid 

parameters namely Deborah numbers , Prandtl number, Brownian motion, thermophoresis 

parameter and Lewis number on velocity, temperature and nanoparticle volume concentration 

profile are discussed . Interesting results are shown graphically. To see the validity of the present 

results, we have made the comparison of present results with the existing literatures through 

tables . Contents of this chapter are published in: Plos One, Vol. 8 (8), pp. e69811, (2013). 
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Chapter 2 

Convective Heat Transfer in MHD Slip Flow over a 
Stretching Surface in the presence of Carbon 
nanotubes 

2.1 Introduction 

In the present chapter, thermal conductivity and viscosity of both single-wall and 

multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene 

glycol) of similar volume have been investigated when the fluid is flowing over a stretching 

surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated 

in the present phenomena. Experimental data consists of thermo-physical properties of each base 

fluid and CNT have been considered. The mathematical model has been constructed and by 

employing similarity transformation, system of partial differential equations are rehabilitated into 

the system of non-linear ordinary differential equations. The results of local skin friction and 

local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon 

Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid 

flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding 

remarks have been developed on behalf of the whole analysis and it is found that engine oil-

based CNT have higher skin friction and heat transfer rate as compared to water and ethylene 

glycol-based CNT. 
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2.2 Mathematical formulation 

Consider two dimensional (2D) steady boundary layer flow past a stretching sheet in the 

presence of carbon nanotubes. It is considered that the sheet is stretched along the x -axis. 

Moreover, fluid is placed on the half plane y > O. It is also considered that the sheet is stretched 

with the velocity Uw = ex, with e > 0 (see Fig. 1). The hot base fluid without incorporating the 

nanoparticies effects is also fixed along with the lower surface of the wall in such a way that 

temperature of the hot fluid, Tf is greater than the ambient fluid temperature, Too. We considered 

a uniform magnetic field B 0 applied parallel to y-axis to access the motion of the CNT 

uniformly while the induced magnetic field is assumed to be negligible. The base fluids and the 

CNT are assumed to be in thermal equilibrium and viscous dissipation effect is also considered 

in the energy equation. By using the order analysis, the proposed boundary layer equations are 

defined as, 

Y-8xls 

T .. 

~=====~e=====~I-aIIS 
( 

Hotfluid (Base fluid ollM 

Fig 2.1: Geometry of the problem. 
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(2.1 ) 

au au a2u 0'80
2 

u-+v-=v t----U 
ax ay n ay2 Pnl ' 

(2.2) 

(2.3) 

In above expressions, U and v are the velocity components along the x and y -axes, 

respectively, T is the temperature of the base fluid, Pnf is the density of nanofluid, Iln f is the 

viscosity of nanofluid and anf is the thermal diffusivity of nanofluid defined as, 

III 
Ilnt = (1_¢)2.S' 

(2.4) 

where Ilt is the viscosity of base fluid, ¢ is the nanoparticle volume fraction, (pCp)nt is the 

effective heat capacity of a CNT, knt is the thennal conductivity of nanofluid, kt and kCNT are 

the thermal conductivities of the base fluid and CNT respectively while Pt and PCNT are the 

thermal conductivities of the base fluid and CNT respectively. The corresponding boundary 

conditions are stated as 

U = Uw(x ) + y :> v = 0, - kt :~ = ht(Tt - T) at y = O,} 
U 4 0, V 4 0, T 4 Too as y 4 00. 

(2.5 ) 
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In the above expressions, Uw(x) = cx is the stretching velocity with c is a stretching constant, 'Y 

is the slip parameter, kf is the thermal conductivity of the hot fluid, hf is the convective heat 

transfer coefficient and Tf is the convective fluid temperature below the stretching sheet. 

Introducing the following similarity transformations, 

1(77)= [cN;1f/ , ry = ~y, u = ~1/J = cx[,(ry),) 
x av --J Vf Y 

f 

a1/J JCVf T - Too 
V = --a = cVff(ry), B(ry) =--

x ~-~ 

Making use of Eg. (2.6) into Egs . (2.1)-(2.3), we get 

subject to the boundary conditions (2.5) which transformed to 

f(O) = 0, ['(0) = 1 + (1_:)25' 

['(ry) ~ 0, B(ry) ~ 0 

B'(O) = -Bi(l- B(O))] 

as ry ~ 00. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Primes denote derivative with respect to ry. Here, Pr = (J.lC
p

) f is the Prandtl number of 
kf 

base fluid , f3 = y.J C jVf is dimenssionless slip parameter and B i = (htl kf ).JvtI C is the Biot 

number. Expressions for the local skin friction coefficient Cf and the local Nusselt number Nu 

are 

(2.10) 
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where Twx is the surface shear stress along the x - direction and qw is the heat flux which are 

given by 

Twx = tln[ G~) y=o' (2. 11) 

Reduced dimensionless expressions of Eq. (2. 10) take the following form after fixing Re = uwx, 
Vf 

1/2 _ [ " (0) 
C[Rex - (1_¢)2.5' 

Re-1/ 2Nu = _ Knf 8'(0) 
x Kf' 

2.3 Numerical method for solution 

(2. 12) 

(2. 13) 

Equations (2.7)- (2.8) combined with the boundary conditions (2.9) are solved 

numerically using a shooting technique with a Runge-Kutta (RK) method . The step size is taken 

as /::,1] = 0.01 and the convergence criteria is set to 10-6• The following system is established: 

(2. 14) 

8 ' = z, } 
1-¢+¢ (PCp)CNT 

8" = z' = - Pr [ ( (PCp)t ) ] {tz + Ee 2} 
(Knt/kf) (1 _ ¢)2.5 q , 

(2.1 5) 

with the initial conditions 

teO) = 0, p(O) = 1 + (1_:)25' z(O) = - Bi(1 - 8(0)). (2. 16) 
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In order to integrate Eg. (2.14) and (2.15) with initial condition (2.16), the values of q(O) = 

["(0) and z(O) = 8'(0) are required but no such values are given in the boundary conditions. 

The suitable guess value for [" (0) and 8' (0) are chosen and then integration is performed. The 

calculated values for I' (rJmax) and 8' (rJmax) at rJmax = 12 (say) are compared with the given 

boundary conditions as 1'(12) = 0 and 8(12) = 0 while the estimated values ["(0) and 8'(0) 

are adjusted to give a better approximation for the solution. We take the series of values for 

[" (0) and 8' (0) , and further apply the fourth order classical Runge-Kutta method with step-size 

tlrJ = 0.01. The above procedure is repeated until we get the asymptotically converged results 

within a tolerance level of 10-6 • 

2.4 Result and discussion 

Before going to discuss the behavior of fluid flow and its heat transfer characteristics, it is 

worthwhile to provide the comparison among the base fluids (water, engine oil and ethylene 

glycol) in the presence of both multiple and single wall carbon nanotubes (CNT) for absolute 

values of reduced skin friction coefficient - Re;/2 Ctx and reduced Nusselt number Re;1/2 Nux ' 

In fact, each base fluid and carbon nanotubes have their own thermo-physical properties (See 

Table. 2.1) so it will be more effective for heat transfer. Table 2.1 presents the thermo-physical 

properties of each base fluid and nanopartic1es. Based on collective analysis, results have been 

drawn for reduced skin friction and reduced Nusselt number as depicted in Fig. 2.2. It is 

evidenced that due to more viscosity and density of engine-oil-based nanopartic1e, it should have 

higher friction and heat transfer rate near the wall as compared to other mixtures. Moreover it 

can be observed that although the base fluids did not provide a difference in the skin friction 

coefficient and Nusselt number, CNT have dominant contribution in the nanofluid flow motion 

and in the heat transfer phenomenon. Table 2.2 and Table 2.3 present the numerical results of the 
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reduced skin friction coefficient and the reduced Nusselt number fo r various values of emerging 

parameters. 

Table 2.1 : Thermophysical properties of different base fluids and CNTs [37]. 

Physical properties Base fluids N anoparticles 

Water Ethylene glycol Engine oil SWCNT MWCNT 

P (kg/m j ) 997 1115 884 2,600 1,600 

Cp (J/kg K) 4,179 2,43 0 1,910 425 796 

k (W/m K) 0.613 0.253 0.144 6,600 3,000 

Pr 6.2 206.63 6450 

Table 2.2: Variation of reduced skin friction coefficient -Cf Re;/2 for various values of 

emerging parameter. 

{3 = 0.5 M=0.5 

¢~ M=O M=0.5 {3=0 ~=0.5 

Water 

SWCNT's 0 0.5912 0.6495 1.1180 0.6495 
0.1 0.6680 0.7242 1.3549 0.7242 
0.2 0.7504 0.8051 1.6569 0.8051 

MWCNT's 0 0.5912 0.6495 1.1180 0.6495 
0.1 0.6508 0.7106 1.3058 0.7106 
0.2 0.71808 0.7795 1.5475 0.7795 

Ethylene glycol 

SWCNT's 0 0.59119 0.64951 1.1180 0.64951 
0.1 0.66342 0.72056 1.3416 0.72056 
0.2 0.74199 0.79838 1.6275 0.79838 

MWCNT's 0 0.59119 0.64951 1.1180 0.6495 
0.1 0.64781 0.70823 1.2974 0.7082 
0.2 0.71208 0.77484 1.5282 0.7748 

Engine Oil 
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SWCNT's 0 0.5911 0.6495 1.1180 0.6495 
0.1 0 .6734 0.7285 1.3708 0 .7285 
0.2 0.7601 0.8129 l.6917 0 .8 129 

MWCNT's 0 0.5911 0 .6495 1.1180 0.6495 
0.1 0.6544 0.7134 1.3161 0.7134 
0 .2 0 .725 1 0.7850 1.5705 0 .7850 

Table 2.3: Variation of reduced Nusselt number Re;/2 Nux for various values of emerging 

parameters. 

,8=Bi=Ec=0.5 M=Bi=Ec=0.5 ,8=M=Bi=0.5 ,8=M=Ec=0.5 

¢~ M=O M=0.5 ,8 = 0 I !3=0.5 Ec=O Ec=0.5 Bi=oo Bi=0.5 

Water 

SWCNT 0 0.2703 0.2507 0.1318 0.2506 0.3701 0.2506 0.1318 0.2506 

's 0.1 0.6779 0.6350 0.3913 0.635 1 0.8515 0.6350 0.3913 0.6351 
0.2 1.0426 0.9738 0.6067 0.9738 1.2530 0.9738 0.6067 0.9738 

MWCN 0 0.2703 0.2507 0.1318 0.2507 0.3701 0.2506 0.1318 0.2506 

T's 0.1 0.6562 0.6138 0.3945 0.6138 0.8186 0.6138 0.3945 0.6138 
0.2 1.0232 0.9542 0.6474 0.9542 1.2151 0.9542 0.6473 0.9542 

Ethylene glycol 

SWCN 0 0.1892 0.1354 -0.2172 0.1354 0.4740 0.13546 2.6148 0.1354 

T's 0.1 0.7056 0.5927 -0.4449 0.5927 1.4070 0.59273 6.3154 0.5927 
0.2 1.3868 1.2282 -0.7583 1.2283 2.4908 1.2282 4.3270 1.2282 

MWCN 0 0.1892 0.1354 -0.2172 0.1354 0.4741 0.1354 2.6 148 0.1354 

0.1 0.6873 0.5743 -0.3522 0.5742 1.3324 0.5743 6.3422 0.5742 
T's 0.2 1.3562 1.1917 -0.4721 1.1917 2.3364 1.1917 4.5114 1.1917 

Engine Oil 

SWCN 0 -0.002 -0.1070 -0.7248 -0.1070 0.4952 -0.1070 -11.335 -0.1070 
0.1 0.1264 -0.1273 -2.3318 -0.1273 1.5868 -0.1273 -2.1937 -0.1273 

T's 0.2 0.3838 0.0039 -4.7355 0.0039 2.9334 0.0039 0.1579 0.0039 

MWCN 0 -0.002 -0.1070 -0.7248 -0.1070 0.4952 -0.1070 -11.335 -0.1070 
0.1 0.1855 -0.0671 -1.9862 -0.0671 1.5017 -0.0671 -6.9427 -0.0671 

T's 0.2 0.5516 0.1616 -6.6550 0.1616 2.7449 0.1616 6.7515 0.1616 

In order to investigate the impact of emerging parameters namely: Hartmann number M, 

slip parameter,8 , Biot number Bi and Eckert number He on the absolute reduced skin friction 
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coefficient -Re;/2Ctx and the reduced Nusselt number Re; 1/2 Nu x , graphical results are 

constructed (See Fig. 2.3 - 2.5). These results are only plotted for water-based CNT to analyze 

the variation of skin friction and heat transfer difference at the wall. Fig. 2.3 depicts the variation 

of local skin friction for various values of Hartmann number M and slip parameter fJ when the 

nanoparticle volumetric fraction is in the range of 0 :::; ¢ :::; 0.2. Since there is a random motion 

of the particles within the base fluid and for the sake of uniform motion of the particles, a 

constant Hartmann number M is applied normal to the fluid. Ultimately these nanoparticles move 

along with the magnetic field and slow down the motion of the nanofluid flow. The 

consequences of Hartmann number M towards the nanofluid flow can be observed through 

Fig 2.3(a) . We can see that near the wall, M = 0 provides lower friction as compared to non­

zero values of MHD (M = 0.5,1.0). Contribution of slip effects on the skin friction coefficient 

are plotted in Fig. 2.3(b). As concern to the present study, it is found that slip effect reduces the 

friction near the wall whereas the evidence of this phenomenon can be observed through Fig. 

2.3(b). It is clearly seen through Fig. 2.3(b), for no slip effects (fJ = 0), higher friction is 

achieved along with the wall as compared to fJ = 0.5 and fJ = 1. Finally, it is concluded that 

both the MHD and the slip parameter show the opposite effects in the fluid motion near the wall. 

Another contribution of MHD on the local Nusselt number is plotted in Fig. 2.4(a). We 

can see through Fig. 2.4(a), where the local heat transfer rate is plotted for both cases when M = 

o and M = 0.5,1. It is found that for M = 0, higher heat transfer rate is attained at the wall as 

compared to nonzero values of Hartmann number M. It is found that simultaneous increase in the 

nanoparticle volume fraction and Hartmann number provide enhancement in the heat transfer 

rate while opposite impact on the local Nusselt number has been found for increasing values of 

Eckert number He (see Fig. 2.4(b)) . Effect of slip parameter on local Nusselt number has been 
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plotted in Fig 2.S(a). It is found that an increase in the slip parameter leads to decreasing effect 

in the heat transfer rate. It is also noticed that when the effect of the slip parameter is negligible 

(If = 0), the heat transfer rate becomes higher while non-zero values of the slip parameter 

(fJ = 0.5,1) provide decreasing effects on the heat transfer rate. Convective heat transfer 

coefficient Bi shows a dominant contribution on the local Nusselt number. It is found that in the 

case of infinitely large value of Biot number, the present model reduces to uniform temperature 

at the wall. It is also concluded that in the case of uniform temperature (Bi = 00), higher heat 

transfer rate is initiated as compared to the case of non-zero values of convective heat transfer 

parameter Bi (see Fig. 2.S(b)). 

Although behavior of the fluid motion remains the same, a slight difference should 

appear between the base fluid (water) and the water based CNT (SWCNT, MWCNT) due to 

difference in densities (See Fig. 2.6). It can be observed through Fig. 2.6(a) that the stream lines 

of the base fluid (water) remain much closer to each other however in the case of water based 

CNT, behavior of the stream lines remains isolated to each other. 

Variation of profiles of the velocity ['(ry) and temperature eery) against the emerging 

parameters is plotted in Figs. 2.7 and 2.8, respectively only for water based SWCNT. From Fig. 

2.7, we can observe that the velocity profile increases with an increase in the nanoparticle 

volume fraction while in the absence of both slip and Hartmann number, the velocity profile 

remains higher as compared to their non-zero values. Simultaneous effects of nanoparticle 

volume fraction ¢ along with the Hartmann number M, Eckert number He and Biot 

number Bi against the temperature profile eery) are plotted in Fig. 2.6. For each parameter, an 

increase in the nanoparticle volume fraction provides enhancement to the temperature profile. 

Moreover, it is found that for non-zero values of both Hartmann number and Eckert number, the 
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temperature profile remains higher as compared to absence of both magnetic and viscous 

dissipation effects (see Fig. 2.8(a) and 2.8(b). It is also highlighted that for infinitely large 

value of Biot number, the present model reduces to uniform wall temperature while for small 

values of Biot number, the results obtained signify weak convection near the wall (see 

Fig. 2.8(c). Finally, the numerical values against each physical parameter are calculated for 

local skin friction coefficient and local Nusselt number (see Table. 2.2 and 2.3). 
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2.5 Concluding remarks 

MHD boundary layer flow of a nanofluid over a linearly stretching sheet for Xue [10] 

model subject to the convective boundary condition is solved numerically. Moreover, effects for 

various values of existing parameters are discussed for velocity, temperature, reduced skin 

friction and reduced Nusselt number. The main results of present analysis are listed below: 

• Both Hartmann number and slip parameter have opposite effects on the local skin friction 

coefficient. 

• Influence of Hartmann number and Eckert number caused similar decreasing effects on 

the local Nusselt number. 

• An increase in the slip parameter enhances the heat transfer rate while dominant effect on 

heat transfer is for the case of constant wall temperature (Bi = 00) as compared to (Bi = 

0.5,1). 

• The trend of velocity is fluctuating for the slip parameter while increasing value of each 

parameter involved in the momentum equation decreases the velocity profile. 

• The temperature profile is enhanced with increasing values of each physical parameter. 

• Engine oil-based CNT have higher skin friction and heat transfer rate as compared to 

water-based and ethylene glycol-based CNT. 

• Base fluid SWCNT provides better heat transfer as compared to MWCNTs. 
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Chapter 3 

Thermophysical effects of carbon nanotubes on MHD 
flow over a stretching surface 

3.1 Introduction 

This chapter is intended for investigating the effects of magnetohydrodynamics (MHD) 

and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral 

directions over a stretching sheet. For this purpose, three types of base fluids specifically water, 

ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the 

analysis. The convective boundary condition in the presence of CNTs is presented for the first 

time and has not been explored so far. The transformed nonlinear differential equations are 

solved by Runge-Kutta-Fehlberg method with a shooting technique. The dimensionless velocity 

and shear stress are obtained in both directions. The dimensionless heat transfer is determined on 

the surface. Three different models of thermal conductivity are comparable for both CNTs and it 

is found that the Xue [10] model gives the best approach to gain the superb thermal conductivity 

in comparison with the Maxwell [6] and Hamilton & Crosser [7] models . Finally, another finding 

suggests the engine oil provides the highest skin friction and heat transfer rates. 

3.2 Mathematical model 

We considered a steady and incompressible flow of CNTs with three different base fluids 

past a stretching sheet coinciding with the plane z=O. The flow has taken place at above the 

surface which is convectively heated by a fluid at temperature Tf and heat transfer coefficient hf' 

The mainstream flow has the temperature T~ (> T
f

) (See Fig. 1). The sheet is assumed to stretch 
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continuously along x- and y-directions with linear velocities ax and by, respectively. 

Correspondingly, a uniform magnetic field Bo is applied parallel to z-axis and the induced 

magnetic field is assumed to be negligible. The base fluids and the CNTs are assumed to be in 

thermal equilibrium. The viscous dissipation and radiation effects are neglected in the energy 

equation. The ambient temperature is assumed to be constant. Using the order of magnitude 

analysis, the standard boundary layer equations for this problem can be written as follow: 

Fig 3.1: Geometry of the problem. 

(3.1) 

a u a v a w a2u aB2 

u-+v-+w-= v -----u a x a y a z IIf a Z2 Pllf ' 
(3.2) 

au avow a2v aB 2 

u-+v-+w-=v -----v a x a y 0 z IIf a Z2 P
llf 

' 
(3.3) 

aT aT aT a2T 
u- +v-+w-= a --a x a y a z IIf a Z2 ' 

(3.4) 
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where u. v and ware the velocity components along the x-, y- and z-axes, T is the 

temperature, Vnt" and anf are the effective kinematic viscosity and thermal diffusivity of 

nanofluids respectively. The effective properties of carbon nanotubes may be expressed in 

terms of the properties of base fluid and carbon nanotubes and the solid volume fraction of 

carbon nanotubes in the base fluids as follows: 

/1111 = (1~~/5 ' PilI = (l-¢)PI +¢PCNT 

(pcp ) =(l - ¢)(pcp) +¢(pcp) , 
~ I cm 

V = /1111 a = k'if 
lif 'Iif ( pc ) , 

Pnf P III 
(3.5) 

k k + k 1- ¢ + 2¢ CNT In CNT I 

kill = kcm -kl 2kl 
k k k +k 

I 1- ¢ + 2¢ I In cm I 
kcm - kl 2kl 

where knf is the thermal conductivity of the carbon nanotubes proposed by Xue [10], (pc" )cm is 

the heat capacity of carbon nanotubes and ¢ is the solid volume frac tion of CNTs. Furthermore, 

these models do not account for the effect of the space distribution of the CNTS on thermal 

conducti vity. 

The hydrodynamic and thermal boundary conditions for the problem are given by 

(3.6) 

u ~ 0, v ~ 0, T ~ T~, as z ~ 00 

where a and b are constants, Ujx) and ,""v(x) are stretching veloci ties in the x -and y-

directions, respectively. 
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We look for a similar solution of Eqs. (3.1)-( 3.6) of the following form 

u = axl' ( 77 ) , v = by g , ( 77 ) , e ( 77) = T - Too , 
T -T f 00 

( J

1/2 (J1/2 
77 = ~ z, w = - v: { al ( 77 ) + b g ( 77 )} 

(3.7) 

where 11 is the similarity variable. Employing the similarity variables (3 .7) , Eqs (3.1)-( 3.4) 

reduce to the following nonlinear system of ordinary differential equations: 

2.5 1 j'''+(J+Ag)/''- I'2- M 2 1'=0, 
(1-¢) (1 -¢+¢PcNT / Pf ) (l -¢ +¢PcNT / pf ) 

(3.8) 

1 .. ( ') "'2 M 2 , ° 25 g + 1+,Il,g g -g - g = , 
(1 -¢) ' (l -¢+¢PcNT / pf ) (1 - ¢+¢PcNT / Pf) 

(3.9) 

1 k / k 
- Ilf I e'" + (I + Ag ) e' = 0, 
Pr {1 - ¢ + ¢ (pcp ) Off / (pcp) I } 

(3.10) 

Subject to the boundary conditions 

1(0) = 0, 1'(0) = 1, g(O) = 0, g'(O) = A, 

k k +k 
1- ¢ + 2¢ f In CNT f 

k -k 2k 
8'(0) = - Bi CNT f f (1 - 8(0)) 

k k +k 
1 - ¢ + 2¢ CNT In CNT f 

keNT - kf 2kf 

(3.11) 

J' -7 0, g' -7 0, 8 -7 0, as 77 -7 00 

Here, primes denote derivative with respect to 11, M 2 = (J'B; / Pfa is the magnet parameter, 

Pr = v f / a f is the Prandtl number of the base fluid , Bi = hi / k f ~V f / a is the convective 
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parameter and A = b / a is the stretching ratio of velocities in the y- and x-directions. The 

physical quantities of interest are the skin friction coefficients C Jx and C Jy along x- and y-

directions, respectively, and the local Nusselt number Nux' which are defined as 

Nu=~ 
x k!1T 

I 

(3.1 2) 

Where Twx and .. ",), are the surface shear stresses along the x- and y-directions, and qll' is the wall 

heat flux, and are defined as 

(au) 
Twx = Jilll a ' 

z z=o 
--k (aT) q", - III a z 

z=o 

(3.13) 

with Jilll and kllJ being the dynamic viscosity and the thermal conductivi ty of the 

nanofluids, respectively. Using the similarity variables (3.7), we obtain 

Re 112 C = 1 f '" ( 0) 
x Ix (1 _ ¢ ) 2.5 

Re ~/2 C fy = A ( y / x) 1 25 g '" ( 0 ) 
(1-¢) . 

(3.14) 

k 
Re- l12 Nu = ---!i... e'(O) 

x x k 
I 

where Rex is the local Reynolds number. 

3.3 Numerical Procedure 

System of Coupled nonlinear ordinary differential Eqs. (3.8)-(3.10) subjected to the 
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boundary conditions (3.11) are solved numerically using the Runge-Kutta-Fehlberg method with 

a shooting technique for different values of governing parameters. Such includes magnetic 

parameter M, stretching parameter A, Prandtl number Pr, convective parameter Bi and CNTs 

volume fraction rjJ. The boundary value problem is initially transformed into an initi al value 

problem (IVP). Then the IVP is solved by a systematic guessing for, gH(O) and 8 '(0) until the 

far field boundary condition is achieved. The step size c:' 7J = 0.01 is used to obtain the numeIical 

solution with 7Jmax = 12 , where 7Jmax is the finite value of the similarity variable 77 for the far 

field boundary conditions. The convergence is assured by taking error 10.6 in all cases. For pure 

fluid (<p = 0) and isothermal boundary condition (Bi -7 00 ), the results for skin friction (with 

Pr=0.7) and Nusselt number (with Pr= lO) are compared with those obtained by Ahmad and 

Nazar [18] and Wang [29] for different values of magnetic parameter M in Table 3.1. We notice 

that the compaIison shows good agreement for each value of M. Therefore, we are confident that 

the present results are very accurate. 

3.4 Results and discussion 

The effects of the solid volume fraction rjJ of CNTs, magnetic parameter M , stretching 

ratio of velocities A as well as the the convective parameter Bi on the dimensionless velocities 

with temperature are analyzed for both CNTs with water as base fluid . The skin friction 

coeffici ents and heat transfer rates are analyzed along x-direction and y-direction for three 

different base fluids. The solid volume fraction rjJ is used in the range of 0 -:::. rjJ -:::. 0.5. The 

thermo-physical properties of base fluids and CNTs are presented in Table 3.5. Figures 3.2(a) 

and 3.2(b) show the effects of CNTs volume fraction of both SWCNT and MWCNT on the 

dimensionless velocities for different values of magnetic parameter. In the absence of magnetic 
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field , the dimensionless velocities are found to be higher within the hydrodynamic boundary 

layer for both pure fluid and water-based CNTs. It can be seen that the magnetic field reduces the 

hydrodynamic boundary layer thickness in both cases. It is important to note, for pure water 

(when ¢ = 0), the dimensionless velocities are the same in both cases. They increase with a rise 

in the CNTs volume fraction of both SW and MWCNTs. 

The effects of CNTs volume fraction on the dimensionless velocities are illustrated in 

Figs. 3.3(a) and 3.3(b) for stretching and shrinking sheets in the presence of a magnetic field. In 

both cases, these effects are investigated for water-based SWCNTs. It can be seen in Fig. 3.3(a) 

that no appreciable effect of ¢ or A could be found on fl(rl) . However, the effects of 

stretching/shrinking parameters on the dimensionless velocity gl(17) could be observed clearly in 

Fig. 3.3(b). For both stretching and shrinking sheets, the dimensionless velocity gl(17) converges 

at the same time. 

Figures 3.4(a) and 3.4(b) show the effects of CNTs volume fraction, convective and 

magnetic parameters on the dimensionless temperature of water-based CNTs. It can be seen that 

the difference betweeri the dimensions, temperatures of SWCNT and MWCNT is almost 

negligible in both cases. The dimensionless temperature at the surface is lower for a pure fluid 

(water) and for smaller values of the convective parameter. In the presence of a magnetic field, 

the surface temperature increases with CNTs volume fraction and convective parameter, as 

shown in Fig. 3.4(a). Inside the thermal boundary layer, the dimensionless temperature increases 

with CNTs volume fraction and magnetic parameter. 

The variation of skin friction along x-axis with CNTs volume fraction for different 

parameters is shown in Figs. 3.5 and 3.6 for different base fluids. Since the thermo-physical 

properties of both CNTs increase with volume fraction, the skin friction also increases in each 
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case. Figures 3.S(a)-(c) show the effects of magnetic field on skin friction for three different base 

fluids with SWCNTs and MWCNTs. In each case, the skin friction increases with magnetic 

field. Due to the higher viscosity of engine oil, the skin friction is found to be higher in case of 

engine oil. 

In Figs. 3.6(a)-3.6(c), the effects of stretching parameter on the skin friction along x-axis 

are depicted in the presence of a magnetic field. In each case, the skin friction is found to be 

higher for SWCNTs due to the higher density of SWCNTs. The effect of stretching is to reduce 

friction in each case for both CNTs. This reduction is found to be higher for a higher volume 

fraction of CNTs. The effects of same parameters on the skin friction along y-axis are shown in 

Figs. 3.7 and 3.8 for three different base fluids with both CNTs. The effects of magnetic fie lds on 

the skin friction along y-axis are found to be the same as discussed before. The effects of 

stretching parameter on the skin friction coefficient along the y-direction are presented in Figs. 

3.8(a)-3.8(c) and these results are plotted for three different base fluids in the presence of both 

SWCNT's and MWCNT's. It is seen that the skin friction increases with stretching parameter in 

each case. The difference between skin friction of both CNTs increases with volume fraction due 

to increase in density. 

The variation of Nusselt numbers with CNTs volume fraction for different values of 

convective parameter is depicted in Figs . 3.9(a)-3.9(c) for water, ethylene glycol and engine oil 

with both CNTs. It can be observed that the Nusselt numbers increase with CNTs volume 

fraction and convective parameter in each case. This is due to the fact the thermal conductivity of 

each CNT rises with an increase in the CNTs volume fraction. Also, it is important to note the 

Nusselt numbers increase in Prandtl numbers as we make a transition from water to engine oil. 
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The increase in Prandtl numbers actually decreases the thermal boundary layer thickness, thus 

decreasing the thermal resistance and increasing the heat transfer rate. 

Different models of thermal conductivity are compared in Figs. 3.1 O( a)- 3.1 O( c) for 

SWCNTs and in Table 3.3 for MWCNT, respectively. It can be verified that the Xue [10] model 

gives the highest heat transfer rates for both CNTs in comparison with Maxwell [6] and 

Hamilton & Crosser [7] models . This is due to the fact that Xue [10] model considers rotational 

elliptical nanotubes with very large axial ratio and compensating the effects of the space 

distribution on CNTs. 

0.8 

0.6 -~ .-
- 0.4 

0.2 

o 
o 

(a) 

Water (Pr = 6.2) 

Bi = ,,= 0.5 SWCNT -­

MWCNT _ .. _ .. -

$ = 0, 0.1, 0.2 

2 3 4 5 

Water (Pr = 6.2) 
0.5 ,.---------------, 

0.4 

0.3 -~ -t7l 0.2 

0.1 

0 

(b) 
0 

Bi = ,, = 0.5 SWCNT -­

MWCNT -"-"-

$ = 0, 0.1, 0.2 

2 3 4 5 

Fig 3.2: Effects of nanopartic1e volume fraction and magnetic parameters on dimensionless 

velocities for CNTs. 

38 



0.8 

0.6 

-l=" .-
- 0.4 

0.2 

0 

0 
(a) 

Water (Pr = 6.2) 

M = 1, Bi = 0.5 · SWCNT -­

MWCNT -··-··-

<I> = 0, 0.1, 0.2 

1 2 3 4 

11 
5 

Water (Pr = 6.2) 
2r-----------------------, M = 1, Bi = 0.5 

SWCNT --

1.5 MWCNT -"-"-

- <1>=0,0.1,0.2 
l=" 
~ 
C) 

0.5 

0 

0 2 3 
(b) 11 

Fig 3.3: Effects of nanoparticle volume fraction and stretching parameters on dimensionless 

velocities for SWCNT. 

Water(Pr = 6.2) Water (Pr = 6.2) 

M = 1, 'A. = 0.5 SWCNT Bi = 10, 'A. = 0.5 SWCNT 

0.8 MWCNT-"-"- 0.8 MWCNT-"-"-

0.6 0.6 - -l=" l=" - -CD 0.4 CD M = O 0.4 

0.2 0.2 

0 0 

0 2 3 4 0 2 3 4 5 
(a) 11 (b) 11 

Fig 3.4: Effects of nanoparticle volume fraction, convective and magnetic parameters on 

dimensionless temperature for CNTs. 

39 



~ 
U 

!::! 
- >< Q,) 

24~ 
2 

~ 
U 

I::! 
- >< Q,) 

2 

2't 
., " ..... 

Engine oil (Pr = 6450) 

a: 1.6 a: 1.6 

1.2 1.2 

MWCNT - .- .. - .. - MWCNT - " - " - MWCNT - " -"-
0.8 w... ....... u..... .......... ........& ................. ...L...I. .......... ....J 0.8 w... ....... u..... .......... ........& ................. ...L...I. .......... ....J 0.8 L.... ......... ..J... ......... ........& .................. ~ ....... "'-l 

o 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 

(a) ~ (%) (b) ~ (%) (c) ~ (%) 

Fig 3.5: Variation of skin friction coefficient along x-direction with CNTs volume fraction ¢ 

~ 
U 

I::! -" Q,) 

a: 

(a) 

Water (Pr = 6.2) 
2.1 r-----.,;..---:...-...." 

Bi = M = 0.5 

/.> .. "/ 
/. .' 4/:"/ ."/ 

./, . ~ 

/.> 1\)' 
/-'" ' ~~ ' 

,'iI' ~ 

/.::~., ""~ .. -". 

1.8 

1.5 z· · 
::-'" 

5WCNT --

MWCNT - .. -"-

0.05 0.1 0.15 0.2 

~ (%) 

and magnetic parameter M . 

~ 
U 

I::! 
- >< Q,) 

a: 

Ethylene glycol (Pr = 203) 
2.1 r--=----=~-;.....--..:.., 

1.8 

1.5 

Bi = M = 0.5 

5WCNT -­

MWCNT - .. _ .. -

2.1 

~ 1.8 
U 

£! -" Q,) 

a: 
1.5 

Engine oil (Pr = 6450) 

Bi = M = 0.5 

5WCNT-­

MWCNT - .. _ .. -

1.2 
0 0.05 0.1 0.15 

1.2 L.... ....... ..J... ......... ........& .................. ~ ........ ..,j",J 

0.2 0 0.05 0.1 0.15 0.2 

(b) ~ (%) (c) ~ (%) 

Fig 3.6: Variation of skin friction coefficient along x-direction with CNTs volume fraction ¢ 

and stretching parameter A. 

40 



~ 
U 

£:' 

~" 0.8 

0.4 

(a) 

o 
MWCNT- " -"-

0.05 0.1 0.15 0.2 

<1> (%) 

~ 
U 

£:' 

~" 0.8 

~ 
- 0.6 

I 

0.4 

(b) 

o 

MWCNT - " - " -

0.05 0.1 0.1 5 0.2 

<1> (%) 

1.2 

~ 1 
U 

£:' 
~ " 
~ 0.8 

~ 
'7' 0.6 

0.4 

(c) 

o 

Engine oil (Pr = 6450) 

Bi=A.=0.5 

._ .. -.. _ ....... ........ -. 
~ '-'SWCNT­

MWCNT - " - "-

0.05 0.1 0.15 0.2 

<1> (%) 

Fig 3.7: Variation of skin friction coefficient along y-direction with CNTs volume fraction ¢ 

and magnetic parameter M. 

Water (Pr = 6.2) Ethylene glycol (Pr = 203) Engine oil (Pr = 6450) 

1.4 1.4 
1.4 

1.2 1.2 1.2 

~ 
1 

~ 1 ~ 

U U U 
£:' C! '" 
~ " ~ " ~ " 
~ 0.8 ~ 0.8 

Q) 
a: 0.8 

>: >: >: >< 0.6 >< 0.6 >< 0.6 - - -I I 
0.4 0.4 MWCNT- " - " - MWCNT- .. _ .. - 0.4 MWCNT-"-"-

A. - 0.2 A. - 0.2 A. = 0.2 _ ,,_"- " .- .. - .. 
0.2 0.2 0.2 

Bi = M = 0.5 Bi = M = 0.5 Bi = M = 0.5 

0 0 0 
0 0 .05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0 .05 0.1 0.15 0.2 

(a) <1> (%) (b) <1> (%) (c) <1> (%) 

Fig 3.8: Variation of skin friction coefficient along y-direction with CNTs volume fraction ¢ 

and stretching parameter t... 

41 



2[ 

M = A. = 0.5 at -- 5WCNT 

7 _ .. _00- MWCNT 
5 

6 

1.5 ~" 4 " 
" 

~ 5 
~ Z Z 
Z ~ ~ 

4 
~ ":at 3 ": " 
": " Q) 

Q) a: a: 3 a: 
M = A. = 0.5 

0.5 
2 

5WCNT--

MWCNT- " - " - MWCNT-"-"-
0 0 0 

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 

(a) <1> (%) (b) <1> (%) (c) <1> (%) 

Fig 3.9: Variation of Nusselt number with CNTs volume fraction ¢ and convective parameter 

(a) 

SWCNT/Water 
1.5 r------------..., 

M = A. = Bi = 0.5 " , , , , 
~ , 

bfll , o , 
~ , 

flJ ' 

+~' 

0.5 

o 0.05 0.1 0.15 

<1> (%) 

2.5 

2 

" ~ 

1'1.5 
": " Q) 

a: 

(b) 

Bi. 

SWCNT/Ethylene glycol 

M = A. =Bi = 0.5 " , 

~, 
~, 

~o, ' 
~flI , 
~, ' , , , 

, , , , 
2.5 

" 2 
~ 
Z 

!::! 
":Q)"1 .5 

a: 

SWCNT/Engine oil 

M = A. =Bi = 0.5 " , , 

~ , 
o'lS , 

~,' 
~flI, 
~, , , , , , 

, , , 

0.5 L-1... .......... """-' .................................. ..J...j,,~..Io-J 
0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 

<1> (%) (c) <1> (%) 

Fig 3.10: Comparison among the theoretical models for single-wall CNT with different base 

fluids. In the calculation, n = 6 for the Hamilton-Crosser model [7]. 

42 



Table 3.1: Comparison of results for skin fri ction and Nusselt number for pure fluid with 

Bi ---7 00 and A. = 1. 

1 resen \. J.,eSUl"'S L>l ma an azar II OJ vvang L 7 J P tD 1t I "h d dN r 101 I HT 

_gH (O) - 8' (0) -gl/(O) - 8' (0) -gl/ (O) 

0 1.173721 3.306792 1.1748 3.3078 1.173720 

10 3.367240 5.830448 3.3667 5.8309 -

100 10.066473 1.680774 10.0663 1.5471 -

Table 3.2: Thermophysical properties of base fluids and CNTs [37]. 

Physical properties Base fluids N anopartic1es 

Water Ethylene glycol Engine oil SWCNT MWCNT 

P (kg/m:l) 997 1115 884 2600 1600 

c p (J/kg-K) 4179 2430 1910 425 796 

k (W/m-K) 0.613 0.253 0.1 44 6600 3000 

Pr 3.2 203 6450 - -

Table 3.3: Comparison among three theoretical models for Nusselt Numbers with MWCNTs 

suspended in three different base fluids, where Bi = M = A = 0.5 and n = 6 for the Xue model. 

Water Ethylene glycol Engine oil 

¢J, 
Xue H&C Maxwell Xue H&C Maxwell Xue H&C Maxwell 

0.0 0.65077 0.65077 0.65077 1.90009 1.90009 1.90009 3.44808 3.44808 3.44808 

0.02 
0.66346 0.66681 0.67574 1.94042 1.94252 1.94894 3.5081 8 3.50887 3.51115 

0.04 0.67640 0.68302 0.69807 1.98247 1.98662 1.99722 3.57156 3.57290 3.57660 

0.06 0.68966 0.69950 0.71909 5.02639 5.03257 5.04617 3.63843 3.64042 3.64508 

0.08 0.70328 0.71637 0.73949 5.07233 5.08055 5.09648 3.70904 3.7 11 66 3.7 1702 

0.1 0.7173 0.7337 0.75975 5. 1204 5.1 307 5. 14858 3.7836 3.7869 3.79280 
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3.5 Conclusions 

In this article, we have presented similarity solutions for the momentum and energy 

equations governing a 3-D MHD flow and heat transfer of CNTs along a stretching sheet. 

Results for the reduced friction factor and reduced Nusselt number are presented with convective 

boundary condition for three different base fluids mixed with SWCNTs and MWCNTs. It is 

concluded that, 

• The hydro-thermal boundary layer thickness increases with CNTs volume fraction. 

• The shear stresses in x- and y-direction and surface heat transfer increase with CNTs 

volume fraction. 

• Engine oil-based CNTs have higher skin friction and heat transfer rates than water 

and ethylene glycol-based CNTs. 

• Xue [10] model for the thermal conductivity of CNTs shows the highest enhancement 

in heat transfer rates. 
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Chapter 4 

Three-dimensional flow of water-based nanofluid over 
an exponentially stretching sheet 

4.1 Introduction 

In the present chapter, the flow of three dimensional water-based nanofluid over an 

exponentially stretching sheet is analyzed. Compatible exponential type similarity 

transformations are applied for the first time on basic boundary layer equations for nanofluid. 

Different type of nanopartic1es, such as copper (Cu), alumina (AI20 3 ) and titanium (Ti02 ) are 

considered with water as the base fluid. Structure of the mathematical model is constructed 

according to above mentioned assumptions and then reduced system of coupled differential 

equations along with the boundary conditions are solved numerically. Physical behavior of 

velocities and temperature profiles are examined through graphs and discussed for both x- and 

y - directions. The reduced skin friction coefficient along each direction and reduced Nusselt 

number with nanoparticle volume fraction ¢ are presented through graphs. 

4.2 Mathematical formulation 

Consider three dimensional (3D) steady boundary layer flow past a stretching sheet in the 

presence of nanoparticles. It is also considered that the sheet is stretched with different velocities 

UIV ' VIV along the Cartesian coordinate axis, x - and y -axis respectively whereas the fluid 

placed along the z direction is taken to be at rest (see Fig.l). Moreover, it is considered the 

constant temperature ~v at wall and the ambient temperature T~ . 
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Fig. 4.1: Geometry of the problem. 

Under the above assumptions the governing continuity, momentum and energy equations are 

( 
Clv Clv av) (Cl 2 v) p U-+V-+W- = JJ -

nf Clx Cly Clz -nf Clz2 ' 

The corresponding boundary conditions are stated as 

U=u lV ' v=V,v' w=O, T=T.v' at z= O, 

U ~ 0, v = 0, T = T~, as z ~ 00. 
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In above expressions u, v and ware the velocity components along the X-, y - and Z-axes, 

respectively, T is the temperature, Pili is the nanofluid density and Jilll is the thermal 

diffusivity of nanofluid defined as, 

III k"l Il = ex =--'--
"I (1- ¢)2.5 ' "I (pC) 

P III 

P = (1-¢)p + ¢(p),., 
~ I (4.6) 

P'if = (1-¢)(C p P)1 +¢(pCp ) ." 

k'if (k, + 2kl ) - 2¢(kl - k,) 

T; = (k, + 2k I ) + ¢( k I - k,) , 

where ¢ is the nanoparticle fraction, (pCp) III is the effective heat capacity of a nanoparticle, 

k,if is the thermal conductivity of nanofluid, k I and ks are the thermal conductivities of the 

base fluid and nanoparticle, respectively, P f and Ps are the thermal conductivities of the base 

fluid and nanoparticle, respectively. In the present study it is considered the stretching velocity 

and temperature at wall are defined as, 

.f+ Y x+y A(.f+Y) 

V =VeL V =VeL T =T +Te'" w 0 'w 0 'IV 00 0 ' (4.7) 

where Vo' Vo' and To are constants, L is the reference length and A is the temperature 

exponent coefficient. Introducing the following similarity transformations, 

.f+Y x+y 

u=VoeL J'(17), v=Voe
L g'(17), 

vU x+)' 

( )

1/2 

W= 2l eL [!(7J) + 17J'(17) + g(17) + 17g'(17)J, 

A( .I+Y) U '(+ .V 

( )

1/2 

T = T~ + Toe-'-L 8(17), 17 = _0- e L z. 
2vL 

Making use of Eq. (4.8) in Eqs. (4.1) to (4.6), we have 
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(1 - ¢)2.5 [1_: + ¢(p.,. / PI )] f'" + (f + g)f" - 2(f' + g')f' = 0, 

1 ", (f ) N 2(f' ')' ° 
(l-¢/.5[l-¢+¢(p',. / PI)]g + +g g - +g g = , 

f (0) = 0, l' (0) = 1, l' (00) = 0, } 
g (O) =O, g'(O)=a, g'(oo) =0, 

8(0) =1, 8( 00) =0, 

(4.9) 

(4.10) 

(4.11 ) 

(4.12) 

where Pr = (/leI') I / (k I) is the Prandtl number and a = Va / Ua is the stretching ratio. 

Expressions for the skin-friction coefficients c Ix and c fy along x and y-directions, respectively 

and the local Nusselt number Nux are defined as 

(4.13) 

where t'wx and t'wy are the surface shear stresses along the x - and y - directions, 

respectively and q", is the heat flux , which are given by 

(4.14) 

Reduced form ofEg. (4.13) takes the form 
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-If2 l(.,',} f II' (0) 
Cf;x = (Re) e 2L ? 5 ' 

(1- tpt· 

'" J(.,',) gil' ( 0) 
C fy = (Re) e 2L 25 ' 

(1 - tp) . 
(4.15) 

X "1/2 XTV k 
W'12 Nu =--(Re) e ll ~8'(0) . 

' ., X L k
f 

where Reynolds number Re is defined as Re = VoL I 2v. 

4.3 Numerical Method 

The systems of nonlinear differential equations (4.9-4.11) along with the boundary condition 

(4.12) are solved numerically using fourth-order Runge-Kutta-Fehlberg with the shooting 

technique. The step size !J.17 = 0.001 is used to obtain the numerical solution with 17max and the 

accuracy to the fifth decimal place is taken as the criterion of convergence. To handle the 

condition at infinity we consider a suitable value of 17 ~ 00, say 17~ . 

4.4 Results and discussions 

Present section highlights the influence of emerging parameters such as nanoparticle 

volume fraction ¢' stretching parameter a and temperature exponent coefficient A for 

velocities j'(1J), g'(17) and temperature 8(17). Moreover, we are considering three different 

nanoparticles, namely: copper (Cu) , alumina (Al20 3 ) and titanium (Ti02 ) by considering water 

as the base fluid. Thermo-physical properties of base fluid and particles are mentioned in Table 

4.1. It is noticed that the plotted results (see Fig. 4.2-4.3) are only for Cu-water when Pr = 6.2 

and A = 0.5 for velocities j'(17) and g'(17) along x and y-direction, respectively. Figs. 4.2 and 

4.3 are plotted for least values of nanoparticle volume fraction ¢. It is found that nanoparticle 
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volume fraction is the decrasing function of velocities f'(r?) and g'(r?). Moreover, it is 

visualized from Figs. 4.2 and 4.3, both velocities f'(TJ) and g'(TJ) predict the same decreasing 

behavior for stretching parameter a = 0.5 and a = 1. Variation of temperature profile f)(TJ) 

against nanoparticle fraction ¢ is plotted in Fig. 4.4 for a = 0.5 and a = 1. From Table. 6.1, it 

is noticed that thermal conductivity of copper (Cu) is much higher than the base fluid water. So 

it may affects in the enhancement of temperature profile f)(TJ) . Consequently, from Fig. 4.4 with 

an increase in nanoparticle volume fraction ¢, temperature profile eery) also increases for 

Cu - water. 

Combined effects of Cu, Ti02 and Al20 3 for velocities and temperature profi le are 

plotted in Figs. 4.5-4.7. Through Table. 4.1, it is noticed that the density of copper is less than 

the density of titanium so as the density of titanium is less than the density of alumina. As a 

result, Cu - water produces higher resistance in the movement of nanofluid as compared to 

Ti02 -water and Al20 3 -water (see Fig. 4.5 and 4.6). Variation of velocities f'(77) and g'(TJ) 

for different nanoparticies Cu, Ti02 and Al20 3 are plotted in Fig. 4.5 and 4.6. Fig. 4.7 depicts 

the variation of temperature profile f)(TJ) for different nanoparticles according to the thermo 

physical properties mentioned in Table. 4.1. As shown in Fig. 4.6, the temperature profile eery) 

provides same behavior for temperature exponent coefficient A = - 1, A = 0 and A = 1. 

Table 4.2, presents the excellent comparison with previous literature presented by 

Magyari and Keller [19], in the absence of nanopartic1es i.e (¢ = 0) and (X = O. In Table. 4.3, 

results are in excellent comparison with Chung Liu et al [20] in the absence of nanoparticles i.e ( 

¢ = 0). Fig. 4.8 and 4.9 provide the results of reduced skin friction coefficient along ¢ with 
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different nanoparticles when Pr = 6.2, a = 0.5 and a = 1. For both values of a, it is observed 

that skin friction coefficient for eu - water copper is higher than Ti02 - water and Al20 3 - water 

(see Figs. 4.8 and 4.9). Figs . 4.10-4.13, show the behavior of variation of reduced Nusse1t 

number with nanoparticle volume fraction ¢, for different nanoparticles. Fig. 4.10 and 4.11, 

oepict the same behavior for ex = 0.5 and (X = 1 while the rest of the parameters are kept fixed. It 

is seen from Figs. 4.10 and 4.11, that there is a low heat transfer rate of Ti02 - water as 

compared to eu - water and Al20 3 -water. This is just because of low thermal conductivity of 

Ti02 when compared to other nanoparticles (see in Table. 4.1). It is also noticed that for negative 

values or in the absence of temperature exponent A, it may affects the heat transfer rate (see Figs. 

4.12 and 4.13) for different nanQparticles . Opposite trend of reduced Nusselt number is shown in 

Fig. 4.12 when it is compared with Fig. 4.11. Moreover, in the absence of temperature exponent 

heat transfer of alumina (AI20 3 ) is higher than both copper (eu) and titanium (Ti02 ) (see Fig. 

4.13). 

Table 4.1: Thermophysical properties of base fluid and nanoparticles. 

Physical properties Fluid Phase (Water) eu Al20 3 Ti02 

Cp (J/kg K) 4179 385 765 686.2 

p (kg/m3) 995.1 8933 3970 4250 

k (W/mk) 0.613 400 40 6.9538 

ax107(m2/s) 1.47 1166.1 131.7 30.7 
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Table 4.2: Comparison of Numerical Values for local Nusselt number Re~ 1/2 Nu x in the absence 

of nanopartic1es (¢ =0) and a = O. 

pd AJ.. Magyari and Keller [19] c. Liu et al [20] Present study 

1 -1.5 0.377410 0.37741256 0.377412 

0 -0.549643 -0.54964375 -0.549646 

1 -0.954782 -0.95478270 -0.954786 

3 -1.560294 -1.56029540 -1.560295 

5 -1.5 1.353240 1.35324050 1.3532405 

0 -1.521243 -1.52123900 -1.521240 

1 -5 .500135 -5.50013157 -5.500135 

3 -6.886555 -6.88655510 -6.886555 

10 -1.5 5.200000 5.20002816 5.200028 

0 -5 .257429 -5.25742372 -5.257424 

1 -6.660379 -6.66037218 -6.660372 

3 -5 .635369 -5.62819631 -5.628196 

Table 4.3: Comparison of numerical values for local Nusselt number Re~ 1 /2 Nux in the absence 

of nanopartic1es (¢ =0). 

A=-2 A=O A=2 

aJ, Prj, Liu et al [20] Present Liu et al [20] Present Liu et a1 Present 

study study [20] study 

0.0 0.7 0.6236 183 0.62362 -0.4258380 -0.42584 -1.6416592 -1.64166 

5.0 5.9409444 5.94093 -1.8466056 -1.84661 -5.8978037 -5 .89780 

0.5 0.7 0.7637845 0.76377 -0.5215410 -0.52154 -5.0106136 -5.01061 

5.0 5.2761412 5.27614 -5.2616208 -5.26162 -5.2233049 -5 .22331 

1.0 0.7 0.8819431 0.88 194 -0.6022235 -0.60222 -5.3216566 -5.32 164 

5.0 6.4017642 6.40175 -5.6114948 -5 .61150 -6.3407540 -6.34075 
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Fig 4.2: Variation of f '(77) for different values of ¢ for Cu-water nanofluid when Pr=6.5. 
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Fig 4 .3: Variation of g '(77) for different values of ¢ for Cu-water nanofluid when Pr=6.5. 
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Fig 4.4: Variation of 8(77) for different values of ¢ for Cu--water nanofluid when Pr=6.5. 
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Fig 4.5: Variation of f '(77) for each kind of nanoparticles when Pr=6.5 . 
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Fig 4.6: Variation of g '(ry) for each kind of nanoparticles when Pr=6.5 . 
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Fig 4.8: Variation of the skin friction coefficient along the x-direction with ¢ for different 

nanopartic1es when Pr=6.5 . 
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Fig: 4.9: Variation of the skin friction coefficient along the y-direction with ¢ for different 

nanopartic1es when Pr=6.5. 
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4.5 Key findings 

Three dimensional Water-based nanofluid flow over an exponentially stretching sheet has 

studied numerically. Three ldnd of metallic particles (Cu, Ti02 and A12 0 3 ) are saturated with in 

the base fluid and the behavior of the each mixture is discussed against various values of fluid 

control parameters. Summary of present work is listed below: 

• It is seen that velocities f '(77) and g '(77) decreases with the increasing values of <p and 

the boundary layer thickness also decreases. 

• It is also depicted that the temperature profile 8(77) increases with an increase of 

nanoparticle volume fraction ¢. 

• Increasing behavior is found for velocities f '(77) and g '(77) for Cu-water, Ti02-water and 

AI2 0 3 -water. 

• It is found that temperature profile 8(77) is decreasing function in view of Cu-water, 

Ti02-water and AI2 0 3-water. 

• Same decreasing behavior is found in x- and y-direction for sldn friction coefficient with 

different nanopartic1es. 

• The heat transfer rate varies with A=-O.5, A=O and A=O.5 for different nanopartic1es. 
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Chapter 5 

Convective heat transfer and MHD effects on Casson 
nanofluid flow over a stretching/shrinking sheet 

5.1 Introduction 

This chapter examines the two dimensional magnetohydrodynamic (MHO) boundary 

layer flow of a Casson nanofluid over an exponentially permeable shrinking sheet with 

convective boundary condition using Buongiorno' s model. Moreover, we have considered the 

suction/injection effects on the wall. Mathematical formulation of the problem has been 

constructed according the above mentioned consideration. By applying the appropriate 

transformations, system of non-linear partial differential equation along with the boundary 

conditions are transformed to couple non-linear ordinary differential equations. The resulting 

systems of non-linear ordinary differential equations are solved numerically using Shooting 

method. Numerical results for velocity, temperature and nanoparticle volume concentration are 

presented through graphs for various values of dimensionless parameters . Effects of parameters 

for heat transfer at wall and nanoparticle volume concentration are also presented through graphs 

and tables. One of the sections consist of dual solution but in the present chapter our main 

emphasis is to analyze the results of Casson nanofluid flow and heat transfer so later we discard 

the unstable part of the dual solution and solutions are only constructed for stable part. At the 

end, fluid flow behavior is examined through stream lines. Concluding remarks are provided 

under the observation of whole analysis. 
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5.2 Fundamental equations of Buongiorno's Model 

Expressions of conservation laws of mass, momentum, temperature and nanoparticle 

volume fraction in an incompressible fluid are [31] 

divV = 0, 

dV ? 

P -= -VP+ IIV -V 
f dt r" 

dT 
(pc) f dt = kV 2T + (pc) p (DB VC.VT + (DT / T~ ) VT.VT) , 

(5. 1) 

(5.2) 

(5.3) 

(5.4) 

Where p f is the fluid density, PI' the density of the particle, c I' and c f is the heat capacity of 

the particle and water respectively, V is the veloci ty of nanofluid, d / dt is the material time 

derivative, P is the pressure, T is the temperature of nanofluid, C is the nanoparticle volume 

concentration, Too is the ambient temperature of nanofluid, DB the Brownian diffusion 

coefficient and DT id the thermophoretic diffusion coefficient. 

5.3 Mathematical model 

We adjust the geometry of the problem in the Cartesian coordinate system such that x -

axis is taken horizontally and y - axis is perpendicular to it. The steady situation of two 

dimensional flow past a shrinking sheet is considered. Moreover, we have considered the Casson 

nanofluid flow in the presence of magnetohydrodynamic that is normal to the nanofluid and the 

nanofluid is placed at y ~ 0, where y is the coordinate measured normal to the shrinking 
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surface. Here we are considering the rheological equation of ex tra stress tensor (r) for an 

isotropic and incompressible flow of a Casson fluid can be written as [21] 

r .. = {(,uB + Py / .J2ii) 2eij , 

IJ (,uB + Py / .J2ii) 2eij , 
(5 .5) 

where ,u is the dynamic viscosity, ,uB is plastic dynamic viscosity of the non-Newtonian fluid , 

Py is the yield stress of fluid , 1r is the product of the component of deformation rate with itself, 

namely, 1r = eijeij , e ij is the (i. J)-th component of the deformation rate and 1rc is critical value of 

this product based on non-Newtonian model. We assumed that the sheet is shrank exponentially 

with velocity u(x) = Uw exp(f) , where Uw > 0 is constant and x is the coordinates along the 

shrinking surface. Moreover, convective condition is also considering at the wall having 

temperature Tf when the fluid is passing over the shrinking surface. The boundary layer 

equations of (5 .1 )-(5.4) for two dimensional incompressible Casson nanofluid takes the 

following form 

y 

nanoparlicle 

o 0 00 /sce: (J fo JOO) nlll 

o 0 GI Q 0 

S ii i -- , 0 0 0 

~~~~~~~~~~~§B,--Shrinking s h e e l 

Fig 5. 1: Geometry of the problem. 
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(5.6) 

(5.7) 

(5.8) 

(5.9) 

where u and v denote the respective velocities in the x - and y - directions respectively, 

!3 = MB.J2; is the non-Newtonian (Casson) fluid parameter, //( = MB / Pnf) is the kinematic 

viscosity, a is the thermal diffusivity, DB is the Brownian diffusion coefficient, Dr is the 

thermophoretic diffusion coefficient, T = ((pc))p is the ratio between the effective heat capacity of 
pc f 

the nanoparticle material and heat capacity of the fluid, in which P f is the density of fluid and 

Pp is the density of the particles. It is also considered that the magnetic field E(x) is of the 

form 

E = Eo exp(x / l) , (5.10) 

where Eo is the constant magnetic field. The corresponding boundary conditions are 

(5.11) 
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u ~ 0, v ~ 0, T ~ Too' C = Coo as y ~ 00. (5.12) 

In the above expression, uw(x) is the stretching/shrinking velocity of the fluid with Uw is the 

stretching/shrinking constant, here it is notice that for Vw (x) is mass transfer velocity (with 

Va > 0 for mass injection and Va < 0 for mass suction), kf is the thermal conductivity of the 

fluid, hf is the convective heat transfer coefficient, T
f 

is the convective fluid temperature below 

the shrinking sheet. Introducing the following similarity transformations 

u = Ua exp(x / l)f'("l) and v = -~I/Ua / 2l exp(x / 2l){J("l) + ''If'(''l)}, 

~ T-T C-C 
"l = Y _a exp(x / 2l), e = 00, ¢ = 00 . 

2ul T - T C - C 
W 00 W 00 

(5.13) 

Making use of Eq. (5.13), the equation of continuity is identically satisfied and Eqs. 

(5.7)-(5.9) along with the boundary conditions (5.11) and (5.1 2) take the following form 

(1 + 1 / (3)f lll - M2 f' - 2(1 ')2 + ff" = 0, (5.14) 

e" + Pr((1e' - f'e) + Nbe'¢' + Nt(e')2) = 0, (5.15) 

¢ " + L e Pr(1¢ ' - f'¢) + Z~ e" = 0, (5.16) 

f(rJ) = S, !'(rJ) = A, e'(rJ) = -Bi (1 - 8(0)) and ¢(rJ) = 1 at rJ = 0, (5.17) 

(5.18) 

Here prime indicates differentiation with respect to 17, M2 = 2a B~ l / pUa is the 

magnetic parameter, S is the suctionlinjection parameter, 

stretching/shrinking parameter (with A > 0 for stretching surface case, A < 0 is for shrinking 
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surface and A = 0 IS for flat surface), Pr = // / aD is the Prandtl number, 

IS the Brownian motion parameter, 

Lewis number and Bi = (hf / kf ) ~2l// / Uo is the Biot number. 

Expressions for skin friction coefficient C f ' local Nusselt number Nux and the local 

Sherwood number Sh are 

T 
=~ 

x 

(5 .19) 

where T =: is the wall shear stresses along x -direction. Here qw and qm are the heat flux 

and the mass flux respectively, defined as: 

(5.20) 

Eq. (5. 19) takes the fo llowing dimensionless form 

(5.2 1) 

Here R ex = (x Uo eX
/

I
) / // is the local Reynolds number. 

5.4 Numerical Technique 

Numerical solutions to the coupled nonlinear ordinary differential equations (5.14)-

(5. 16) along with the boundary conditions (5. 17) and (5. 18) are obtained using the shooting 
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method. First we convert the boundary value problem (BVP) into the initial value problem (rVp) 

and assume a suitable finite value for the far field boundary condition, i.e, 77 ---7 00 , say 1700' We 

then rewrite the system of equations (5.14)-(5.16) in the following form: 

!'" = [1 + ~ r (M' l' + 2(/')' - 11"), (5.22) 

e" = -Pr ((fe' - j'e) + Nbe'¢' + Nt(e')2), (5.23) 

¢" = -Le Pr(f¢' - l' ¢) - Nt e". 
Nb 

(5.24) 

To convert the above system of coupled higher order nonlinear differential equations into the 

system of first order differential equations, we introduce: 

x, =j, 

y, =8, 

z, =<jJ, 

, j' x2 =x, = , 
Y2 = y, ' = 8 ', 

, At' 
Z2 = Z, = Of' • 

Hence, the equations (5.22)-(5.24) take the following form: 

with the boundary conditions are defined as 

66 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5 .30) 



In order to solve (5.26)-(5.28) subj ect to (5.29)-(5.30) as an IVP, the values for x3 (0) . Y2(0) 

and z2 (0) , i.e. f "(0), B(O ) and ¢ '(0) for instance, are needed but not given prior to the 

computation. Thus the initial guess values of f "(0) , B(O) and ¢ '(0) are chosen and the Runge­

Kutta method is applied to obtain the solution. The step size ~.'ry = 0.001 is used to obtain the 

numerical solution with T/max ' with accuracy to the fifth decimal place is chosen as the criterion 

of convergence. The asymptotic boundary conditions given by Eq. (5.18) were replaced by using 

a value similarity variable T/max = 12 as follows: 

f '(rlmax) = 0, B(T/max) = ° and ¢J(T/max) = 0. (5.31) 

The choice of T/max = 12 ensures that all numerical solutions approached the asymptotic values 

correctly. 

5.5 Dual solutions 

In this section dual solutions have been constructed for various values of emerging 

parameters involved in the momentum equations for skin friction coefficient. Fig. 5.2 shows that 

it is possible to get dual solutions of the boundary layer equations for shrinking parameter A < 0, 

These dual solutions in the range of -\ < A < 0 and solution does not exists for A < -\ < 0 , 

where -\ is the minimum value of A for which the solution exists. It is found that decreasing the 

values of I \ I promotes a gradual increase in the skin friction coefficient with respect to 

increasing values of both the magnetic parameter M and the non-Newtonian fluid parameter (3 . 

This shows that higher values of M and (3 decrease the range of the existence of the solution to 

the proposed boundary value problem. The procedure for describing the stabi lity of dual 

solutions is extensively available in the literature [22] and [23]. In the above mentioned 
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literature, it was discussed that in dual nature solution, probably one of the solution is stable 

while the other is physically not stable. So in the present study we only analyze the stable case 

with Casson nanofluid and discard the unstable case. 

-1 

a) 

s = 3, ~ = 0.2 

\ . 
' . . I , I. i 

., ..... ..... '-, \ 
' , .~ '. 

',,\. 
.~~ 

--First so lution . ,,~. 

_·_·_·- Second solution '~~. 

-1 -0.5 o 
A 

0.5 

(b) 

-1 

-1 

--First so lution 

- .-.-.- Second solution 

s = 3, M = 0.5 

-0.5 0 0.5 
A 

Fig 5.2: Dual solutions for various values of MHD parameter M and Casson fluid parameter fl . 

5.6 Results and discussions 

In the present section we will discussed the velocity profile !'('T/), temperature profile 

eery) and nanoparticle volume concentration ¢(r;) for various physical parameters such as 

Casson fluid parameter (3, Hartmann number M , suction/inj ection parameter S, Biot number 

B i, Prandtl number Pr, thermophoresis parameter Nt, Brownian motion parameter Nb and 

Lewis number Le . It is noticed that all the graphical results are depicted for shrinking case 

A = - 1. It can be found through Table 5.1, for infinitely large values of Casson fluid parameter 

((3 -t (0) our problem reduces to Newtonian fluid. Similarly we can observe that our problem 

more simplified for constant wall temperature with infinitely large value of Biot number 

(Bi -t (0). In addition we can see through Table 5.1, when we discard the nanoparticles and 

68 



suction/injection effects; our problem gives the exceIIent comparison with the results provided 

by different authors. 

From Fig. 5.3, it is observed for higher values of M it reduce both boundary layer 

thickness and the magnitude of the velocity. This phenomenon occurs when magnetic field 

induced current in the conductive fluid, then it creates a resistive-type force on the fluid in the 

boundary layer which slows down the motion of the fluid. Exactly the same behavior is shown 

for temperature and nanoparticle volume concentration. So finaIIy , it is concluded that magnetic 

fie ld is used to control boundary layer separation. Same sort of behavior appears when we 

compare Fig. 5.4 with Fig. 5.3 for higher values of S. Fig. 5.5 depicts the effects of non­

Newtonian parameter fJ on the velocity profile 1'(-1]) . Here it is observed that for higher values 

of non-Newtonian parameter fJ , it produces resistance in the motion of fluid. That fact is seen in 

Fig. 5.5, the velocity profile 1'('1]) and the boundary layer thickness decrease for higher values of 

fJ· From Fig. 5.6, we can observe that increasing non-Newtonian parameter will reduce the 

temperature profile. Moreover, for higher values of non-Newtonian parameter fJ , the boundary 

layer thickness decreases (see Fig. 5.4). It is noticed when we increase the non-Newtonian 

parameter fJ to infinity, the problem in the given case reduces to Newtonian fluid. Fig. 5.6 

shows the behavior of Prandtl number on temperature profi le and nanoparticle volume 

concentration because the Prandtl number is a ratio of kinematic viscosity to thermal diffusivity. 

Consequently, for higher values of Prandtl number it reduces the thermal diffusivity (see Fig. 

5.6). Same behavior can be observed for nanoparticle volume concentration against the Prandtl 

number when we compare temperature profile with nanoparticle volume concentration. 

Effects of Biot number Bi on temperature and nanoparticle volume concentration are 

mentioned in (Figs. 5.7 and 5.8). Physically, Biot number is expressed as the convection at the 
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surface of the body to the conduction within the surface of the body. When thermal gradient 

applied to the surface then the ratio governs the temperature inside a body varies significantly, 

while the body heats or cools over a time. Normally, for uniform temperature field inside the 

surface, we considered Bi < < 1. However, Bi > > 1 depicts that the temperature field inside the 

surface is not uniform. In Fig. 5.6, we have discussed the effects of Biot number Bi on 

temperature profile ()(7]) in three ways. First one is the case when Bi < 0.1. It is observed 

from Fig. 5.6 that for smallest values of the Biot number (Bi < 0.1), the variation of 

temperature within the body is slight and can reasonably be approximated as being uniform. 

While in the second case for Bi > 0.1, one depicts that the temperature within the body do not 

peIiorm uniform behavior (see Fig. 5.7). The last case relates when we consider very large value 

of Biot number corresponds to the case of constant wall temperature (see Fig. 5.7) . Same sort of 

behavior can be seen for nanopartic1e volume concentration ¢(7]) against the Biot number Bi, 

when we compare Fig. 5.8 with the Fig. 5.5. The effect of Brownian motion parameter Nb on 

the temperature profile ()(7]) is presented in Fig. 5.4. Here we can observe that with an increase 

in the motion of Brownian parameter Nb , the temperature profile ()(7]) increases. These 

phenomenon present that the enhanced thermal conductivity of a nanofluid is mainly due to 

Brownian motion which producing micro-mixing, whereas for large value of Brownian 

parameter Nb, it reduces the nanopartic1e volume concentration ¢(7]) (see Fig. 5.9). Similar 

behavior can be observed when we compare Fig. 5.10 with Fig. 5.9 for temperature profile while 

nanoparticle volume concentration ¢(7]) increases with an increase of thermophoresis parameter 

Nt. Finally from Figs. 5.9 and 5.10, it is observed that both Brownian motion and 

thermophoresis parameter present same sort of behavior for temperature profile while it presents 

opposite behavior for nanopartic1e volume concentration. From Fig. 5. 11 , it depicts that with an 
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increase in Lewis number Le, temperature profile increases while the profile of nanoparti1ce 

concentration decreases. 

Effects of physical parameters on skin friction coefficient(l + *)/11(0), reduced Nusselt 

number Re-;1/2Nu and reduced Sherwood number Re-;1/2Sh are presented in Figs . 5.12-5.14. 

Through Fig. 5.12, the variation of skin friction along with the physical parameters sand M in 

both Newtonian ({3 = 00) and non-Newtonian ({3 :;c 00) are demonstrated. It is found that in 

case of Newtonian fluid, less friction occurs at the wall as compare to the non-Newtonian fluid , 

due to viscosity effects. It is observed from Fig. 5.13, that for higher values of Brownian motion 

parameter Nb, it reduces the Nusselt number. In both cases either Pr < Le or Pr > Le, same 

decreasing behavior can be observed for reduced Nusselt number R e-; 1/2 Nu against Nt for 

increasing values of Brownian motion parameter Nb, while the rest of the parameters are fixed. 

Fig. 5.14 depicts the trend of the reduced Sherwood number against thermophoresis parameter 

Nt, while for increasing values of Brownian parameter Nb, Sherwood number gives same 

increasing behavior. It can be seen from Fig. 5.14, in both cases either Pr < L e or Pr > L e. 

The Sherwood number presents similar behavior. Finally, we observed from Figs. 5.13 and 5.14 

that for higher values of Prandtl number, it produces opposite trend for both heat transfer rate 

and mass transfer rate. The two dimensional view of variation of the stream lines are presented in 

Fig. 5.15, for S = - 0.5, S = 0 and S = 0. 5 . Similarly, three dimensional view of the lines for 

stream function 'IjJ(x, 'TJ) along with the dependent variables are presented in the Fig. 5.16. In 

Tables. 5.2, we have presented the numerical values of the local Nusselt number and Sherwood 

number for various values of Brownian parameter and thermophoresis parameter while the rest 

of parameters are fixed. 
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Table 5.1: Variation of local Nusselt number Re;1/2Nu for several values of Prandtl number 

and magnetic parameter in the absence of nanofluid when s = 0, >. = 1 and Bi ---) 00 

(Newtonian fluid) . 

Pr M Magyari and Keller [19J Bidin and Nazar [24J EI-Aziz [25J Ishak [26J Present 
study 

1 0 0.9548 0.9547 0.9548 0.9548 0.9548 
2 0 - 1.4714 - 1.4715 1.4714 
3 0 1.8691 1.8691 1.8691 1.8691 1.8691 
5 0 5.5001 - 5.5001 5.5001 5.5001 
10 0 6.6604 - 6.6604 6.6604 6.6604 
1 1 - - - 0.8611 0.8611 

Table 5.2: Variation of local Nusselt number and Sherwood number with Nb and Nt for 
s = 3,>' = -I,M = 2,(3 = 3,Bi = O.3,Pr = 6.2 andLe = 1. 

NtJ, 

0.0 
0.2 
0.4 
0.6 
0.8 

Nb =0.3 Nb=OA Nb=O.5 

Re-1/2Nu 
x x 

Re-1/2Sh 
x x 

Re-1/2Nu 
x x 

0.285867 16.001155 0.278889 
0.285633 15.794769 0.278355 
0.285388 15.588241 0.277782 
0.285130 15.381564 0.277166 
0.284860 15.174730 0.276501 

1.2 ~~~ 
0.9 ,~ 

0.6 
,;-.. M = 1, 2, 3 

~ 
\ ! '~ 0.3 ' ,,,, ~~ 
.'" ~~~ 

o , ... ,' .. .. .... ~ 

-0.3 

-0.6 

-0.9 

Re-1/2Sh 
x x 

Re-1/2Nu 
x x 

16.001155 0.268004 
15.844328 0.266763 
15.687275 0.265386 
15.529980 0.263844 
15.372425 0.261709 

--- f'(rlJ 
_ .. _ .. _ ... 8 (11) 

- - _. <P (11) 

/.. =-1 
S =3.0 
P= 1.0 
Nh=0.2 
Le= 1.0 
NI=0.7 
Bi=3.0 
Pr=6.0 

5 

Re-1/2Sh 
x x 

16.001155 
15.873235 
15.744930 
15.616200 
15.228003 

Fig 5.3: Effect of MHD parameter M on velocity, temperature and nanoparticle volume 

concentration. 
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Fig 5.14: Effect of Nb and Nt on dimensionless concentration rates. 
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Fig 5.15: Stream line behavior for various values of suction/injection parameter S. 
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Fig 5. 16: Three Dimessional variation of streamline for various values of 
suction/injection parameter S. 
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5.7 Conclusion 

MHD boundary layer flow of a nanofluid uver an exponentially shrinking sheel [or 

Casson model subj ect to the convective boundary condition is solved numerically. Moreover, 

effects for various values of existing parameters are discussed for velocity, temperature and 

concentration. The main results of present analysis can be listed below. 

• Trend of velocity is identical for MHD, Casson fluid and shrinking parameters. 

• Same behavior of temperature profile is found for both Brownian motion parameter and 

thermophoresis parameter. 

• Opposite behavior of nanoparticle volume concentration is found for both Brownian motion 

Nb and thermophoresis parameter Nt. 

• The temperature profi le 8(7]) and concentration profile ¢(7]) decreases when both Pr and 

Le increases. 

• Skin friction for non-Newtonian fluid is comparatively higher than Newtonian fluid . 

• The magnitudes of the local Nusselt and Sherwood number show the opposite trend for 

higher values of Brownian motion parameter. 
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Chapter 6 

MHD three dimensional boundary layer flow of 
Casson nanofluid past a linearly stretching sheet with 
convective boundary condition 

6.1 Introduction 

Present chapter deals the study of three dimensional flow of a Casson fluid in the 

presence of nanoparticle. It is considered that the sheet is stretched in both x and y - direction at 

xy -plane. Moreover, we have considered the magnetohydrodynamics (MHD) effect within the 

fluid and convective condition at the lower surface of the sheet. Constructed mathematical model 

in the form of partial differential equations are transformed into the set of coupled nonlinear 

ordinary differential equations with the help of similarity transformation which are solved 

numerically. Behavior of emerging parameters are presented graphically and discussed for 

velocity, temperature and nanoparticles concentration. Variation of the reduced Nusselt and 

Sherwood number against physical parameters are presented graphically. It is found that the 

reduced Nusselt number is a decreasing function and the reduced Sherwood number is an 

increasing function of Brownian parameter Nb and thermophoresis parameter Nt. 

6.2 Mathematical formulation 

Consider three-dimensional (3 - D) incompressible Casson nanofluid flow past a 

stretching sheet. It is considered that the sheet is stretched along the xy - plane while the fluid is 

placed along the z-axis. Moreover, it is also considered that a constant magnetic field is applied 

normal to the fluid flow and the induced magnetic field is assumed to be negligible. We assumed 
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that the sheet is stretched with the linear velocities u = ax and v = by along the xy - plane 

respectively. The boundary layer equations of the three dimensional incompressible Casson 

nanofluid are stated as, 

, " - " 

Casson Ilallojiu;d :.. ~ . ':: . 

... --'-.-.. . .. -....., ~ 

...... ~ .. 

u .(x)= ax 

z 

Fig 6.1: Geometry of the problem. 
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(6.1) 

(6.2) 

(6.3) 

(6.4) 



(6.5) 

The associated boundary conditions related to Eqs. (6.2) and (6.3) are defined as: 

u = u (x ) = ax 
w ' 

v=vw(y)=by, 

-k f ( ~:) = hf (Tf - T), 

e = e
lV 
(x) 

at Z = 0, 

u ---t 0, v ---t 0, } 

T ---t T~, e ---t e~ 
as Z ---t 00. 

(6.6) 

(6.7) 

where u, v and w denote the respective velocities in the X-, y - and z - directions respectively, f3 

is the Casson fluid parameter, DB is the Brownian diffusion coefficient, DT is the thermophoretic 

diffusion coefficient, T = (pc)p/ (pc) f is the ratio between the effective heat capacity of the 

nanoparticle materical and capacity of the fluid with p is the density, a and b are positive constant, 

U w and Vw are stretching velocities in x and y directions, T w is the temperature, which takes the 

constant value at the wall and the constant value Too far away from the wall, Bois the magnetic 

induction, kf is the thermal conductivity of the fluid, hf is the convective heat transfer coefficient 

and Tf is the convective fluid temperature below the moving sheet. Introducing the following 

similarity transformations 
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77= Z ~ ,u =ax1'(77),v= byg' (77), ~; . 

W = -~(1 (77)+ Cg( 77)) ' 
T-T ()( ) - ~ 

77 -T-T' 
f ~ 

(6.8) 

where c = b / a is the ratio of the velocities in y - and x - directions, and prime denotes 

differentiation with respect to rJ . Maldng use of Eq. (6 .7), equation of continuity is identically 

satisfied and Eqs. (6. 2)-(6.5) along with boundary conditions define in Eqs. (6.6) and (6.7) take 

the fo llowing form 

( l) ,ff ( ,)2 ( )" 2, 1 + f3 g - g + 1 + cg g - M g = 0, 

()" + Pr{ (1 + cg) ()' + Nb()'(j/ + Nt( ()'/} = 0, 

" ( ) . Nt " ¢ + LePr 1 + cg ¢ + - () = 0, 
Nb 

1 (0) = O,f'(O) = 1,g (0) = 0, g '(0) = c,} 
()' ( 0) = - Bi ( 1 - () ( ° ) ), ¢ ( 0) = 1 

1'(77) -7 0, g '(77) -7 0, } 
()(77) -7 0,¢ (77) -7 0 as 77 -7

00

• 

(6.9) 

(6.10) 

(6 .11) 

(6.12) 

(6.13) 

(6.14) 

In these expressions, M 2 = O'B~ / pa is the magnetic parameter, Pr = v / aD is the Prandtl 

number, Le = aD / DB is the Lewis number, Nb = (pc) p (DB) ( CII' - C~ ) / (pc) f V is the 

Brownian motion parameter, Nt = (pc) p (DT ) (~v - T~ ) / (pc) f T~ v is the thermophoresis 

parameter and B i = ( h f / k f ) ~ is the Biot number. 
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Expressions for skin friction coefficient Cf on the surface along the x and y directions, denoted 

by C Ix and C fy respectively, local Nusselt number Nux and local number Shx are defined as, 

(6.15) 

Sh = xql/l 
x D (C -C )' B w 00 

where T IVX and T
lVy 

are the wall shear stresses along x and y - direction, respectively. q lV and qm 

are the surface heat flux and mass flux respectively. Using the variables (6 .8), we obtain 

Clx Re1 =(1+ ~)f"(O), 

(~ )Cfy Re1 = C(I+ ~)g " (O) , 
(6.16) 

Where Rex = Ux (x) x / V is local Reynolds number based on the stretching velocity Ux (x) . 

6.3 Numerical Technique 

The system of nonlinear differential equations (6.9-6.12) along with the boundary 

conditions (6.13) and (6.14) are solved numerically using Runge-Kutta-Fehlberg method after 

converting the above system of boundary value problem into initial value problem with the help 

of shooting technique. The step size LlTJ = 0.001 is used to obtain the numerical solution with 

TJmax, and an accuracy to the fifth decimal place is chosen as the criterion of convergence. 
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6.4 Results and discussions 

Figs. 6.2 - 6.12, present the physical behavior of velocity profiles ['(ry), g'ery), 

temperature profile e (ry) and nanoparticle volume concentration ¢ (ry) against various parameters 

such as Casson fluid parameter f3, Hartmann number M, stretching ratio c, Prandtl number Pr, 

Lewis number Le, Brownian motion parameter Nb , the Thermophoresis parameter Nt and Biot 

number Bi . Fig. 6.2 , demonstrated the effects of non-Newtonain Casson fluid parameter f3 on 

velocity profiles ['(ry) and g'(ry). It is observed that with the influence of f3 implies a decrease in 

the yield stress of the Casson fluid. This effectively facilitates flow of the fluid i.e. accelerates 

the boundary layer flow close to the stretching surfacr, as shown in Fig. 6.3. Moreover, it is 

found that with large values of f3 , the fluid is closer to the Newtonian fluid. From Fig. 6.3, it is 

observed that for higher values of M, it reduces both boundary layer thickens and the magnitude 

of the velocity profiles ['(ry) and g'(ry). Since the magnetic field induces current in the 

conductive fluid, then it creates a resistive-type force on the fluid with in the boundary layer 

which slows down the motion of the fluid. So finally, it is concluded that magnetic field is used 

to control boundary layer separation. Fig. 6.4, exhibits the effects of stretching parameter c on 

the velocity profiles. Present phenomenon reduces to the two-dimensional flow when c = 0 

(g = 0), while for c = 1([ = g) the problem reduces to the axisymmetric flow. Fig. 6.4 depicts 

that for increasing values of the stretching parameter c, it reduces the velocity [' (ry), while g' (ry) 

varies with respect to various values of the stretching parameter c. In fact, increasing values of 

Casson fluid parameter f3 inhance both the temperature e (ry) and nanoparticle concentration 

¢(ry) (see Fig. 6.5). In fact, magnetic fi led is the best source to enhance the temperature and 

nanopartical volume concentration. The effects of magnetic parameter M on the temperature 
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profi le ecry) and nanopartic1e volume concentration ¢Cry) is mentioned in Fig. 6.6. It is 

illustrated that due to increase in M , both the temperature profile ecry) and the nanopartic1e 

volume concentration ¢Cry) increase. Fig. 6.7, demonstrates that the stretching ratio c also affects 

the temperature profile ecry) and nanopartic1e concentration ¢Cry). The effects of Prandtl number 

Pr on e Cry) and ¢ Cry) can be seen in Fig. 6.6. Since Pr is a ratio of viscous diffusion rate to a 

thermal diffusion rate, so for higher Prandtl number causes the thermal diffusivity to reduce. 

Consequently, for higher values of Pr, the temperature profile e Cry) and the nanopartic1e volume 

concentration ¢Cry) illustrate the decreasing behavior. It is also illustrated from Fig. 6.9 that both 

temperature and nanoparticles volume concentration present the opposite behavior for higher 

values of Le when it is compared with the Fig. 6.6. In Figs. 6.10 and 6.11, we have discussed the 

behavior of both temperature profile ecry) and nanopartic1es volume fraction ¢Cry) for two main 

parameters of nanopartic1es namely: Brownian motion Nb and thermophoresis parameter Nt. 

Hypothetically, enhanced thermal conductivity of a nanofluid is mainly due to Brownian motion 

N b which producing micro-mixing. As expected, temperature is an increasing function of 

Brownian motion parameter (see Fig. 6.10). However, for large values of the Brownian motion 

parameter, it reduced the nanoparticle volume concentration. On the other hand, it is observed 

from Fig. 6.11 that for higher values of thermophoresis parameter Nt , both the temperature and 

nanopartic1e volume concentration are increasing. Comparatively, it is examined from Figs. 6.10 

and 6.11, that there is an enhancement in the temperature profile with respect to large values of 

both Brownian and thermophoresis parameters, however opposite behavior predicted for 

nanopartic1es volume concentration with the increase of Brownian and thermophoresis 

parameters. Effects of Biot number Bi on the temperature is illustrated in Fig. 6.15. Physically, 

Biot number is expressed as the convection at the surface of the body to the conduction within 
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the surface of the body. When thermal gradient applied on the surface then the ratio governs the 

temperature inside a body varies significantly, while the body heats or cools over a time. 

Normally, for uniform temperature field inside the surface we consider Bi « 1. However, 

Bi » 1 depicts that temperature field inside the surface is not uniform. In Fig. 6.11 , we have 

discussed the effects of Biot number Bi on temperature profile (J(T!) in three ways . The first one 

is the case when B i < 1. It is observed from Fig. 6.11 that for smallest values of the Biot number 

(Bi < 1), the variation of temperature within the body is slight and can reasonably be 

approximated as being uniform. While in the second case, for B i > 1 depicts that the 

temperature within the body do not performing uniform behavior (see Fig . 6.12). The third and 

last case relates when we consider the value of Biot number tends to infinity (Bi ~ (0) 

correspond to the case of constant wall temperature (see Fig. 6.12) . 

Effects of physical parameters on skin fri ction coefficients are presented in Figs . 6.13 (a) 

and 6.13(b). Table 6.1 shows that the excellent comparison has been achieved with the earlier 

work of Ahmad and Nazar [18] and Nadeem et al [27] for (1 + (l/{3))f//(O) and (1 + 

(l/{3))cg//(O). We prominently observed that ill the Figs. 6.13 (a) and (b), Newtonian 

nanofluid produces the low friction at the wall as compared to non- Newtonian nanofluid. 

Consequently, it is observed that with an increase of both stretching ratio parameter c and non­

Newtonian fluid parameter (3 causes retardation in the fluid motion in both x and y directions at 

the surface. Figs. 6.14(a) - 6.14(b) shows that for higher values of {3, both local Nusselt and 

Sherwood numbers decreases with an increase of c. Table 6.2 present the comparison for local 

Nusselt number Re;1/2 Nux and the local Sherwood number Re;1/2Shx with results of Khan 

and Pop [34], in the absence of M and c when Pr = 10, Le = 1 and {3 ~ 00 . From Fig. 6.15, 

increasing values of Brownian motion parameter Nt caused the local Nusselt number (J' (0) to 
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reduce with Nt. From Fig. 6.14, local Sherwood number cp' (0) increases with an increase in 

Brownian motion parameter Nb. So it is observed from this phenomenon that there is low 

thermal conductivity for higher Prandtl number. Table 6.3 shows the numerical values of the 

local Nusselt number Re;1/2 Nux and the local Sherwood number Re;1/2 Shx when c = M = 

f3 = Bi = 0.5, Pr = 4 and Le = 1. 
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Fig 6. 2: Effect of f3 on velocities ['("ry) and g ' ("ry). 
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Fig 6.6: Effect of M on temperature e(ry) and nanoparticle volume concentration ¢(ry). 
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Fig 6.15: Variation of local Nusselt number Re;1/2 Nux and Sherwood number Re;1/2 Shx with 

Nb and Nt. 

Table 6. 1: Comparison of Numerical Values for local Nusselt number and the Sherwood 

number in the absence of M and c when Pr = 10, Le = 1, Nb = 0.1, Bi ~ 00 and f3 ~ 00. 

Present results M = c = 0 Khan and Pop [34] 

Nt -8' (0) - cp'(O) -8'(0) - cp'(O) 

0.1 0.9524 5.1294 0.9524 5.1294 

0.2 0.6932 5.2732 0.6932 5.2740 

0.3 0.5201 5.5286 0.5 201 5.5286 

0.4 0.4026 5.7952 0.4026 5.7952 

0.5 0.3211 6.0351 0.3211 6.0351 
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Table 6.2: Comparison of numerical results with present study for skin friction coefficients in 
the absence of heat transfer and nanopartilces. 

c = 0 c = 0.5 c = 1 

M2 f3 1 1 C) ! C) ! - CfxRe; - CfxRe; - y CfyRe; - y CfyR e; 

0 00 1.0042 1.0932 0.4653 1.1748 

(Ref [18]) (Ref [18]) (Ref [18]) (Ref [18]) 

5 . 1.0954 1.1974 0.5096 1.2857 

(Ref [27]) (Ref [27]) (Ref [27]) (Ref [27]) 

1 1.4142 1.5459 0.6579 1.6599 

(Ref [27]) (Ref [27]) (Ref [27]) (Ref [27]) 

10 00 3.3165 3.3 420 1.6459 3.3667 

(Ref [18]) (Ref [18]) (Ref [18]) (Ref [18]) 

5 3.6331 3.6610 1.8030 3.6886 

(R ef [27]) (R ef [27]) (R ef [27]) (R ef [27]) 

1 4 .6904 4.72 63 5.3276 4.762 0 

(Ref [27]) (Ref [27]) (Ref [27 ]) (Ref [27]) 

100 00 10.049 10.058 5.0208 10.066 

(Ref [18]) (Ref [18]) (Ref [18 ]) (Ref [18]) 

5 11.0091 11.018 2 5.5000 11.0272 

(R ef [27]) (R ef [27]) (R ef [27]) (R e f [27]) 

Table 6.3: Numerical Values of present study for local Nusselt number and Sherwood number 

when c = M = f3 = Bi = 0.5, Pr = 4 and Le = 1. 

Nb = 0.3 Nb = 0.5 Nb = 0.7 

Ntt - 8'(0) - ¢'(O) - 8'(0) - ¢'(O) - 8'(0) - ¢'(O) 

0.3 0.293872 1.585361 0.223435 1.671176 0.152409 1.702893 

0.5 0.2 77199 1.584743 0.2 01045 1.714678 0.130133 1.754949 

0.7 0.258084 1.617605 0.177710 1.774545 0.109759 1.810687 

0.9 0.236659 1.684341 0.154751 1.844936 0.092151 1.865292 
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6.5 Final remarks 

Three dimensional MHD boundary layer flow for Casson fluid model over a stretching sheet 

along with the convected condition and radiation effects are investigated numerically. Moreover, 

effects for various values of emerging parameters are discussed for velocities ['Cry), glCry), 

temperature ecry) and nanopartic1e volume concentration cpCry) . The main results of present 

analysis are listed below. 

• Hartmann number M, Casson fluid parameter f3 and stretching parameter c reduce for the 

velocity profiles in both x and y directions. 

• Hartmann number M and Casson fluid parameter f3 contribute to the increasing behavior 

while stretching parameter c shows the decreasing behavior for both temperature e Cry) 

and nanoparticle volume concentration cpCry). 

• Opposite trend is found when the results of temperature profile e Cry) for N band Nt are 

compared. 

• Effects of both Nb and Nt on nanoparticle volume concentration cpCry) show the quite 

opposite behavior. 

• Effects of Le on both temperature ecry) and nanopartic1e concentration cpCry) shows the 

opposite behavior. 

• Convective parameter B i shows the same increasing behavior for both temperature e Cry) 

and nanopartic1e volume concentration cp Cry). 

• It is found that Newtonian nanofluid provides lower skin friction and heat transfer rates 

as compared to non-Newtonian nanofluid with the increase of stretching ratio parameter. 
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Chapter 7 

Numerical study of MHD boundary layer flow of a 
Maxwell fluid past a stretching sheet in the presence of 
nanoparticles 

7.1 Introduction 

In the present article, two dimensional boundary-layer flow and heat transfer of Maxwell 

fluid past a stretching sheet is studied numerically. The effects of magnetohydrodynamic (MHD) 

and elasticity on the flow are considered. Moreover, effects of nanoparticles are also 

investigated. Similarity transformations are defined to convert the governing nonlinear partial 

differential equation to ordinary differential equations. The reduced boundary layer equations of 

Maxwell nanofluid model are solved numerically. The effects of emerging parameters , namely, 

magnetic parameter M, elastic parameter K, Prandtl parameter Pr, Brownian motion Nb, 

thermophoresis parameter Nt and Lewis number Le on temperature and concentration profile are 

discussed. Interesting results are shown graphically. The skin friction coefficient, dimensionless 

heat transfer rate and concentration rate are also plotted against the flow control parameters. 

7.2 Problem Formulation 

Consider two-dimensional steady incompressible fluid past a stretching sheet. In addition, 

The fluid is saturated with nanoparticles and imposed with MHD effects while the sheet is 

stretching with the plane y = O. The flow is assumed to be confined to y > O. Here we 

assumed that the sheet is stretched with the linear veloci ty u( x) = ax, where a > 0 is a 

constant and x - axis is measured along the stretching surface. A uniform constant magnetic 
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field is applied normal to the stretching surface. The effects of the induced magnetic field are 

negligible. The boundary layer equations of the Maxwell fluid in the presence of nanoparticles 

are [28], 

(7.1) 

(7.2) 

(7 .3) 

(7.4) 

where u and v denote the respective velocities in the x - and y - directions respectively, p is 
f 

the density of the base fluid, 1/ is the kinematic viscosity of the fluid, a is the electrical 

conductivity, Eo is the magnetic induction, ko is the relaxation time of the upper convection 

Maxwell (UeM) fluid, a is the thermal diffusivity, T is the fluid temperature, C the 

nanoparticle volume concentration, Tw and Cw are the temperature of fluid and nanoparticle 

fraction at wall respectively, DB is the Brownian diffusion cofficent, DT is the thermophoretic 

diffusion coefficient, T = (pc)p / (pc)! is the ratio between the effective heat capacity of the 

nanoparticle material and heat capacity of the fluid, C is the volumetric volume expansion 

coefficient and Pp is the density of the particles, when y tends to infinity then the ambient 
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values of T and C are denoted by Too and C oo ' The associated boundary conditions for Eqs. 

(7.2)-(7.4), are 

u = uw(x) = ax, v = 0, 

u=O v=O T=T , , 00' 

T = T C = C at y = 0, w' w 

C = Coo as y ----7 00. 

Introducing the following similarity transformations 

1/) = (al/?/2x!(ry), 

C-C 
¢( T)) = C _ COO , 

w 00 

T-T 
e( ) - 00 
T)-T_T ' 

T) = ~y, f ;; 

w 00 

(7.5) 

(7.6) 

where the stream function 'IjJ is defined as u = a", and v = - aa'I/J . Making use ofEq. (7 .6), ay x 

the equation of continuity is identically satisfied and Eqs. (7.2) - (7.4) along with (7.5) take the 

following forms 

e" + Pr[Je' + Nb(e'¢') + Nt(e')2] = 0, 

¢" + L e Pr(J¢ ') + Nt e" = 0, 
Nb 

!(O) = 0, 1'(0) = 1, 1'(00) = 0, 

8(0) = 1, 8(00) = 0, 

¢ (O) = 1, ¢(oo) = 0. 

(7.7) 

(7.8) 

(7 .9) 

(7.10) 

In these expressions, M2 = a B; / pa is the Hartmann number, K = aka (~ 0) is the elastic 

parameter, Pr = 1/ / a is the Prandtl number, Nb = (pc) p DB (C w - Coo ) / /,J(pc) / is the 

Brownian motion, Nt = (PC)pDT(Tw - Too ) / I/Too (pc)/ is the thermophoresis parameter, 
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Le = a / DB the Lewis number. Expressions for the local skin friction coefficient Cf , local 

Nusselt number Nu and the local Sherwood number Sh are 

(7.11) 

where T w is the wall shear stress, qwand qm are the heat flux and mass flux, respectively. 

[au l ' [ aT 1 [ a C 1 T w = p,(l + K) - ) q = -a - ) q = - D - . 
ay y=o w ay y=o m B ay y=o 

(7 .12) 

Dimensionless form of Eq. (7.12) takes the following form 

(7 .14) 

In the above equation, Rex = u (x)x / v is local Reynolds number based on the shrinking 
w 

velocity U w (x). 

7.3 Results and discussions 

The nonlinear coupled ordinary differential equations (7.7)-(7.9) subject to the boundary 

conditions (7.10) have been solved numerically by using a Runge-Kutta-Fehlberg method with 

shooting technique. Figs . 7.1-7 .6 illustrate the behavior of emerging parameters such as magnetic 

parameters M, elastic parameters K, Prandtl parameter Pr , Brownian parameter Nb, 

thermophoresis parameter Nt and Lewis number Le for velocity profile 1'( 'T!), temperature 

profile eery) and nanoparticJe volume concentration ¢('T!). Fig. 7.1 presents the velocity, 

temperature and nanoparticJe volume concentration obtained for various values of magnetic 

parameter M, while the values of the rest of the parameters are taken to be fixed. It is seen from 
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Fig. 7.1, both temperature profile and nanopartic1e volume concentration show the increasing 

behavior for increasing values of M. However, velocity profile f I ('T)) shows the decreasing 

behavior for increasing values of M (see Fig. 7.1) . On the other hand, boundary layer thickness 

reduced for higher values of M. Physically. M is normal to the fluid so for higher values of M it 

raises the temperature and nanopartic1e fraction, and resists the fluid flow. From Fig. 7.2, it is 

observed that velocity profile 1'( 'T)) increases with an increase of elastic parameter K. On the 

other hand, temperature profile e( 'T)) and nanopartic1e volume concentration reduces for higher 

values of K (see Fig. 7.2). It is observed from Fig. 7.2, opposite trend is found for both velocity 

profile 1'( 'T)) and temperature profile B( TJ) for higher values of elastic parameter K. Hence the 

boundary layer thickness decreases for same values of K. Physically, it is observed that an 

increase in the elastic parameter will increase the resistance of fluid motion. Table 7.2 illustrates 

the excellent agreement of [34] in the absence of both magneto-hydrodynamic and non­

Newtonian effects. As expected, it is found from Fig. 7.3 that both the temperature profile and 

nanoparticle volume concentration profiles demonstrate, decreasing behavior with the influence 

of Pro Consequently, boundary layer thickness decreases drastically with an increase in Pr. It is 

illustrated from Fig. 7.4, that both temperature and nanopartic1e volume concentration exhibit the 

similar behavior when these are compared with Fig. 7.3 for higher values of Le. Effects of 

Brownian motion and thermophoresis parameter on temperature profile B( TJ) and nanopartic1e 

volume concentration ¢(TJ) are shown in Figs. 7.5 and 7.6. It is observed from Figs. 7.4 and 7.5 

that for higher values of both Nb and Nt, it raises the temperature profile. However, Fig. 7.4 

shows opposite behavior for nanopartic1e volume fraction when it is compared with the Fig. 7.5 

for increasing values of both Nb and Nt. Consequently, boundary layer thickness reduces for 

increasing values of both Nb and Nt (see Fig. 7.4 and 7.5) . In the absence of both nanoparticles 
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and non-Newtonian effects, there is an excellent agreement with [29J, That is validated in Table 

7.1. The effects of magnetic parameter, elastic parameter, Prandtl number, Brownian parameter, 

thermophoresis parameter and Lewis number on the skin friction (1 + K)f"(O) , Nusselt number 

e'(O) and Sherwood number ¢ '(O) are presented in Figs. 7.7-7.15. It is seen from Fig. 7.7 that 

higher values of K reduces the skin friction . Variation of both Nusselt and Sherwood numbers 

with the variation of both magnetic parameter M and Prandtl number Pr are shown in Fig. 7.6 . It 

is found that increasing values of both magnetic parameter M and Prandtl number Pr , opposite 

behavior is found for Nusselt and Sherwood numbers. It is noticed that for increasing values of 

K, both Nusselt and Sherwood number show the increasing behavior with M (see Figs. 7.9 and 

7.10). Fig. 7.11, depicts the effect of Brownian parameter Nb on Nusselt number e'(O) for 

various values of Pr and Le. It is observed through Fig. 7.11 , that higher values of Nb reduce 

the Nusselt number for both the cases when Pr < Le or Pr > Le. On the other hand, it 

increases the Sherwood number ¢'(O) with higher values of Brownian motion Nb for various 

values of both Prandtl number and Lewis number (see Figs. 7.12). Finally, it is point out that 

there is low thermal conductivity for higher Prandtl number. Consequently, it reduces the 

conduction while the heat transfer rate increases at the surface of sheet. 
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Fig 7.2: Variation of velocity, temperature and nanoparticle volume concentration for various values of K. 
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Table 7.1: Comparison of numerical values for reduced Nusselt number R e-;1/2 Nux in the 

absence of nanoparticle volume concentration and M = K = 0 . 

Pr Present results for -8 '(0) Wang [15J 

0.7 0.4582 0.4539 

5.0 0.9114 0.9114 

5.0 1.8954 1.8954 

20 6.3539 6.3539 

70 6.4622 6.4622 

Table 7.2: Comparison of numerical values for reduced Nusselt number Re-;1/2 Nux and the 

reduced Sherwood number R e-;1/2 Sh in the absence of MHD and elastic parameter when 

Pr = 10, L e = 1 and Nb = 0.1. 

Present results K=M=O Khan and Pop [34] 

Nt -8'(0) -¢'(O) -8'(0) -¢'(O) 

0.1 0.9524 5.1294 0.9524 5.1294 

0.2 0.6932 5.2732 0.6932 5.2740 

0.3 0.5201 5.5286 0.5201 5.5286 

0.4 0.4026 5.7952 0.4026 5.7952 

0.5 0.3211 6.0351 0.3211 6.035 1 
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Table 7.3: Numerical Values for reduced Nusselt number Re;;1/2 Nux and the reduced 

Sherwood number Re;;1/2Sh in the absence of MHD and elastic parameter when M=K=O.5, 

Pr = 10, Le = 1. 

Nt Nt Nt 

Nb J, - 8'(0) -¢ '(O) -8 '(0) -¢'(O) -8'(0) - ¢'(O) 

0.3 0.1352377 5.6037108 0.02907331 5.4936149 0.0055097 5.4275213 

0.5 0.0831079 5.7467530 0.01787829 5.5683772 0.0033966 5.4756505 

0.7 0.0570193 5.8405019 0.01226842 5.6166732 0.0023337 5.5071765 

7.4 Closing remarks 

In this study we have presented the effect of MHD boundary layer flow of Maxwell 

nanofluid over stretching sheet. The effects of elastic parameter, Brownian motion and 

thermophoresis parameters are also discussed. Numerical solutions for velocity, temperature and 

nanoparticle fraction are developed and discussed. The main results of present analysis can be 

listed below. 

• Influences of M and J{ on temperature profile and nanopartic1e fraction are opposite. 

• Both temperature and nanopartic1e volume concentration give same behavior for Pr and 

L e . 

• Influences of Nb and Nt on temperature profile are similar. 

• Influences of Nb and Nt on nanopartic1e volume are opposite. 

• The magnitude of the reduced Nusselt numbers decreases for higher values of Nb. The 

magnitude of the reduced Sherwood numbers increases for higher values of Nb. 
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Chapter 8 

Numerical Solution of Jeffrey Nanofluid Flow over a 
Stretching Sheet 

8.1 Introduction 

In the presentation chapter, the steady flow of a Jeffrey fluid model in the presence of 

nanoparticles is studied. Similarity transformation is used to convert the governing partial 

differential equations to a set of coupled nonlinear ordinary differential equations which are 

solved numerically. Behavior of emerging parameters are presented graphically and discussed 

for velocity, temperature and nanoparticles volume concentration. Variation of the reduced 

Nusselt and Sherwood number against physical parameters are presented graphically. In 

conclusion section, it is found that the reduced Nusselt number is a decreasing function while the 

reduced Sherwood number is increasing function of Brownian parameter Nb and 

thermophoresis parameter Nt. 

8.2 Problem Formulation 

Consider two-dimensional steady incompressible fluid past a stretching sheet. In addition , 

nanoparticles are saturated within the fluid while the sheet is stretching with the plane y = 0 . 

The flow is assumed to be confined to y > O. In the present case, we assumed that the sheet is 

stretched with the linear velocity U IY (x ) = ax , where a > 0 is a constant and x - axis is 

measured along the stretching surface. The boundary layer equations of Jeffrey fluid saturated 

with nanoparticles are, 
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(8.1) 

(8.2) 

(8.3) 

(8.4) 

where u and v denote the respective velocities in the x-and y - directions respectively, 

r = ~;;; is the ratio between the effective heat capacity of the nanoparticles material and heat 

capacity of the fluid, PI is the density of the base fluid, v is the kinematic viscosity of the fluid, 

(Y is the electrical conductivity, P being the density of the fluid, A and A, are ratio of 

relaxation to retardation times and retardation time respectively, a is the thermal diffusivity, T 

the fluid temperature, e the nanoparticles volume concentration, Tw and C w are the temperature 

of fluid and nanoparticles volume concentration at wall respectively, DB is the Brownian 

diffusion coefficient, DT is the thermophoretic diffusion coefficient, e is the volumetric 

volume expansion coefficient, p I' is the density of the particles . When y tends to infinity 

then the ambient values of T and e are denoted by T~ and e~ . The associated boundary 

conditions of Eqs. (8 .2)-(8.4) are 

u = u • .(x) = ax, v = 0, T = Til" e = ell' at Y = 0, 

u=O, v=O, u =0, T=T~, e=e~asY--7oo . 
.' 
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Introducing the following similarity transformations 

Ij/= Cav)"24 Cr;), 8Cr;) = T -T~ 
Tw -T~ 

(8 .6) 

where the stream function IjI is defined as u = ~~ and v = - ~~ . Making use of Eq.(8.6), the 

equation of continuity is identically satisfied and Eqs. (8.2) to (8.4) along with (8.5) take the 

following form 

eN + Pr{f8' + Nb(B'¢') + Nt(eY} = 0, 

¢ "+ Le Pr(f ¢ ') + Nt e" = 0, 
Nb 

f(O) = 0, f'(O) = 1, 1'(00) = 0, f "(oo) = ° 
8(0) = 1, 8(00) = 0, 

¢(O) = 1, ¢(oo) = 0. 

(8.7) 

(8.8) 

(8 .9) 

(8.10) 

(8.11) 

(8.12) 

In these expressions f3 = ~ c is Deborah number, Pr = v / a is the Prandtl number, 

Nb = (pc) p DB (Cw - C~) / v(pc) I represents the Brownian motion · parameter, 

Nt = (pc) pDT (T.v - T~) / vT~ (pc) I is the therrnophoresis parameter, Le = a / DB is the Lewis 

number. Expressions for the local Nusselt number Nu and the local Sherwood number Sh are 

defined as, 
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(8.13) 

where q. and q", are the heat flux and mass flux, respectively. 

a( 0T) (OC) q =- - q =-D -
W oy _'m Hoy' 

y-O y;() 

(8.14) 

Dimensionless form ofEq. (8.13) takes the form 

Re- l12 N = - B'(O) Re- I1 2 Sh = -""(0) x Ux 'x x 'r , (8.15) 

where Re x == U w (x)x / v is the local Reynolds number based on the stretching velocity U
IV 

ex). 

8.3 Results and discussions 

The above system of ordinary differential equations (8.7)-(8 .9) along with the boundary 

conditions (8.10)-(8 .12) are solved numerically. In the present section our main emphasis is to 

discussed the emerging parameters such as Deborah number /3, ratio of relaxation to retardation 

times parameter A, Prandtl parameter Pr, Brownian parameter Nb, thermophoresi s parameter 

Nt and Lewis number Le for velocity profile j'(1'/) , temperature profile B(1'/) and 

nanoparticles volume concentration tjJ(1'/) . Fig. 8.1(a) depicts the effects of /3 on velocity, 

temperature and nanoparticles volume concentration. It is seen from Fig. 8.1 (a) that for higher 

values of Deborah number /3 , the velocity profile increases, while the boundary layer thickness 

decreases gradually. On the other hand, with an increase of /3, both temperature and 

nanoparticles volume concentration profiles reduce. From Fig. 8.1(b), the effects of A on 

velocity, temperature and for nanoparticles volume concentration are quite when they are 

compared with Fig. 8.1 (a). It is postulated that an increases in elastic parameter will increase the 
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res istance of fluid motion. So in the absence of non-Newtonian effects, the present model 

reduces to the Newtonian model for nanofluid , which presents excellent agreement with results 

of Khan and Pop [34]. In Figs. 8.2(a) and 8.2(b) , we have discussed the behavior of both 

temperature profile 8(77) and nanoparticles volume concentration ¢(77) for two main parameters 

of nanoparticles such as Brownian motion Nb and thermophoresis parameter Nt. Hypothetically, 

enhanced thermal conductivity of a nanofluid is mainly due to Brownian motion which 

producing micro-mixing. As expected, temperature is an increasing function of Brownian 

parameter (see Fig. 8.2(a)). Whereas, large values of Brownian motion parameter reduces the 

nanoparticles volume concentration. On the other hand, it is observed from Fig. 8.2(b) that for 

higher values of Thermophoresis parameter Nt, both temperature and nanoparticles volume 

concentration are increasing. Comparatively, it is examined from Fig. 8.2(a) and 8.2 (b) , there is 

an enhancement in temperature with respect to large values of both Brownian and 

thermophoresis parameter while, opposi te behavior can be observed for nanopartides volume 

concentration with the increase of Brownian and thermophoresis parameters (see Figs. 8.2(a) and 

8.2(b)) . The effects of Prandtl number Pr on 8(77) and ¢(77) can be seen in Fig. 8.3(a), Since Pr 

is a ratio of viscous diffusion rate to the thermal diffusion rate, thus higher Prandtl number 

reduces the thermal diffusivity. Consequently, same sort of results appear for Pr in Fig. 8.3(a) for 

higher values of Pr it decreases both temperature and nanoparticles volume concentration. It is 

also illustrated from Fig. 8.3(b) that both temperature and nanoparticles volume concentration 

show the opposite behavior for higher values of Le. 

Table 8.1 and 8.2, present that excellent comparison between the present results with the 

results of Khan and Pop [34] for local Nusselt number 8'(0) and Sherwood number¢'(O). From 

Tables. 8.1 and 8.2, it is found that in the absence of non-Newtonian effects for present model 
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reduces to the Newtonian model with nanoparticle effects. Table 8.3 present the numerical 

values of both Brownian motion and thermophoresis parameters in the presence of non­

Newtonian parameters ({3 = A. = 0.5), when Pr = 10 and Le = 1. Effects of physical parameters 

on non-dimensional Nusselt number e'(O) and Sherwood number ¢'(O) are also presented 

through Figs. 8.4-8.7. From Figs. 8.4 and 8.5, for increasing values of Brownian motion 

parameter it reduces the Nusselt number e'(O) for different values of Pr and Le. In both cases 

either we take higher values of Pr (see Fig. 8.4(a) and 4.6 (b)) or higher values of Le (see Fig. 

8.S(a) and 8.S(b) ) same sort of behavior can be seen on reduced Nusselt number e'(O) for 

higher values of Brownian motion parameter Nb. From Figs. 8.6 and 8.7, Sherwood number 

¢ '(O) increases or decreases with an increase in Brownian motion parameter Nb , Prandtl 

number Pr and Lewis number Le. Finally it is observed from these phenomena that there is a 

low thermal conductivity for higher Prandtl number and concentration profile varies with respect 

to higher or lower values of Prandtl number. 
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Table 8.1: Comparison of Numerical Values for local Nusselt number Re- l12 Nu in the x x 

absence of non-Newtonian effects i.e (fJ = A = 0) when Pr = 10 and Le = 1. 

Nb = 0.1 Nb=O.3 Nb = 0.5 

Nt J, Khan and Present study Khan and Present study Khan and Present study 

Pop [34] Pop [34] Pop [34] 

-B'(O) J- -B'(O) J- -B'(O) J- -B'(O) J- -B'(O) J- -B'(O) J-

0.1 0.9524 0.95247 0.2522 0.25223 0.0543 0.05433 

0.3 0.5201 0.52013 0.1 355 0.13554 0.029 1 0.029 18 

0.5 0.3211 0.32110 0.0833 0.08336 0.0179 0.01794 

Table 8.2: Comparison of numerical values for local Sherwood number Re~ 1 /2 Sh. in the 

absence of non-Newtonian effects i.e (fJ = A = 0) when Pr = 10 and Le = 1. 

Nb = 0.1 Nb = 0. 3 Nb = 0.5 

Nt J, Khan and Present study Khan and Present study Khan and . Present study 

Pop [34] Pop [34] Pop [34] 

-¢'(O) J- -¢'(O) J- -¢ '(O) J- -¢'(O) J- -¢ '(O) J- -¢'(O) J-

0.1 5.1294 5.12946 5.4100 5.41002 5.3836 5.3836 

0.3 5.5286 5.52861 5.6088 5.60881 5.4984 5.4984 

0.5 6.0351 6.03515 5.75 19 5.75199 5.5731 5.5731 

Table 8.3: Numerical values for reduced Nusselt number Re~1/2 Nux and the reduced 

Sherwood number Re~ 1 /2 Sh. in the presence of the effects of non-Newtonian fluid when 

A = 0.5, fJ = 0.5, PI' = 10 and Le = 1. 

Nt = 0.1 Nt = 0.3 Nt = 0.5 

Nb J, -B '(O) J- -¢ '(O) J- -B'(O) J- -¢ '(O) J- -B '(O) J- -¢'(O) J-

0.1 -1.7 10019 -0.763686 -1.302975 5.308676 -0.990168 5.798262 

0.3 -1.144226 -0.311453 -0.845832 -0.042291 -0.62808~ -0.003197 

0.5 -0.708856 -0.499848 -0.509359 -0.439533 -0.370789 -0.458568 

0.7 -0.402155 -0.562068 -0.2821123 -0.563054 -0.202194 -0.59 1438 
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8.4 Concluding points 

In the present study we have presented the effect of nanoparticles for Jeffrey fluid over a 

stretching sheet. The effects of elastic parameter, Brownian motion and thermophoresis 

parameters are also discussed. Numerical solutions for velocity, temperature and nanoparticle 

volume concentration are developed and discussed. The main results of present analysis can be 

listed below. 

• Effects of fJ and A are opposite for velocity and temperature profiles. 

• Both Pr and Le give same behavior for temperature. 

• Effects of Nb and Nt for temperature profile are similar. 

• Effects of Nb and Nt for nanopartic1e volume concentration are opposite. 

• The magnitude of the reduced Nusselt numbers decreases for higher values of Nb. 

• The magnitude and direction of the local Sherwood numbers varies with an increase or a 

decrease of both Pr and Le. 

127 



Chapter 9 

Numerical study of boundary layer flow and heat 
transfer of Oldroyd-B nanofluid towards a stretching 
sheet 

9.1 Introduction 

In the present article we considered two-dimensional steady incompressible Oldroyd-B 

fluid past a stretching sheet saturated with nanoparticles. Using the similarity transformation, 

reduce the system of nonlinear partial differential equations will reduce into the system of 

nonlinear ordinary differential equations . The coupled governing nonlinear equations are then 

solved numerically. Numerical results are presented graphically to see the physical behaviors of 

the involved fluid parameters namely Deborah numbers /31 and /32' Prandtl number Pr, 

Brownian motion Nb, thermophoresis parameter Nt and Lewis number Le on velocity, 

temperature and nanoparticle volume concentration profile are discussed. Interesting results are 

shown graphically. The Nusselt and Sherwood numbers are also computed numerically and 

plotted against the flow control parameters. To see the validity of the present results, we have 

made the comparison of present results with the existing literatures through tables. 

9.2 Problem Formulation 

Consider two-dimensional steady incompressible Oldroyd-B fluid pas t a stretching sheet. 

In addition, nanoparticles are saturated within the fluid, while sheet is stretching along the plane 

y = O. The flow is assumed to be confined to y > O. Here we assumed that the sheet is stretched 

with the linear velocity u(x) = ax, where a> 0 is constant and x-axis is measured along the 
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stretching surface. The boundary layer equations of Oldroyd-B fluid model along with the 

thermal energy and nanoparticles equations for nanofluids are, 

OU + ov = 0 
ox oy , 

Slit ---

)' 

L, 
Nanopa·rticles 

Stretching sheet 

Fig 9.1: Geometry of the problem. 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

where u and v denote the respective velocities in the x-and y - directions respectively, p 
f 

is the density of the base fluid, v is the kinematic viscosity of the fluid, a is the electrical 

conductivity, A, and ,12 are the relaxation and retardation times, a is the thermal diffusivity, T 
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is the fluid temperature, e is the nanoparticle volume concentration, TIV and ew are the 

temperature of fluid and nanoparticle volume concentration at the wall respectively, DB is the 

Brownian diffusion . coefficient, DT IS the thermophoresis diffusion coefficient, 

r = (pc) p / (pc) f is the ratio between the effective heat capacity of the nanoparticle material 

and heat capacity of the fluid , e is the volumetric volume expansion coefficient and Pp is the 

density of the particles . When y tends to infinity then the ambient values of T and e are 

denoted by T~ and C~ . The associated boundary conditions ofEqs. 9.2-9.4 are 

u = uw(x) = ax, v = 0, T = T.v' e = ew at y = 0, 

u = 0, v = 0, T = T~ , e = e~ as y -7 00. 

Introducing the following similarity transformations 

'If = (av)1/2 4(17), 

(9.5) 

(9.6) 

where the stream function 'If is defined as u = * and v = - ¥X-. Making use of Eq. (9.6), 

equation of continuity is identically satisfied and Eqs. (9.2)-(9.4) along with (9.5) take the 

following form: 

fJ If + Pr(ffJ' + Nb(fJ'¢') + Nt(fJY ) = 0, 

¢ "+ Le Pr(f ¢ ') + Nt fJ If = 0, 
Nb 

f(O) = 0, f'(O) = 1, f'(oo) =0, f "(oo) = 0, 

(9.7) 

(9.8) 

(9.9) 

(9 .10) 
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0(0) = 1, 0(00) = 0, (9 .11) 

¢(O) = 1, ¢(oo) =0. (9 .12) 

Here prime indicates differentiation with respect to 'T/, PI = a;1, and P2 = aA2 are the Deborah 

numbers in terms of relaxation and retardation times, respectively, Pr = V / ex is the Prandtl 

number, Le = a / DB is the Lewis number, Nb = (pC)pDB (Cw -C~ ) / v(pc)/ is the Brownian 

motion and Nt = (pc) pDT Cr. .. - T~ ) / vT_ (pc) / is the thermophoresis parameter. Expressions for 

the local Nusselt number Nu and the local Sherwood number Sh are 

(9.13) 

where q . and q. are the heat flux and mass flux, respectively. 

(aT) (ac) q =-(X - q = -D -•. ay y~O 'no B ay y~O • 
(9.14) 

Dimensionless form of Eq. (9.13), takes the following form 

(9 .15) 

where Re = u (x)x / v is the local Reynolds number based on the stretching velocity u .. (x). 
x • 

9.3 Results and discussions 

The nonlinear coupled ordinary differential equations (9.7)-(9.9) subject to the boundary 

conditions (9.10)-(9.12) have been solved numerically by using Runge-Kutta-Fehlberg method 

with shooting technique. Figs. (9.2)-(9.7) illustrate the behavior of emerging parameters such as 

relaxation time constant PI' retardation time constant P2' Prandtl parameter Pr, Brownian 
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parameter Nb, thermophoresis parameter Nt and Lewis number Le for velocity profile 1'(77), 

temperature profile (J(77) and nanoparticle fraction ¢(77). Fig. 9.2, depicts the variation of Pion 

f'(77), (J(77) and ¢(77). Since PI is a function of relaxation time ~ and due to viscoelastic 

properties of fluid it always resists the motion of the fluid. As a result, velocity profile 1'(7J) and 

the boundary layer thickness are decreasing functions of PI. On the other hand, both temperature 

profile (J(77) and nanoparticle volume concentration ¢(7J) increase with an increase of Deborah 

number PI (see Fig. 9.2). Physical behavior of Fig. 9.2 is due to an increase in retardation time 

of any material enhances the flow . Consequently, with an increase of P2' velocity profile 

increases and both temperature and nanoparticle volume concentration decrease (see Fig. 9.2). 

Thus, it is concluded that PI and P2 has opposite results on f'(77), (J(77) and ¢(7J) due to 

relaxation and retardation times, respectively (see Fig. 9.2 and 9.3). 

Physically it is observed that an increase in elastic parameter will increase the resistance 

of fluid motion. Table 9.1, illustrates the excellent agreement with results of Khan and Pop [34] 

in the absence of non-Newtonian parameters PI and P2. As expected, it is found from Fig. 9.4, 

that both temperature profile and nanoparticle volume concentration demonstrate the decreasing 

behavior with the increase of Pr. It is illustrated from Fig. 9.5, both temperature and 

nanoparticle fraction show the same behavior when they are compared with Fig. 9.4, for higher 

values of Le. Consequently, boundary layer thickness decreases indefinitely with an increase in 

Pr. Effects of Brownian motion and thermophoresis parameter on temperature profile (J(77) and 

nanoparticle volume concentration ¢(77) are shown in Figs. 9.6 and 9.9. It is observed from Figs. 

9.6 and 9.7, that for higher values of both Nb and Nt , the temperature profile arises . On the 

other hand, Fig. 9.6 shows opposite behavior for nanoparticle volume concentration when it is 
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compared with Fig. 9.7, for increasing values of both Nb and Nt. In fact, in the absence of both 

nanoparticles and non-Newtonian effects, there is an excellent agreement with Wang [15] that 

can be seen in Table 9.9. The effects of elastic parameter, Prandtl parameter, Brownian 

parameter, thermophoresis parameter and Lewis number on the Nusselt number 8'(0) and 

Sherwood number ¢'(O) are presented in Figs . 9.8-9.11. It is seen from Figs. 9.8 and 9.9 that the 

variation of Nusselt number 8 '(0) with N t reduces in both cases when PI' is less or greater 

than Le for Nb=0.3, 0.5 and 0.7 while the rest of the parameters are fixed. On the other hand, it 

increases the Sherwood number ¢'(O) for higher values of Brownian motion Nb for various 

values of both Prandtl number and Lewis number (see Fig. 9.10 and 9.11 ). Finally, it is depicted 

that there is low thermal conductivity for higher Prandtl number. Consequently, it reduces the 

conduction and the heat transfer rate increases at the surface of the sheet. 
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Fig 9.2: Variation of velocity, temperature and nanoparticle volume concentration with /31 . 
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Table 9.1: Comparison of numerical values for local Nusselt number Re:"2 Nux. and the local 

Sherwood number Re:"2 Sh in the absence of non-Newtonian parameters when Pr = 10 and 

Le =1 . 

Present results /31 = /32 = a Khan and Pop [34] 

Nt - 8'(0) -(b '(O) - 8 '(0) -(b '(O) 

0.1 0.9524 5. 1294 0.9524 5.1294 

0.2 0.6932 5.2732 0.6932 5.2740 

0.3 0.5201 5.5286 0.5201 5.5286 

0.4 0.4026 5.7952 0.4026 5.7952 

0.5 0.3211 6.0351 0.3211 6.0351 
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Table 9.2: Comparison of numerical values for reduced Nusselt number Re: l12 Nux In the 

absence of non-Newtonian parameters (/31 = /32 = 0) and nanoparticle. 

Pr Present results for - 8 '(0) Wang [15] 

0.7 0.4582 0.4539 

5.0 0.9114 0.9114 

10 1.8954 1.8954 

20 6.3539 6.3539 

70 6.4622 6.4622 

Table 9.3: Numerical Values for the reduced Nusselt number Re: l12 Nux and the reduced 

Sherwood number Re:1/2 5h in the presence of nanoparticle when /3., = /32 = 0.3 . 

Nb =0.3 Nb = 0.5 Nb=0.7 

Nt Jv -8'(0) -¢'(O) -8'(0) -¢ '(O) -8'(0) -¢'(O) 

0.3 0.33988 1.83935 0.14820 1.87035 0.0601 2 1.84885 

0.5 0.24099 1.95862 0.10486 1.94572 0.04255 1.90081 

0.7 0.17918 5.06659 0.07792 5.00568 0.03163 1.94018 

9.4 Conclusions 

In this study we have presented the Oldroyd-B fluid model for nanofluid over a stretching 

sheet. The effects of elastic parameter, Brownian motion and thermophoresis parameters on flow 

and heat transfer are discussed numerically. The main results of present analysis are listed below. 

• Effects of PI and P2 have opposite behavior for velocity, temperature and nanoparticle 

volume concentration. These phenomena only occur due to the effects of viscoelastic 

parameters PI and P2' 

• Both temperature and nanoparticle volume concentration give same behavior for Pr and 

Le . Since Pr is the ratio of kinematic to dynamic viscosity, therefore for higher values of 
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Pr, the temperature profi le remains under control. 

• Effects of Nb and Nt for temperature profile are similar where Both Nb and Nt 

enhance the temperature. 

• Effects of Nb and Nt for nanopartic1e volume concentration are opposite. 

• The magnitude of the reduced Nusselt numbers decreases for higher values of Nb. 

• The magnitude of the reduced Sherwood numbers increases for higher values of Nb. 
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