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Preface 
In recent years the study of peristalsis of non-Newtonian fluids has attracted the attention 

of many investigators due to its extensive applications in engineering and physiology. 

The non-Newtonian fluids do not obey the Newton's law of viscosity and cannot be 

described by using the Navier-Stokes equations. Therefore, various constitutive equations 

have been proposed due to the diversity in the physical structure of non-Newtonian 

fluids. Most of them are empirical or semi-empirical and give rise to equations which are 

much more non-linear, higher order and more complicated than the Navier-Stokes 

equations. Peristaltic flows are of fundamental importance in processes such as 

swallowing food tJu'ough the esophagus, vasomotion of small blood vessels such as 

arterioles, venues and capillaries, bile flow from the gall bladder into the duodenum. 

urine transport from kidney to the bladder through the ureter etc. Devices like roller and 

finger pumps are also operated on the principle of peristaltic pumping that are used to 

pump corrosive fluids, slurries, blood and foods in order to avoid their direct contact with 

the machinery. The design of many modern medical devices are also based upon the 

principle of peristaltic pumping for instance one may consider the blood in the heart-lung 

machine. Peristaltic flows with heat transfer analysis have vital role especially in 

chemical engineering processes. In physiology, the heat transfer is used to analyze the 

properties of tissues. Radio frequency therapy is helpful in the treatment of diseases like 

tissue coagulation, the primary living cancer, the lung cancer and the reflux of stomach 

acid. Moreover heat transfer analysis is also significant in hemodialysis and oxygenation 

processes. Magnetohydrodynamic fluid flow in a channel/tube with elastic and 

rhythmically contracting walls is of great interest with certain problems of the movement 

of conductive physiological fluids and for operating peristaltic MI-ID compressor. Flows 

in presence of magnetic field are significant in MHD power generators, MHD pumps and 

accelerators etc. Specific examples in this direction may include flow of nuclear fuel 

slulTies, flow of liquid metals and alloys, flow of plasma, flow of mercury amalgams, 

lubrications of hcavy oils and greases. In medical sciences the effect of magnetic field is 

used in the development of magnetic devices for cell separation, magnetic wounds and 

cancer tumor treatment, reduction of bleeding during surgeries. However, very little has 



been reported yet on the pelistaitic flows in the presence of magnetic field with Hall 

effect. Such effect cannot be over looked when flow subject to high magnetic field is 

considered. Hall effect can be taken into account when the Hall parameter (the ratio 

between the electron-cyclotron frequency and the electron-atom-collision frequency) is 

high. This happens, when the magnetic field is high or when the collision frequency is 

low. Also the current trend in the application of magnetohydrodynamics is towards a 

strong magnetic field, therefore one has to consider the influence of Hall current as it has 

great effect on the magnitude and direction of the CUITent density and consequently on the 

magnetic-force term. However it is ilOted that scarce literature is available for MHD 

peristaltic flow of non-Newtonian fluids with Hall effect. Motivated by all such facts we 

structure the present dissertation as follows: 

In chapter one we presented some definitions, fundamental equations and existing 

literature review regarding peristaltic flow in various flow configurations. 

Chapter two discusses the peristaltic flow of Johnson Segalman fluid with nanoparticles. 

Johnson Segal man fluid is useful for explaining 'spurt' phenomenon. Experimentalists 

associate 'spurt' with slip at wall. The problem is first non-dimensionalized and then 

solved by homotopy perturbation method (HPM) under long wavelength and low 

Reynolds number approximation. A net flow due to the travelling wave is obtained up to 

second order approximation. The results of this chapter are published in Journal of 

Aerospace Engineering 27 (2013) 404-413. 

The influence of heat and mass transfer on peristaltic flow of Jeffrey six-constant fluid 

with nanoparticles in an asymmetric channel has been discussed in chapter three. 

Asymmetry in the flow is induced by sinusoidal wave with different amplitudes and 

phases. Flow is induced by peristaltic wave along the length of channel walls. The 

analysis for axial velocity, pressure gradient and stream functions are carried out under 

lubrication approximation. The resulting non-linear equations are then solved for the 

series solutions. Graphical results are obtained to see the effect of various parameters of 

interest. The contents ofthis chapter have been submitted in "Meccanica". 

Chapter four investigates the effect of velocity slip on the peristaltic transpOli of Powell

Eyring fluid. Powell-Eyring fluid model deserves attention due to the fact that its stress 

constitutive relation is deduced from kinetic theory of liquids rather than the empirical 



relation as in the case of power-law model. It also correctly reduces to Newtonian model 

for high shear rate. The channel is assumed symmetric. The governing equations are 

prescnted in a wave frame. Solutions for strcam functioll and pressure gradient are 

derived by employing long wavelength and low Reynolds number assumptions. It is 

found that the magnitude of shear stress decreases for velocity slip parameter. The 

contents of this chapter are published in Applied Bionics and Biomechanics 

11(2014) 69-79. 

Chapter five discloses the effect of Hall CUlTent on peristaltic flow of an electrically 

conducting Powell-Eyring fluid. The motion is induced by a sinusoidal wave traveling 

along the flexible walls of the channel. The flow is analyzed in a wave frame of reference 

moving with the velocity of wave. The equations governing the flow are solved by 

adopting lubrication approach. Series solution for stream function and axial pressure 

gradient are obtained . Impact of rheological parameters, Hartman number and Hall 

parameter on the flow quantities of interest are analyzed. It is noted that Hall parameter 

assists the flow. Moreover effect of Hall parameter is quite opposite to that of Hartman 

number. Main observations of this chapter are submitted in J. Magnetism and 

Magnetic Materials. 

Chapter six looks at the peristaltic motion of an incompressible third order fluid in a 

symmetric channel. This study is performed in the presence of applied magnetic field and 

the effect of Hall currents is also considered. The third order fluid described shear 

thinning/shear thickening effect but it lacks the stress relaxation and retardation effects. 

Mathematical formulation is given in a wave frame of reference. Series solutions up to 

first order for small Deborah number are obtained for the stream function, longitudinal 

velocity and pressure gradient. Numerical integration is carried out for the pressure rise 

and frictional forces. Influence of emerging parameters on the pressure rise, frictional 

forces, axial pressure gradient, velocity profile and h-apping are discussed. It is observed 

that pressure rise is a decreasing function of Hall parameter. The outcome of this chapter 

is submitted for publication in Int. J. Numerical Methods for Heat and Fluid 

flow. 



Hall and ion-slip effects on the peristaltic flow of hyperbolic fluid are reported in chapter 

seven. Long wavelength and low Reynolds number assumptions are employed in the 

problem fonnulation . The govcrning nonlinear problem is solved using pelturbation 

approach. Graphical results are reported and discussed for various parameters of interest. 

It is found that effect of Hall and ion-slip parameters on velocity is quite similar. 

Findings of this chapter have been submitted for publication in Journal of 

Aerospace Engineering. 

Heat transfer analysis for the peristaltic transport of an incompressible Williamson fluid 

with Hall and ion-slip effects is carried out in chapter eight. Joule heating effects is also 

taken in to account. The flow analysis is modeled in a frame moving with the velocity of 

the wave. Lubrication approach is adopted in the mathematical formulation. Series 

solutions for stream function, pressure gradient and temperature profile are constructed 

for small values of Weissenberg number. Variations of emerging physical parameters on 

the axial velocity, shear stress, pressure gradient and temperature are analyzed 

graphically. Increase in Weissenberg number leads to an enhancement in the pressure 

rise. It is also noted that pressure rise is a decreasing function of Hall and ion-slip 

parameters. The results of this chapter have been submitted for publication in "Applied 

Bionics and Biomechanics". 

Chapter nine contains the study of peristaltic flow of Phan-Thein-Tannar (PTT) fluid with 

Joule heating. The fluid is electrically conducting in the presence of uniform applied 

magnetic field. Hall and ion-slip effects are considered. PTT model is derived from the 

Lodge-Yamamoto network theory and is lmown as the simple best differential model 

which exhibits viscoelastic and shear thinning properties of polymer solution. The 

problem formulation is developed in a wave frame ofreference. The resulting problem is 

solved for the slream function, longitudinal pressure gradient and temperature. The 

phenomena of pumping and trapping are di scussed. The contents of this chapter have 

been submitted for publication in "Applied Bionics and Biomechanics". 

Chapter ten is devoted to study the peristaltic flow of a MHD Prandtl fluid with Hall and 

ion-slip effects . Flow configuration is taken asymmetric. Asymmetry in the flow is 

induced by sinusoidal wave with different amplitudes and phases. Flow is induced by 



peristaltic wave along the length of c11annel walls. Both the magnetic field and channel 

are inclined. Mathematical modeling of the governing equations is developed. Series 

solutions for stream function and pressure gradient are obtained under the assumption of 

small wave number. Results of pressure rise are analyzed through numerical integration. 

Main results of this chapter are submitted for publication in "Applied Mathematics 

and Mechanics". 
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Chapter 1 

Preliminaries with some basic laws 

This chapter includes the relevant review of peristaltic transport phenomenon with some basic 

law regarding ma thematical formulation. 

1.1 Peristaltic transport and pUIllping 

Peristalsis is a mechanism that transport fluid in a channel or tube by means of pressure 

gradiellt which is induced by progressive sinusoidal waves. The contraction and expansion of 

the ,vave pushed the fluid along the tube/channel. Such type of transport phenomenon is 

useful in the situations where one avoid the use of external source like piston. In physiology the 

peris talsis is used by the body to propel the fluid and transport it from part of the body to an 

other part. peristalsis play key role in the processes like urine transport from kidney to bladder, 

chyme movement in the digestive tract, vasomotion of blood vessels in capillaries and arterioles, 

movement of spermatozoa in the ductus afIerents of male reproductive tract and movelllent of 

ovum in the female fallopian tube. Some worms also use peristalsis for their locomotion. In 

addition devices like roller and finger pumps are also operated on the principle of peristaltic 

pumping that are used to pump corrosive fluids, slurries, blood and foods in order to avoid 

their direct contact with the machinery. Furthermore the occurrence of peristaltic pumping 

is quite prevalent in several applications associated with the biomedical systems. The design 

of many modern medical devices are also based upon the principle of peristaltic plunping for 

iustance one may consider the blood in the heart-lung machine. At present, different asp ects of 
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peristaltic transport of fluids in channels and tubes have been investigated thoroughly by many 

researchers in the field . 

1.2 Literature review 

The fundamental study for the peristaltic flow of viscous fluid was made by Latham [1]. Shapiro 

[2) examined the peristaltic phenomenon in a two-dimensional flexible tube under small wave 

Ilumber alld considered the flow to be inertia free. Under these assumptions there is a steady 

flow ill a wave frame and the obtained solution of velocity profile is similar to that of poiseuiUe 

flow. The work of shapiro has good agreement with the experimental work of Latham. Barton 

and Raynor [3] use the concept of peristaltic motion to calculate the time elapsed [or the 

chyme movement in the small intes tine. Shapiro et al. [4] discussed the peristaltic flow of 

viscous fluid for both planar and axisymmetric cases under long wavelength and zero Reynolds 

number approximation. They suggested that physiological significance of reflux phenomenon 

is true in ureter. Another study for the mechanics of peristaltic pumping in planar channel 

and axisymmetric tube under small wavelength and low Reynolds number approximation is 

presented by Yin and Fung [5] . Lew et al. [6] analyzed the peristaltic motion o[ carrying 

and mixing chyme in small intestine under long wavelength approximation. They obtaiued 

two solutio11s of the problem, peristaltic pumping without net pressure gradient and peristaltic 

compressions with net transport of the fluid. The total solution consist the linear combination 

of the two solutions. In another attempt Lew and Fung [7] investigated the peristaltic flow 

with low Reynolds number in a valved vessel with special reference to the flow in a valved 

vessel lie in lymphatic ducts and veins. J affrin [8] analyzed the inertia and streamline curvature 

effects in peristaltic pumping. Such effects can be predicted in gastrointes tinal tracts and in 

roller pumps. Jaffrin and Shapiro [9] looked at a review on peristalsis in view of different flow 

regimes. Mittra and Prasad [10] analyzed the interaction of peristalsis with poiseuille flow 

and investigated t he peristaltic motion in the presence of pressure gradient. A mathematical 

model which describes the mechanism for swimming of spermatozoa in the cervix is presented 

by Semleser et al. [11]. Asymptotic solution for peristaltic flow at low Reynolds number in an 

axisymmetric case is studied by Manton [12]. Takabatake and Ayukawa [13] obtained numerical 
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solutions for peristaltic flow of two-dimensional problem. In another attempt Takabatake et al. 

[14] solved the problem for t he peristaltic pumping in circular cylindrical tubes by generalizing 

the numericalmet;hod suggested in ref. [13] . Vries et al. [15] noted that the intra uterine fluid 

flow induced by myometrial contractions occur in both Rymmetric and asymmetric directions. 

Eytan et al. [16] disclosed t ha t contraction of non-pregnant woman uterine are composed of 

variable amplitudes, range of frequencies and different wavelengths. Mathematical model for 

peristaltic transpor t in an asymmetric channel is presented by Eytan and Elad [17] . Mishra and 

Rao [18] investigated the flow of incompressible viscous fluid in an asymmetric channel. The 

channel asymmetry is produced through waves that propagat es on the walls having different 

amplit udes and phases . Rao and Mishra [19] examined the curvature effects of Newtonian fluid 

in an asymmetric channel with p eristalsis. Mekheimer [20] reported the peristaltic transport of 

Newtonian fluid through uniform and non-uniform annulus. 

The above mentioned studies deals with the peristaltic flow of viscous fluid with different flow 

geometries and aspects. However there are many fluids in nature that violate linear relationship 

between stress and deformation rate and are classified as the non-Newtonian fluids. Examples 

of such fluids include clay suspension, personal care products, polymers, shampoo, ketchup, 

blood flow at low Rhear rate, chyme etc. The non-Newtonian fluids are completely differeut 

form Newtonian fluids. Infact the equations which governs the flow of non-Newtonian fluids 

are more complicated and subtle when compared with the Newtonian fluids. Therefore to 

compute solut ions (Analytic or numerical) of such equations under one or more simplified 

assumptions are not easy. The resulting equa tions of non-Newtonian fluids are in general 

higher order than the viscous fluid and t hus require additional boundary conditions for the 

unique solu tion. Therefore peristaltic transport of non-Newtonian fluids is hot topic of research 

for the mathematicians, engineers, physicists, modelers and numerical simulists. Extensive 

li terature are now available on peris taltic flow of non-Newtonian fluids. Chaturani and Samy 

[21] discussed the non-Newtonian aspect of blood flow through stenosed arteries. Raju and 

Devauathan [22] repor ted the analytical properties of power law fluid in a tube with peristalsis. 

In another attempt Radhakrishnamacharya [23] analyzed the peristaltic transport of power 

law fluid in a two-dimensional channel. Johnson and Segalman [24] presented a model for the 

behavior of viscoelastic fluid with non-affine deformations. Thien and Tanner [25] sugges ted 
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new constitutive equations for polymeric fluids that are driven from. Lodge-Yamamoto network 

theory. Soon after Thein [26] revealed a viscoelastic model resembling physiological fluids. 

Srivastava and Srivastava [27] examined the peristaltic flow of power-law fluid and associated 

the study wiLh pragmatic flow rates in the vas deferens and small intestine. The p eristaltic flow 

of third order fluid is analyzed by Siddiqui and Schwarz [28]. They considered the flow in a 

planar channel and computed analytical solution for small Deborah number. Also Siddiqui and 

Schwarz [29] studied the peristaltic transport of a second order fluid in an axisymmetric duct 

when the wave number is small. The rheological properties of couple-s tresses with peristaltic 

transport is stated by Shehawey and Mekheimer [30]. T siklauri and Beresnev [31] discussed 

t he viscoelastic proper t ies of Maxwell fluid ill a circular porous tube. Hayat et al. [32, 33] 

inves tigated the peristaltic flow of Johnson-Segalman and Oldroyd-B fluids in a planar channel. 

Vajravelu et al. [34] have examined the peristaltic transport of a Herschel-Bulkley fluid with long 

wavelength approximation in an inclined circular tube. Peristaltic motion of a B urger's fluid in 

a p lan ar channel is analyzed by Hayat et al. [35]. Haroun [36] studied the peristaltic transport 

of a third-order fluid. Nguyen et a1. [37] presented an experimental model for a peristalLic 

pump with low cost and high quality p erformance. Ali et a1. [38] discussed the peristaltic 

flow in a curved channel under consideration of lu brication approximatioll . Hayat and J aved 

[39] obtained au exact solution to t he peristaltic moLion of power-law fluid in a channel with 

cOlllpliants walls. Maiti and Misra [40] and Rao a nd Rao [42] investigated the peristaltic flow of 

couple stress fluid in a porous medium. Perist altic motion of vValter's n fluid in an endoscope 

is presented Ly Nadeem et a1. [41]. Modeling of peristaltic flow for non-Newtonian fluid with a 

new approach is proposed by Yazdanpanh-Ardakani and Nirooll1and-Oscuii [43]. Hayat et a1. 

[44] considered the flow of P.T.T fluid in a planar channel with peristalsis. Num.erical study 

for non-Newtonian fluids in a curved channel is presented by Kalantari et a1. [45]. F low of the 

fourth grade fluid with suction and inj ection between porous walls under peristaltic action is 

examined by Hari Prabakaran et a1. [46] . Ellahi et a1. [47] investigated t he three dirneusional 

flow of vVilliamson fluid in a rectangular duct. 

T he peris taltic transport of fluid ·with heat and mass transfer plays a vital role especially 

in chem ical engineering processes. In physiology, the heat t ransfer is used to analyze the 

p roper ties of tissues. Radio frequency therapy is helpful in t he t reatment of diseases like tissue 
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coagulation, t he primary living cancer, the lung cancer and the reflux of stomach acid. Moreover 

heat transfer analysis is also significant in hemodialysis and oxygenation processes. It plays an 

important role in lllany industrial secLors like power plants, electronic devices and chelllical 

processing plants . Haviug such usefulness in mind Vajravelu et £11. [48] studied the peristaltic 

motion of viscous fluid with heat transfer in a vertical annulus. Srinivas and Kothandapani 

[49] aud I-Iayat et £11. [GO] canvassed the effect of heat transfer on peristaltic flow of viscous 

fluid in an asymmetric channel. Nadeem aud Akbar [51, 52] considered the influence of heat 

transfer phenomenon on peristal tic motion of Jhonson-Segalman and J effrey-six constant fluids 

in non-uniform axisymmetric t ubes. In another study Nadeem [53] illustrated the effect of heat 

with mass transfer on peristaltic motion of t hird order fluid. Mekheimer et al. [54] and Vasudev 

et al. [55] analyzed the heat transfer analysis on peristaltic flows containing viscous fluid with 

porosity. Peristaltic motion of viscoelastic fluid with heat transfer effects is observed by Sobh 

et £11. [56]. Hayat et al. [57] scrutinized effect of heat transfer with slip condi t ion on peristalsis. 

Srinivas et al. [58] considered the mixed convective peristaltic flow with heat and mass transfer. 

Effect of wall slip on peristalsis along with heat and mass transfer is analyzed by Srinivas et £11. 

[59]. Hayat et £11. [60] discussed the heat transfer analysis on peristaltic motion of an Oldroyd-B 

fluid with compliant walls. In another attempt Hayat et £11. [6 1] investigated the effects of heat 

and mass transfer on Maxwell fluid in the presence of slip condition. A mathematical model for 

swallowing of food bolus under influence of heat transfer is proposed by Tripathi [62]. E llahi et 

£11. [63] analyzed heat transfer analysis in non-uniform rectangular duct with peristalsis. Now a 

days, the flows of nanofluid is an active area of research. In fact, the nanofluids are a suspension 

of nanosized solid particles in a base fluid having higher thermal conductivity t han base fluid. 

Concept of nanofluids is employed to increase the heat transfer rate. T he traditional base fluids 

employed in heat t ransfer processes tha t includes water, mineral oils, toluene and ethylene 

glycol has low thermal conductivity. Now, various inexpensive combina tions of liquid/particles 

are available because of growing advancement in nano manufacturing. Aluminum, gold , iron, 

copper and titanium or t heir oxides are worth pointing amongst such par t icles of met als and 

possesses high thermal conductivity t han t he base fluids. Extensive attempts are now availa ble 

on the flows of nanofluids. Few recent researches on the topic of nanofluids are presented 

th rough studies [64 - 72]. 
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Literature survey also indicates t hat t here are several attempts describing the impact of 

applied magnetic field on peristaltic transport of viscous and non-Newtonian fluids. Flows in 

presence of magnetic field are significant in MHD pO'vver generators, MIlD pUulpS and accel

erators etc. Specific examples in this direction may include flow of nuclear fuel slurries, flow 

of liquid metals and alloys, flow of plasma, flow of mercury amalgams, lubrications of heavy 

oils and greases. Magnetohydrodynamic flu id flow in a channel with elastic and rhythmically 

contracting walls is of great interest with certain problems of the movement of conductive phys

iological fluids and for operating peristalt ic MHD compressor. In medical sciences the influence 

of magnetic field is used in surgeries to reduce bleeding and cancer tumors. Mekheimer [73] 

analyzed the perist altic t ranspor t of blood under the influence of magnetic field. P eristalt ic flow 

of MHD Newtonian fluid wit h slip effects in an asymmetric channel is examined by Yildirim and 

Sezer [74]. Hayat and Hina [75] discussed the effect of wall properties on the magnetohydrody

namic flow of Maxwell fluid with peristalsis. Impact of induced magnetic field with peris talsis 

0 11 third order fluid is investigated by Hayat et al. [76]. Srinivas and Muthuraj [77] discussed 

the effects of chemical reaction and space porosity on MHD mixed convective flow in a ver t ical 

asymmetric channel with p eristalsis. Impact of induced magnetic field with peristalsis in an an

nulus is analyzed by Elmaboud [78]. Combined influence of slip, temperature and conceu tration 

jump conditions on MHD peristaltic flow of a Carreau fluid is examined by Vajravelu et al. [79]. 

It has beeu noted that peristalsis in presence of Hall effects has given very less attention. Such 

effects cannot be over looked when flow subject to high magnetic field is considered. Hall effect 

can be taken into account when t he Hall parameter (the ratio between the electron-cyclotron 

frequency and the electron-atom-collisioll frequency) is high . T his happens, when t he magnetic 

field is high or when the collision frequency is low. Also t he current t rend in the application 

of magnetohydrodynamics is towards a st rong magnetic field, therefore one has to consider the 

influence of Hall current as it has great impact on t he magni tude and direction of t he current 

density and consequently on the magnetic-force term. However it is noted tha t scarce literature 

is availa ble for MHD peristaltic flow of non-Newtonian fluids wit h Hall and ion-slip effects. 

Saha et al. [80] investigated t he effect of Hall currents on the MHD laminar natural convection 

flow from a vertical permeable flat plate with uniform surface temperature. Hayat et al [81] 

examined the ill1pact of Hall curren ts on peris taltic transport of a Maxwell fluid in a porous 
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medium. Hall and ion-slip effects on three-dimensional fiow of second grade fluid is analyzed 

by Hayat and Nawaz [82]. Effect of Hall parameter on interaction of pulsatile and peristaltic 

transport induced flows of a particle- fluid suspellsion is studied by Gad [83]. Nowar et al. [84] 

investigated the peristaltic pumping of Johnson-Segalman fluid in an asymmetric channel uucler 

the effects of Hall and ion-slip currents. Hall effects on peristalsis of Maxwell fluid iu porous 

space is explored by Koumy et al. [85]. 

1.3 SOine definitions regarding peristaltic pumping 

This section enclosed some decisive t erminology used in peristaltic flows . vVe let 6.P,\ tha t 

represents the pressure rise per wavelength and e as the mean flow rate. 

1.3.1 Peristaltic pumping 

It occurs when the pressure rise at the ends of the channel or tube and the mean flow rate both 

are positive i.e. 6.P)., > 0 and e > o. 

1.3.2 Retrograde pumping 

The case when the pressure rise per wavelength is positive but the corresponding flow rate is 

negative is named as Retrograde pumping i.e. 6.P)., > 0 and e < o. 

1.3.3 Free pumping 

For free pumping t he pressure rise is zero however the flow rate is positive i. e. 6.P)., = 0 and 

e > o. 

1.3.4 Augmented pumping 

The case where the pressure rise is negative and the mean flow rate is positive is designated as 

augmented pumping. Here 6.P)., < 0 and e > o. 
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1.3.5 Trapping 

A phellolllenon in which the strealll lines split under certain conditions and enclosed a bolus is 

known as Trapping. T he trapped bolus is pushed ahead along with the peristaltic wave. 

1.4 Necessary fundamental equations 

This section includes the geueral form of equations that governs the flow mechanism of the 

fluid. 

1.4.1 The law of mass conservation 

Compressible fluid 

8PJ . 
8t + dlV (pJV) = O. 

Incompressible fluid 

div (V) = O. 

1.4.2 The linear momentum equation 

PJdV 
~ =divT+pb, 

where 

T = -pI + S. 

1.4.3 Energy equation 

1.4.4 Concentration equation 
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1.4.5 Ohm's law 

J = () (E + V x B). 

In above equations PJ is the density of the fluid, T the Cauchy stress tensor, p the pressure, 

S the extra stress tensor , V the velocity vector, b the body force, d/ dt the material time 

derivative, t the time, cp the specific heat, T the temperature, k the thermal conductivity, C 

the concentration, D the mass cliffusivity, E and B are the electric and magnetic fields, J the 

current density and () the electrical conductivity. 
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Chapter 2 

Peristaltic flow of Johnson Segalman 

fluid with nanoparticles 

This work investigates the peristaltic transport of Johnson-Segalman fluid with nanoparticles. 

The fluid is considered in an asymmetric channel. The relevant nonlinear equations are modeled 

by employing mass, momentum, energy and concentration laws. The solutions for velocity, 

tcmperature, nanoparticle phenomenon and pressure gradient are derived. Results obtained 

are analyzcd [or various parameters of interest elltering into the problem. 

2.1 Basic equations with fluid n10del 

The governing equa tions of motion for incompressible fluid flow in terms of mass, momentum, 

temperature and nanoparticle volume fraction are: 

divV 

dV 
Pf dE 

dT 
dE 
dC 
dE 

0, 

a*\72T+ Y* [DVC.VT + (Dr/Tm ) VT.VT] , 

DV2C + (Dr/Tm ) V2T. 
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(2.1) 

(2.2) 

(2.3) 

(2.4) 



Here PJ is the densi ty of fluid, if the velocity vector, d/dl the material time derivative, T 

the Cauchy stress tensor and C the llanoparticle phenomenon, D the Brownian difIusion 

coeffici enL, Dr the thermoplioretic diffusion coefficient, Ut the coefficient of thermal expan

sion, ere the coefficient of expansion with concentration er* ( = k/ (pc) J) the thermal diffusivity, 

Y * = ( (pc)p / (pc) J) the r atio of effective heat capacity of nanoparticle phenomenon to heat 

capacity of fluid and tn the average temperature 

The Cauchy stress tensor T in a Johnson-Segalman fluid is given by 

T = -PI+2/-LlS + s, 
S+Ad(~~ +S(W - l15 ) + (W -l15) TS] =21]15, 

(2.5) 

(2. 6) 

where P is the pressure, 1-'- and 'TJ are viscosities, Al the relaxation time and l the slip parameter. 

The definitions of 15 and Ware 

(2.7) 

where E = grad V ::tnd T in the superscript shows the transpose of a matrix. Note that for 

l = 1 t he current model reduces to Oldroyd-B model. when l = 1 and 1.1. = 0 then it represents 

the Maxwell model and for Al = 0 it reduces to the viscous fluid model. 

2.2 Definition of mathematical problem 

We examine t he peristaltic flow of Johnson-Segalman fluid with nanoparticle in an asymmetric 

channel. Different ampli tudes and phases of wave propagating along the channel walls induce 

asymmetry. The geometry of walls satisfies the following rela tions 

y = iiI = d1 + a l cos ( 2; (X - cD) , Upper wall (2 .8) 

- ( 21f ( - f\ - ) y H 2 = -d2 - b1 cos >: X - ct} + 1; . Lower wall (2.9) 

The values of T and C as y tend to iiI are denoted by To and Co respectively. In above equations 

a l and b1 show the waves amplitudes, A is the wave length , d1 + d2 the channel width, c the 
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wave speed , t the time and the phase difference ¢ ranges 0 :::; ¢ :::; 7f. For ¢ = 0 and ¢ = 7f, the 

waves are out of phase and in phase respectively. Further, aI, b1 , d1 , d2 and 1) satisfy 

(2.10) 

For the unsteady, two-dimensional velocity field we have 

v = [U(X, Y, [), V(.IY, Y, [), OJ . (2 .11) 

Inser ting t he constitutive relations (2 .5) and (2.6) along with Eq. (2.11), the Eqs. (2.1 - 2.4) 

take the following forms: 

where 

U,x + V,y= 0, 

T,I+UT,x + VT,y 

2'17U -'x S xx + Al(SXX ''[+USxx,x +VSXX,y) - 2l /\ lSj'CY U,X 

+ )..1[(1 - l )V,x -(1 + l )U,y ]S Xy, 
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(2. 12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2. 17) 



2'l]V ,y 

+Ad( l -l)U,y -(1 + l)V,x ]SXy' (2,19) 

Notc that the subscripts are used to reprcscut the partial derivatives. We now introduce the 

transfol'lnatiolls 

x = X - ct, iJ = Y, u = U - C, V = V, j5 (x, iJ) = P (X, Y, f) , (2,20) 

in which (x, iJ) , (ii" v) and i5 are t he coordinates, velocity components and pressure in the wave 

frame where as (X, y) , (U, if) and P are the respective coordinates, velocity components and 

press m e in t he fixed frame, 

Setting the non-dimension variables as 

27rx y u v 0= 27rch d = d2 27rdfj5 
x , y = dl' 7.t= -, v=- p---

A 
, 

A ' d1 ' - /-tCA ' C C 

h I 
HI 1£2 = H2 Re = pcel l a1 b = a2 d = d2 S = Sd1 
- , , a = d

1
' , 

d1 d2 d1 ' d1 
, 

f.1, /-tC 

() 
T - To c-Co 

Nb= 
y* D (C1 - Co) 

Nt = 
Y * Dr (Tl - T'o) 

Tl - To' 
<[>= , 

C1 - Co' 1/ Tml/ 

Gr 
gcrtdi (Tl - To) 

B j.= 
gcrcdf (C1 - Co) A1C 

ry* /"" (2.21) , lrVe = d
1 

' l/C l/C TJ 

and letting the stream function by W such that 

oW OW 
7.t = - and v = -0-

oy ox' 
(2.22) 

the incompressibility condition is automatically satisfied and Eqs. (2.13) to (2.19) reduces to 

(2.23) 

03 Re [(0\];.' ~ _ oW ~) OW] = _ (1 + 'Y* ) op + 02 oSxy + ooSyy 
oy Ox Ox oy Ox ry* oy ax oy 

(2.24) 
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"(* axay 
(2.25) 

(2.26) 

"(* axay 
(2.27) 

<5 R [ (OW a oW a ) e] 
e ay ax - ax ay 

(2.28) 

(2.29) 

Here liVe, Nb, Nt, GT and BT are respectively used for the "\iVeissenberg number, the Brownian 

motion parameter, the thermophoresis parameter, the local temperature Grashof number and 

the local nanoparticle Grashof number. Further, Re, 6, e, q? are the Reylonds number , wave 

number, dimensionless temperature and nonoparticle phenomenon respectively. 

Note that the solutions of Eqs. (2.23), (2.24), (2.28) and (2.29) for all values of parameters 

are impossible, therefore we carried out our analysis under long wave-length and low Reylonds 

number approximation. For that we set <5 = 0 by which Eqs. (2.23 - 2.29) yield 

(2.30) 
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8p = 0 
8y , 

8
2
e 8e 8<J> (8e) 2 

8y2 + Nb 8y 8y + Nt 8y = 0, 

8
2 

<J> + Nt (8
2 e) = O. 

8y2 Nb 8y2 

With the use of Eqs. (2.32) and (2.34), Eq. (2.33) becomes 

Applying binomial expansion abo ut vVe , Eq. (2.37) takes the form 

Invoking Eq. (2.38) in Eq. (2.30), we have 

Cross differentiation of Eqs. (2.31) and (2.39) give the compatibility equation as follows: 

The appropriate dimensionless boundary conditions can be 'written as: 
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(2.31) 

(2.32) 

(2.33) 

(2 .3<1) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 



\]I 
F 0\]1 

at y = hI = 1 + a cos x, (2.41) 
2' 

-= - 1 Dy , 

F 0 \]1 ( - ) (2.42) \]I -2 ' oy = - 1, aty = h2 =-d - bcos x + q) , 

0 0, at y = hI , 0=1, at y = h2, (2.43) 

~ 0, at y = hI , ~ = 1, at y = h2. (2.44) 

Here F is the nux in wave frame and a. , b, (p and d satisfy 

(2.45) 

T he fl ux at any axial s tat ion in fixed frame is 

j
'hl j 'hl i 'hI Q = (u + 1) dy = udy + dy = F + hI - h2. 

. h2 . h2 . h2 
(2.46) 

T he average volume flow ra te over one period (f = ~ ) of the peristaltic wave is defined as 

follows: 

Q 

e 

(2.4 7) 

(2.48) 

Where e and F are the dimensionless time-mean flows in the labora tory and wave frames 

respectively with 

(2 .49) 
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2.3 Analytical solution 

2 .3. 1 Solution by homotopy perturbation method 

By using Homotopy Perturbation Method (HPM) Eqs. (2.40), (2 .35) and (2.36) can be ex-

pressed as 

H (q, \Ii ) (1 - q ) [Lw (\Ii) - Lw (\lio)] + q Lw (\Ii) + e - -( 
W2 (l2 - 1) 82 (82\1i) 3 

(1 + ')'* ) 8y2 8y2 

8() 8<J?) 
+G1• 8y + B,. 8y , 

H (q , 0) = (1 - q) [Lo (0) - Lo (00) J + q ( Lo (0) + Nb : ~: + Nt ( ~~ ) ' ) , 

H ( q , <1» = (1 - q) [L q, (<J?) - LiJJ (<J?o)] + q ( LiJJ (<J?) + ~~ ( ~:~ ) ) . 

(2.50) 

(2.51) 

(2.52) 

With Lw = :;4 and Lo = LiJJ = :;2 are the linear operators. T he init ial guesses are selected 

in t he forms 

·Where 

Expallding 

\lio (x, y) 

()o(x,y) 

_ (hl +h2)(2/Ljh2(-hl+h2)+~~ (hI -4hjh2+h~ )) L2 = -hi -3/q(2F+/'l)h~+3hlh~+h~, 
2(hj-h2) , (h 1 - h2) 

3(F+hl - h2)(hl +1.2) L - -2(F+hl - h2) k - ~ k =--=.L 
(hl - h2)3 4 - (hj - h2)3, 1 - 1'1 - 1.2' 2 111 - h2 . 

w (y , q) 

()(y , q) 

CI>(y , q) 

\lio + qWl + q2
W2 ' 

()o + qel + q2
e 2 , 

<J?o + qh + l<1>2 , 
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(2.53) 

(2.54) 

(2 .55) 

(2.56) 

(2 .57) 



and following the methodology of HPM the results of stream functions(lTf) , temperature (B) , 

nanoparticle phenomenon (<1» and longitudinal pressure gradient (dp/dx) by setting q = 1 are 

ill which 

\[I L23 + L24Y + L25y2 + L 26y3 + L27y4 + L 2By5 + L 13y6 + L14Y 7 

+LI5yB + L16y9 + L 17y 10 + LIByll, 

e 

dp 

dx 

kl + k3 + k5 + (k2 + k4 + k6) Y - (kV2) (Nb + Nt) y2 - Nt 

- (k4 - k~(Nb + Ndy)4 / 12ki (Nb + N l )2, 

kl + k7 + (k2 + kB) y + N?k2 (Nb + Nt) y2/2Nb. 

(k1 + k7) B j • + GL26 + G1"(kl + k3 + k5 - k1Nt!12ki (Nb + Nil) 

-(72(-1 +l2)k~5L26W;)/(1 +,*), 

L9 L5 (hi + 4hlh2 + hD + 2 (hI + hd (hi + 3h1h2 + h~) L6, 

LlO -2 (hI + h2) L5 - (3hi + 4hlh2 + 3h~) L6, 
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(2.58) 

(2.59) 

(2.60) 

(2.61) 



L 19 = hfh~(Lll + 8hI LIS + 7hY(L17 + 2h2L ls) + Gh~(LlG + 2h2L17 + 3h~LIS) + 511,1 

(L15 + 2h2L16 + 3h~L17 + 4h~LIS) + 4h1(L14 + 2h2Ll5 + 3h~L16 + 4h~L17 

+5h~LIS) + JhI(L I3 + 2h2LI4 + 3h§L 15 + 4h~LlG + 5h~L17 + 6h~LlS) + 2hl 

(L12 + 2h2L 13 + 3h~L14 + 4h~L15 + 5h~LlG + Gh~L17 + 7hgLls) + 11,2 (2L12 

+3h2L 13 + 4h~L14 + 5h~L 15 + 6h~L16 + 7h~L17 + 8hgLIS)), 

L20 = -hl h2(lGh~LIS + hI(14L17 + 37h2LlS) + hi(8L14 + 22h2Ll5 + 36h~L16 + 50h~L17 

+G4h~LlS) + 4h~(3L16 + h2(8L 17 + 13h2L IS)) + h~( lOLI5 + h2(27L lG + 44h2L 17 

+Glh~LlS)) + h1(6L13 + h2(17L 14 + 28h2L 15 + 39h§LlG + 50h~L17 + Glh~LlS)) 

+4hf(L 12 + h2(3L 13 + 5h2L 14 + 7h~L 15 + 9h~L16 + llh~L17 + 1 3h~ LlS) ) + 2h2 

(Lll + II'2(2L 12 + 3h2L 13 + 4h~L14 + 5h~ L15 + 6h~L16 + 7h~ L17 + 8hgL IS)) + h I 

(2Lu + h2(7L 12 + 12h2L l3 + 1 7h~L14 + 22h~L15 + 27h~L16 + 32h~L17 + 37hgL1S ))) , 

L21 = 8hiLls + hy(7L17 + 32h2L 1S ) + hI(GL16 + 28h2L 17 + 50h§LlS) + h~(5L15 + h2(24L16 

+43h2L 17 + G2h~LIS)) + 4h~(LI4 + h2(5L15 + 9h2L16 + 13h~L17 + 17h~LIS)) + hi 

(3L 13 + h2(16L14 + 29h2L l5 + 42h§L16 + 55h~L17 + 68h~LIS)) + 2h1(L12 + h2(GL13 

+l1h2L 14 + IGh~LI5 + 21h~L16 + 26h~L17 + 13h~ LIS)) + 4hl h2(L l1 + h2(2L 12 

+3h2L 13 + 4h~L14 + 5h~L15 + Gh~LI6 + 7h~L17 + 8hgLIS)) + h~(Ll1 + h2(2L12 

+3h2L13 + 4h~L14 + 5h~L1 5 + Gh~L16 + 7h~L17 + 8hgL Is)) + h f(L l1 + h2(8L 12 

+ 15h2L 13 + 22h~L14 + 29h~L15 + 36h~L16 + 43h~L17 + 50hgL1S )), 
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L22 = -9h~L1S - 8hi(L17 + 2h2L1S) - 7h~(L16 + h 2(2L17 + 3h 2L 1s)) - 6h~(L15 + h2(2L16 

+3h2L17 + 4h§L1S)) - 5hi(L14 + h2(2L15 + 3h2L16 + 4h§L17 + 5h~LlS)) - 4hr 

(L13 + h2(2L ltJ. + 3h2L 15 + 4h§L16 + 5h~L17 + 6h~LlS)) - 3hr(L12 + h2(2L13 

+ 3h2L 14 + 4h§L15 + 5h~L16 + Gh~LI7 + 7h~LlS)) - 2h1(L ll + h2(2L12 

+3h2L 13 + 4h§L14 + 5h~L15 + 6h~L16 + 7h~L17 + 8hgL1s )) - h2(2Lll + h 2(3 L 12 

+4h2L13 + 5h§L14 + 6h~L15 + 7h~L16 + 8h~L17 + 9hgL1s)), 

~ (- k~hlh2Nb - k~hlh2Nt) , k4 = ~(k~hlNb + k~h2Nb + k~h1Nt + k~h2Nt) , 

- f 4(~ N )2 (Nt ( -k~ + 6kik~h1h2 (Nb + Nt}2 - 4kgk4 h 1h2(h 1 + h 2) (Nb + N t )3 
12 (2 b+ t 

+kg h 1h 2 (hr + h1h2 + h~) (Nb + N t )4)), 

-l21(~(~b+Nt) (Nt (2k4 - k~ (hI + h 2) (Nb + Nt)) (2k~ - 2k~k4 (h1 + hd (Nb + Nd 

+ki (hr + h~) (Nb + N t)2)), 

k~hlh2Nt (NI) + Nt) ks = _ k~ (h1 + h2) Nt (Nb + Nt) . 

2~ 2~ 

The dimensionless pressure rise 6P is given by 

27r 

6P = ./ (~~ ) clx. (2.62) 

o 

2.4 Analysis 

This section consists of plots showiug the influence of various pertinent parameters appearing in 

the considered flow problem. Local temperature Grashof uUInber (GT ), thermophoresis pm'ame

t el' (Nt), Weissenberg number (We), slip parameter l and viscosity ratio (/'* ) have been varied 

for the analysis of velocity in Figs. (2.1 - 2.5). Figs. (2 .1 ) and (2.4) show tha t by increasing 

G7· and l , the velocity first increases in the iuterval -10.5 < y < -4.5 and then decreases when 
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-4.5 < y < 1.6. It is f"Luther found that opposite behavior is seen in the case of parameters ltVe 

and "(* (see Figs. (2.2) and (2.3)). Here the velocity first decreases for -10.5 < y < -4.5 and 

then increases when - 4.G < y < 1.6. Pig. (2.5) depicts that Ly increasing Nt" the velocity de

creases for -10.5 < y < -7 and -2 < y < 1.6 a.ud it increases when -7 < y < - 2. In addition 

to this t he variation is negligible for t he case 0 ::; N t ::; 1 but a significant variation occurs when 

Nt > 1. Change in pressure rise per wavelength (6.P)...) against dimensionless volume flow rate 

(8) for different values of parameters G,., Nb, Nt and We are portrayed in Figs. (2.6 - 2.9). 

Figs. (2.6) and (2.8) show that by increasing G,. and Nb the pressure rise increases for all val

ues of 8 while 6.P,\ decreases by increasing Nt (see Fig. (2.7)). The mean flow rate 8 in Fig. 

(2 .9) is divided into three regions i. e e < 0.25, e = 0.25 and e > 0.25. The region e = 0.25 

is called the free pumping region. In the region where e < 0.25 the pressure rise increases 

while pressure rise decreases in the regioll e > 0.25 for la rger values of vVeissenberg number 

liVe. Figs. (2.10 - 2.13) are presented to see the effects of B,. , vVe, Nb , and "(* on the pressure 

gradient (clp / clx). These Figs. clearly indicate an increase in pressure gradient when B,., We, 

N b , and "(* are increased. Moreover maximul1l pressure gradient occurs at x = 2.9. Figs. (2.14) 

and (2.15) are constructed to examine the influence of thennophoresis parameter (Nt) and 

Brownian motion parameter (Nb) on the concentration profile (<J?). These Figs. indicate that 

the concentration field increases with an increase in parameter Nb and decreases for increasing 

values of Nt. Physically increase in thermophoresis parameter (Nt) results in a large mass flux 

due to temperature gradient which decreases the concentration of nanoparticles. Effect of Nt 

on temperature profile (6) is shown in Fig. (2.16). This Fig. shows a substantial increase in 

the temperature for increasing values of Nt. This is due to the fact that when thennophoresis 

parameter (Nt} is increased it results in an effective movement of nanoparticles fro111 the wall 

to the fluid and hence the temperature of the fluid increases significantly. Effect of G,., vVe 

and Nb on trapping are presented in the Figs. (2.17 - 2.19). In Fig. (2.17) one can see that 

the trapping increases by increasing G,., while Figs. (2.18) and (2.19) depict that trapping 

decreases when there is an appreciable increase in parameters We and Nb . 
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Figs. (2.1 - 2.2): Variation of velocities for different values of G,. with We = 0.3 and W e with 

G,. = 0.6, when e = 5, l = 0.4, a = 0.4, d = 10, x = 0.4, b = 0.6, ¢ = 0.2, "(* = 2, Nt = 0.7, 

Nb = 0.6, B,. = 0.5. 

15r---r-:=-...------.----r-r====j1 
-y'-1 

-1.5 

---(-2 
··· ······ , ·:. 3 

- '-",··4 

.2 "-.""10--... ..,----'-6'----.'-, --~.2---'--' 

y 

Fig. 2.3 

- 1- 0.2 

1.5 --- 1- 0.9 
········· 1· 2 
- ' - " 1'3 

·1 

·1.5 

·2 .10 .0 ·2 
y 

Fig. 2.4 

Figs. (2.3 - 2.4): Variation of velocities for different values of "(* with l = 0.4 and l with "(* = 2, 

when e = 5, G,. = 0.6 , a = 0.4, d = 10, x = 0.4, b = 0.6, q) = 0.2, liVe = 0.3, Nt = 0.7, 

Nb = 0.6 , B,. = 0.5. 
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Chapter 3 

Peristaltic transport of Jeffrey 

six-constant fluid with nanoparticles 

This chapter is devoted to investigate the influence of nanoparticles on the peristaltic t ransport 

of six constant J effrey fluid. Flow is induced by peris taltic wave along the length of channel 

walls. The analysis for axial velocity, pressure gradient and stream functions are carried out 

under lubrication approximation. The resulting non-linear equations are then solved for series 

expressions. Graphical results are obtained to analyze the impact of emerging parameters in 

the flow problem. 

3.1 Governing equations 

vVe consider the peristaltic flow of J effrey six-constant fluid with nanoparticle in a vertical 

asymmetric chaunel. Asymmetry in the channel is because of propagation of perist altic waves 

having different amplitudes and phases along the channel walls . The shape of the channel walls 

can be expressed as follows: 

- - ( 21f ( - f\) Y = HI = ch + al cos ~ X - ct} , Upper wall (3.] ) 

- - ( 21f - -) Y = H 2 = - d2 - U1 cos ~ (X - ct) + ¢ . Lower wall (3.2) 
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Here al and bl show the waves amplitudes, A is the wave length , ell + cl2 the channel width, c 

the wave speed, t the time and the phase difference ¢ ranges O :S ¢):S Jr . Further , al , b1 , cl1 , cl2 

amI if; satisfy the relation 

(3.3) 

T he equations of motion that governs the incompressible fluid flow interms of mass, momentum, 

temperature and nanoparticle volume fraction are: 

U(X, Y, t),x +V(X, Y, t),y = 0, (3 .4) 

PJ (U ,[+UU,x +VU,y ) 

(3 .5) 

(3.6) 

Here U is the component of velocity vector in X directions whereas V is the component of 

velocity in }7 direction and the subscripts denotes the partial derivatives. Furthermore nt, n c , 

C, T , To, Co, c~*, Y*, D , and Dr are defined in chapter one. Note that expression of Cauchy 

stress tensor S for six constant J effrey 's model can be written as 

and 

- clS - - - - - - - - - - - - - - - -
S+ AI[ elt - (W·S+S·W)I+o'(S ·D + D· S)I+b(S : D)I + cD(trS)] 

2f-L[D + /\2(~~ - (l¥ . D + D . vV)1 + 20, (D . D) 1 + b(D : D)IJ, (3.9) 

(5 : D) = I: I: 5ijDji, 
i j 
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wherc I]' is the viscosity, /\1 is the relaxation time, /\ 2 is the delay time and a, b, c are material 

constants of the fluid model. The definitions of D (symmetric part of veloci ty gradicnt) Rl1d 

-W (antisYllllllctric part of velocity gradicnt) are given in chapter two (See Eq. [2 .7]) 

Using the trallsfonuations defined ill Eq. (2 .20) and the dimensionless quantities given in 

Eq. (2.21) and then writing velocity components ill terms of stream function W as 

oW 
U= oy' 

eN! 
v = - J 

ox' 

the continuity equation (3.4) satisfies automatically, whcreas Eqs. (3.5 - 3.8) reduces to 

JRe [(OW ~ _ oW ~) OW ] = 0]) + JOSxx + oSxy + G,.e + B,.iP, 
oy ox ox oy oy ox ox oy 

J R [( OW 0 OW 0 ) (-)] 
e oy ox - ox oy 

'2 02(-) 02(-) (-2 oiP 0(-) oiP oe) o -+-+Nb 0 --+--ox2 oy2 ox ox oy oy 

[ 
2 (D(-)) 2 ( 0(-) ) 2] + Nt J ox + oy , 

The expressions for Sxx, Sxy and Syy are: 
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(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3 .15) 

(3.16) 



(3.17) 

(3.18) 

Note that in Eqs. (3.11 - 3.18) 8, Re, G,., fl,. , Nb, Nt, e and q? denotes the wave number, 

the Reylonds number number, the local temperature Grashof number, the local nanoparti

cle Grashof number, the Brownian motion parameter, the thennophoresis parameter, the di

mensionless temperature and nonoparticle phenomenon respectively. By adopting lubrication 

approximation Eqs. (3.12 - 3.18) take the form 

8p = 0 
8y , 

82(1 ae 8q? . (8e) 2 _ 
!::J 2 + Nb!::J !::J + Nt!::J - 0, uy uy uy uy 
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(3.20) 

(3 .21) 

(3.22) 



where 

Sxy = 

82 w (1 _ A1-'2 A* (82W)2) 
8!J2 2 8y2 

(1 - Ai A* (82W)2) 
2 8!J2 

(3.23) 

in which 

(3.24) 

Applying binomial expansion about A* on Eq. (3 .23) and then using it in Eq. (3.19) we have 

(3.25) 

A = (Ai _ A1A2) iJ = _ A~A2 . 
2 2 ' 4 

(3.26) 

Through Eqs. (3.20) and (3.2G) we can write 

(3.27) 

T hp. corresponding non-dimensional boundary conditions in the moving frame are given oy 

W 
F oW 
2' oy =-1, aty= h1 =1+acosx, (3.28) 

W F oW ( - ) - 2' oy = -1, at y = h2 = -d - b cos x + ¢ , (3.29) 

g 0, at y = 1 + a cos x, g = 1, at y = -d - bcos ( x + ¢) , (3.30) 

<I> 0, at y = 1 + a cos x, <I> = 1, at y = - d - bcos ( x + ¢) . (3.31) 

Here F is the flux in wave frame defined in Eq. (2.46) and (A *, A and B) are material constants 

of the fluid . 
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3.2 Solution of the problem 

By using Homotopy Perturbation Method the solutions of Eqs. (3.27), (3.21), (3.22) and (3.25) 

upto first order are given by 

e 

K 23 + K 2IJ.Y + K25y2 + K 26 y3 + K29y4 + K30y5 + K 27y6 + K2Sy7. 

Kg + KlOy + J(lly2 + J(12y3 + J(13y4. 

K1 + K7 + (1(2 + Ks) Y + K14y2. 

vVhere the values of K 's in a bove equations are given as follows: 

(3.32) 

(3.33) 

(3.34) 

- L4( 1 N )2 Nt(-Kt + 6KiK;h1h2 (Nb + Nt}2 - 4KgK4h1 h2(h1 + h2) (Nb + N t )3 
12 2 N b+ t 

+I(~hlh2 (hi + hlh2 + h~) (Nb + Nt}4), 

-12L~(~b+Ntl (Nt (2K4 - Ki (hI + h2) (Nb + Nt)) (2K; - 2KiK4 (hI + h2) 

X (Nb + (Nb + N t )2))Nt ) + Ki (hi + h~) , 

K = Kihlh2N t (Nb + Nt) K = _ Ki (hI + h2) Nt (Nb + Nt) 
7 2Nb ' S 2Nb ' 

(hl+h2)(2hlh2( - hl+h2)+F(h1 -4 hlh2+hD) K _ -hr-3hl(2F+hl)h2+3hlh~+h~ 
- 2(1q - h2)3 , 16 - (hI -h2)3 , 

3(F+hl - h2)(hl +11,2) K _ J(~ Nt (Nb+Nt) K _ -2(F+hl - h2) 
(hl - h2)3 14 - 2Nb ' IS - (h 1 -h2)3 , 
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122 2 A A 3 
= 840h1h2( -35(fl" + G,.)K2 + 144K18 A*(-21A(5K17 + 6(h1 + h2)K 18) - 40B(35K17 + 126(h1 -+ 

K?7 K 18 + 63 (3hf + 4h1h2 + 3h~) K17K?8 + 54(h1 + h2) (2hf + h1h2 + 2hD Kr8)/\*))' 

K 20 4~o hlh2(35( h1 + h2)(B,. + G,.)K2 + 72K?8/\ *(210A(h1 + h2)L17 + 63A (4hf + 7h1h2 + 4hD K1 

+40..8(70(h1 + h2)J(r7 + 63 (4hf + 7h1h2 + 4h~) J(18J(?7 + 378(h1 + h2) (hf + h1h2 + h~ ) J(?81 

27(8h1 + 17hfh2 + 20hfh~ + 17h1h~ + 8h~)J(f8)A*)), 

J(21 - i4 (Br + G,.)(hf + 4h1h2 + h~)J(2 - 15
8 (AJ(?8(5(hf + 4h1h2 + h~)J(17 + 6(h1 + h2)(hf + 4h1h: 

+h~)J(18A* - ~8 BJ(?8(35(hf + 4h1h2 + h~)J(r7 + 126(h1 + h2)(hf + 3h1h2 + h~)J(?7 + 189 

(hf + h1h2 + h~ )(hf + 3h1h2 + h~)J(?8J(17 + 54(h1 + h2)(2h1 + 6hfh2 + 5hfh~ + 6h1h~ + 

2h~)J(r8 ) (A *)2, 

J(22 /2 (B,. + G,.)(h1 + hdJ(2 + 158 A J(i8(10(h1 + h2)J(17 + 3 (3hf + 4h1h2 + 3h~) J(18) /\ * + ~8 ..8J(?8 i 

(h1 + h2)J(r7 + 63 (3hf + 4h1h2 + 3h~) K?7J(18 + 126(h1 + h2)(2hf + h1h2 + 2h~)J(?8K17 + 27 

(5h1 + 8h1 h2 + 9hf h~ + 8h1h~ + 5h~)J(r8)(A *)2, 

3.3 Graphical results 

The goal of the current section is to study and discuss the effects of various physical pa ra-

meters such as Bn G,., Nt , Nb and l1la terial parameLers A *, A 1 and A2 that are involved in 

the 110w regime on axial velocity u(y) , pressure gradieut (dp/dx), pressure rise (f}.p;..J and 

stream function (\Ii) . The plots for velocity profile a re parabolic in nature and are displayed in 

F igs.(3 .1 - 3.5). In these, F ig. (3.1) depict that an increase in A* assis t t he velocity near the 
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wall of the channel and resist thc velocity in the central part of t he channel. Effects of B" and 

C T on velocity are shown in Figs. (3.2) and (3.3). These plots reflects that both of fl,. and 

C,. intcnsify thc velocity for - 1.5 < y < -0.25 but for - 0.1 < y < 1.4 the veloclLy decreases. 

Influcnce of relaxat ion t illle (>'1) and retardation time (/\ 2) on the velocity profile are discussed 

through Figs. (3.4) and (3.5). Opposite efTcct is observcd on velocity for Al and /\2, Increase in 

the values of Al assist the flow at the center of the channel whereas increase in A2 reduces thc 

veloci ty ncar the channel 's center. P lo ts in Figs. (3 .G - 3.12) are prcpared to see the variation 

in pressure gradient (dp/dx ) for different paramcters of intercst . F ig. (3.6) reveal that dp/ dx 

decreases in the narrow par t of the channel at x = 3 when the fluid parameter (A*) is increased. 

Furthermore pressure gradient is maximum when A* = 0 (Newtonian case). To see the influence 

of parameters BT and C,. on dp/dx we prepa red Figs. (3.7) and (3.8). Thcse Figs. revcal that 

the pressure gradient is an increasing function for both B,. and C,.. Figs. (3.9) and (3.10) are 

displayecl for the effec t of /\1 and A2 on dp/dx . These plots show t hat the pressure gradient 

ellhances for large values of AI. However dp/dx decreases for an increase in /\ 2. Figs. (3.11) 

and (3. 12) indicate that pressure gradient is an increasing function of Nb and is a decreasing 

funct ion of Nt. 

The variations in pressure rise per wavelength (tlP),) versus average flow rate (8) [or disLiuct 

valucs of parameters involved in the flow problem arc shown in Figs. (3.13 - 3.19). Figs. (3.13) 

and (3.17) show that pressure rise decreases in the peristal tic pumping region when A * and /\ 2 

are increased, whereas pressure rise increases in the peristaltic pumping region for large values 

of Al (see Fig. 3.16). In addition to this Figs (3.14), (3.15) and (3.18) indicat e that an increase 

in the values of parameters B,., CT and N b boost up the pressure rise for all values of 8. Impact 

of Nt on tlP), is shown in Fig. (3. 19). From the Fig. it is evident that effect of Nt on tlP), is 

quite opposite to that of Nb. 
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Fig. 3.5: Plots of velocity for A2 when e = 2, A * = 0.1, a 

¢ = 7r /2, /\1 = 0.7, Nt = 0.7, Nb = 0.6, Gr = 0.3 , B,. = 0.2 . 
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F igs. (3.6 - 3.7): Pressure gradient dp/ clx for different values of /\ * with B ,. = 0. 7 and B 1• with 

A* = 0.1 , when e = 0.1 , a = 0.7, cl = 1.2, b = 0. 3, ¢ = 0.4, Al = O.S, /\ 2 = 0.7, Nt = 0.3, 

Nb = O.S, G,. = O. S. 
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Figs. (3. 8 - 3.0): Pressure gradient clp/cl.'E for different values of G,. with /\1 = 0.1 and Al 

with GT = 0.8, when G = 0.1 , a = 0.7, cl = 1.2 , b = 0.3, ¢ = 0.4, /\ 2 = 0.7, Nt = 0.3, 

Nb = 0.8 , B,. = 0.2 . 
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Figs . (3.10 - 3.11): Pressure gradient clp/clx for different values of A2 with Nb = 0.8 and Nb 

with /\ 2 = 0.7, when G = 0.1 , a = 0.7, cl = 1.2, b = 0.3 , ¢ = 0.4, A* = 0.1, /\1 = 0.8 , Nt = 0.3, 

GT = 0.8, B,. = 0.2. 
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Figs. (3.13 - 3.14): Variations of /:::.P" for different values of A* with B 7• = 0.2 and B7' with 

X' = 0.1 , when a = 0.3, cl = 0.4, b = 0.3 , if; = 7r/ 4, Al = 0.5 , /\2 = 0.6, Nt = 0.3 , Nb = 0,2, 
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B ,. = 0.2. 

15 
,\ ! = OJ, 004 , 0.7, 0.9 15 

10 
10 

5 

5 .., 0 

~ 
-5 

.. c.. 
<l 0 

-10 -5 

- 15 -10 

-20 -15~------------------------------~ 
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 

0 o 

Fig. 3.17 Fig. 3.18 

Figs. (3.17 - 3.18): Variatiolls of b.P>. for different values of A2 with Nb = 0.2 and Nb with 

A2 = 0.6 , when a = 0.3 , d = 0.4, b = 0.3, 1> = 7r/4, A* = 0.1, Al = 0.5 , Nt = 0.3, G,. = 0.2, 

B,. = 0.2. 
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o 

Fig. 3. 19 

Figs. 3.19: Deviation of b.P)., for dis tinct values of Nt when a = 0.3 , d = 0.4, b = 0.3, ¢ = 1["/4, 

/\ * = 0.1, /\1 = 0.5, A2 = 0.6, Nb = 0.2, G1' = 0.2, B 1• = 0.2. 

3.3.1 Trapping 

Trapping is an interesting phenomenon in peristalsis in which the stream lines in the wave 

frame of reference splits under certain conditions and enclose a bolus of fluid particles that is 

pulled ahead along the peristaltic wave with the same speed as the wave. Figs. (3.20 - 3.24) are 

displayed for the influences of different parameters on the stream lines. The plots indicate that 

t he size of bolus increases by increasing /\ *, B1·, G1• and Al while the size of the bolus decreases 

by increasing A2. 
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Fig. 3.20(a) Fig. 3.20(b) 

Fig. 3.20: Streamlines for A* = 0.1 (a) and A* = 0.7 (b) , when 8 = 3.22, Al = O.G , a = 0.2, 

d = 1.G, b = 0.0 , ¢ = 7r /2, A2 = 0.1 , Nt = 0.4 , Nb = 0.3 , B 7• = 0.7 G 7• = 0.7. 

F ig. 3.21(a) Fig. 3.21(b) 

Fig. 3.21: Streamlines for B 7, = 0.2 (a) and B 7• = 0.7 (li) , when 8 = 3.22, Al = 0.6 , a = 0.2, 

d = 1.6, b = 0.6, ¢ = 7r/2, A2 = 0.1, /\ * = 0.1 , Nt = 0.4, Nb = 0.3, G7, = 0.7. 
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Fig. 3.22(a) Fig. 3. 22(b) 

Fig. 3.22: Streamlines [or G,. = 0.2 (a) and G,. = 0.7 (b), when e = 3.22, Al = O.G, a = 0.2 , 

cl = 1.0, b = 0.6, cp = 7r/2, /\ 2 = 0.1 , A* = 0.1 , Nt = 0.4, Nb = 0.3 , B,. = 0.7. 

Fig. 3.23(a) Fig. 3.23(b) 

Fig. 3.23: Streamlines for Al = 0.4 (a) and /\1 = 0.7 (b) , when e = 3.22, a = 0.2 , cl = 1.G, 

b = 0.6, ¢ = 7r/2, A2 = 0.1, A* = 0.1 , Nt = 0.4, Nb = 0.3 , B,. = 0.7, G,. = 0.7. 
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Fig. 3.24(a) F ig. 3.24(b) 

F ig. 3.24: Streamlines for ), 2 = 0.1 (a) and /\ 2 = 0.5 (b) , when e = 3.22, /\1 = O.G, a = 0. 2, 

d = l.6, b = 0. 6, q) = 7r/2, /\ * = 0.1, Nt = 0.4, N b = 0.3, B 1• = 0.7 Gr = 0.7. 
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Chapter 4 

Influence of slip on peristaltic flow 

of Powell-Eyring fluid in a 

symmetric channel 

In this chapter we discussed t he perist altic transport of non-Newtonian fluid in a symmetric 

challnel with partial slip effec t. T he non-Newtonian behavior of flu id is characterized by Llle 

constitu tive equations of Powell-Eyring fluid . T he motion is induced by a sinusoidal wave travel

ing along the flexible walls of channel. The flow analysis is analyzed in a wave frame of reference 

moviug with the velocity of wave. T he equations governing the flow are solved by adopt ing 

lubrication approach. Series solutions for the stream function and axial pressure gradient are 

obtained . Impact of slip and other emerging flow parameters is plotted and analyzed. 

4.1 Mathematical formulation and modeling 

We consider t he flow of Powell-Eyring fluid in a symmet ric channel of width 2cl. T he flow is 

induced by a sinusoidal peristalt ic wave of slllall ampli tude tha t travels along the flexible wall 

of channel. F low analysis is carried out in a Cart esian coordiua te sys tem in which X -axis is 

taken along the central line of the channel aIld Y-axis normal to it. The wall geomet ry d ue to 
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the infini te train of peristaltic wave can be written as: 

- (- -) 27f (- -) H X , t = d + b sin -:\ X - ct , ( 4.1) 

in which b is the wave amplitude, d represen(,s the mean half width of the channel , A is the 

wavelength, c is the velocity of the peristaltic wave and t is t he time. 

The basic equations governing the flow of an lllcompressible fluid in the absence of body 

forces are 

d ivV = 0, 

elV -
PJ~ = divT, 

dt 

(4.2) 

(4 .3) 

where dldt signifies the material derivative, PJ the density and V = {U( .I'Y, Y, [) , V (.I'Y , Y, [) , O} 

is t he velocity of fluid . T he expression of Cauchy stress tensor T is 

(4.4) 

Here p is a pressure, I the identity tensor and the extra stress tensor S for a PowAll-Eyring fluid 

is givell by: 

S = /-£ (VV) + ~ sinh-1 ( V(V ) , (4.5) 

where I)' is the dynamic viscosity and LV and ( are the material cons tants of Powell-Eyring fluiel. 

For the stress components the function is approximated as 

si11h- 1 ( V(V ) = V(V _ ( ~~) 3 fo r I V(V I « 1. (4.6) 

Equations (4.2) and (4.3) thl'Ough Eqs. (4.4 - 4.6) give 

U,X + V'Y= 0, (4.7) 

(4.8) 

(4.9) 

50 



(4.10) 

(4.11) 

- ( 1 ) - 1 [ - - 2 - - - 2 - 3] 
S }/ y = 2 11, + -( V,y - --3 2V,y(U,X ) + V,y(U,y+V'X) + 2(V,y) , 

r:v 3r:v( 
(4.12) 

where the subscripts denote t ll e partial derivatives. Note that in the fixed coordinate system 

(X, Y, t), the motion is time-dependent. However in a coordina te system (x,y) moving with 

the wave speed C in the positive x direction the boundary shape is stationary. Defining the 

transformations 

x = X - ct, fj = Y, u = [j - C, V = V, j5 (x, fj) = P (X , Y, t) (4.13) 

and introducing the dimensionless variables 

21T'x y u V - - 2 
( ) _ H( x) _ 21T'd _ 6 _ 21T'd 

x , Y = d' u -- v=- h x - d ,p - /\f-LC p, - A ' A 
- , , 

C C 

S 
d- Plcd 1 A=W(-~) 2 (4.14) -S, Re = -- w= - -/J,C f-L /J,r:v( , 6 (d 

the resulting flow quantit ies in terms of stream function \Ji (U = ~:, v = -6~: ) under lubri

cation approximations yield : 

dp . f)3\Ji f) ( f)2\Ji ) 3 
-l = (1 + W) -f) 3 - A-f) -f) 2 ' 
GX Y Y Y 

(4.15) 

(4.16) 

( 4.17) 

(4.18) 

where VV and A are t he mat erial fluid parameters. Note that the continuity equa tion is identi-
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cally satisfied and the shape of peristaltic wall h (x) in dimensionless form is given by 

h(x) = 1 + ¢ Sill x, (4.19) 

in which ¢ (= bid) is the ampli tude ratio wiLh 0 < ¢ < 1. For symmetric channel the flow rate 

in fixed frame is 

i·r" i·r" i· 1i 
Q= (u+ e)dy= udy+ edY=q+eli . 

. 0 . 0 . 0 
(4.20) 

The average volume flow ra te over one period (T = ~ ) of the peristaltic wave is defined as 

fo llows: 

Q : / T QdE = : /i' (q + eli) dE = q + cd. 
T ./0 T ./0 

8 F+1. (4.21) 

In above equation 8 ( = ~) and F (= :~) are the dimensionless flow rates in the fixed and 

wave frames, respectively. The relevant boundary conditions with respect to wave frame are 

\Ii = 0, at y = 0, (4.22) 

\Ii = F, at y = h, ( 4.23) 

where a is the slip paramet er, S xy is the dimensionless shear stress and 

i·
h B\Ii 

F = - dy = \Ii (h) - \Ii(O) . 
. 0 By 

( 4.24) 

4.2 Development of series solution 

Equat ions (4.15) - (4.17) are nOll-linear and closed form solutions of these equations seem 

difficul t. Therefore we will seek per turbation solution by considering fluid paralTleter A as a 
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pertmbation paTametcr and expand \fi, F and P in the forms: 

F 

P 

Fa + A Fl + A 2 F2, 

Po + A PI + A 2
p2. 

(4.25) 

( 4.26) 

( 4.27) 

Using above relations and setting Fo F - AFI - A2 F2, Olle has the following resulting 

expressions: 

\fi (y) 2( c~ ) )(h3_ hy2+F(-y2+3h(h +2(1+W)Cl'))) 
2h h +;) 1 + W Cl' 

_( A )27(F + h)3(hy(h2 _ y2)2 
20h6 (1 + W)(h + 3(1 + W)o:)4 

+3y(1 + W)(y4 - h4)u) - (70011)0(1 + W)21~ + 3(1 + W)c~)1) 
243y(F + h) 5(h2 - y2)(h2(h2 - y2)(37h2 + 50y2) 

+3h(1 + W)(113h" - 37h2y2 - 100y4)Cl' - 450(1 + W)2 

(11,4 + h2y2 + y4)Cl'2)), 

dp 

dx 
3(F + h)(l + W) 81A(F + 11,)3 - +~~--~--~~~ 

h2(h + 3(1 + W)Cl') 5h3(h + 3(1 + W)Cl')4 

2187A2(F + h)5 (4h + 75(1 + W)Cl') 

175h5(1 + W)(h + 3(1 + vV)Cl')1 

4.3 Graphical results 

In this section we discuss the effect of emerging parameters on the flow. For t his purpose, we 

divided t he section into four subsections. In subsection one we displayed t he effect of pertinent 

flow parameters on the velocity profile, subsection two presents the influence of flow parameters 

on the axia l shear stress (Sxy ). Plots in subsection three display t he effect of pressure gradient 

( ~~ ) . Subsection four displays t he effect for pressure rise (6.P)J and finally effect of flow 

parameters on the trapping is analyzed in subsection five. 
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4.3.1 Velocity profile 

In Fig. 4. 1 a comparison between viscous fluid ami non-Newtonian Powell-Eyring fluid is 

presented by neglecting the slip eITed (u = 0) through axial velocity. The plots reflecL t hat the 

velocity for visco us fluid is greater than Powell-Eyring fluid a t t he center of channel. However 

the situa tion is opposite near the walls. Influence of a on t he velocity is displayed in Fig. 4.2 . 

It is found that by increasing n, t he velocity of fluid at the central part of the channel decreases 

whereas it increases near the walls of the channel. Effect of fluid parameters (A) and (W) 

is presented in Figs. 4.3 and 4.4. The effect of these parameters on the flow is quali tatively 

opposite to each other. Increase in A decreases the velocity of the fluid at the central part of 

the channel while increase in lV enhances the fluid velocity near the center of channel. 

o 

-0.2 

>; -0.4 -::J 
-0.6 

x = 0.2, ,= 0.6, e = 1.7, W = 0.2, A =0.1 

~ 
,I - viscous fluid ' 

. ·· Powell-Eyring fluid 

-0.5 o 
y 

Fig. 4.1 

0.5 

o 

-0.2 

x = 0.2" = 0.6, e = 1.7, W = 0.2, A =0.01 

-(1= 0.0 
.... (1 = 0.1 
---(1 = 0.2 
-_. (1 = 0.3 

-1l.._1----o.L-.5~==0==----0-'-.5--~1 

Y 

Fig. 4.2 

Fig. 4. 1: Comparison of viscous and Powell-Eryil1g fluids for 1~(Y). Fig. 4.2: Variation in u(y) 

for different values of slip parameter (n) . 
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x = 0.2, cj> = 0.6, e = 1.7, W = 0.2, a. = 0.1 
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"~'~; :--~.:-.:' ---"': '~. 
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.. ...... A = 0.02 
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---W = 0.3 
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Figs . (4.3 - 4.4) Variations in H(y)for different values of fluid parameter (A) and (W) . 

4.3.2 Shear stress at the wall 

III this subsection Figs . (4.5) - (4.8) are displayed to analyze t he effect of a, A, Wand amplitude 

ratio rp on the axial shear stresses (Sxy) at the wall y = h. Fig. 4.5 reflects Lhat by increasing 

slip parameter a the magnitude of shear sLress decreases. Influence of fluid parameters A and 

VV 011 shear stress are presented in Figs. 4.6 and 4.7. It is noted that effects of A and VV 

are opposite to each other. Absolute value of stress decreases for an increase in A while the 

magnitude of shear stresses increases for increasing values of vv. Impact of ampli tude ratio ¢ 

on t he shear stress is plotted in Fig. 4.8. The plots depict that by increasing ¢ the magnitude 

of the stresses decrease in the wider part of channel for 0 < x < 7r while the magnitude of shear 

stress enhances in the narro,,, part of the channel 7r < x < 27r. 
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Figs. (4.5 - 4.6): Variations ill shear stress (Sxy) for different values of slip parameter (ex) alld 

fluid parameter (A) . 
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Figs. (4.7 - 4.8): Variations in shear sLrcss (Sxy) for different values of fluid parameter (ltV) 

and amplitude ratio (¢). 
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4.3.3 Pressure gradient 

This subsection analyze the influence of slip parameter (0') material pararileters (A and ltV) 

and ampli tude ratio (¢) on the dp/dx and are shown t hrough Figs . (4.9) - (4. 13) . These plots 

reflect that in the wider part of the chaunel (0 < x < 1f) the pressure gradient is relatively small 

and the flow can easily pass without irnposition of large pressure gradient. However ill narrow 

part of the channel (1f < X < 21f) a much larger pressure gradient is required to maintain the 

same fiux to pass through it. Fig. 4.9 presents a comparison between viscous and powell-Eyring 

fiuids. A comparative study indicates that the magnitude of pressure gradient for Powell-Eyring 

fiuid is greater than viscous fiuid in the narrow part of the channel. Plot in Fig. 4.10 is prepared 

to illustrat e the effect of a on the axial pressure gradient. It is observed that the magnitude of 

pressure gradient decreases by increasing (~ in the narrow part of the channel. Effec t of material 

parallleters A and W on pressure gradient are displayed in the Figs. 4.11 and 4.12. These plots 

depict that the effect of both parameters A and ltV are quite opposite i. e. by increasing A the 

pressure gradient decreases while the magnitude of the pressure gradient increases for larger ltV. 

Impact of amplitude ratio (¢) on pressure gradient is presented in Fig. 4.13. The plot shows 

that the magnitude of pressure gradient increases when ¢ enhances. 
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Fig. 4.9: Comparison of viscous and Powell-Erying fiuids for dp/dx. Fig. 4.10: Variation in 

dp / dx for different values of slip paramet er (a) . 
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F igs. (4.11 - 4. 12): Varia tions in dp jdx for differen t values of fluid pararneters (A) and (W) 
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F ig. 4.13 Varia tion in dp j dx for different values of ampli tude ratio (¢) 
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4.3.4 Pressure rise 

Pigs. (4. 14) - (4.] 7) are disphyed to examine the variation of dimensionless pressure rise 

(!:::.P)..) versus the time-average flux (8) for various values of pertillellt flow parameters. For 

that llIunerical illtegratioll is performed through Eq. (4.15). The graphs are sectored so that 

the upper right-hand quadrant that is 8 > 0 and !:::.P).. > 0 represents the peristaltic Pllmping 

region whi le the lower left hand quardant for 8 > 0 and !:::.P).. < 0 is designated as a ugmented 

pumping region. These plots show a linear rela tion between !:::.P).. and 8. Fig. 14 is prepared 

to analyze the effect of slip parameter (ex) on !:::.P)... It is noted that press ure rise decreases 

with an increase in a . Furthermore a comparison for viscous and Powell-Eyring fluids is also 

presented in Fig. 4.14. This Fig. shows that the value of pressure rise for Powell-Eyring fluid is 

greater than that of viscous fluid. Influence of ma teri al fluid parameters A and VV on !:::.P).. are 

illus trated in Figs. 4.15 and 4.16. The behaviors of A and H! on pressure rise are opposite to 

each other i.e. an increase in ma terial parameter A decreases the pressure rise while pressure 

rise increases by increasing VV in the peristaltic pumping region. Plot in F ig. 4. 17 presents the 

effects of amplitude ratio (1)) on pressure rise. It is noted that an increase in 1) enhances the 

pressure rise. 
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Fig. (4.14 - 4.15): Variatiolls in !:::.P).. for different values of slip parameter (ex) and fluid 

paramet er (A) . 
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Pig. (4.16 - 4.17): Variations in 6.P).. for different values of fluid paramet er (W) and amplitude 

ratio (c/» 

4.3.5 Trapping 

The effect of sli p parameter (a), material fluid parameters (A and ltV) and amplitude raLio ((p) 

on t rapping can be seen through Figs. (4.18) - (4.21) . These plots depict that the size of the 

bolus increases with an increase in slip parameter a, material parameter ltV and amplitude ratio 

4). However the size of the bolus decreases for increasing values of material parameter A. 
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F ig. 4.18(a, b): P lots of stream lines for different; values of slip parameter (0'). 
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Fig. 4.19(a, b): Plots of stream liues for different values of material fluid parameter (A) . 
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Fig. 4.20(a , b) : P lots of stream lines for different values of materi al fluid parameter (W). 
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Fig. 4.21(a , b): Plots of stream lines for different values of ampli tude ratio (¢) . 
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4.4 Concluding relnarks 

In t he present study, we have examined t he partial slip effect on peristaltic flow of Powell-Eyring 

fluid in a symmetric channel. The differential system is modeled and simplified by using the 

assulllPtion of long wavelength approximation. The outcomes are discussed through graphs. 

We have the following main observations. 

• The velocity decreases for the slip parameter (a) and fluid parameter (A) at the centre of 

the channel. However influence of fluid parameters (Ttl!) on the velocity profile is opposite 

to both a and A. T he velocity profile shows an opposite behavior near the channel walls 

when compared with t he centre of channel. 

• Magni tude of axial shear s tress decreases for slip parameter (a) and materia l parameter 

(A). However the lllagnitude of axial shear stress increases for material parameter (W) . 

• Pressure gradien t decreases for slip parameter (a) and material parameter (A). Hmvever 

pressure gradient increases with an increase in fluid parameter (Ttl!) and amplitude ratio 

• Pressure rise increases in peristaltic pumping region for an increase ill slip parameter (a), 

material parameter (W) and amplitude ratio (4)) . The effect of material parallleter (A) 

is to decrease the pressure rise. 

• The size of trapped bolus decreases for an increase in fluid parameter (A). However 

opposite effects are noted for slip parameter (a), fluid parameter (W) and amplitude 

ratio (¢) for t he size of the trapped bolus. 
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Chapter 5 

Effect of Hall current on peristaltic 

flow of Powell-Eyring fluid in a 

symmetric channel 

Influence of Hall current Oll peristaltic transport of an electrically conducting non-Newtonian 

fluiJ ill a channel is examined. Rheological properties of fluid are characterized through Powell

Eyring fluiJ. A sinusoidal wave propogates along the channel walls. Mathematical analysis is 

presented in a wave frame. Long wavelength theory is followed. Results of stream functioll and 

axial pressure gradient a re obtained. Influence of rheological parameters , Hartman number and 

Hall parameter on the flow quantities of interest is plotted and analyzed. 

5.1 Fundanlental equations and modeling 

'vVe consider the flow of Powell-Eyring fluid in two-dimensional symmetric channel of width 

2d with a sinusoidal peristaltic wave of small amplitude travelling along its flexible wall. The 

velocity of the wave is denoted by c. The Cartesian coordinate system is chosen in which X-axis 

lies along the central line of the channel and Y-axis normal to iL. The wall geometry is therefore 

written as: 

H (X , I) = d + b sin 2; (X - d) , (5.1) 
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in which b reprcscnts the wave amplitudc, A is the wavelength and t is the time. 

The basic equa tions tha t governing the flow of an incompressible fluid in the presence of an 

applicd magneLic field call be writLcn as: 

div Y = 0, 

elY - - -
P

f 
-----=- = div T + J x B , 
elt 

(5.2) 

(5 .3) 

where eljdt signifies the material derivative, P
f 

the density, Y = {U(X, Y, t), V(X, Y, t), O} the 

velocity, J the current density, B = Bo + BI the total magnetic field , Bo the applied magnetic 

field and Bl the induced magnetic field. The expression of Cauchy stress tensor T is defined 

in chapter 4 through Eqs. (4.4 - 4.6). Induced magnetic field is neglected by considering the 

magnetic Reynolds number to be very small. If the Hall term is retained in the gencralized 

Ohm's law due to strong magnetic field, then the following expression is satisfied 

J=(J(E + Y x B)- (Y e (J X B) , Eo (5.4) 

where (J is the elec Lrical conductivity, (Ye = ((JEo) the Hall parametcr, e thc electric charge, 
ene 

ne the number density of electrons and E the elec tric field. There is no applied voltage therefore 

electric field E = 0 and Eq. (5.4) in component form reduces to 

(5 .5) 

where i and j are the unit vectors parallel to X and Y-axes respectively. Equations (5.2) 

and (5.3) through Eqs. (4.4 - 4. 6) and (5.5) gives the following scalar form of continui ty and 

momentum equations: 

u,x + V,y = 0, (5.6) 

(5.7) 

(5.8) 

(5.9) 
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- _ ( 1 ) - - 1 [ {2(u,x)2 + (u,y+v,x)2] s XY - 2 ~t +;;- (U,y + V,x) - 63 - 2 _ _ , 
( w( +2(V,y) }(U,y + V,x) 

(5.10) 

- ' ( 1 ) - 1 [- - 2 - - - 2 - 3] 
SVY = 2 fl· + -( V,y- --3 2V,y(U,X) + V,y(U,y+V,X) + 2(V,y) , 

w 3w( , 
(5.11) 

where the subscripts denote the partial derivatives. Note that in the fixed coordinate system 

(X, Y, f), t he motion is time-dependeut. However the boundary shape is stationary in a co

ordinate system (x,y) moving with the wave speed c in the positive x direction. Defining the 

transforma tions 

x = X - ct, y=Y, u = U - c, v=V 

and iutroducing the dimensionless variables as 

x 

S 

21fX 
A ' 

d
-S, 
fl·C 

y u v h( x) 21fd2 8 = 21fd, 
y = d,' 1t = ~' V = ~' h = - d-' P = A~C 15, A 

~ PI cd 1 W ( c ) 2 M=V {tBod Re = --;- W = ~w(' A = (3 ( d 

(5 .12) 

(5.13) 

the res ulting flow quantities in to.rms of stream function \)i (
8'lI 8'lI ) . 

1t = -, V = - 8-
8 

under lubn-
8y x 

cation approximations yield: 

dp 8
3
'lI 8 (82 

'lI ) 3 2 ( 8'lI ) - = (1 + W) - - A - -- - M I' - + 1 , 
dx 8y3 8y 8y2 8y 

(5.14) 

(5. 15) 

(5.16) 

(5 .17) 

where ltV and A are the fluid parameters and M is the Hartman number. Note th at the 

continuity equa tion is iuentically satisfied and the dimensionless shape of the peristaltic wall 

h (:1:) is given by 

h (x) = 1 + ¢ sin x, (5.18) 
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in which ¢(= bid) is the amplitude ratio with 0 < ¢ < 1. 

The relevant boundary conditions with resp ect to wave frame for symmetric channel are 

\II = 0, 
82 \11 

(5.19) [j2 = 0, at y = 0, 
Y 

D\II 
\II = F, at y = h, (5.20) -=-1 8y , 

where 

F=8-1. (5.21) 

5.2 Development of series solution 

Equations (5.14) and (5.1G) are nOll-linear and closed form solutions of these equations seem 

difficult. There[ore we will seek perturbation solution by considering fluid parameter A as a 

perturbation parameter and we expand \II, F and P in the forms: 

F 

P 

\11 0 + A \111 + O(A2), 

Fo + A Fl + O(A2), 

Po + A PI + O(A2). 

(5.22) 

(5.23) 

(5.24) 

Using above relations and setting Fo = F - A Fl after calculating Wo and WI, one has the 

following resulting expressions upto first order. 

\II(y) 1/32CiJl + H1(32C{(FMJl + Wyncosh[~~+\J] + (1 + W)ysinh[~~:~] 

- F(1 + W) sinh [ ~~:;] - h(1 + W) sillh[ ~~~~]) + (1 + W) -3/2 A(F + h)3 M4"(2 

(-24hM2y"( - (1 + liT!) cosh[(h~~] + 24hM2(h + yh cosh[(h~] 

+(1 + W) coslt[(3h~v0] - 12hlv£2"((h + y) cosh[(h~] - (1 + W) 

( 1 [(3h+y)M vy] - 1 [(h+3y)M ~]) + 2111£ /1 W C,(8' 1 [2hM vY ] cos 1 vH t V cos 1 vH W Y + y v "( sm 1 V 1+ w (5.25) 

-8inh[2):~]) + 111Jl + Wn(h8inh[(h~~]-12ysinh[(h~]- 3h 

. 1 [(3h- y)/Ilf ~]- 12 " 1 [(h+y)M ~] + 3h . h[(3h+y)M ~] ! .' 1 [(h+3y)M ~]))) 
8 III 1 v1+W . Y 8lll 1 vHW sm v1+W' - 7, 8m1 v'HW ' 
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dp 

dx 

C I r,::; [ hM..f'i 1 -/ .' -[ hM..f'i 1 
1 = 1,11;[ V 'Y cosh Jl+W - vI + TV smh J l +W . (5.26) 

It should be pointed out that results of applied magnetic field are recovered when Hall parameter 

~e = O. 

5.3 Graphical results 

Our interest in this section is to discuss the effect of emerging parameters on the flow quantities. 

For this purpose, we divided this section iuto four subsections. In subsection one we displayed 

the effect of flow parameters on the velocity profile, subsection two presents the influence of 

flow parameters on the pressure gradient (~~) , plots in subsection three display the effect 

for pressure rise and frictional forces and finally effect of flow parameters on the trapping is 

analyzed in subsection four. 

5.3.1 Velocity profile 

Figs. 5.1- 5.4 displayed the iufluence of fluid parameters (W, A), Hartman number M and Hall 

parameter a e on the velocity field . In F igs. 5.1 - 5.2 the velocity decreases by increasing the 

fluid parameter A and Hartman number M at the central part of channel. The influences of 

Hall parameter C~e and fluid parameter TIT! on the velocity profile are presented in Figs. 5.3 - 5.4. 

These Figs. show quite opposite behavior for a e and W when compared with A and NI. In these 

plots the velocity decreases near the wall and it increases at the central part of the channel. 

Furthermore by increasing Hartman number M the magnitude of Lorentz force increases which 

resis ts the flow causing a decrease in the veloci ty. However the iucrease in Hall parameter a e 

assists the flow and has an opposi te behavior to that of Hartman number M . Also by increasing 

the fluid parameter TIT! the viscosity of the fluid decreases which give rise to an increase in the 
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fluid velocity as shown in Fig. 5.4. Thus the behavior of fluid parameters A and ltV are opposite 

to each other. 
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Figs. 5. 1 - 5.4: Velocity profi le for different values of flow parameters . Fig. 5. 1; W = 1.5, 

M = 2.8, c.~e = 0.5, 8 = 0.35 , (P = 0.2, x = 0.3 , Fig 5.2; A = 0.1 , W = 1.5 , (Xc = 0.5 , 8 = 0.35, 

¢ = 0.2, x = 0.3, Fig. 5.3; A = 0.1 , W = 1.5, M = 2.8, 8 = 0.35, ¢ = 0.2, x = 0.3, Fig. 5.4; 

A = 0.1, M = 2.8, (Xe = 0.5, 8 = 0.35, ¢ = 0.2, x = 0.3. 
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5.3.2 Pressure gradient 

In this subsection, the influence of fluid parameters llV and A , Hartman number j\1 and Hall 

parameter CXe on d1)/dx are presented through the plots in F igs. (5.5 - 5.8). These plots reflect 

that at x = 1.5, the pressure gradient is comparatively small and the flow can effortlessly pass 

without imposing larger pressure gradient. However at x = 4.75 a much larger pressure gradient 

is required to uphold the same flux to pass through it . Furthermore the magnitude of dp/ d:£ 

decreases by increasing the value of each of the parameters A and C¥e as shown in Figs. 5.5 and 

5.6. Effects of Hartman number 111 and fluid parameter W on pressure gradient are d isplayed 

in F igs. 5.7 and 5.8. These F igs. indicate that clp/clx increases in magnitude wit h an increase 

in NI and W . 
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Figs. 5.5 - 5.8: P lots for variation in pressure gradient (*) for different values of flow parame

ters. Fig. 5.5; TV = 1.5 , NI = 2.8, LVe = 0.5 , 8 = 0.35 , ¢ = 0.2, Fig. 5.6; A = 0.1 , TV = 1.5 , 

M = 2.8, 8 = 0.35, 1) = 0.2, Fig. 5.7; A = 0.1 , TV = 1.5 , a e = 0.5 , 8 = 0. 35, ¢ = 0.2 , Fig. 

5.8; A = 0.1, fill = 2.8, a e = 0.5 , G = 0.35 , ¢ = 0.2. 

5.3.3 Pressure rise 

Figs. (5.9 - 5.12) are displayed to analyze the deviation of pressure rise (f:lP>..) versus the mean 

flow rate (8) for various values of pertinent flow parameters. Influence of fluid parameter A amI 

Hartman number a e on pressure rise are presented in the Figs. (5.9-5.10). By increasing A and 

a e , f:lP,\ decreases in the peristaltic pumping region (8 > 0, f:lP,\ > 0) , whereas f:lP>.. increases 

in the augmented pumping region (8 > 0, f:lP>.. < 0) . It is also noticed that the fluid parameter 

A has no influence on the free pumping. However , an increase in a e leads to an increase in free 

pumping. The variation of f:lP>.. with 8 for distinct values of Hartman number !VI and fluid 

parameter vV are presented in Fig. 5.11 and (5.12) . Here maximum pressure against which the 

peristalsis works as a pump increases by increasing M and VV in the peris taltic pumping region 
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whereas an opposite behavior is noticed ill the co-pumping (augmented pumping) region. 
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F igs. 5.9 - 5.12: P lots for variation in pressure rise (llP) for different values of flow parameters . 

F ig. 5.9; liV = 1.5, M = 2.8, eYe = 0.5, ¢ = 0.45, Fig. 5.10; A = 0.1 , W 

¢ = 0.45, F ig. 5.11; A = 0.1, W = 1.5, eYe = 0. 5, ¢ = 0.45, Fig. 5.1 2; A 

c.~e = 0.5, 4) = 0.45 . 
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5.3.4 Trapping 

T he effect of Hartlllan number lVI, Hall parameter eYe and fluid parameters A and VV on trapping 

can be seen through Pigs . (5.13 - 5.16). Figs. 5.13 and (5.14) illustrate that by magnifying the 

Hartman number 111 and A the size of bolus decreases and it vanishes for large values of j,1 and 

A. Efl'ect of eYe and VV on the trapping are presented in the Figs. 5.15 and (5.16). The size of 

bolus in these plots increases for an increase in eYe and vl!. 

111 = 0.5 M = 2.5 

F ig. 5.13 

Fig. 5.13(a, b): Plots of w(x ,y) for distinct values of Hartman number (M) when A = 0.1, 

TtY = l.5 , eYe = 0.2, 8 = 2.93, ¢ = 0.37. 
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Fig. 5.14(a, b): Plots of \ll (x,y) for clis tiuct values of fluid parameter (A) when W 1.5 , 

M = 2.5, L~e = 0.2, e = 2.93 , ¢ = 0.37. 
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Fig. 5.15(a, b): P lots of \ll(x, y) for different values of Hall parameter (D!e) when A 0.01 , 

W = 1.5, M = 2.25, e = 2.93, q) = 0.37. 
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x 

W=0.5 

Fig. 5.16 

x 

W=2.5 

Fig. 5.16(a, b): Plots of w(x, y) for different values of fluid paramet er (W) when A 0.01, 

M = 2.5, ne = 0.2 , 8 = 2.93, ¢ = 0.37. 

5.4 Conclusions 

In t he present chapter, we discussed the Hall effect on peristaltic motion of non-Newtonian fluid 

in a symmetric channel. The equations that governs t he flow have been modeled and simplified 

under the assumption of long wavelength approximation. The outcomes of the analysis a re 

discussed and presented through graphs. vVe have the following key observations: 

• Effects of fluid parameter A and Hartman number 111 at the center of the channel are 

simila r. 

• Variations of Wand ne on the velocity are opposite to that of A and 111. 

• The velocity profile shows an opposite behavior near the channel walls when compared 

with the channel center. 

• Pressure gradient decreases in magnitude for fluid parameter A and Hall parameter ne . 

However dp / dx enhallces ,for an increase in Hartman number 111 and fluid parame ter TIV. 
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• Pressure rise decreases in peristaltic pumping region for an increase in A and a e , whereas 

the errect of Jill and ltV is to increase the pressure rise . 

• T he size of bolus decreases for an increase in parameters A and kl. However opposite 

effects are noted [or a e and TV for the size of the trapped bolus. 
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Chapter 6 

MI-ID peristaltic flow of third order 

fluid with Hall effects 

Here a mathematical model is constructed to st udy the Hall effect for peristaltic flow of mag

netohydrodynamic (MHD) third order fluid in a symmetric flow configuration. T he governing 

equations of motion are simplified by employillg the assumption of long wavelength approxi

mation and cOllsidering small Reynolds number. Series solutiolls upto firs t order are obLaiued 

for the stream [unction, longitudinal velocity and pressure gradient. Numerical integration is 

carried ou t [or the pressure rise and frictional forces . T he influence of emerging parameters 

on the pressure rise, frictional forces, axial pressure gradient, velocity profile and trapping are 

discussed. 

6.1 Formulation of problem 

Let us cOllsider t he flow of an incompressible third grade fluid in a uniform channel of width 

2d. The fluid is conducted under the application of a transverse uniform magnetic field Bo. The 

induced magnetic field is neglected under the assumption of small magnetic Reynolds number. 

Cartesian coordinate system is chosen in which X -axis lies alollg the central line of channel 

whereas Y-axis lies normal to it. "I'Ve consider an infinite wave train travelling with velocity c 

along the walls of the symmetric channel. The wall geometry is defined as follows: 
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Ii (X,I) = d + bsin 2; (X - d) (G.1) 

in which b represents the amplitude of wave , A the wavelength and t the time. The equations 

of motion that governs the flow of MHD fluid are given by the following relations: 

divV = 0, 

dV -
PJ~ = divT+J x B, 

dt 

(6.2) 

(6.3) 

where d/ dt signifies the material derivative, P J the density, V the velocity, J the current density 

and T represents the Cauchy stress tensor respectively. 

The expression of Cauchy stress tensor is 

(6.4) 

The extra stress tensor S for third order fluid is given by t he relation 

where I.J" (Xi (i = 1,2) and (3j (j = 1- 3) represents the fluid constants. The Rivlin- Ericksen 

tensors An are 

Al = (grad V) + (grad V) T , (6.6) 

An = :t A n - I + A n - l (grad V ) + (grad V) T A n - l , n> 1, (6 .7) 

where T indicates the transpose of the matrix . The velocity field is defined as 

V = [V (X, Y,t) , V (X, y,t) ,0] . (6.8) 

In a bove defini tion U and V are the velociLy components parallel to the X and Y-axes respec

t ively. The generalized Ohm's law contailling Hall terms due to strong magnetic field gives: 

(G.9) 
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Using Eqs. (6.4) - (6.9) in Eqs. (6.2) and (6.3) we have the fo llowing set of equations: 

(6.10) 

(6.11) 

(6.12) 

Expressions for B xx' B xy and Byy can be found by using Eq. (6.5). Note that in t he fixed 

coordinate system (X, y), the motion is unsteady. However in a coordinate system (x,y) moving 

with the wave speed C ill positive x direction the boundary shape is stationary. Defining the 

transformations 

x = X - ct, Y = y, u = f) - c, V = 11, j5 (x , y) = p (X, Y, f) , (6.13) 

and introducing the dimensionless variables by 

2nx y =~, 'Ii v 
h= ~ , CXlC 

X - , 71,= -, v=- /\1 =-
/\ 

, 
d' wh c c 

),2 
0!2 C /31 c

2 
/32C

2 /33 c2 2nd2 
- , 

1'1 = fLd2' 1'2 = 7' 1'3 = 7 ' p= -,,\-]5, 
fLd1 /-£ 1.1, fLC 

8 
<1-

M=lBod 
Pfdc 8 = 2nd (6.14) -8, r = 1'2 + 1'3, Re = --, 

IJ,C /-£ fL 
,,\ , 

(
a\]} a\]}) 

t he resulting flow Eqs. (6.11) and (6.12) in terms of the stream function \]} u = £:)' v = -o£:) 
uy ux 

under long wavelength approximation yield 

dp a3\]} a (a2\]} ) 3 2 ( a\]} ) - = - + 2r- -- - M I' - + 1 
dx ay3 ay ay2 ay' 

ap = a ay . 

(6.15) 

(6.16) 

Eq. (6.16) il1lplies that p i= p(y) so p = p(x) only. E liminating pressure by cross differentiation 
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of Eq. (6.15) and (6.16), one finds the compatibility equation in the form 

8t! \II _ _ 82 
( 82 \II ) 3 , 2 D2 \II 

!:l Ij - 2r!:l 2 !:l 2 + 111 l' !:l 2 ' uy uy uy uy 
( 6.17) 

where r is the m a terial jJarameter known as Deborah mlluber and NJ is the Hartman number. 

The dimensionless shape of the wall h (x) is given by 

h(x) = 1 + q) sinx, (6.18) 

in which q) = (bid) is the amplitude ratio and 0 < ¢ < 1. The relevant boundary conditions in 

the waveframe are 

\II = 0, at y = 0, (6.19) 

8\11 
-=-1 8y , at y = h, (6.20) 

8=F+1. (6.21) 

In above equation 8 and F are the non-dimensional average flow Hl,tes in the fixed and wave 

fr am es respectively. The expressions of non-dimensional pressure rise per wavelength (6P,\) 

and frictiona l forces (F>.) are given by 

{ 2tr dp 
6P>. = Jo dx dx, (6.22) 

F>. = -h...Edx. j '2tr d 

o dx 
(6.23) 
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6.2 Series solutions 

The governing equations are non-linear. To find the solutions of these equations, we expanded 

the flow quantities in a power series of small parameter r as follows: 

F 

p 

\]io + r \]il + O(r2), 

Fa + r Fl + O(r2), 

Po + r PI + O(r2). 

(6.24) 

(6.25) 

(6.26) 

The series solutions of Eqs. (6.15) and (6 .17) by using Eqs. (G.25) - (6.27) along with Eqs. 

(6.22) and (6.23) upto firs t order expansion yields: 

\]i = 3214 h (8y( 4B4 F + 3h2(F + h)3J1d"6"}'3 r) + h(F + h) 3J1d"4"}'2r cosh[M(h - 3y) nJ 

-12h2(F + h) 3 M6(h + y)"}'3 r cosh[M(h - y)~ + (F + h)( -h(F + hi M4"}'2r 

cosh[M(3h - y)~ + 12h2(F + h)2 M6(h - y)"}'3r cosh[M(h + y) v0J - 32B3 

dp /dx 

where 

y sinh[Myv0J + h(32B3 sinh[Jld"yv0J + (F + h)2 M4"}'2r(cosh[Jld"(3h + y) v0J 

- cosh[Jld"(h + 3y) v0J + lvI v0(4y( -7 cosh [h lvI v0J + cosh[3hM v0J 

+G cosh[My~) sinh[hM v0J + h(sinh[M(h - 3y)v0J + 3 sinh[M(3h - y)v0l 

-3 sinh[M(3h + y)~ + sinh[M(h + 3y)v0])))))), (6.27) 

16~4 ((F + h)M3"}'3/2(6hlvI v0(1 - h2J1d"2"}' - 2(F + h)2 M4"}'2r) - 8h3 M3"}'3/2 

cosh[2hM ~ - 2hM v0(3 + h2 M2 "}' ) cosh[4hM v01 + 4(1 + 3h2 M2"}' 

+2(F + h) 2J1d"4 "}'2r) sinh [2hJld" ~ - (-2 - 6h2J1d"2"}' + (F + h)2 M4"}'2r) 

sinh[4hM v0])), (6.28) 

B = - hM v0cosh[hMv0J +sinh[hMv0J. 
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6.3 Graphical results and discussion 

The aim o[ t his section is to discuss and analyze the effect of Hall parameter (ue ), Hartman 

number (IvI), Deborah number (r) and amplitude ratio (¢) on pressure rise per wavelength 

(l:::,.P>.) , friction force at the channel wall (F>.) , pressure gradient (dp/dx), longitudinal velocity 

(u) and trapping. 

6.3.1 Pumping characteristics 

This subsection describes the effects of parameters U e , lvJ, f and ¢ on l:::,.P>., F>. and dp / dx . Figs . 

(6. 1 - 6.4) a re displayed to s e t he variations of pressure drop per waveleng th (l:::,.P,\) against the 

l1lean How rate (8). Effect of Hall parameter (c.te ) on pressure rise is presented in Fig. 6.1 which 

depicts that by increasing a e the pumping rate in the p eris ta ltic region decreases whereas it 

increases ill the co-pumping region. Furthermore free pumping flux 80 increases by increasing 

O'e . Plots in Fig. 6.2 display the influence of Hartman number (111) on pressure rise which 

illustra tes that pumping rate increases in t he p eristalt ic p umping region whilst it decreases in 

the co-pumping region whell j\!J is increased. Moreover the free pumping flux decreases for 

la rger M. The influence of Deborah llumber (f) on pressure rise is presented in F ig . 6.3. It 

indicates that an increase o[ f results in an increase in the free pumping flux. Furthermore the 

pumping rate increases in the peristaltic pumping region and it decreases in the co-p ulllPing 

region by increasing f. Effect of amplitude ra tio (¢) on pressure rise is displayed ill Fig. G.4. 

It indicates that the pumping rate and free p umping flux increase for increasing values of ¢. 

Also i t is noted that the p eris talt ic pumping occurs [or q) > 1. In addition l:::,.P>. decreases in 

t he co-pumping region for la rger ¢ . Effect of parameters U e , 111, f and ¢ on frictional forces 

are presen ted in Figs. (6.5 - G. 8) which shows quite opposite beh avior in comparison with the 

plots displayed for pressure rise. Figs. (6.9 - 6.12) a re prepared to see the varia tions of axia l 

pressure gradient dp/dx [or different values of U e , M , f and ¢. Here plots of dp/dx are sketched 

for one wavelength for x E [0 , 21f]. Fig. 6.9 depicts that the m agnitude of pressure gradient 

decreases for larger values of (.t e . Influence of parameters j\!J a nd f on dp/dx are shown in the 

Figs. 6.10 and 6.11 respectively. Here increase in both M and f enhances the m agnitude of 

pressure gradient. Effect of amplitude ratio q) on dp/dx is presented in Fig. 6.12 . It shows 
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that by increasing 1> the pressure gradient decreases for 0 < x < 7r whereas it increases when 

7r < x < 27r. 
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( c~e ), Hartman number (M) , Deborah number (r) and amplitude ratio (¢) . Fig. 6.1: M = 2, 

q) = 0. 26, r = 0.1, F ig. 6.2: a e = 0.5, ¢ = 0.26, r = 0.1 , F ig. 6.3: M = 2, ¢ = 0. 26, a e = 0.5, 

Fig. 6.4: M = 2, r = 0.1 , C~e = 0.5. 
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number (M), Deborah number (r) and amplitude ratio (¢). Fig. 6.9: e = 0.35, M = 2.5, ¢ = 

0.2, r = 0.1, Fig. 6.10: e = 0.35, a e = 0.5, q) = 0.2, r = 0.1 , Fig. 6.11: e = 0.35, M = 2.5, q) 

= 0.2, a e = 0.5, Fig. 6.12: e = 0.35, M = 2.5, r = 0.1, LXe = 0.5. 
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6.3.2 Axial velocity profile 

EiIects of parameters LYe, 111 and r on longitudinal velocity profile (u(y)) are presented in Figs. 

(6. 13 - 6.15). F ig. 6.13 indicates that by increasing Cl!e the velocity ehnances at the central 

part of the channel whilst it reduces near the wall of challnel. Fig. 6.14 is presented to analyze 

the impact of JI;[ on the velocity profile u(y). It depicts that the impact of I'll! on u(y) is quite 

opposite to that of CIte. Here by increasing M t he velocity decreases at t he central part of Lhe 

channel. This is due to fact that by increasing 111 the magnitude of magnetic nux Bo increases 

which enhances the Lorelltz force resisting the flow at the center of channel and hence the 

velocity decreases. Impact of r on velocity is displayed in F ig. 6.15. Here the velocity increases 

near the center of channel and it decreases near the walls when r increases . 
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Figs. (6.13 - 6.15) : Veloci ty profile (u) versus y [or distinct values of Hall parameter ( Ly.e), 

Hartman Humber (NI) and Deborah number (r). Fig. 6.13: x = 0.2, e = 0.35, 111 = 2.5, q) = 

0.4, r = 0.1 , Fig. 6.14: x = 0.2 , e = 0.35 , Lte = 0.5, ¢ = 0.4, r = 0.1 , Fig. 6.15: x = 0.2, e 
= 0.35 , M = 2.5, ¢ = 0.4, LYe = 0. 5. 

6.3.3 Trapping 

The phenomenon in which the stream lines are circled under cer tain conditions to enclosed a 

bolus is known as trapping. T his trapped bolus is pushed ahead along the peristaltic wave. 

F igs. (6.16 - 6.19) are made to see t he influences of Hall parameter LYe, Hartman number 111 , 

Deborah Humber r and amplitude ratio ¢ on trapping. In Figs. 6.16, 6.18 and 6.19 the size of 

trapped bolus increases when one of the LY.e , r and q) is increased. However opposite behavior 

is no ted with an increase in M (as shown in Fig. 6.17). 

89 



y 0.0 

-0.5 -0.5 

-1.0u-__ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ --u -1.0u-__ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ 
-2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 

X X 

Fig. 6.16 

Fig. 6.16 (a-b): P lots of w(x,y) for ae . Other parameters are e = 0.715, M = 2.5, ¢ = 0.2, r 
= 0.1. 

0.5 

y 
0.0 

-0.5 

-1.0~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ --u 

-2 -1 o 1 2 3 4 5 
X 

Fig. 6.17 

-0.5 

~/ 

-1.0~ __ ~ __ ~ __ ~ __ ~~~#~~~~ __ ~ __ ~ 
-2 -1 0 IX 2 3 ... 5 

Fig. 6.17 (a-b): P lots of w(x, y) for M. Other parameters are e = 0.715, GYe = 0.5, ¢ = 0.2, r 
= 0.1. 

90 



-0.5 -0.5 I. --- ,.,-

-1.0 -1.0 
-2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 

X X 

Fig. 6.18 

F ig. 6.18 (a-b): Plots of \]/ (x, y) for f . Other parameters are 8 = 0.715 , O'e = 0.5, ¢ = 0. 2, M 

= 3. 

-1.0u-__ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~-1.0~~~~ __ ~ __ ~~~ __ ~ __ ~~-= 
- 2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 

X X 

Fig. 6.19 

F ig. 6.19: (a-b) P lots of \]/ (:c, V) for (p. Other parameters are 8 = 0.715, CXe = 0.5, f = 0.1 , M 
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6.4 Concluding relnarks 

Thc prcscllted s tudy addresscd the MHD How of third order fluid in a symmctric channel. The 

[ollowiug observa tions are worth mentioning: 

• The pumping rate decreascs in peristaltic pumping region by increasing c.~e ' However it 

illcreases for increasing values of fl.1, r, and q). 

• Magnitude of dp / dx decreascs for illcreasing values of Cte , whereas it incrcases [or la rgcr 

values of fI.;£ and r . 

• Effects of Cte and r on u(y) are opposite to that of ]\.II. Furthermore u(y) shows a reversc 

behavior at the central part of chanllel when compared it in the neighbourhood of Lhe 

channel wall . 

• Size o[ t he bolus increases by increasing U e , r, and ¢ whereas it decreases when A1 IS 

ellhanced. 

92 



Chapter 7 

Peristaltic flow of hyperbolic tangent 

fluid with Hall and ion-slip effects 

Effects of Hall and ion-slip currents on the peristaltic transport of an incompressible hyperbolic 

tangent fluid in a symmetric channel are investigated in this chapter. The flow caused is 

because of travelling wave along the channel walls. Long wavelength and low Reynolds Humber 

assumptions are employed in t he problem fo rmulation. Mathematical expressions for the stream 

fuuctions and axial pressure gradient are constructed. Variations of physical parameters on the 

axial velocity, shear stress and axial pressure gradient are analyzed. Pumping and trapping 

phenomena a re addressed. 

7.1 Problem formulation 

Vife examined the flow of an incompressible hyperbolic tangent fluid in an infini te two-dimensional 

channel of width 2d. A sinusoidal wave of small amplitude travels along t he channel walls with 

a cons tant speed c. The Cartesian coordinate system is chosen so t hat X -axis lies along the 

central line of t he channel and Y-axis normal to it. The fluid is considered to be electrically 

conducting under t he application of a t ransverse uniform magnetic field (0, 0, Eo). The in

duced magnetic field is neglected uncler the assumption of low magnetic Reynolds number. T he 
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geometry of walls satisfies the following Telation: 

- rv -) 27f (- -) H \ X, t = el + b cos ~ X - ct , (7.1) 

in which b represents the amplitude of wave, /\ is the wavelength and t is the time. The equations 

governing the MHD flow are 

divV = 0, 

elV -
PJ-=- = divT + J x B, 

dt 

(7.2) 

(7.3) 

where dldt signifies the material derivative, PJ is the density, V (= [V, V,OJ) the velocity 

and J the current density. Here U and V are the velocity components along X and Y- axes 

respec tively. 

The Cauchy stress tensor T for hyperbolic tangent fluid is given by 

(7.4) 

(7.S) 

Al = (graJ V) + (grad V) T , (7.6) 

"(= (7.7) 

Here P is a pressure, I the identity tensor, S the extra stress tellsor, 170 the zero shear rate 

viscosity, "/00 the infinite shear rate viscosity, t the time constant, n the power law index and 

Al the first Rivlin- Ericksen tensor. Under the assumptions of 1700 = ° and t~ < 1, Eq. (7.5) 

reduces to 

(7,8) 

The generalized Ohm's law III the presence of Hall and ion-slip effects is expressed by the 

rela tion: 

( ) 
e~e eveai 

J=a E + V x B -- (J x B) + -2 [(J x B) x B], 
Eo Eo 

(7.9) 

in which a is the electrical conductivity, a e (= W e T e) the Hall parameter , a 'i (= eneBol (1 + nelna)) 
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the i011-s1i p parallleter , We the cyclotron freque11cy, T e the electron collision time, e the electric 

charge, 11e the number density of electrons, 11a the neutral particle density and E the electric 

field. The electric field here is negligible therefore from Eq. (7.9) we have 

(7.10) 

Using Eqs. (7.4 - 7.8) and (7. 10) in Eqs. (7.2) and (7.3) we have 

(7.11) 

( a - a - a ) - _ ap Sx x SXY 2 ( --) 
PJ a- + u --= + v ~ u - ---= + --=- + -=--O'Bo (1 + O!eO!i )U - O!e V , 

t ax ay ax ax ay (7.12) 

( 
D - a - a ) - ap SyX SVY 2 ( . - - ) 

PJ {}- + U --= + v ~ v = -~ + --=- + ----=- -O'Bo (1 + (.~e (~i)V + C~e U , 
i ax ay ay ax ay (7.13) 

- [(A_)] au Sxx= 2170 1+n r -y- 1 {}x ' (7.14) 

- [(A_)] (au av ) 
SXY = 1]0 1 + n r-y - 1 ay + ax ' (7.15) 

- [(A_)] av S }/ Y = 2170 1 + n ri' - 1 ay' (7.16) 

-2 - -2 -2 

cl = 2 ( au ) (au av) 2 (av) , ax + ay + ax + ay (7.17) 

Note that in fixed frame with coordinates (X , Y), the motion is t ime-dependent . However in 

a coordinate system (x,y) moving with the wave speed c in positive x direction the boundary 

shape is stationary. Defining the transformations from the fixed frame of reference to the wave 

frame of reference (x,y) by 

x = X - ct, Y = Y, u = u - c, V = if, p (x , y) = p (X , y, t) (7.18) 
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and introducing the dimensionless variables 

x 

p 

We 

the flow Eqs. (7.12 - 7.16) in terms of the stream function W 

lubrication approximation become 

----- -+ 1 ap _ asxy N (aw -) 
ax ay ay , 

ap 
Sxx = Syy = ay = o. 

(7.19) 

( aw aw ) 
1£ = -, v = -6-a under ay x 

(7.20) 

(7.21) 

(7.22) 

(7.23) 

T he continuity equation (7 .11) is identically satisfied. Moreover M, Re, 6 and W e are the 

Hartlllan, Reynolds, wave and Weissenberg numbers respectively. In this case p i- p(y) from 

Eq. (7.23) . 

The dimensionless shape of the peristaltic wall h (x) is given by 

h(x) = 1 + ¢ sinx, (7.24) 

in which ¢ = (bid) is the ampli tude ratio and (0 < q) < 1). The relevant dimensionless boundary 

conditions are: 

w = 0, at y = 0, (7.25) 

aw 
-=-1 ay , w = F, at y = h, (7.26) 
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where 

j.1t 0\]/ 
F = -dy = \]/(h) - \]/(0). 

o oy 
(7.27) 

7.2 Perturbation solution 

The governing Eqs. (7.20) and (7 .21) are highly non-linear and exact solution of these equations 

seems difficult to compute. Therefore we are interested in calculating the series solution of the 

present problem. For that we apply perturbation technique and express the flow quantities in 

a series of the small parameter TIT! e as follows: 

F 

P 

\]/0 + We \]/1 + O(We2), 

Fo + We Fl + O(We2), 

Po + W e PI + O(We2). 

(7.28) 

(7.29) 

(7.30) 

Now solving Eqs. (7.20) , (7.21) , (7.25) and (7.26) through Eqs. (7.28) - (7.30) and then 

employing Fo = F - TIT! e Fl we get the solution expressions [or s tream fuuction and pressure 

gradient as 

\]/ J
1 
(FJNycosh[!n/N/J1- n] + /f=n(YSillh[hJN/vr=n] 

-(F + h) siuh[JNy/ vr=ri:])) - 12Cic~vr=n((F + h)2nNWe(8JNy 

+IN((Gh - 9y)cosh[hm/~] +ycosh[3hm/~] 

+h(cosh[m(h - 2y)//f=n]- 8cosh[JN(h - y)/~] 

+2 cosh[ IN(2h - y)/ Jl - n] - 2 cosh[JN(2h + y)/ /f=n] 

+2cosh[JN(h + 2y)/vr=ri:])) - ~(Gsinh[hJN/vr=ri:] 

+Sillh[m(h - 2y)//f=n]- 8sillh[m(h - y)/~] 

+Sillh[ m(2h - y)lvr=ri:]- ()sjllh[my/~] 

- sinh[ m(2h + y)/ vI1=11] + sinh[JN(h + 2y)/ vI1=11]))), 
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dp/dx 

where 

3~~~(t1(F + h)nNWc(2 + cosh [hVN/Jl=n]) sinh[hVN/2 'v1l - n]4 

-(3C;C2 Jl- n)/(hVN + Jl=ntanh[hVN/Jl - n])), 

7.3 Graphical analysis and discussion 

The aim of this section is to study t he eiIects of various physical parameters on axial velocity 

(1i) , shear stress (Sxy), pressure gradient (dp / dx), pressure rise (6.P)..) and trapping. 

7.3.1 Velocity profile 

In this subsection Figs. (7.1 - 7.3) are prepared to see the influence of Hartmann number (M) , 

Hall parameter (Cte ) and ion-slip parameter (Cti) on the velocity. It is found from these Figs. 

that the plots of velocity versus y are parabolic in nature. Effect of Har tmann number (JIII) on 

the velocity profile is presented in Fig. (7.1). T he plot shows that by increasing fill the vcloci ty 

decreases ncar center of the channel. Physically larger fill increases the magnitude of magnetic 

flux Eo in transverse direction to the fluid flow which enhances the m agnitude of Lorntez force 

and hence velocity decreases. Figs. (7.2) and (7.3) show t hat the effect of Cte and Cti on the 

velocity are qualitatively similar. These parameters assist the flow by reducing the magni tude 

of magnetic flux and consequently the velocity of fluid increases by increasing both C~e and ai. 

Also effect of Cte and Cti on velocity is opposite to that of JvI. 
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7.3.2 Shear stress at the wall 

EffecLs of vVeissellberg number (I'Ve), Hartmann number (M) , ion-slip parameter (O!i) and Hall 

parameter (O!e) on the shear stress (S'xy) are shown in the ploLs (7.4 - 7.7) when 0 < x < 21T. 

Fig. (7.4) indicates that the magnitude of stress S'xy increases when lIV e increases. Influellce 

of Hartmann number (M) all shear stress is presented in Fig. (7.5) . Clearly larger valuesof 

M leads to an increase in the magnitude of S'xy. Fig. (7.6) illustrates that the magnitude of 

S'xy decreases by increasing the ion-slip parameter (O!i). Similar behavior is noted for the Hall 

parameter ((.¥e) in Fig. (7.7) where magnitude of shear stress S'xy decreases when O!e increases. 
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Figs. (7.4 - 7.7): Plots for shear stress for different values of vVeissenberg number (We), 

Hartmann number (Atf), ion-slip parameter (C¥i) and Hall parameter (c¥e) . 

7.3.3 Pumping characteristics 

This subsection portray the errect of pertinent parameters on the pressure gradient (elp/elx) 

and pressure rise per wavelength (b.P>..) . Figs. (7.8 - 7.12) are made to analyze the variation of 

elp/elx against the axial distance x E [0,41f], for different values ofvVeissenberg number (We), 

power law index (n), Hartmann Humber (Atf), ion-slip parameter (C.¥i) and Hall parameter (ue ) . 

Fig. (7.8) illustrates the influence of vVe on elp/elx. The Fig. depicts that an increase in W e 

enhances the elp / elx in the narrow part of the channel. Effect of power law index (n) on elp / elx 

is presented in Fig. (7.9). The plot reveals that the elp/elx rises in the narrow part for larger 

values of n. Fig. (7.10) is displayed for the influence of Hartmann number (Atf) on elp/elx. Here 

pressure gradient increases when lVI is increased. Figs. (7.11) and (7 .12) illustrate that effects 

of C¥i and C¥e on elp/ elx are qualitatively similar. These Figs. indicate that the magnitude of 

elp / elx in the narrow part of the channel decreases when ion-slip (C¥i) and Hall (c¥e) parameters 

are increased. Moreover effect of M on elp/elx is quite opposite to the effects of C¥i and C¥e . 
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F igs . (7.8 - 7.12): P lots for pressure gradient for different values of Weissenberg number (We), 

fluid parameter (n) , Hartmanll number (M ), ion-slip parameter (ai) and Hall parameter (a e ) , 

P lots ill F igs. (7. 13 - 7. 17) are made to analyze the variation in dimensionless pressure 

drop (ilP)") versus the time-average flux 8 [or different values of parameters vVe, 71" 111, O'i 

and a e . All of these graphs are sectored such as the upper r ight hand quadran t (I) for () > 0 

and ilP). > 0 denotes the pumping region and the region where ilP). = 0 is the free pumping 

region. Quadrant (I1) where () > 0 and ilP). < 0 is designa ted as augmented pumping region 

and quadrant (IV) when e < 0 and ilP,\ > 0 as re trograde or backward pumping where the flow 

is opposite to the peristaltic motion. Fig. (7.13) discloses tha t an increase in the Weissenberg 

number (vVe) intensify the pressure rise. Furthermore for liVe = 0 corresponds to viscous case 

and has a linear rela tion between pressure rise (ilP>.) and flow ra te (8) . However non- linear 

rela tion is observed for ltV e > 0, F ig. (7. 14) is prepared to illustrate the effect of power law 

index (71,) on pressure rise. We notice tha t ilP). drops with an increase in n in the peris taltic 

pumping region. Fig. (7 .15) presents the variation of ilP). against 8 for different values of 

Hartmann number (M). It is fou nd tha t when 1I1! is increased it enhances the pressure rise in 

the p eris taltic pumping region while ilP,\ decreases in the augmented pumping region. Also 
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the free PUl1l1 iug region decreases for increasillg values of Hartmann number (lVI) . To notice 

the effects of Cti and Lte all pressure rise (6.P,,) we prepared Figs. (7.16) alld (7 .17). These 

Figs. depict; that by magllifying Cv'i and (J'e the pressure rise decreases in the peristaltic pumpillg 

region. The free pumping region increases by increasillg ion-slip and Hall parameters. T he co

pumping region increases for increasing values of ai and a e . Furthermore Lte = 0 in Fig. (7.17) 

corresponds to the case when Hall and ion-slip effects are absent . For a e = 0 the pressure rise 

enhances but the magnitude of b..P" decreases in the presence of Hall and ion-slip parameters. 
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Figs. (7.13 - 7.17): Plots for pressure rise for different values of Weissenberg number (We), 

fluid parameter (n) , Hartmann number (lVI), ion-slip paramet er (ai) and Hall parameter (ae ) . 

7.3.4 Trapping 

Fig. (7. 18 - 7.22) are displayed [or the effects o[ Weissenberg uumber (We), power law index 

(n), Hartmann number (iI/I) , ion-slip parameter (ai) aud Hall parameter (ae ) on the trapping. 

In Figs. (7.18) and (7.19) the bolus size reduces in the upper part of the channel whereas it 

increases in the lower part o[ the channel when Hi e and n are increased. Influence of Hartmann 

number on trapping is revealed in Fig. (7.20). It is noted that by increasing !II[ the bolus 

size decreases and it vanishes for large !la. Effects of parameters ai and a e on trapping are 

illustrated in Figs. (7.21) and (7.22). These plots depict that increasing values of ni and a e 

result in an increase in the size o[ bolus. 
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F ig. 7.18 (a-b): P lots of w(x, y) for Weissenberg number (We) . 
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Fig. 7.19 (a-b): Plots of w(x, y) for fluid parameter (n) . 
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Fig. 7.21 (a-b): Plots of w(x,y) for ion-slip parameter (O:i). 
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7.4 Conclusions 

In this study we examined the peristaltic transport of hyperbolic tangent fluid under the influ

ence of Hall and iOll-slip effects. The governing equations are first modeled and then solved by 

employing long wavelengLh and low Reynolds llumber approximations. Expressions for stream 

functioll and axial pressure gradient are obtained up to first order in ~V e by using p ertur

bation technique. Expression [or pressure rise per wavelength is obtailled through llulllerical 

integration. The key findings of the ana lysis are summarized as follows: 

• The lOllgitudinal velocity gives reverse behavior at the centre line and near the walls. 

Moreover velocity d istribution is an illcreasing function of eYe and CYi. Whereas velocity 

decreases for increasing values of JII! at the center of chaunel. 

• The magnitude of shear stress increases when the values of vVe and /VI are increased. 

However increase in (~e and eYi decreases the magnitude of shear stress. 

• By increasing vVe, M and n pressure gradient intensify ill the narrow part of the channel, 

while increasing a e and (~i reduces the pressure gradient . 

• liVe and /VI have opposite effects on pressure rise when cOlnpared with n , C:~e and ai . 
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• Due to an increase in vVe and n the size of the trapped bolus reduces ill the upper half 

of the channel whereas it iHcreases in the lower half of the channel. 

• III the presence of L~e and O~i the size of the bolus increases. While oPlJ osite behavior is 

Ha ted for magnetic parallle ter 1I1f. 
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Chapter 8 

Influence of Joule heating in 

peristaltic flow of Williamson fluid 

with Hall and ion-slip effects 

The objective of present chapter is to discuss the influences of Hall and ion-slip effects on 

peristaltic flow of non-Newtonian fluid in a symmetric channel. Viscous dissipation and Joule 

heating effects are also considered. The flow analysis is carried out in a frame moving with the 

velocity of the wave. Low Reynolds number and long wavelength approximations are adopted 

in the mathematical formulation. Series solut ions for stream function , pressure gradient aud 

temperature profile are constructed for small values of Weissenberg number ("We) . Variations 

of emerging physical parameters on the axial velocity, shear stress, pressure gradient and tem

perature are analyzed graphically. Pumping and trapping phenomena are also addressed. 

8.1 Mathematical fonTIulation 

Vole investigate the magnetohydrodynamic (MI-ID) flow of an incompressible 'Williamson fluid in 

all infinite two-dimeusional symmetric challnel of width 2d. A sinusoidal wave of small amplitude 

propagates along the channel walls with a constallt speed c. The Cartesian coordinate system is 

chosen in s uch a way that X -axis lies along the central line of the channel and Y-axis normal to 

it . The fluid is electrically conducting under the application of a transverse uniform magnetic 
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field (0, 0, Bo). The induced magnetic field is neglected for small magnetic Reynolds number. 

T he geometry of walls satisfies the following expression: 

H (X, t) = d + b cos 2; (X - d) , (8.1) 

in which b represents t he wave amplitude, /\ t he wavelength and t t he time. 

T he fundamental equations for the balances of mass, linear momentum and energy equation 

in the presence of viscous dissipa tion and Joule heating effects are expressed by the relations: 

v·V=O, 

dV --
PI elt = -gradP - V·S + J x B, 

dT 2- - - J. J 
PIC1J-=- = k'V T + S . VV + --, 

dt ~ 

(
- Ct e ( Cteai [( ) 1 J=~ E + V x B)- - J x B) + -2- J x B x B , 

flo Eo 

_ ( _ _ _ _ _ _ _ _ ) 2 82 82 

V= U(X,Y,t),V(X,Y,t), O , 'V = 8- 2 + 8- 2 ' X Y 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

where dl dt signifies the lllaterial derivative, PI the density, V the velocity, P the pressure, S 

the extra stress tensor, cp the specific heat, T the temperature, k the thermal conductivity, J 

the cunen(; density, ~ the electrical cOllductivity, B the applied magnetic field, LYe and O'i are 

the Hall alld ion-slip parameters. 

Expression of stress t ensor S for Willialllson fluid is given by 

(8.7) 

Al = (grad V) + (grad V) T , (8 .8) 

(8.9) 

Here T represents the matrix trallspose, 7700 the infini te shear rate viscosity, 170 the zero shear 

rate viscosity, r the time constant and Al the first Rivlin- Ericksen tensor. Note that when 

r = 0 Eq. (8.7) reduces to a viscous fluid . Under the assumptions of 7]00 = 0 and r;:Y < I , Eq. 
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(8.7) reduces to 

(8.10) 

There is no applied voltage therefore E = 0 and with the use of Eq. (8.5) we have 

Using Eqs. (8.6), (8 .10) and (8.11) in Eqs. (8 .2 - 8.4) the continui ty, linear momentum and 

energy eq natiolls take t he forms: 

au av = 0 
ax + ay , 

( a -a -a ) -
PJ -= + U -== + v -= u at ax ay 

- ~ - ( au av ) 
S ">(y = - ''70[1 + ri'l -= + -== , 

j ay ax 

- ~ - av 
Syy = -2r}0[1 + ri'l-=, ay 

-;- 2 ( au )2 (au av )2 ( av )2 b) = 2 -== + -= + -== + 2 -= , ax ay ax ay 

( a -a -a ) -pCp -= + U -== + v -= T at ax ay 
- av N (-2 -2) +SYYaY + A U + v . 
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(8 .13) 

(8 .14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8 .19) 



Note that the fiow is unsteady in the fixed frame "vi th coordinates (X, y, t) . We now introd ucing 

a coordillate system (x,y) moving with the wave speed c in the positive x direction in which 

the bOLludary shape is stationary. The coordinates and velocities in the fixed and wave frames 

are related by the transformations: 

x = X - ct, Y = Y, u = U - c, V = V, j5 (x, y) = p (X, Y, t) 

Defining dimensionless variables by 

21fx y u v 
h = '2 d2 

S=~S, -::rd 
x , y = d' 1£ = -, v =- p = - -]5, 'Y =-, 

/\ 
, 

d ' /\ 77o C c c 7Jo c c 

[foBod , 
Pfdc i-To 6 = 21fcl r c 

M Ile = --, () = W e= d ' 
770 770 T1 - To' A ' 

M2,4 
A = 1 + (.~e(.~i, PI' = 7Jo Cp c2 

(8.20) N 
(ae )2 + (A)2' k ' 

E c = 
Cp(Tl - To )' 

the flow Eqs. (8 .13 - 8. 19) in terms of stream function \jf ( 1£ = ~: ' v = -6 ~:) under the 

assumptiolls of long wavelength and low Reyuolds number approximations become 

dp = _ oSxy _ N ( O\jf + 1) , (8.21) 
dx oy oy 

o2\jf 
Sxy = - (1 + We 1') 1', and l' = oy2' (8 .22) 

op 
Sxx = Syy = oy = 0, (8.23) 

Ec [(S", t) + ~ (~: + I) 2] ~ o. (8 .24) 

The con tinui ty equation (8.1 2) is iden tically satisfied. Moreover M, Re, 6, lIVe, P 'I" and Ec 

denote resp ectively t he Hartlllan , Reynolds, wave, Weissenberg, Prandtl and Eckert numbers. 

Eq. (8.24) implies tha t p -=I- p(y ) therefore p = p(x) only and op = dP. To elimina te pressure 
ox dx 

we cross differentiate Eqs (8 .22) and (8.24) and obtained the following expression 

(8 .25) 
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The non-dimensional shape of the peristaltic wall h (x) is given by 

h ( x) = 1 + cP COS:I; , (8.26) 

in which q) = (bid) is the ampli tude ratio and (0 < cP < 1). The relevant dimensionless boundary 

conditiolls in wave frame a re: 

\Ii = 0, () = 0, at y = 0, (8.27) 

u\li 
-=-1 oy , \Ii = F, () = 1, at y = h, (8.28) 

where 

/

'h oIT! 
F = -' ely = \Ii(IL) - \Ii(O) . 

. 0 oy 
(8.29) 

The non-dimensional pressure rise per wavelength (LoP>.) aml heat transfer coefficient Z are 

/

,211" dp 
LoP).. = -d dx, 

. 0 x 
(8.30) 

[
oIL (0(1 I ) 1 

Z = ox oy y = h . 
(8.31) 

8.2 Series solutions 

The governing equations are highly non-linear and exact solutions of these equations seem 

difficult to compute. Therefore we are interes ted in calculating the series solutions and express 

the flow quantities ill a series of the small parameter We as follows: 

F 

P 

\lio + We \iiI + We 2 \li2 + O(We3
), 

Fo +vVe FI + vVe2 F2 + O(We3), 

Po + We PI + We2 P2 + O(We3). 

(8 .32) 

(8.33) 

(8.34) 

Using Eqs. (8 .33) - (8.35) in the Eqs. (8.22), (8.25), (8.26), (8.28) and (8.29) and t hen solving 

the resulting zeroth, first and second order systems, we get the solution expressions for the 
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stream fUllction (1Ji), pressure gradient (dp/dx) and temperature (B) as follows: 

IJi = 1/'JN('JN(C3 + C4Y + We(C7 + Cll We + CsY + C12Wey)) + (3(C2 

+We(C5 + C(i + (Cg + ClO)Wc)) + 12CrC2We2(-5 + 2VNy) 

+C1 (3 - 2CiWe2(5 + 2VNy))) cosh[VNy]- We(Cr + ci + 2(C1C5 

+C2C6)We) cosh [2VNy] + (Cf + C~)We2 cosh [3VNy] + 3(3C1 

- 10(CrC2 - C1Ci)We2 + 3CgWe2 - 3(C2 + We(C6 - C5 + ClO )We)) 

+4C1C2(C1 + C2)VNWe2y)sinh[VNy] + vVe(Ci - Cr - 2(C1C5 

-C2C(j)Wesinh[2VNy] + (Cf - C~ ) We2 sin h[3VNyJ) , (8 .35) 

(8.36) 

B -1/2700AN(675( -4AC13N - 4AC14 N y - 4C1C2NEcPry2 + 4CtjN2 EcPry2 

+2clN2EcPry2 + 8(C1 - C2)(1 + C4)EcVNPrcosh [VNy] + (Cr 

+Ci)EcPrcosh [2VNy] + 8C1EcVNPI'sinh[VNy] + CrEcPrsinh[2VNy] 

-CiEcPrsinh[2VNyJ) + 2EcPrWe(-1350C2C5 N y2 + 900(15ACfCi 

+CrC2(-2 + 15ACi) + GEcPrWe2(- 17GOC3C7 N y2 + 350(15AC~Cf 

+4C1C2(C1 - C2)VNWey) sinh [3VNy] + We(5 + 2VNy))) cosh [3VNyJ)), (8.37) 

where the values of Cl(l = 1 - 14) can be calculated through algebraic computations easily. 

8.3 Graphical analy sis and discussion 

This section interprets t he graphical results in order t o allalyze the quanti tative effects of 

Hall parameter ( c.~e), ion-slip parameter (Ui ) , vVessienberg number (H! e) , Hartman number 

(M) , P rrtlld tl number (PI') and Eckert number (Ec) on pressure rise (b:.P)..) , pressure gradien t 

(dp/dx), shear stress (Sxy), axial velocity (u), temperature (fJ) and trapping. 
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8.3 .1 Pumping analysis 

This subsection analyzes the variation in dimensionless pressure drop (6.P)..) versus the time

average fl ux 8 and pressure gradient (dp/dx) against t he axial distance x E [0,27f] for differellt 

values of parameters !II, We, O!e and O!i and are represented through figs. (8.1 - 8.8) . Fig. (8.1) 

discloses that larger M intensify t he pressure rise in the peristalt ic pumping region but after a 

cri tical value of 8 that is 8 = 0.08 the pressure rise decreases when lYI is increased . However 

the behavior remains the same in the free and augmented pumping regions. Influence of TITl e 

on 6.P,\ is shown in Fig. (8.2) . It depicts tha t by increasing W e the pumping ra te increases 

only in the augmented pumping region . Figs. (8.3) and (8.4) a re prepared to illus tra te the 

effec ts of O'c and O!i on pressure rise (6.P)..). These Figs. reveal tha t by increasing O! e and O!i the 

pumping rate decreases in the peristaltic pumping region. However after 8 = 0.08 the pressure 

drop increases in free and co-pumping regions for increasing values of O!e and ai . Moreover the 

pressure rise is maximum for t he case when O!e = O. F ig. (8.5) illus trat es the influence of M on 

clp/ dx . This Fig. depicts tha t an increase in M enhances the magni tude of pressure gradient. 

Effect of TlVe on dp/ clx is presellted in F ig. (8.G). The plot reveals that the magnitude of 

pressure gradient decreases in the narrow part of channel for larger values of TITle. F igs. (8.7) 

allCl (8.8) are displayed for the infl uences of a c and O!i on dp/dx. These Figs. indicate tllat the 

dp/dx decreases in magnitude when O!e and Cl'i are increased. Moreover impact of !lIon dp/dx 

is quite opposite to that of ai and (~e. Moreover these plots reflect t hat ill the wider part of 

the channel at x = a and x = 27f, dp / dx is comparatively small and the Dow can easily pass 

without imposition of large pressure gradient. However in narrow part of channel at x = 7f a 

much large pressure gradient is requireu to uphold the same flux to pass through it . 
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F igs. (8 .1 - 8.4): Variat ion in press ure drop (!::"p)"') versus average flow rate (8 ) for dis tinct 

values of Hartman number (M) Wessienberg number (VV e) Hall parameter (Cte ) and ion-slip 

parallleter ((ti ). 
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Figs. (8.5 - 8.8): Variation in dp/dx versus axial distance (x) for distinct values of Hartman 

number (ill!), \ iVessienberg number (TV e), Hall parameter (ae ) and ion-slip parameter (C.ti). 

118 



8.3.2 Shear stress at the upper wall 

III Pigs. (8.9 - 8.12) tIle variations in shear stress (Sxy) against x E [O , 27f] have been portrayed 

[or distinct values of flow parameters Jvl, lIV c, C1:e and C1:i. Fig. (8.9) illustrates that for large 

values of Jv! the shear stress at the upper wall increases. However it is noted that [rom Figs. 

(8. 10 - 8.]2) that t he effects of l¥e, C1:e and C1:i on shear stress are quite opposite to that of 1\11. 

Here by increasing VV c, C1:e and C.ti the shear sLress decreases. 
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Figs. (8.9 - 8. 12) : Variation in shear stress (Sxy ) agaillst axial distance (x) for Hartman number 

(111), Wessienberg nUl11uer (lV c), Hall parameter (c~e) and ion-slip parameter (ni). 

8.3.3 Velocity profile 

III this subsection the Figs. (8.13 - 8.1 5) are prepared to see the influences of Hartman number 

(M~), Hall parameter (c~e ) and ion-slip parameter (Cti) on the velocity. It is found from these 

F igs. that the p lots of velocity versus y are parabolic in nature and have opposite behavior 

Il eal' the walls when compared with center of t he channel. impact of M 0 11 t he velocity profile 

is presented ill F ig. (8.13). T he plot shows that by increasing 111 the velocity decreases near 

cen ter of the channel. Physically larger 111 increases the magnitude of m aglletic flux Eo in 

transverse direction to the fluid flow which enhances the m agnitude of Lorentz force and hellce 

the velocity decreases . Figs. (8.14) and (8.15) show that the eilects of Cte and C~i Oil th e velocity 

are qualitatively similar. However their effects are opposite to tha t of M. T hese param eters 

assis t the fiow by reducing the m agnitude of magnetic nux and consequently the velocity of 

fluid increases near the center of the channel by increasing each C~e anJ C~i. 
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Figs. (8.13 - 8.15): Variation in longitudinal velocity (u) against (y) for Hartman number (A1) , 

Hall parameter (Cl'e) and ion-slip parameter (L~i)' 

8.3.4 Temperature profile 

In this subsection the Figs. (8.16-8.20) are displayed in order to capture t he impacts of !It, Lte , 

Cl'i, Ec and Pr 011 temperature profile un versus y. Fig. (8.16) is presented to sec the influellce of 

111 on e. It depicts that the temperature increases by increasing NI. The velocity also decreases 

when !It is increased due to which the friction between the fluid particles increases and hence 

the temperature rises. Effects of L~e and Cl'i on temperature are shown in the Figs. (8.17) auel 

(8. 18). These F igs. illustrate that the temperature is a decreasing function of both Lte and Lti· 

The consequences of an increase in E c on temperature (e) is visualized in F ig. (8.19). It is 

observed that an increase in Ec intensify the temperature profile. It is because of the the fact 

t ha t with an increase ill Eckert number the viscous dissipation increases and genera tes more 

heat. This leads to enhance the fluid temperature. Also Ec = 0 corresponds to the case in 

which visco us dissipatioll effects are absent. Similar effect is noted for the parameter PI' on 

temperature profile as shown in Fig. (8.20) where the temperature of the fluid increases for 
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larger values of PI' due to the strong viscous dissipation effects. 
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F igs. (8. 16 - 8.20) : Variation in temperature (fJ) against axia l distance (x) for distiuct valucs of Hartman 

numbcr (1I;[) , Hall parameter (o:e ), ion-slip parameter (L~i)' Eckert !lumber (Ee) and Prandtl number 

(Pr). 
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Figs. (8.21 - 8.26) are sketched to notice the effects of parameters M, a e , ai, liVe, Pr and 

Ec 0 11 heat transfer coefficient (Z). Figs. (8.21), (8.22), (8.25) and (8.26) indicate that the 

magni t ude of heat transfer coefficient enhances when the values of parameters 1\11, vVe, Pr and 

Ec are increased. However Figs. (8.23) and (8.24) depict that the magnitude of heat transfer 

coefficient decreases when C~e and ai are increased. 
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F igs. (8 .21 - 8 .26) : Variation in heat transfer coefficient (Z) against a,'{ia l distance (x) for Hartman 

number (111), Wess ienberg number (lIVe), Hall pa.rameter (cte), ion-slip parameter (CYi), Prandtlnumber 

(PT) and Eckert number (Ee). 

8.3.5 Trapping 

Fig. (8.27 - 8.30) are displayed for thc effects of Weisseuberg number (We), IIa tnnau mnubcr 

(lv'!), Hall parameter (ae ) and ion-slip paramcter (ai) on the trapping. In Figs. (2.27) auci 

(2.28) the sizc of bolus dccreascs for larger values of vVe aud 111. Effects of parameters cte and 

O'i on trapping are illustrated in Figs. (8.29) and (8.30). These plots depict that increasing 

values of ai and cte result in au increasc of the size of trapped bolus. 
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Fig. 8.27: Plots for \f!(x, y) for Wessienberg number (We). 

t/J = 0.48. <:> = 1, ,Ye = 0.01, a .. = 0.5, O'j = 0.3 

-1.0 

-1.5_~3----_~2----_~1----~U----~1----~2----~3 

X 

Fig. 8.28 

t/J = 0.48, e = I. 'Ve = 0.01, a .. = 0.5, <l'i = 0.3 

-1.0 

-1.5L-----~----~----~----------------~ 
-3 -2 -1 0 1 2 3 

x 

Fig. 2.28: P lots for \l!(x ,y) for Ha.rtma.n number (M). 
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Fig. 8.29: P lots for w(x , y) for Hall parameter (ai). 
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Fig. 8.30: P lots for w(x, y) for ion-slip parallleter ( L~e). 
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8.4 Conclusions 

III this chapter we analyzed the heat Lransfer analysis on peristaltic flow of Williamson fluid 

in a symmetric channel when Hall and ion-slip effects are present. Effect of Joule heating and 

viscous dissipation are also retained. The key findings of present study can be listed below. 

• Pressure rise increases in peristaltic pumping region for large values of M, whereas it 

decreases for the increase in O!e and Lti . 

• Magllitude of dp/ d;& decreases by increasing liVe , Ltc and Lti and it increases via larger AI. 

• Increase in parameters TVe, Lte and Lti decreases the shear stress at the wall while shear 

stress increases when 1\-1 is increased . 

• Longituclilla l velocity gives reverse behavior a t the center line and near the walls. Moreover 

effects of Lte and Cti all velocity distribu tiOll a re quite opposite to that of lll! . 

• Temperature is increasing function of parameters M, Ee, and P1·. However t he tempera

ture decreases for O'c and O!i . 

• Due to increase in ltVe and }'-1 the size o[ bolus decreases. However the bolus size increases 

[or larger values o[ Lte and Ui. 
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Chapter 9 

Effects of Hall and ion-slip currents 

in peristaltic flow of 

Phan-Thein-Tannar (PTT) fluid 

with Joule heating and viscous 

dissipation 

The influences of Hall and ion-slip on peristaltic transport of Phan-Thein-Tannar fluid in a 

symmetric channel is discussed in this chapter. Viscous dissipation and Joule heating effects 

are also considered. The flow analysis is carried out in a wave frame of reference moving with t he 

velocity of the wave. Low Reynolds number and long wavelength approximations are employed 

in the mathematical formulation. Series solutions for stream function, pressure gradient and 

temperature profile are constructed for small values of Weissenberg number (ltV e). Impact 

of physical parameters on t he axial velocity, pressure gradient and temperature are ana lyzed 

graphically. Pumping and trapping phenomena are also examined. The results show that the 

axial velocity increases by increasing the Hall and ion-slip parameters. 
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9.1 Development of n'lathematical model 

We examilled the MHD flow of an incompressible, electrically conducting PTT fluid in an 

iufinite two-dimensional channel of uniform width 2d. A sinusoidal wave of small amplitude and 

COlls tant speed c propagates along the channel walls. Cartesian coordinate system is choosen 

such that X-axis lies along the central line of the channel and Y-axis normal to it . A uniform 

magnetic field of strength Bo is applied in the transverse direction (0, 0, Bo) and the induced 

magnetic field is neglected for low magnetic Reynolds number. 

T he geometry of walls satisfies the fo llowing expression: 

- (- ) 27f (- ) H X, I = d + b cos ~ X - cl , 

in which b represents the wave amplitude, A t he wavelength and I the t ime. 

T he veloci ty for the two-dimensional flow is 

v = [V(X, Y,l), V(X, Y,l) , 0] . 

TIle fundalllental equations govel'lling the JVIHD flow are; 

(i). the continuity equation 

V·V=o, 

(ii). the linear momentum equation in the presence of Lorentz force 

dV -
PJ -=- = V . T + J x B 

dt ' 

(9 .1) 

(9 .2) 

(9.3) 

(9.4) 

(9.5) 

(iii). the energy equatiou ill the presence of viscous dissipation and J oule heating effects: 

(9.6) 

where d/dl signifies the material derivat ive, PJ the density, p the pressure, I the idellti ty tensor , 

't the Cauchy stress tensor, S the extra stress tensor , cp the specific heat , T the temperat ure, 
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k the thermal conductivity, .1 the current density and (J the electrical conductivity. 

The generalized Ohm's law in the presence of Hall and iOll-slip effects is 

- O'e O'eCl'i )] .1=(J(E + V x B)-- (.1 x B) + -2 [(.1 x B x B, 
Eo Eo 

(9 .7) 

in which eYe (= weTe) denotes the Hall parameter, Cl'i (= eneBo / (l + ne/na)) the ion-slip para

meter , We the cyclotron frequency, T e the electron collision time, e the electric charge, ne the 

number density of electrons, na the neutral particle density alld E the electric fielu. 

Expression of extra stress tensor S for the Phan-Thein-Tallnar (PTT) model is givell by 

-\1 clS - ( -) T ( -)S = -= - S· grad V - grad V . S, 
cit 

A1 = (grau V) + (grad V) * . 

The function ! in linearized PTT model is 

- c Al (-) f = 1 + -tr S . 
/1, 

(9.8) 

(9.9) 

(9.10) 

(9 .11) 

Here /.l is the dynamic viscosit.y, A1 the relaxation time, c E [0,1] the model parameter, S\1 

represents Oldroyd's upper-convected derivative, tr the trace. Note that the PTT model reduce 

to upper convected Maxwell (UCM) model when c = O. There is no applied voltage therefore 

we take E = 0 and with the use of Eq. (9.7) we have 

(9. 12) 

lVlaking use of Eqs. (9 .8 - 9.12) ill Eqs. (9.3) and (9.4) the continuity, momentum and energy 

equations take the forms: 
fJU fJV 
-= + -= = 0, 
fJX fJy 

(9.13) 

( 
fJ - fJ - fJ ) - _ fJp Sxx S xv 2 [ - V] 

PJ fJ- +U-= +V-= U---=+----=-+-=--(JBo (l+Cl'eO'i)U-c~eV , 
t fJX fJy fJX fJX fJy 

(9.14) 
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(9.15) 

(9.16) 

.- ( asxy -8SXY -as xv aV - aV - aU - aU - ) 
IS Xl' + Al -8- + U -=- + V--=- - --=S X)( - -=S )(y - --=5 Xy - -=5Vl' t aX aY aX .- aY '- aX aY 

( aU av) 
/.l aY + aX ' (9.17) 

- ( asyy -aSyy -aSy )? aV - aV - ) aV 
I S vy + h ~ + U-=-- + v--=- - 2--=Sy)( - 2-=SyV = 2/.l-=, 

ut aX aY aX'- aY aY (9.18) 

cAl (- -) 1 = 1 + - S x x + S yy , 
/.l 

(9.19) 

k (a2
'f a2T) S- aU S- ( au av ) aX2 + ay2 + x x aX + XY aY + aX 

- aV N (-2 -2) 
+SYYaY + A U + v . (9.20) 

Note that the flow is unsteady in the fixed frame with coordinates (X, Y, f). We now introduce 

a coordinate system (x,y) moving with the wave speed C ill the positive x direction in which 

the boundary shape is stationary. The coordinates and velocities in the fixed and wave frames 

are related by the transformations: 

x = X - ct, Y = Y, u = (j - c, V = 11, j5 (x, y) = p (X , Y, f) . (9.21) 

Defiuing the dimensionless quantities by 

2nx 'fJ u v h d2 
S -!£S x , Y = d' U=- v =- h = d' P = -;:-15, /\ 

, , - , 
c C l·bC IJ,C 

M lEad, 
PJdc i-To 2nd /\l C 

Re= --, e= o=-.x' We=d' 
11, /.l Tl - To' 

N 
M2 A 

A = 1 + C~eai, I1,C
2 

(9.22) 
(c~e)2 + (A)2 ' ET= 

k(Tl - To)' 
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in which }.I{, Re, 6, liVe, and BT denote respectively the Hartman, Reynolds, wave, vVeissenberg, 

(
OW OW) and Drikman numbers. Iutroducing the stream. function W 1£ = oy' v = -6 ax the conti-

lluity equaLion (9.13) is identically satisfied. By adopting long wavelength and low Reynolds 

number approximations Eqs. (9.14) - (9.20) in terms of stream function W yield: 

-=---N -+ 1 dp oSxy (OW ) 
dx oy oy , 

op = 0 
oy , 

fSyy = 0, 

02 W 02 W 
f Sxy = -We oy2 Syy + oy2 ' 

f = 1 + eWe (Sx~; + Syy) . 

~:~ +Br [( s., ~:;) + ~ (~: + 1) '] ~ 0 

(9.23) 

(9.24) 

(9 .25) 

(9 .26) 

(9.27) 

(9.28) 

(9.29) 

Eq. (9.24) illlplies that p =I- p(y) therefore p = p(x) only and op = dP. The non-dimensional ax dx 
shape of the peristaltic wall h (:c ) is giveu by 

h(x) = 1 + qJcos(x), (9.30) 

in which ¢ = (b/d) is the amplitude ratio and (0 < ¢ < 1). The volume flow rates in fixed and 

wave frame are given by 

8 = F+ 1, (9.31) 

where 

i·" oW F = -dy . 
. 0 oy 

(9.32) 
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9.2 Solution of the problem 

We integrate Eq. (9.23) subj ected to the boundary condition 8 x y = 0 at Y = 0 that gives 

(9.33) 

With the aid of Eqs. (9.25) and (9.27) one can write 

(9.34) 

using Eqs. (9.26) and (9.36) in Eq. (9.28) we get 

(9.35) 

Finally From Eqs. (9.27), (9.35) and (9.37) we have the relation 

82 W dp 2 ( dp ) 3 
~ = Y-

d 
+ N (w + y) + 2c W e Y -

d 
+ N (w + y) 

uy X X 
(9.36) 

The relevant dimensionless boundary conditions in wave[rame are: 

W = 0, () = 0, at Y = 0, (9.37) 

8w 
-=-1 8y , w=F, e = 1, at y = h. (9.38) 

9.2.1 Series solutions 

The govel'lling Eq. (9.38) is highly non-linear and its exact solution seems difficult to compute. 

Therefore we are interested in calculating the series solution and thus expand the flow quantities 

in a series [or small Wessenberg number (TIT! e) as follows: 

F 

]J 

Wo + We 2 W2 + O(We)4, 

Fo + We2 F2 + O(We)4, 

Po + We 2 
])2 + O(We)4. 
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(9,40) 
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Using Eqs. (42)-(44) in t11e Eqs. (23) , (38) , (39) and (40) and then solving the resulting zeroth 

and second order systems by comparing the coefficients of like powers ofllV e2
, we get the 

solution expressions [or the stream function (\If), pressure gradient (dl) / dx) and temperat ure 

(B) as follows: 

\If = 1/4h(4(Cl + C2 + F)y + 4We(C7 + Cll We + CSy + C121tVey)) 

+We(C5 + C6 + (Cg + ClO)We)) + 12C?C2We2(-5 + 2vNy) 

+C1(3 - 2C~We2(5 + 2VNy) )) cosh[ VNy]- We(C? + C~ + 2(C1C5 

+C2C6)We) cosh[2VNy] + (ct + C~)We2 cosh[3VNy] + 3(3C1 

-10(C?C2 - CIC~)We2 + 3CgWe2 - 3(C2 + We(C6 - C5 + ClO)We)) 

+4C1C2(C1 + C2)VNWe2y) sinh[VNy] + We(C~ - C? - 2(C1C5 

-C2C6 )Wesinh[2VNy] + (Ct - C~)We2sinh[3VNy]), (9.42) 

(9.43) 

B -1/2700AN(G75( -4AC13N - 4AC14 Ny - 4C1C2NEcPry2 + 4C4 N 2 EcPry2 

+2clN2 EcPry2 + 8(C1 - C2)(1 + C4 )EcVNPrcosh[VNy] + (C; 

+C~)EcPrcosh[2vNy] + 8C1EcVNPrsinh [vNy] + C;EcPr::;inh[2vNy] 

-C~EcPrsinh[2VNy]) + 2EcPrWe(-1350C2C5 N y2 + 900(15ACtC~ 

+C;C2 (-2 + 15AC~) + 6EcPrWe2 (-1750C3C7 N y2 + 350(15AC~Ct 

+4C1C2(C1 - C2 )VNWey) sinh[3VNy] + W e(5 + 2VNY))) cosh[3VNyJ)), (9.44) 

where the values of Cl( l = 1 - 14) can be calculated through algebraic computations easily. 

9.3 Graphical results and discussion 

This section interprets the graphical results ill order to analyze the qualitative effects of Hall 

parameter (O!e), ion-slip parameter (O!i) , Wessienberg number ("W e), Hartman number (iii!) , 

and Brinkman number (Br) 0 11 axial velocity (u(y)) , pressure rise (flP>.) , pressure grad iellt 
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(dp / dx) , tempcrature (e) and trapping. 

9.3.1 Velocity profile 

In Lhis subsection Figs. (9.1) - (9 .4) are prepared to see the influences of parameters Lte , Lti, lvI, 

and lIVe all t he axial velocity. T hese Figs. show that the plots of velocity versus t he t ransverse 

displacemcllt (y) are non-linear , parabolic in nature and have opposite behavior near t he walls 

whcn compared with ccntre of t he channel. Effects of a e and Lti on t he velocity are captured in 

F igs . (9. 1) and (9.2). T hese F igs. depicts t ha t each of C\'e alld C\'i assist t he flow at t he center 

of thc channel and hence the velocity increases wi th an increase in a e and ai. Moreover Lte 

has grat er effcct than ai on veloci ty profile. To notice the effect of 111 on velocity we prepared 

F ig. (9.3) shows tha t by increasing M the velocity decreases a t the center of the channel. 

P hysically it is true because an increase in 111 enhances the magnitude of Lorentz force tha t 

ac t as a resistive agent and hence the velocity decreases. F ig. (9.4) illustrates the effects of 

viscoelastic parameter lVe on velocity. It is revealed that by incrcasing lIVe t he viscosity of the 

fluid incrcases that cause a decrease in the velocity. Also it is seen that effect of 111 on velocity 

is qui te opposi te to both a e and C\'i . 
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0.0 

y 
0.5 

F ig. 9.1: Effect of a e on u (y) 
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0.0 

-0.1 

,-., - 0.4 

~ 
~ 

- 0.6 

136 

x =0.2, ¢ = 0.2, 0 = 0.7, £ = 0.1, We = 0.1,;\1 = 3, a, = 0.5 
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F ig. 9.2: Effect of ai on u (y) 
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F ig. 9.3: Effect of M on u(y) 

9.3.2 Pumping analysis 

0.0 
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x =0.2, ¢ = 0.2, e = 0.7, f = 0.1 , 1\1 = 2, 0', = 0.6, 0'; = 0.5 
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F ig. 9.4: Effect of W e on u (y) 

In this subsect ion F igs . (9 .5) - (9 .1 2) disclose the varia tion in dimensionless pressure drop 

(b.P>..) and pressure gradient (clp/ cl.x) for difIerent values of (te, ai, M and We. F igs. (9 .5) 

and (g.G) are sketched to illustrate the effects o[ a e and (Ji on pressure rise (b.P>..) . T hese F igs. 

depicts that an increase in a e and ai decreases the pumping rate in t he peristaltic pumping 

region. However after a critical value of 8 that is 8 = 0.08 the pressure drop increases in free 

and augmented pumping region [or an increasing values of a e and ai. Moreover for (Je = a the 

pressure rise is maximum. F ig. (9.7) discloses that when M is increased it intensify t he pressure 

rise in t he perista ltic pumping region but after 8 = 0.08 the pressure rise decreases. However 

the behavior remains the same in the free and augmented pumping regions. Influence of TIVe 

on b.P>.. is shown in Fig. (9.8) which reveals tha t an increase in vVe reduces t he pumping ra te 

in t he peristaltic and free pumping regions however it has no effect in the augmented pumping 
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region . 
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Fig. 9.8: Effect of W e on b..P).. 

Figs . (9.9) - (9.12) are constructed to analyze the varia tion in press ure gradient (clp / clx) agains t 

the axial dis tance x E [0 , 21TJ, for different values of parameters Cl'e , ai, 111/ and vVe. Figs . (9 .9), 

(9.10) and (9.12) are displayed for th e influences of a e , Ui and W e on clp/clx . These Figs . 

indicate that t he magnitude of pressure gradient decreases when O!e, L~i and ltVe are increased. 

However opposite effect is observed for parameter lYI as shown in Fig. (9.12) where an increase 
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in M enhances the magnitude of pressure gradient. Moreover these plots reflect that the efFects 

of parameters are more prominent in the wider part of the channel at x = 0 and x = 21T when 

compared with the narrow part of cbannel at x = n. 
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Fig. 9.9: Effect of CY.e on dp/dx 
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Fig. 9.11: Effect of M on dp/dx 

9.3.3 Temperature profile 
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Fig. 9.12: Effect of W e on dp/dx 

Figs. (9.13) - (9.19) are presented to capture the impacts of parameters CY.e , C~i, M, vVe and B7' 

on temperature profile (e(y)) versus y. In Fig. (9.14) aud (9.16) we have neglected the effect of 
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joule heatillg. Pig. (9.B) and (9.14) arc prepared to sec the illIlueIlce of a c on e(y). Frolll these 

Figs. it is lloticed that ill the absence of joule heatiIlg the temperature increases by illcreasillg 

Ltc ' However the effect is qltil.e opposite when joule heating dfects are takell into acco llnt . III 

such a case the telllperature of the fluid decreases by increasillg a c . Figs. (9.15) ami (9.1G) 

illustrates the illlpact of parallleter Iv! on e(y). It is noted that effect of 11;[ OIl temperature is 

opposite to that of a e . The effect of ai and liVe on e(y) arc similar to a c [See F igs. (9.17) and 

(9.18)]. T he consequences of an increase ill Br- 0 11 telllperature (e) is visualized ill Fig. (9.19). 

It is seen that all increase in Dr- illtellsify the temperature profile. It is because of the fad that 

with an increase in BT the viscous dissipation increases and generates more heat thaL leads to 

enhance Lhe fluid temperature. 
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Fig. 9.13: Effect of Lte on e(y) 
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Fig. 9.19: Effect of B7' on e(y) 

9.3.4 Trapping 

Figs. (9 .20) - (9.22) are displayed [or the effec ts of Weissenberg llUluber eWe), Hartman number 

(M) aud Hall parameter (ue ) ou the trapping. III Figs. (9 .20) a lld (9.21) the bolus decreases and 

it vanishes [or larger values o[ TV c and !I{. Effects of parallleters Q e on trapping are ill usLra ted 

ill Figs. (9 .22). T he ploL depicts that increasing values of L~e result in an increase of Lhe size o[ 

trapped bolus. 
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F ig. 20 (a-b): Stream lines for different values ofWessienberg number (We) . 
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F ig. 21 (a-b): Stream lines for different values of Hatnnan number (IYI). 
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Fig, 22 (a-b): Stream lines for different values of Hall parameter (C~e )' 

9.4 Conclusions 

vVe analyzed the heat transfer analysis on peristaltic flow of PTT fluid in a symmetric channel 

when Hall and ion-slip effects are present. Effect of Joule heating and viscous dissipation are 
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also retained. The main observations are listed below. 

• LOllgitudinal velocity gives reverse behavior at the center line and near the walls. Moreover 

effects o[ (Xe and (Xi on velocity distribution are quite opposite to that of ]'\11 and ltVe. 

• Pressure rise increases in peristaltic pumping region for large values of M, whereas it 

decreases for the increase in Q e, Qi and W e. 

• Magnitude of pressure gradient decreases by increasing Q e , Qi and ltVe and its magnitude 

increases via larger M. 

• In presence o[ Joule heating effects, temperature is increasing function of parameters Jill 

and BT. However t he t emperature decreases for (te , Qi and ltVe. 

• Due to increase in ltVe and }.;[ t he size of bolus decreases. However the bolus size increases 

[or larger values of Q e . 
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Chapter 10 

Hall and ion-slip effects on 

peristaltic transport of Prandtl fluid 

in an inclined channel 

In this chapter we investigate the peristaltic flow of Prandtl fluid in an inclined asymmetric 

chauuel. Hall and ion-slip effects are considered. Asymmetry in the channel is c]'eated by 

considering the peristaltic waves along the walls with different amplitudes and phases. The 

flow analysis is carried out in a wave frame of reference moving with the velocity of the wave. 

Series solutions for the stream fuuction and pressure gradient have been computed under long 

wavelength and low Reynolds llumber assumpt ions. The flow quantities have been examined 

graphically for various emerging parameters. 

10.1 Mathematical modeling 

vVe consider the peristaltic flow of an electrically conducting incompressible Prandtl fluid in 

an infinite two-dimensional asymmetric channel of width d 1 + d2 . A constant magnetic field is 

applied. Both the magnetic field aud channel are inclined. The channel walls are inclined at 

an angle ~2 to the horizontal while the magnetic field is inclined at an angle ~l to the channel 

walls. A sinusoidal wave of COllstant speed c propagating along the channel walls induces the 

flow. vVe take Cartesian coordinate system in such a way that X-axis lies along the central 
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line of the channel and Y-axis normal to i t. The induced · magnetic field is neglected for slllall 

magneLic Reynolds nUlllber. 

:gl/BO 
~- - - --+ 

Geometry of the problem 

The geometry of walls satisfies the following relations 

- ( 27r ( - ) HI = d l + al cos >: X - cf) , (10.1) 

- ( 27r ( - t\ - ) H2 = -d2 - bl cos >: X - ctJ + ¢ . (10.2) 

Here a l and b1 show t he waves amplitudes, A is the wave length , d l + d2 the channel widt h , c 

the wave speed , t t he time and the phase difference if; ranges 0 ::; if; ::; 7r. 

The governing equa tions for the MHD flow of Prandtl fluid in the presence of gravity effects 

are expressed by the rela tions: 

v ·V = o, (10.3) 

dV - -
PJ dE = -VP+V·S+J x B+pg, (10.4) 

v = (U(X , Y, I) , V(X , Y , I) , 0) , (10.5) 

where dj dI siguifies the materia l deriva tive, PJ the density, V the velocity, 'j5 the pressure, S 

the extra s tress tensor , J the current density and g the acceleration due to gravity. 
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The Ohm's law in the presence of Hall and ion-slip effects is 

( - ) O!e ) O!eO!i [( ) 1 J=a E + V x B -- (J x B + -2- J x B x B, 
Eo Eo 

(10.6) 

in which O!e denotes the Hall parameter, O!i the iou-slip parameter and E the electric field. 

T he consti tut ive equation for the expression of extra stress tensor S for Prandtl fluid is 

given by: 

(10.7) 

A l = (grad V ) + (grad V) T . (10.8) 

Here A and C are the ma terial constants of Prandt l fluid model. There is no applied voltage 

therefore E = 0 and th rough Eq. (10.6) we have 

Using Eqs. (10.5) and (10.9) in Eqs. (10.3), (10.4) and (10.7) we have the following relatious: 

(
a -a -a ) -PI a-+U-=+V-= U 
t ax ay 

(
a -a -a ) -

Pr a-+ U-=+V-= v . t ax ay 

au av = 0 
ax + ay , 
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(10.13) 

(
8U 8V) 
8Y + 8X ' 

(10.14) 

(l0.1f» 

Following Shapiro et a l. [2] we introduce the transforma tions from fixed frame to wave frame 

uy 
x = X - ct, Y = Y, fi = (j - c, V = ii, jJ (x) = is (X, t) . 

Introducing the dimensionless quantities as 

x 

p 

(10.lG) 

where Re, M, F7' and 6 are the Reynolds, Hartman, Froude and wave number respectively. 

The flow quantities in terms of stream function \I! (u = ~~ and v = -6~;) are given by 

Re 6 [ 8\1! ~ _ 68\1! ~] 8\1! = 
8y 8x 8x 8y 8y 

8p .8Sxx 2 ()[(8\1! ) () - -8 + 6 -8" - N cos ~ 1 -8 + 1 cos ~ 1 
X X Y 
8\1! . ] Re . 8Sxy +6-8 Slll(~l) + - Slll(~2) + -8-' 

x F7' y 
(10.17) 
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Re 04 [0 oW ~ _ o\TJ ~] OW 
OX oy Dy OX o:r; 

op 20Sl'Y 2 . )[ OW ( ) 
-!:j + 0 ~ + oN S111(~ 1 (!l + 1) cos ~ l 

uy u X uy 

OW oRe o~, 
+o~ tiin(el)] - - COS(e2) + 0 ~ YY , (10.18) 

u X P I' uy 

(1 0.19) 

(10.20) 

(10.21) 

The continuity Eq. (10.10) is ident ically satisfied and under the assumptions of long wavelength 

alldlow Reynolds number the Eqs.(10.11 - 10.15) t ake the form 

dp oSxy 2 OW . Re . ( ) 
- = -~- - N COS(~l)[(!l + 1) cos (~l)] + - S111 ~2 , 
dx u y uy Fr 

Sxy = 

op = 0 
o ' y 

Sxx = 0 = Syy, 

[ 

A ~ (02 
W ) 2] (02 

W ) a+ ~ 2 ~ 2 . 6 uy uy 

T he average volume flow ra te of the perist altic wave is defined as follows: 

8 = F + 1 + d, 

with 

T he appropria te dimeusionless boundary condi t ions can be writtell in the forms: 

F OW 
2' oy = - 1, at y = hl= l +acosx, 

F OW ( ) - = - 1 at y = h2 = - d - b cos x + 'J, , 2 ' oy , f> 
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(1 0.23) 

(10.24) 

(10. 25) 

(10 .26) 

(10.27) 

(10.28) 



Here F is the flux ill wave frame and a, b, ¢ and d satisfy 

10.2 Series solutions 

The governing Eqs. are highly non-linear and exact solution of these equations seems difficult 

to compute. Therefore we are interes ted in calculating the series solutions and thus expand t he 

flow quantities in a series of the small parameter /3 as follows: 

I]! 
A A2 

I]! 0 + (3 I]! I + 0 ((3 ), (10.29) 

F 
A A 2 

Fo + (3 FI + 0((3 ), (10.30) 

A A 2 
(10.31) P Po + (3 PI + 0 ((3 ). 

Using Eqs. (10.29)-(10.31) in the Eqs. (10 .22), (10.24), (10.27) and (10 .28) and then solving the 

resulting zeroth and first order systems, we get the solution expressions for the stream [unction 

(\1"1) and pressure gradient (dp/dx) as follows: 

where 

\f! -1/E1(C3E I + (AI + El - E2)Y - JEIa((Cl - C2) cosh[ jEl/ay] 

(C1 + C2) siuh[ jEl/ay]) + (3(C6 + 1/48El (.~5/2( -48A2y(.~5/2 

-(Cra - c?)Ei/2 
cosh[3jEl/ay] + 6( -8C5 ~a3 + CI Ci(2E~y.;a 

+3Ei/2(.t)) - (cosll[ jEl/uy]- sinh[ jEl/ay]) + 6(8C4 ~(.~3 

+C~C2(2E~yva - +3Ei/
2
a))(cosh[jEl/ay] + sinh [ jEl/ay]) 

-(Cr - c?)Ei/2(.~sinh[3jEl/(.~y])) , 
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The values of Cl(l = 1 - G) and Ai(i = ] ,2) can be calculated through algebraic compu tations 

easily. 

10.3 Graphical results and discussion 

This section describes the effects of emerging parameters on the velocity tt(y), pressure gradient 

(dp/ch) , and pressure rise (6.P,,). Figs. (10.1) - (10.6) are constructed to see the influences of 

e 1 (angle of inclination of magnetic field), Hatrman number (lVI), ion-slip parameter (L~'i)' Hall 

parameter (ae ) and material parameter (~) on the axial velocity. It is found tha t the plots 

of velocity versus y are parabolic in natm e and have opposite behavior near the walls when 

compared with center of t he channel. F igs . (10 .1 ) and (10.2) illustrate t he effect of el on tt(y) 

when the channel is asymmetric and symmetric. These Figs. depict that by increasing angle 

of inclination of magnetic field (el) the velocity of the fluid increases near t he center of the 

channel and it decreases near the walls of t he channel. Moreover the fluid velocity is greater in 

symmetric channel when compared with asymmetric channel. Effect of Hartman number (M) 

on the velocity profile is presellted in Fig. (10.3). The plot shows that by increasing lVI the 

velocity of the fluid reduces near the center of the channel. Physically it is true because larger 

M increases the magnitude of magnetic flux Eo which enhances the Lorentz force and as a result 

the velocity decreases. Figs. (10.4) and (10.5) show that the effects of ion-slip parameter (L~i) 

and Hall parameter (ae ) on the velocity are qualitatively similar and their effects are opposite 

to that of AI. Both C~i and a e assist the flow by reducing t he magnitude of magnetic flux and 

hence the velocity of fluid enhances near the center of the channel by increasing each a e and 

ai · Furthermore impact of a e on velocity is greater t han ai . To notice the effect of material 

parameter (~) on velocity we prepared Fig. (10.6). It shows that by increasing ~ the velocity 

increases at the center of the channel. 
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F igs. (10.7 - 10.14) are cons tructed to analyze the varia tion in pressure gradient (clp / dx ) 

agaills t the axial distance x E [0 , 27fJ, for diiferent values of param eters ~2 (angle of illclilla tion 

of the channel) , ~ l ' M , C.~e, Ui and (3 . Figs . (10. 7) and (10 .8) a re displayed t o see the influence 

of allgle of inclina t ion of t he channel (~2 ) [or both asymmetric and symmetric channels. It is 

observed Lhat by increasing the angle of inclina tion the pressure gradient. increa,s~s ill Lhe whole 

region. Furthermore the magnitude of (dp / clx ) is greater in aSYlllmetric channel when COlll pareel 

with symmetric clmnllel. To notice t he effect o[ parameter ~ 1 (augle of inclillation of magnetic 

field ) on dp / clx we presented Figs. (10 .9) and (10. 10). These plots revea l that clp/ clx decreases 

in the narrow par t of channel and it increases in the wider par t of the channel for larger values 

of ~l in both asymmetric and symmet ric chanllels. However in symmetric channel the press ure 

gradient is less when compared with an asymmet ric channel. F ig. (10.11) is displayed for the 

influence of 11/1 on clp / clx which illdicates that pressure gradient is an increasing function of ]vI 

in the narrow part of the channel. However opposite effect is observed for parameter Jill in the 

wider par t where an increase in Jill decreases the pressure gradient . Figs. (10.12) and (10.13) 

are made to analyze the change in pressure gradient (clp / clx ) for different values of parameters 

a e and ai . These Figs . illustrate tha t effects of a e and ai on pressure gradient are opposite to 

that of A1. Bot h a e and ai decrease/increase clp / clx in the narrow/ wider part of the chanuel. 

Influence of ma terial parameter 13 on clp/ dx is presented in Fig. (10.14). The p lot reveals tha t 

the pressure gradient increases in the narrow par t of channel for larger values of 13. 
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Figs. (10.15) - (10.22) disclose the variation in dimensionless pressure drop (flP)..) versus 

the time-average flux 8 for different values of ~l' ~2' M , LYe, LYi , and (3. Figs . (10 .15) and 

(10.lG) are presented for the influence of ~2 on b..P).. for asymmetric and symllletric channels. 

It is noted that by increasing ~2 the pressure rise per wavelength increases in the whole region. 

Moreover pressure rise is larger in aSYlllllletric channel. Effect of ~1 on flP).. is shown in Figs. 

(10.17) and (10.18). These F igs. depict thaL increasing ~l decreases the pumping rate ill the 

pumping region. However after a critical value of 8 the pressure drop increases in the free a.nd 
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augmented pumping regions. Moreover in asymmetric channel the pressure rise is large when 

compared with symmetric channel. Furthermore b.P" is maximum when ~ 1 = 0 i. e. (when 

direction of magnetic field is perpendicular to channel wall s). Fig. (10.19) discloses that an 

increase in 111 intensify t he pressure rise in the peristaltic pumping region. Figs. (10.20) and 

(10.21) arc prepared to illustrate the effects of CYe and (Xi on pressure rise (b.P,,). These Figs. 

reveal that by increasing eYe and eYi the pumping rate decreases in the pumping region but after 

a critical value of e the pressure drop increases. l'vloreover the pressure r ise is maximum for the 

case when (Xe = O. Also it is observed that effects of both eYe and C~i are opposite t o tha t of 111. 

Influence of b on b.P" is shown in F ig. (10 .22). It depicts that by increasing b the pumping 

rate increases in the 1Jeristaltic pumping region and it decreases in the augmen ted pumping 

region . Also it is noted that free p umping region is independent of b. 
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F ig. 10.15: Variation of b.P).. with ~2 F ig. 10.16: Variation of b.P).. with ~2 
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10.4 Key observations 

T he following points through this study are worthmentioning. 

• The velocity of fluid is all increasing function of parameters ~ 1 , eYe and ~ while it is a 

decreasing function of M. In symmetric channel the velocity is greater than asymmetric 

channel. 

• Pressme gradient increases in Loth asymmetric and symmetric chanllels by increasing 

t he inclination of the channel. lV10reover pressure gradiellt decreases at the center of the 

channel when e 1 , L~e and L~i are increased. The pressure gradient enhances for t he increase 

in the parameters M and ~ . Furthermore magnitude of dp / dx in asymmetric channel is 

larger t han symmetric channel. 

• Pressure rise per wavelength increases for increase in e2 , M and ~. However it decreases 

when parameters e 1 , (~e and ai are increased. The value of press m e rise is large ill an 

asymmetric channel when compared with symmetric channel. 

158 



Bibliography 

[1] T. W. Latham, Fluid motion 111 a peristaltic purnp, MS. Thesis, M. 1. T. Cambridge, 

(1966). 

[2] A. I-I. Shapiro , Pumping and retrograde diffusion in peristaltic wave, "Proceedings. \ i\Tork

shop on ureteral reflux in children". N abonal Academy of Science (Natural Research Coun

cil) (1967) 109. 

[3] C. Barton and S. Raynor, Peristaltic flow in tubes, Bull. Math. Biophys., 30 (1968) 663. 

[4] A. I-I. Shapiro , M. Y. Jaffrin and S. L. 'Weinberg , Peris taltic pumping with long wave 

lengths aL low Reynolds numbers, J. Fluid Mech. , 37 (1969) 799. 

[5] F . Yia and Y. C. Fung, Peristalt ic wave in circular cylindrical tubes, J . Appl. Meclt. , 36 

(1969) 579. 

[G] I-I. S. Lew, Y. C. Fung and C. B. Lowensteinm, Peristaltic carrying and mixing of chyme 

in the slllall intestine, J. Biomech., 4 (1971) 297. 

[7] I-I. S. Lew and Y. C. Fung, A study on the low Reynolds number flow in a valved vessel, 

J. Biomech., 4 (1971) 85. 

[8] M. Y. J affrin , Inertia and streamline curvature effects in peristaltic pumping, Int. J. Eng. 

Sci., 11 (1973) 681. 

[9] M. Y. Jaffrin and A. I-I. Shapiro, Peristaltic pumping, Ann. Rev. Fluid Mech., 3 (1971) 13. 

[10] T. K Mittra and S. N. Prasad, Interaction of peristaltic motion with Poiseuille flow , Bull. 

Math. Biol., 36 (1974) 127. 

159 



[11] n.. E. Smelser , "V. J. Shack and T. J. Lardner, The swimming of spermatozoa in an active 

channel, J. Biomech., 7 (1974) 349. 

[12] IV1. J. lVIanton, Long wavelength peristaltic pumping at low Reynolds l11uuber, J. Fluid 

Mech., G8 (1975) 467. 

[13] S. Takabatake and K. Ayukawa, Numerical Analysis of two dimensional peristaltic flow , J . 

F luid Mech ., 122 (1982) 439. 

[14] S. Takabatake, K. Ayukawa and A. Mori, P eris taltic pumping in circular tubes: A nurner

ical study of fluid transport and its efficiency, J. Fluid Mech., 193 (1988) 267. 

[15] K. De Vries, E. A. Lyons, J. Ballaed, C. S. Levi and D. J. Lindsay, Contractions of the 

inner third of the myometrium, Am J. Obstetrics Gynecol, 102 (1990) 679. 

[16] O. Eytan, A. J. Jaffa, J. H. Toov, E. Dalach and D. Elad, Dynamics of the intra-uterine 

fluid-wall interface, Annals of Biomed. Eng., 27 (1999) 372. 

[17] O. Eytan and D. Elad, Analysis of int rauterine fluid motion induced by uterine contrac

tions, Dull. Math. Bio., 61 (1999) 221. 

[18] M. Mishra and A. R. Rao, Peristaltic transpor t of a Newtonian fluid in an asymmetric 

channel, Z. Angew. Math. Phys., 54 (2004) 532. 

[19] A. R Rao and M. Mishra, Nonlinear and curvature effects on peristaltic flow of viscous 

fluid in an asymmetric channel, Acta Mech., 168 (2004) 35. 

[20] Kh. S. Mekheimer, P eritaltic transport of a Newtonian fluid through a uniform and non

uniform annulus, Arab. J. Sci. Eng., 30 (2005) 69. 

[21] P. Chaturani and R. P. Samy, A study of non-Newtonian aspect of blood flow through 

stenosed arteries and its application in arterial diseases, J. Biorheology, (1985) 521. 

[22] K. K. Raju and R. Devanathan , P eris taltic motion of a non-Newtonian fluid , Rheol. Acta, 

11 (1972) 170. 

[23] G. Radhakrishnemacharya, Long wavelength approximation to peristaltic motion of a 

power-law fluid , Rheol. Acta, 21 (1982) 30. 

160 



[24] M. W. Johnson and D. Segalman, A model for viscoelastic flui d behavior which allows 

non-affine llcformation, J. Non-Newtonian F luid Mech., 2 (1977) 255. 

[25] N. P. Thien and R. 1. Tanner, A new constitutive equation derived from network theory, 

J. Non-Newtonian fiuid Mech., 2 (1977) 353. 

[2G] P. Thien , A nonlinear network viscoelas tic model, J. R heo!. , 22 (1978) 259. 

[27] L. M. Srivastava and V. P . Srivastava, Peristaltic transport of a non-Newtonian fluid: 

Applications to the vas deferens and small intestine, Ann. Biomed. Eng., 13 (1985) 137. 

[28] A. lV1. Siddiqui and W. H. Schwarz, P eristaltic motion of a third order fluid in a planar 

channel , Rheo!. Acta, 32 (1993) 47. 

[29] A. M. Siddiqui and W . H. Schwarz, P eris taltic flow of a second order fluid in tubes, J. 

Non-Newtonian Fluid Mech ., 53 (1994) 257. 

[30] E. F . E. Shehawey and K. S. Mekheilller, Couple-s tresses in peristalt ic transp ort of fluids, 

J . P hysics D: App!. P hys., 27 (1994) 11G3. 

[31] D. Tsiklauri and 1. Deresnev, Non-Newtonian effects in the peristaltic flow of a Maxwell 

fl uid, P hys . Rev. E, 64 (2001) 036303. 

[32] T. IIayat, Y. Wang, A. M. Siddiqui and K. Hutter, Peristaltic flow of Jolll1son-Segallllan 

fi uid in a planar channel, :Math. P rob. Eng., 1 (2003) 1. 

[33] T . Hayat, Y. 'Wang, K. Hutter , S. Asghar and A. lV1. Siddiqui , Peristaltic transport of an 

Oldroyd-B fiuid in a planar channel, 1V1ath. Prob. Eng., 4 (2004) 347. 

[34] K. Vajravelu , S. Sreenadh and V. R. Bab u, Peristaltic t ransport of a Herschel-Bulkley fluid 

in an inclined tube, Iut. J. Nonlinear Mech., 40 (2005) 83. 

[35] T. Haya t, N. Ali and S. Asghar , P eris taltic motion of a Burger 's fluid in a planar cllannel, 

Appl. Math. COl1lput., 186 (2007) 309. 

[3 G] M . H. Haroun , Effect of Deborah number and phase difference on peris taltic transport of 

a third-order fiuid in an asymmetric channel, Comlll. Nonlinear Sci. Numer. Simul. , 12 

(2007) 1464. 

161 



[37] T. T. Nguyen, M. P ham and N. S. Goo, Development of a peristalt ic micropump for 

Lio-medical applicatiolls Lased 011 Mini LIPCA, J. Biouic Eng., 5 (2008) 126 . 

[38] N. Ali, M. Sajid awl T. Hayat, Long wavelength flow analysis in a curved channel, Z. 

NaLurforch., 6Sa (2010) 191. 

[39] T. Hayat and M. J aved , Exact solution to peristaltic transport of power-law fluid in asym

ll1etric channel with compliant walls, Appl. Math. Mech. , 31 (2010) 1231. 

[40] S. Maiti and J. C. Misra, Peristaltic transport of a couple stress fluid : Some applications 

to hemodynamics, J . Mech . Med . Diol. , 12 (2012) ID 1250048 (21 pages) . 

[41] S. Nadeel11, N. S. Akbar, T . Hayat and A. A. Heudi, Peristaltic flow of Walter's D fluid in 

endoscope, Appl. Math. Mech. , 32 (2012) 689. 

[42] T . R. Rao and D. R. V. P. Rao, Peristalt ic flow of a couple stress fluid through a porous 

medium in a channel a t low ReYllolds number , Int. J. Appl. Math ., Mech. 8 (201 2) 97. 

[43] K. Yazdanpanh-Ardakani and H. Niroomand-Oscuii , New approach in modeling 

peristaltic transport of non-Newtonian fluid, J. Mech. Med. Diol., 13 (2013) 

DOl: 10.1142/S0219519413500528. 

[44] T. Hayat, S. Noreen, N. Ali and S. Abbasbanday, Peristaltic motion of Phan-Thein-Tanner 

fluid in a planar channel, Numer. Meth. Partial Diff. Eqs., 28 (2012) 737. 

[45] A. Kalantari, K. Sadeghy and S. Sadeqi, Peristaltic flow of non-Newtonian fluids through 

curved channels: A numerical study, Ann. Transac. Nordic Rheo. Soc., 21 (2013) 163. 

[46] P. I-Inri Prabakaran , A. Kavitha, R. Saravana, R. H. Reddy and S. Sreenadh, Peri taltic 

transport of a fourth grade fluid between porous walls with suction and injection, Int. J . 

Pure Appl. Math., 86 (2013) 293. 

[47] R. Ellahi , A. Riaz and S. Nadeem , Three dimensional peristaltic flow of ·Williamson fluid 

in a rectangular duct , Indian J. Phys. , 87 (2013) 1275. 

[48] K. Vaj ravelu , G. Radhakrishnamacharya and V. R. Murty, Peristaltic flow and heat transfer 

in a vertical annulus "vith long wave approxima tion, Int. J . Nonlinear Mech., 42 (2007) 754. 

162 



[49] S. Sriuivas and M . Kothandapani, Peristaltic transport in an asymmetric channel with 

heat transfer-A note, Int. Commun. Heat Mass Transfer, 34 (2008) 514. 

[50] T. Hayat, M. U. Qureshi and Q. Hussain, Effect of heat transfer on the peristaltic flow of 

an electrically conducting fluid in a porous space, Appl. Math. Model., 33 (2009) 1862. 

[51] S. Nadeem and N. S. Akbar , Influence of heat transfer on peristaltic flow of J11onson

Segalman fluid in a non-uniform tube, Int. J. Heat Mass Transfer 36 (2009) 1050. 

[52] S. Nadeem and N. S. Akbar, Effects of temperature dependent viscosity on peristaltic flow 

of a J effrey six constant fluid in a non-uniform vertical tube, Comm. Nonlinear Sci. Numer. 

SinlUl. 15 (2010) 3950. 

[53] S. Nadeem , N. S. Akbar , N. Bibi and S. Ashiq, Influence of heat and mass transfer on 

peristaltic flow of a third order fluid in a diverging tube, Comm. Nonlinear Sci. Numer. 

Simul. 15 (2010) 2916. 

[54] Kh. S. Mek11eimer, S. Z. A. Husseny and Y. Abd E lmaboud , Effects of heat transfer and 

space porosity on peristaltic flow in a vertical asymmetric channel, Numer. Methods Partial 

Diff. Eqs., 26 (2010) 747. 

[55] C. Vasudev, U. R. Rao, M. V. S. Reddy and G. P. Rao, Effect of heat transfer on peristaltic 

transport of a Newtonian fluid through a porous medium in an asymmetric vertical channel, 

Europ. J. Scientific Research, 44 (2010) 79. 

[56] A. M. Sobh , S. S. Al Azab and H. H. Madi, Heat transfer in peristaltic flow of viscoelastic 

fluid in an asymmetric chanuel, Appl. Math. Sci. , 4 (2010) 1583. 

[57] T. Hayat, Q. Hussain, M. U. Qureshi, N. Ali and A. A. Hencli, Influence of slip condition on 

the peristaltic transport in an asymmetric channel with heat t ransfer : An exact solution , 

Iut. J . NUlller. Meth. F luids, 67 (2011) 1944. 

[58] S. Sriuivas, R. Gayathri a ncI M. Kothandapani, Mixed convective heat and mass transfer 

iu an asymmetric channel with peristalsis, Comm. Nonlinear Sci. Numer. Simul. , 16 (2011) 

1845. 

163 



[59] S. Srinivas, R. Muthuraj and J. Sakina, A note on the influence of heat and mass transfer 

on a peristaltic flow of a viscous fluid in a vertical asymmetric channel with wall slip, 

Chel1l. Ind. Chem. Eng. Quart. , 18 (2012) 483. 

[60] T. Hayat, S. I-lina, and A. A. Hencli, Heat and mass transfer effects on peristaltic flow of 

an Oldroyd-B fluid in a channel with compli ant \valls, Heat Trans. Asian R es ., 41 (2012) 

63. 

[61] T. Hayat, S. I-lina and A. A. Hencli, Slip effects on peristaltic transport of 

a Maxwell fluid with heat and mass transfer, J. Mech . Mecl. Biol. 12 (2012) 

DOl: 10.1142/S0219519412004375. 

[62] D. Tripathi, A mathematica l lllodel for swallowing of fooel bolus through the esophag1ls 

under the influence of heat transfer, Int. J. Thermal Sci., 51 (2012) 91. 

[63] R. Ellahi, M. Muoashir Bhatti and K. Vafai, Effects of heat and mass transfer on pcristaltic 

flow ill a non- uniform rectangular duct, Int. J. Heat and Mass TraIls., 71 (2014) 70u. 

[64] S. U. S. Choi , Enhancing thermal conductivity of fluids with nano particles, Developments 

and Applications of NOll-Newtonian Flows, ASME, 66 (1005) 99. 

[65] K. Khanafcr, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancemell t in a 

t\Vo-dimcnsional enclosure u tilizing nanofluids, Int. J. Heat and Mass Transfer., 46 (2003) 

3639. 

[66] J. Buongiorno, Convective transport in nanofluids , AS ME J. Heat transfer, 128(2006)240. 

[67] K. Saclik allCl A. Pramuanjaroenkij, Review of convective heat transfer enhancement with 

nanofluids, Int;. J. Heat and Mass Trans., 52 (2009) 3187. 

[68] S. Nadeem and N. S. Akbar, Endoscopic effects on peristaltic flow of a nanofluid, Commun. 

Theor. Phys. , 56 (2011) 761. 

[69] Adi T. Utol1l0a, Heiko Pothb, Phillip T. Robbinsa, Andrzej W. Paceka, Experimental and 

theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania 

anel alumina nano fluids, Int. J. Heat and Mass Trans., 55 (2012) 777. 

164 



[70] M. Mustafa, S. Hina', T. Hayat aud A. Alsaedi, Illfi uence of wall properties on the peristaltic 

flow of a nanofl uid: Analytical aud lllullerical solutions, Int. J. Heat and Mass Trans., 55 

(2012) 4871. 

[71] TI" Ellahi, S. Aziz and A. Zeeshan, Non-Newtonian nanofluid flow through a porous mediulll 

between two coaxial cylinders with heat transfer aml variable viscosity, J. Porous Media, 

16 (201 3) 205. 

[72] M. Mustafa, S. Hina, T. I-Iayat and A. Alsaedi , Slip effects 011 the peris taltic Illotion of 

nanofluid in a channel with wall properties, ASME J . Heat Transfer , 135 (201 3) ID 041701 

(7 pages). 

[73] Kh.S. Mekheimer , P eris taltic flow of blood under effect of a magnetic field in a non-uniform 

channels, Appl. Math. Comp. , 1G3 (2004) 763. 

[74] A. Ylldll'lm and S. A. Sezer , Effects of par tia l slip on the peristalt ic flow of a MI-ID New

tonian fl uid in an asymmetric channel, Math. Com put. Model, 52 (2010) 618. 

[75] T . Hayat and S. Hina, T he influence of wall p roperties on the MHD peristaltic How of a 

Maxwell fl uid with heat and mass transfer, Nonlinear Anal. R\iVA, 11 (2010) 3155. 

[76] T. Hayat, Y. Khan, N. Ali and Kh.S. Mekheimer, Effect of an induced magnetic field on the 

peristaltic flow of a third order fluid, Numer. Meth. Partial Diff. Eqs., 26 (2010) 345-360. 

[77] S. Srinivas and R. Muthuraj , Effects of chemical reaction and space porosity on MI-ID 

mixed convective flow in a ver tical asymmetric channel with peristalsis, Math. Com put. 

Model, 54 (2011) 1213. 

[78] Y. Abd elmaboud, Influeuce of induced magnetic field on peristaltic flow .in an annulus, 

Commun. Nonlinear Sci. Numer. Simula t ., 17 (2012) 685. 

[79] K. Vajravelu, S. Sreenadh and R. Saravana , Combined influence of velocity slip , tempera

ture and concentration jump conditions on MI-ID peristaltic transport of a Cal'l'eau fluid 

in a nOll-uuiform channel, Appl. Math. Comp. , 225 (2013) 656. 

16G 



[80] L. K. Saha, M. A. Hossain and R. S. R. Gorla, Effect of Hall current on the MI-ID laminaI' 

natural convection flow from a vertical permeable flat plate with uniform surface temper

ature, Int. J. Therm. Sci. , 46 (2007) 790. 

[81] T. Hayat, N. Ali and S. Asghar, Hall effects on peristaltic flow of a Maxwell fluid in a 

porous medium, Phys. Lett. A, 363 (2007) 397. 

[82] T. Hayat and M. Nawaz, Hall and ion-slip effects on three-dimensional flow of a second 

grade fluid , Int. J . N umer. Meth. Fluids, 66 (2011) 183. 

[83] N. S. Gad, Effect of Hall currents on interaction of pulsatile and peristaltic transport 

induced flows of a particle- fluid suspension, Appl. Math. Comp., 27 (2011) 4313. 

[84] Kh. Nowar, E. Abo-Eldahab and E . Barakat, peristaltic pumping of Johnson-Segalman 

fluid in an asymmetric channel under the effect of Hall and ion-slip currents, J. Appl. 

Compo IVIath., 1 (2012) 1. 

[85] S. R. El Koumy, El S. I. Barakat and S. I. Abdelsalam, Hall and porous boundaries effects 

on peristaltic transport through porous medium of a Maxwell Model, Trans. Porous IVIed ., 

94 (2012) 643. 

IGG 


