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Introduction

Rescarchers and mathematicians all over the world developed important analytical
skills and problem-solving strategies to assess a broad range of issues in commerce,
science and arts. But the most challenging issues were related to the problems which
were more qualitative rather than quantitative in nature. Thus, the need to handle
uncertain situations and vagueness in practical as well as theoretical problems led the
researchers to the development of theories like fuzzy set theory. Many studies show
that this theory may represent an important theoretical and practical tool to tackle
uncertainty. In 1965, Zadeh initiated fuzzy sets. Fuzzy sets deal with possibilistic
uncertainty connected with imprecision of states, perceptions and preferences. Zadeh
extended the concept of fuzzy sets by interval valued fuzzy sets in 1975. Concept of
intuitionistic fuzzy sets was introduced by Atfanassov in 1983. To develop a model
that is enriched with parameters, soft set theory was initiated by Molodtsov in 1999.
It attracted the attention of many researchers as the theory proved its worth in many
dimensions like medicine and decision analysis. Maji et al. discussed decision making
problems through soft sets and fuzzy soft sets. Maji et al. defined the operations
of union and intersection on soft sets. To analyze decision making problems, hesi-
tant fuzzy set theory also proves pretty worthwhile, It was presented by Torra and
Narukawa as a generalization of fuzzy set theory. Jun et al. introduced a new notion
of cubic sets in 2011 by using a fuzzy sets and an interval-valued fuzzy sets. In 2011,
Alkhazaleh et al. defined the concept of soft expert sets where the user can know the
opinion of all the experts in one model.

In this thesis, we introduce a generalization of soft expert sets defined by Alk-
hazaleh et al. which may be called graded soft expert (GSE) sets. We give three
generalizations of soft expert sets named as graded soft expert sets, cubic soft ex-
pert sets and interval-valued intuitionistic fuzzy soft expert sets. Joint application of
soft expert sets and other theories may result in a fruitful way in multi-criteria deci-
sion making. We also propose matrix algebra by using these generalizations. In each
generalization, we propose an algorithm in decision analysis.



Chapter-wise study

The present work in this thesis consists of seven chapters. Concluding remarks and
future work of each chapter are presented at the end of each contribution chapter. The
first chapter gives a general introduction of the research work where the motivation and
objectives are defined. In second chapter, some basic concepts of fuzzy sets, interval-
valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, soft
sets, soft expert sets, hesitant fuzzy sets, cubic sets and soft matrices are given with
some of their properties and operations, which will be helpful for understanding the
rest of the thesis.

Chapter three is a generalization of hesitant fuzzy sets. It is also a modified
form of the soft expert sets introduced by Alkhazaleh and Salleh. Hesitant fuzzy sets
play a vital role in decision analysis. With respect to a given set of criteria some
decision makers have to decide among various alternatives. Although it has proved
to be a landmark in evaluating informations, yet there are certain deficiencies in the
structure. To be more specific, there is no standard inclusion measure to compare
two hesitant fuzzy sets. The most significant among them was proposed by Xia and
Xu [72]. But then, containment of two hesitant fuzzy clements in each other does
not imply their equality. Also, in decision analysis with the aid of hesitant fuzzy
sets, relative importance of the decision makers according to their area of expertise is
ignored completely which may be misleading in some situations. These sort of issues
have been resolved in this work by using graded soft expert (GSE) sets. The concept of
the graded soft expert sets are defined and their basic operations such as complement,
union and intersection are given. Some examples for these concepts, basic properties
of the operations are also given. On the other hand, an algorithm along with the
application of graded soft expert sets in decision making problem is illustrated at the
end.

In chapter four, as a generalization of soft expert sets the concept of cubic soft
expert sets have been introduced. In cubic soft expert sets we basically presented
opinions of experts in cubic sets. Cubic sets consist of fuzzy sets and interval valued
fuzzy sets. The aim of cubic soft expert sets is to present opinions of expert in the
form of interval valued fuzzy set as well as a fuzzy set. In some cases experts give their
opinions for present time period in the form of fuzzy sets and for future time period
opinion may be represented in the form of interval valued fuzzy sets. In this type
of structure we will easily aggregate the opinions of experts for present time as well
as for future time. The cubic soft sets are primarily concerned with generalizing the
soft sets by using fuzzy sets and interval valued fuzzy sets. We introduce the concept
of cubic soft expert sets (CSESs) which can be considered as a generalization of
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both soft expert and cubic soft expert sets. The notions of internal cubic soft expert
sets (JCSESs), external cubic soft expert sets (ECSESs), P — order, P — union,
P — intersection, P — AND, P — OR and R — order, R — union, R — intersection,
R — AND, R — OR have been defined for cubic soft expert sets (CSESs). We also
investigate structural properties of these operations on cubic soft expert sets (CSESs).
It has also been proved that cubic soft expert sets (C'SESs) satisfy commutative,
associative, De Morgan’s, distributive, idempotent and absorption laws. At the end,
an application of cubic soft expert sets theory in decision making is given with an
algorithm and worked out example is provided for decision making with cubic soft
expert sets.

In chapter five, we introduced some new operations on cubic soft expert sets
(CSESs). Jun et al. only defined basic operation of inclusion, union and inter-
section in [34]. These new operations were not defined earlier for cubic sets but in
this chapter we have defined addition and product of two cubic soft expert sets, scalar
product, power of cubic soft expert sel, score and accuracy function of CSESs. The
purpose of defining score function and accuracy function is that we can determine the
ranking of CSESs which help us in some aggregation operators. Some aggregation
operator on C'SES's have been introduced. By using these operators we can choose
best alternative. Since fuzzy sets and interval-valued fuzzy sets play a fundamental
role in decision analysis therefore, the aim of this chapter is to determine the most
preferable choice among all possible choices, when data is in cubic set form. Finally,
an example has been shown to highlight the procedure of the proposed algorithms.

In chapter six, In this chapter we intend to introduce interval valued intuitionis-
tic fuzzy soft expert set (IVFSE set) and certain operations on it. These include
IVIFSE weighted average operator, ordered weighted average operator, general-
ized ordered weighted average operator, ordered weighted arithmetic operator, fusion
weighted average operator and generalized fusion weighted average operator. An al-
gorithm of multicriteria decision making has been developed by using these operators
and applied on practical decision making problem.

In chapter seven, we have initiated the concept of Graded soft expert matrices
(GSEMs), cubic soft expert matrices (C'SEM s) and interval-valued intuitionistic soft
expert matrices (IVIFSEMs). The aim of this work is to handle a big data in easy
way. We can easily aggregate the opinion of two experts point-wise. We gave some
types and properties of these matrices. Two matrices are not commutative in general
in ordinary matrices algebra. But there is a very interesting result that GSEMs,
CSEMs and IVIFSEM s satisfy commutative law with respect to product. Also De
Morgan’s laws hold with respect to the product over addition and vice versa.



Chapter 1

Introduction

1.1 General Introduction

The classical set theory, also called crisp set theory, serves as one of the fundamental
concepts in Mathematics. However, only a limited number of traditional methods of
modelling and computing can be dealt with the help of crisp set theory. In practice,
most of the problems in fields such as economics, engineering, environmental sciences,
medical sciences and social sciences involve information sets which are vague rather
than precise. Due to vagueness and uncertainties in these domains traditional meth-
ods cannot be applied here. Mathematicians develop important analytical skills and
problem-solving strategies to assess a broad range of some issues in commerce, sci-
ence and the arts. Mathematical models and simulations, and the interpretation of
their results, are being called on increasingly in global decisions, as business, politics
and management all become more quantitative in their methods. The application of
mathematics is also in demand in the social sciences, particularly economics, where
mathematical tools are used to formulate models of the complex interactions in an eco-
nomic system. In several problems stochastic methods are widely used for uncertainty
assessment in future performance. The probabilistic approach has always been consid-
ered the most important, but it has often been shown that it can involve problems that
may be difficult to handle. Many studies show that fuzzy numbers may represent an
important theoretical and practical tool to tackle uncertainty. In 1965, Zadeh initiated
Fuzzy sets [83]. Fuzzy sets deal with possibilistic uncertainty, connected with impreci-
sion of states, perceptions and preferences. Zadeh extended the concept of fuzzy sets
by Interval valued fuzzy sets [84]. Interval-valued fuzzy sets have been used in medicine
[37]. Klir discussed fuzzy sets, uncertainty and information in [39]. Turken discussed
interval valued fuzzy sets in detail [67, 68, 69]. Atanassov introduced the concept of

intuitionistic fuzzy sets [8]. The intuitionistic fuzzy sets can represent three states of
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the support, opposition, and neutrality simultaneously. Thus, the intuitionistic fuzzy
sets may represent information more abundant and flexible than the fuzzy sets when
uncertainty such as hesitancy degree is involved and hereby seems to be suitable for
dealing with natural attributes of physical phenomena in complex management sit-
uations. He also introduced the notion of interval valued intuitionistic fuzzy sets by
combining interval valued fuzzy sets and intuitionistic fuzzy sets [9]. Dubois studied
on the combination of uncertain or imprecise pieces of information in ruled based sys-
tems [19, 20]. Luhandjula used compensatory operators in fuzzy linear programming
with multiple objectives [44]. Gau and Buehrer proposed the concept of vague sets
(27]. Further, Burillo and Bustince showed that concept of vague sets coincide with
intuitionistic fuzzy sets in 1996 [10]. Soft set theory is a mathematical theory dealing
with uncertainty was introduced by Molodstov in 1999 [52]. It attracted the attention
of many researchers as the theory was well equipped with parameters. The soft set
theory has been applied to many different fields. Molodtsov applied this theory to
several directions [53]. Molodtsov has been given soft sets technique and its applica-
tions [54]. Vague soft sets and their properties have been discussed in [71]. Yang et
al. discussed the combination of interval-valued intuitionistic fuzzy sets and soft sets
in [77].

Maji et al. discussed decision making problems through soft sets and fuzzy soft
sets [46, 48]. Maji et al. defined the operations of union and intersection on soft
sets [47]. Ali et al. improved those operations which were based on the selection of
parameters in particular [4]. Ali et al. examined soft sets algebraically using these
new operations [5]. Sezgin and Atagun proved certain De Morgan'’s laws for soft sets
theory and extended theoretical aspect of operations on soft sets [59]. They also
discussed soft groups and normalistic soft groups [60]. Chen et al. and Ali studied
parametrization reduction of soft sets and discussed its application in decision analysis
[15, 6]. Jiang et al. discussed interval valued fuzzy soft sets and their properties in [30].
Feng et al. extended soft sets to soft rough sets [25] and Shabir et al. improved the
structure by infroducing modified soft rough sets [61]. Further extensions can be seen
in (3, 26, 49, 50]. Maji also defined fuzzy soft sets theory and some properties of fuzzy
soft sets [45]. Cagman studied fuzzy soft sets theory and its application [13]. Pei et al.
[56] and Chen et al. [15] improved Maji’s work. Li has been given an approach to fuzzy
multi-attribute decision making under uncertainty in [42]. Szmidt has been discussed
a consensus reaching process under intuitionistic fuzzy preference relation [63]. He
also used intuitionistic fuzzy sets in group decision making [62]. Jun et al. has been
developed soft BCK/BCl-algebras, soft p-ideals of soft BCI-algebras and applications
of soft sets in ideal theory of BCK/BCl-algebras [31, 33, 32]. Gorzalczany discussed

a method of inference in approximate reasoning based on interval valued fuzzy sets
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[28]. Xu has been given methods for aggregating interval valued intuitionistic fuzzy
information and their application to decision making [73]. Soft set theory has been
applied to decision making problems [12, 23, 38]. Acar has been discussed soft sets
and soft rings [1]. Aktas has been studied some algebraic applications of soft sets [3].
Lee defined bipolar-valued fuzzy sets and their operations in [40]. He also compared
interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar-valued fuzzy sets in [41].

The requirement for information combination strategies is increasing in several
fields of human knowledge. Aggregation is a basic concern for all kinds of knowledge
based systems, from image processing to decision making, from pattern recognition
to machine learning. Generally, we can say that aggregation has for purpose the
synchronous utilization of different pieces of information (provided by several sources)
in order to come to a conclusion or a decision. Several research groups are directly
interested in finding solutions, among them the multi-criteria community, the sensor
fusion community, the decision-making community, the data mining community, etec.
and each of these groups use or propose some methodologies in order to perform an
intelligent aggregation, as for instance the use of rules, the use of neuronal networks,
the use of fusion specific techniques, the use of probability theory and fuzzy set theory,
ete. But all these approaches are based on some numerical aggregation operator.
Dombi defined the aggregated operator in [18]. Fuzzy multicriteria decision making
is discussed in [29, 35, 57]. The ordered weighted geometric averaging operator is
introduced by Xu [73]. Yager introduced the ordered weighted averaging operator [81].
In 1988, Yager provided a parameterized family of aggregation operators which have
been used in many applications [79]. Yager provided a generalization of OW A operator
by combining it with the generalized mean operator [22]. This combination leads to
a class of operators which is called as the generalized ordered weighted averaging
(GOW A) operators [82].

In the context of decision making analysis, Alkhazaleh and Salleh introduced the
concept of soft expert sets [7]. This structure can be considered as a generalization of
soft sets in which experts and their opinions have been added to make decision analysis
more easy to handle. Jun et al. introduced the concept of cubic sets in 2012 by using
fuzzy and interval valued fuzzy sets [34]. Khan et al. discussed the generalized version
of Jun’s cubic sets in semigroups [36]. Muhiuddin and Al-roqi introduced the concept
of cubic soft sets with applications in BCI/BCK-algebras [55].

To analyze decision making problems, hesitant fuzzy set theory also proves pretty
worthwhile. It was presented by Torra and Narukawa as a generalization of fuzzy
set theory [66, 65]. Motivation behind this theory was the degree of hesitancy while
making a decision. They introduced some basic operations and also discussed briefly
its role in decision making analysis. Yang et al. extended hesitant fuzzy sets to hesitant
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[uzzy rough sets and also discussed operational laws in hesitant fuzzy sets [78]. Xia et
al., Meng et al. and Tan et al. developed a series of aggregation operators for hesitant
fuzzy information and discussed their application in decision making problems [70],
[51] and [64]. Xu and Xia proposed a variety of distance and similarity measures on
hesitant fuzzy sets [72].

1.2 Research Motivation and Objectives

Soft expert sets can be considered as a generalization of soft sets in which experts
and their opinions have been added to make decision analysis easier to handle. Soft
expert sets has the advantage over the existing theories that it gives expert’s opinion
for each parameter separately. Joint application of soft expert sets and other theories
may result in a fruitful way in multi-criteria decision making. These include fuzzy
soft expert sets and its applications, fuzzy parameterized soft expert sets, fuzzy para-
meterized fuzzy soft expert sets, application of generalized vague soft expert sets in
decision making and possibility fuzzy soft expert sets. Generalized fuzzy soft expert
sets is a combination of fuzzy soft expert sets and generalized fuzzy soft sets.

The objectives of research are:

1) In this work, we shall redefine and revise soft expert sets defined by Alkhazaleh
et al. which may be called as graded soft expert (GSE) sets. We shall develop an
algorithm of decision making with the aid of GSE sets. We'll develop the relationship
of GSE sets with hesitant fuzzy sets. This will lead us to the generalization of many
results which were valid for hesitant fuzzy sets.

2) We shall give the concept of cubic soft expert sets (CSESs). We shall also
consider the problem of combining soft expert sets with other theories like intuitionistic
fuzzy sets, interval-valued fuzzy sets ete. We shall also develop different algorithms to
support our theories in multi-criteria decision making problems.

3) We shall give some new operations on cubic soft expert sets. By using these
operations we will define some aggregation operators which will help us in multicriteria
decision making problem.

4) We shall also give the concept of interval-valued intuitionistic fuzzy soft expert
sets (IVIFSESs). We shall define some operations and some aggregation operators
on it. After that we shall develop algorithm for multicriteria decision making problem.

5) We shall give the concept of graded soft expert matrices, cubic soft expert
matrices and interval-valued intuitionistic fuzzy soft expert matrices.
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1.3 Contribution Diagram
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Chapter 2
Literature Review

In this chapter, we recall some definitions related to fuzzy set, interval valued fuzzy
set, intuitionistic fuzzy set, intuitionistic fuzzy soft set, interval valued intuitionistic

fuzzy sets.

2.1 Basic Definitions

Definition 2.1.1 [34] A fuzzy subset in a set U is defined to be a function A : U — I
where I = [0,1]. The collection of all fuzzy sets in a set U is denoted by IV, For any
M\ € IV define a relation < on IV as follows:\ < p <= A(u) < u(u) Yu € U. The
join (V) and meet (A) of A and p are defined by

(AV p)(u) = sup{A(w), p(u) },
(AA p)(u) = inf{A(u), p(u)}
respectively, for all w € U. The complement of A\, denoted by \°, s defined by
Au) =1—ANu) Yue U
For a family {\i|i € A} of fuzzy sets in U, we define the join (V) and meet (A)
operations as follows:
(VA (u) = sup{Ai(u) | i € A},
icu

(AX)(w) = inf{Xi(u) | i € A}.
iEu

respectively, for all u € U.

Definition 2.1.2 [83] The fuzzy subsets of U, denoted by 0 and 1, which map every
element of U onto 0 and 1 respectively, are called the empty fuzzy set or null fuzzy
subset and the whole fuzzy subset of U respectively.

]
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Definition 2.1.8 [28] Let U be a non-empty set. A function A : U — Int([0,1]) is
called an interval-valued fuzzy set, where Int([0,1]) stands for the set of all closed sub
intervals of [0, 1], the set of all interval-valued fuzzy sets on U is denoted by [I]V. For
every A € [I|Y and u € U, A(u) = [A~(u), A*(u)] is called the degree of membership
of an element u to A, where A~ : U — I and A" : U — I are fuzzy sets in U which
are called lower fuzzy set and upper fuzzy set in U respectively. For simplicily, we
denote A = [A~,A*]. For every A,B € [I|Y, the complement of A is denoted by
A°=[1-A" 1+ A7].

Definition 2.1.4 [34] Let A = [A~,A"], and B = [B~, B™| be two interval valued
fuzzy sets in U. Then inf and sup of A and B are defined as follows:

inf{A(u), B(u)} = [inf{A™ (u), B~ (u)},inf{A"(u), B*(u)}]
sup{A(u), B(u)} = [sup{A~ (u), B~ (u)}, sup{A* (u), B* (u)}]

Definition 2.1.5 [84] Let A = [A~, A", and B = [B~, B™| be two interval valued
fuzzy sets in U. Then, we define “<", and “ =", as

A(u) < B(u) if and only if A~ (u) < B~ (u) and A" (u) < Bt (u)
Similarly,
A(u) = B(u) if and only if A~ (u) > B~ (u) and A" (u) > B (u)

for allw e U. For every A, B € [I|V, we define A C B if and only if A(u) < B(u) for
all u e U.

Definition 2.1.6 [8] Let U be a non empty set of the universe. If there are two
mappings on U,
pz:U—[0,1]

ur— pz(u) and

v

U — [0,1]

B

w — vy(u) satisfying the condition pz(u) + vév(u) < 1. Intuitionistic fuzzy set on
the universal set U is denoted and defined as A = {< u,pz(u),vz(u) >: u € U}
pz(u) and vz(u) are called the membership degree and nonmembership degree of an
element u belonging to ACU respectively. The set of all mtmtwmstzc fuzzy sets on
the universal set U is denoted by F(U). '

= R (o M

0
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Definition 2.1.7 [30] Consider U and E as a universe set and a sel of paramelers
respectively . Let A C E. A pair (3, A) 1s an intuitiomstic fuzzy soft set over U,
where 3 is a mapping given by 3 : A — F(U). For any parameter a € A, 3(a) is an
intuttionistic fuzzy subset of U and it is called intuitionistic fuzzy value set of parameter

a. B(a) can be written as an intuttionistic fuzzy set
B(a) = {< u, pug(a)(u), vy (u) >: u € U}

where pugq)(u) and vg(,(u) are the membership and non-membership functions respec-
twely. If for all u € U, pga)(u) = 1— vg(q)(u) then 3(a) will degenerate to a standard
fuzzy set and then (B, A) will degenerate to a traditional fuzzy soft set.

Definition 2.1.8 [9] Let U # ¢ be a set of the universe. py and vi determine
an interval-valued intuitionistic fuzzy (IVIF) set A on X if the two interval-valued
mappings

& U— f[(“]

ur— pz(u) and

U.»'T U - [[0‘1]
u— vz(u) salisfy the following condition: 0 < sup{pz(u)} + sup{vy(u)} < L. The
interval-valued intuitionistic fuzzy set is denoted as

A= {<u,pz(u),vi(u) >:ue U},

where pi z(u) and v z(u) are called the interval valued membership degree and non mem-
bership degree of an element u belonging to A respectively. The set of the IVIFE sets
on the universe set U is denoted by E(;{U]. The interval valued intuitionistic fuzzy set
A can be expressed in the interval valued format as follows

A={<u, [;L;-u(u),g}(u)], V5 (w), u;;-(u)] >:u € U},
where p(u), pi(u), vz (u), v}(u) € [0,1] and p*(u) +vi(u) < L.

Definition 2.1.9 [30] The interval-valued hesitancy degree (or intuitionistic fuzzy in-
dex) of an element u belonging to the interval-valued intuitionistic fuzzy set A is de-
noted and defined as follows:

mru) =[1- “E(“) = ,‘,}(u)! 1— '”‘;t'(u) - V.E(“')]'



2. Literature Review 9

In situations where more than one expert opinion is necessary, Alkhazaleh [7]
introduced soft expert sets and claimed that if we want to take the opinion of more
than one experts, we need some operations such as union, intersection, and so forth.
This causes a problem with the user, especially with those who use questionnaires in
their work and studies. So in this model, the user can know the opinion of all experts
in one model without using any operations.

In this section, we give some basic concepts related to soft sets, soft expert sets
and hesitant fuzzy sets. These will be required in the later sections.

2.2 Soft Sets

Let U be a non-empty set representing the universe set and P(U) denotes the power
set of U. Let E be the set of parameters and A, B be non-empty subsets of E.

Definition 2.2.1 [52] A pair (F, A) is called a soft set over U, where F is a mapping
given by F' : A — P(U). Soft set is basically a parameterized family of subsets of the
set U. Thus, soft set can be considered as a parameterized family of subsets of the

universe U. For e € A, F(e) gives the set of e-approximate elements of the soft set
(F,A).

Definition 2.2.2 [/7] For two soft sets (F,A) and (G, B) over a common universe
U, we say that (F, A) is a soft subset of (G, B), denoted by (F, A)C(G, B), if

(1) AC B and

(2) F(e) € G(e) for alle € A.

Definition 2.2.3 [{7] Two soft sets (F, A) and (G, B) over a common universe U are
said to be soft equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of
(F,A).

Definition 2.2.4 [}] Let U be an initial universe set, E be the set of parameters, and
ACE.

(a) (F,A) is called a relative null soft set (with respect to the parameter set A),
denoted by D4, if F(e) =0 for alle € A.

(b) (G, A) is called a relative whole soft set (with respect to the parameter set A),
denoted by Ay, if G(e) = U for all e € A.

Remark 2.2.5 If relative null soft set is taken over E, it is called null soft set over
U and is denoted by Op. In a similar way, relative whole soft set with respect to the
set of parameters E is called the absolute soft set over U and is /0

Empty soft set over U, denoted by Oy, is a unique soft set ver U wzth an empty
parameter set.
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The operations ol union and intersection on soft sets have been defined as below,

Definition 2.2.6 [/ (1) Extended union of two soft sets (F, A) and (G, B) over the
common universe U is the soft set (H,C'), where C' = AU B and for alle € C,

F(e) ifee A\ B
H(e) = G(e) ifee B\ A
FleyUG(e) ifee ANB

We write (F,A) U: (G, B) = (H, C).

(2) Let (F,A) and (G, B) be two soft sets over the same universe U, such that
AN B # 0. The restricted union of (F, A) and (G, B) is denoted by (F, A) Ur (G, B)
and is defined as (F,A) Ug (G, B) = (H,C), where C = AN B and for all e € C,
H(e) = F(e)UGle). If ANB =0, then (F, A) Ug (G, B) = 0y.

Definition 2.2.7 [4] (1) The extended intersection of two soft sets (F, A) and (G, B)
over a common universe U, is the soft set (H,C) where C = AU B and for alle € C,

F(e) ifee A\ B
H(e) = G(e) ifee B\ A
F(eynG(e) ifeec ANB

We write (F, A)N: (G, B) = (H,C).

(2) Let (F, A) and (G, B) be two soft sets over the same universe U such that AN
B # (. The restricted intersection of (F, A) and (G, B) is denoted by (F, A) Nz (G, B)
and ts defined as (F,A) Ng (G, B) = (H,AN B) where H(e) = F(e) N G(e) for all

e€c ANB. If AN B =0 then (F,A) Ng (G, B) = 0y.

2.3 Soft Expert Sets

Now, we give some basic concepts related to soft expert sets. All the definitions related
to soft expert sets have been taken from (7).

Let U be a universe set, F be a set of parameters, X be a set of experts and O be
the set of opinions. Let A be a non-empty subset of Z, where Z = E x X x O. With

these notations Alkhazaleh [7] defined soft expert set as stated below:

Definition 2.3.1 A pair (F, A) is called a soft expert set over U, where F is a mapping
given by F : A — P(U). Thus, a soft expert set can be considered as a soft set in which
parameter set is replaced with Cartesian product of set of parameters, set of experts

and set of opinions.
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Definition 2.3.2 For two soft experi sets (F, A) and (G, B) over U, (F,A) is called
a soft expert subset of (G, B) if

1) AC B and

2) F(a) € G(a) foralla € A. In that case (G, B) will be called soft expert superset
of (F, A).

Definition 2.3.3 Two soft expert sets (F, A) and (G, B) over U are said to be equal
if (F,A) is a soft expert subset of (G, B) and (G, B) is a soft expert subset of (F, A).

Definition 2.3.4 Let E = {ey,es,...,e,} be a set of parameters. The NOT set of E
denoted by TE 1s defined by TE = {Tey,Tes, ..., Te,} where Te; represents ‘not e;’ for
all i.

Definition 2.3.5 The complement of a soft expert set (F, A) is denoted and defined
as (F,A)¢ = (F¢, TA) where F¢:'TA — P(U) is a mapping given by

F(a)=U — F('IA) foralla€ IA.

Definition 2.3.6 The union of two soft expert sets (F, A) and (G, B) over U, denoted

by (F,A) U (G, B). is a soft expert set (H,C), where C' = AU B and for all a € C,

F(a) ifoe A—B
H(a) = Gla) ifae B— A
Fla)UG(a) ifae AN B.

Proposition 2.3.7 If (F.A) , (G,B) , and (H,C) are three soft expert sets over U,
then N B

1) (F,A) U (G,B) = (G,B) U (F, A),

2) (F,A) U ((G,B) U (H,C))= ((F,A) U (G,B)) U (H,C).

Definition 2.3.8 The intersection of two soft expert sets (F, A) and (G, B) over U,
denoted by (F,A) N (G, B), is a soft expert set (H,C) where C = AU B and for all
a &€ C,
Fl(a) ifaoe A— B
H(a) = Gla) ifaeB-A
F(a)NG(a) ifa€ AN B.

Proposition 2.3.9 If (F.A) , (G,B) , and (H,C) are three soft expert sets over U,

then
1) (F,A) N (G.B) = (G, B) N (F,A),
2) (FLAYN ((G,B)N (H,C)=((F,A) N (G,B)) N (H,QC).
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Proposition 2.3.10 If (F.A) , (G.B) , and (H,C) are three soft expert sets over U,
then

1) (F,A) U ((G,B) N (H.C)) = ((F,A) U (G, B)) N (F,A) U (H,C)) ,
2) (F,A) N ((G,B) U (H,C)) = ((F,A) 0 (G,B)) U ((F,A) N (H,C)) .

Definition 2.3.11 If Z = E x X x {1} in Definition 2.3.1, then (F, A) is called agree
soft expert set over U and it is denoted by (F, A)y.

Definition 2.3.12 If Z = E x X x {0} in Definition 2.3.1, then (F,A) is called
disagree soft expert set over U and it is denoted by (F, A)g

Proposition 2.3.13 If (F, A) is a soft expert set over U, then

1) ((F, A)°)° = (F, A),
2) (F, A)§ = (F, A)o,

Definition 2.3.14 If (F, A) and (G, B) are two soft expert sets over U then (F,A)
AND (G, B) denoted by (F, A) A (G, B), is defined by

(F,A)A(G,B)=(H,A x B),
where H(a,b) = F(a) N G(b), for all (a,b) € A x B

Definition 2.3.15 If(F, A) and (G, B) are two soft expert sets then (F, A) OR (G, B)
denoted by (F, A)V (G, B), is defined by

(F,A)V (G,B)=(0,A x B).
where O(a,b) = F(a) U G(b), for all (a,b) € A x B.
Proposition 2.3.16 If (F, A) and (G, B) are two soft expert sets over U, then

1) ((F,A)A (G, B)) = (F,A)eV (G, B),
2) (F,A)V(G,B))=(F,A)°A (G, B)-.

Proposition 2.3.17 If (F,A) , (G,B) , and (H,C) are three soft expert sets over U,
then

D(F, A) A (G, B) A (H,C)) = ((F, A) A ( B)) A (H,C)
2)(F,A) v ((G, B) (H C) =((F.A)V(G.B))V (H.C),
3)(F,A) v ((G, B) A (H,C)) = ((F, A)V(G B))A((F,A)V(H,C)),
H(F, A NG, B) v (H,C)) = ((F,A) A (G, B)) v ((F.A) )
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2.4 Hesitant Fuzzy Sets

Definition 2.4.1 [66] Let X be a fived set. A hesitant fuzzy set (HFS) on X is in
terms of a function that when applied to X returns a subset of [0, 1].

Thus, if & is a hesitant fuzzy set on X, then h(z) (z € X), being a subset of [0, 1],
gives the possible degrees of membership. For any o € X, h(z) is called a hesitant

fuzzy element.

Remark 2.4.2 Torra [66] defined lower and upper bounds for a hesitant fuzzy element
as below:

lower bound: h™(z) = min{y : v € h(z)}

upper bound: h*(x) = max{y : v € h(z)}

Basic operations on hesitant fuzzy sets are given below.

Definition 2.4.3 For hesitant fuzzy sets h, hy and hy on X, the following operations
have been defined:

1) Containment [78]: hy is contained in ho, denoted by hy =< ha, if and only if
hi(z) < hy (x) and hi(z) < hi(z) for all x € X;

2) Union [66]: union of hy and hy, denoted by hy U hy, is defined for any x € X
as (hy W hg)(z) = {h € hi(x) U hy(z) : h > max{h| (x), hy (2)};

3) Intersection [66]: intersection of hy and hs, denoted by hy M hy, is defined for
any z € X as (hy @ hy)(z) = {h € hi(z) U ha(z) : h < min{h{ (z), hs (z)};

4) Complement [66]: complement of h is denoted by h® and is defined for any
ze€X ash(z)= | {1-~}

veh(z)

Operational laws investigated by Yang et al. [78] are stated in the next theorem.

Theorem 2.4.4 For hesitant fuzzy sets hy, hs and hy on X, following properties hold:
1) Idempotent: hy Why = hy, hy Mhy = hy;
2) Commutative: hy W hy = ho Why, hy @ he = ha @ hy;
3) Associative: hy U (hg U hg) = (hy W hg) U hg, hy @ (he @ hs) = (hy @ ha) @ hs;
4) Distributive: hy U (ha @ h3) = (hy Uha) @ (hy Whg), hy @ (ho UWhs) = (hy M hg) U
(hy @ h3);
5) De Morgan’s laws: (hy U hg)® = h§ @ hg, (hy M ha)® = h{ W h;
6) Double negation: (h°)° = h.
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2.5 Cubic Sets

Now, we give some basic concepts related to cubic sets. All the definitions related to

cubic sets have been taken from [34].

Definition 2.5.1 Let [/ be a non-empty set. By a cubic set in U, we mean a structure
a={<u, A(u), \(u) >: u € U} in which A is an interval valued fuzzy set in U (briefly,
IVF set) and X is a fuzzy set in U. A cubic set o = {< u, A(u),\(u) >: v € U} is
simply denoted by o« =< A, XN >. A cubic set « =< A, A > in which for all u € U,
A(u) =0 and Nu) = 1 (respectively A(u) =1 and Mu) =0) for all u € U is denoted
by 0 (respectively 1). A cubic set 8 =< B,p >, in which B(u) = 0 and p(u) = 0
(respectively B(u) = 1 and p(u) = 1) is denoted by .O. (respectively .l.) The collection
of all cubic sets in U is denoted by CP(U).

Definition 2.5.2 A cubic set o« = {< u, A(u), \N(u) >: u € U} is said to be an internal
cubic set (ICS) if A= (u) < AMu) < AT (u) for all u € U.

Definition 2.5.3 A cubic set o« = {< u, A(u), \(u) >: u € U} is said to be an external

cubic set (ECS) if Mu) & (A~ (u), AT (u)) for all we U.

Theorem 2.5.4 Let o = {< u, A(u), A(u) >: u € U} be a cubic set in U which is not
an ECS. Then there exists a uw € U such that AM(u) € ((A~(u), AT (u)).

Theorem 2.5.5 Let o« =< A, \ > be a cubic set in U. If v is both an ICS and an
ECS, then
forallu e U (Mu) € (U(A)U L(A)),
where U(A) = {A"(u) |u € U} and L(A) = {A (u) |ue U}.
Remark 2.5.6 Every intuitionistic fuzzy set A = {\(u), p(u)lu € U} in U is consid-
ered as a cubic set in U.
Definition 2.5.7 Let @« =< A, A > and 3 =< B, > be cubic sets in U. Then we
define
1) a=p if and only if A= B and X\ = pu. (Equality)
2)aCp B ifand only if AC B and X\ < p. (P — order)
3) a Cr B if and only if AC B and XA > p. (R — order)
Definition 2.5.8 For any o; =< A;(u)‘,\,;(u) ru€elU > i€, we define

1) Upa; = {u, ( w) (u) :u € U} (P — union)
ieA

Ai)(u)

2) Npa; = {u, ( Ai)(u), ( /\ ,\ i)(
Ai)(
(

1) :u € U} (P — intersection)
iEA
), ( /\ Ai)(u) :w e U} (R — union)
):

3) Uga; = {u, (
1A

4) Npa; = {u,( A (uw), ( \/ Ai)(u) :u € U} (R — intersection)
€A
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Definition 2.5.9 The complement of cubic sel o« =< A, X\ >, 15 defined as
af =< u, A%u),1—AMu):uel>.

Proposition 2.5.10 For any cubic sets o =< A\ >, B =< B,y >, v =< C,v >
and § =< D,v >, we have

1) IfaCp B and B Cp vy, then  Cp v,

2) If a Cp 3 then, 3° Cp af,

3) IfaCp B and a Cp v, then a Cp B Np7,

4) If a Cp B and vy Cp B3, then a Upy Cp 8,

5 Ifa Cp B andy Cpd, then aUpy Cp BUpd andaNpy Cp BNp 4,
6) Ifoa Cr B and B Cp 7, then a TR,

7) If « Cg B, then B° Cg af,

8) Ifa« Cr B and o« TR+, then o Cr B Ng7,

9) IfaCr B andy Cg 3, then aUgy Cgr 3,

10) If« Cr B andy Cr o, then a Uy Cr 3Urd and Ny Cr 8 NgoO.

Theorem 2.5.11 Let « =< A,XA >, 8 =< B,y > be two ECSs in U, such that
of =< A, >, 8* =< B,A> are ICSs inU. Then aUp 3 is an ICS in U.

Theorem 2.5.12 Let o« =< A\ >, F =< B, > be two ECSs i U, such that
af =< A, u >, B* =< B,A> are ICSs inU. ThenanNp 3 is an ICS in U.

Theorem 2.5.13 Let o« =< A\ >, 3 =< B,y > be two ECSs i U, such that
ot =< A,u>, f*=<B,A> are ECSs inU. ThenaNp 8 is an ECS in U.

2.6 Soft Matrices

The material presented in this section is taken from [11]. We give the definitions and

types of soft matrices and some related results.

Definition 2.6.1 Let U be an initial universe, P(U) be the power set of U; E be the
set of all parameters and A C E. A soft set (fa, E) on the universe U is defined by
the set of ordered pairs

(fa.E) = {(e, fale)) : e € E, fale) € P(U)},

where fq : E — P(U) such that fi(e)=2 ife ¢ A.
Here, f4 is called an approximate function of the soft set (fa, E). The set fa(e)
is called e-approximate value set or e-approximate set which consists of related objects

of the parameter e € E.
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Definition 2.6.2 Let (fa, ) be a soft set over U. Then a subset of U x E is uniquely
defined by

Ry={(we): ec A, ue fale)}

which is called a relation form of (fa, E). The characteristic function of Ra is

written as
1, (u,e) € Ra

0, (u,e)é Ra

Definition 2.6.3 IfU = {u,us, ,un}, E=1{ey,es,....,e,} and A C E, then the Ry
can be presented by a table as in the following form

XRa ¢ UxE— [01 l]r XRA(“!Q) = {

Ra | e €2 e |8

Uy XR4 (ul»el) XR,\('l“'lse?) .‘(R,;(ul-en)
ug | YR,y (u2,€1) | XR,(u2,€2) X a (U2, €n)
tm XER4 (u‘n‘h E]) XR, ('Lf.m, 82) XRa ('um; en}

Table 2.6.1

If aij = xR, (wi,€;), then we can define a matriz

a1 @12 a3 Qi

21 29 193 a2n

[ai)]mxu = az; a3z a3z 3n
| Aml Am2 Am3 mn

= mxXTn

which is called an m x n soft matriz of the soft set (fa, E) over U.
The set of all m x n soft matrices over U will be denoted by SM,,xn.

Example 2.6.4 Assume that U = {uj,us,ug,uq,us} s a universal set and E =
{e1,ea,e3.e4} is a set of all parameters. If A = {es,e3.eq} and fa(ez) = {us, us},
fales) = @, fales) = U, then we write a soft set (fa, E) = {(e2, {uz,us}), (es,U)}
and the relation form of (fa, E) is written as

Ra = {(u2,e2), (ua, €a), (u1,€a), (ua, ea), (u3, eq), (ua, ea), (us, €4)}.
Hence, the soft matrix [a;;] s written by

0 0

[ai;] =

o o o o

o = O -
o o o

— e e e
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Definition 2.6.5 Let [a;j] € SM,,cn. Then [a;;] is called

a) a zero soft matriz, denoted by [0], if a;; =0 for all i and j.
b) an A-universal soft matrix, denoted by [ai;], if a;j =1 for all je Iy ={j :e; € A) and 1.

¢) a universal soft matrix, denoted by (1], if a;; =1 for all i and j.
Definition 2.6.6 Let [a;;], [bij] € SMyxpn. Then

a) [aij] is a soft submatriz of [bij], denoted by [a;j] C [bi;] if a;j < bij for all i and j.
b) [ai;] is a proper soft submatriz of [bij], denoted by [a;;| C [bi;] if ai; < bij for atleast
one term a;; < by; for all i and j.

¢) laij] and [b;;] are soft equal matrices, denoted by [a;;] = [bij] if aij = bi; for all i and j.
Definition 2.6.7 Let [a;j], [bij| € SMyyxn. Then the soft matriz [c;;] is called

(@) union of [a;;j| and [b;;], denoted [flgj]lj[bfj] = [ej] if eij = max{a;j, bij} for all i and j.
b) intersection of [a;;] and [bi;], denoted [a;;|N[bij] = [ci;] if ¢ij = min{aij, bi;} for all i and j.

) complement of [a;;], is denoted by [ai;]° = [e5], if iy = 1 — ai; for all i and j.
Definition 2.6.8 Let [a;;], [bij] € SMpxn. Then [ai;] and [b;]are disjoint, if
[ai;]7[bij] = [0],
for all i and j.
Proposition 2.6.9 Let [a;j] € SMy, .. Then

1) [[ai;]°]° = laj],
2) [0]° =[1].
Proposition 2.6.10 Let [aj;]. [bij| € SMuyxn. Then
1) [ay] € [1],
2) [0] € [ai],

3) [ai;] € [aij],
4) if [aij] € [bi;] and [bi;] C [ei5] then [ai;] C [ei5]-

Proposition 2.6.11 Let [a;;], [bi;]. [cij] € SMyxn. Then

1) if [aij] = [bij] and [b;;] = [eij] if and only if [a;;] = [cij],
2) if [aij] = [bi;] and [bi;] = [ai;] if and only if [a;j] = [bi;].
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Proposition 2.6.12 Let [a;;], [bij], [cij] € SMuxn. Then

1) [ai;]0fas;] = [asj],
2) [a;5]0[0] = [ay;),
3) [ai;]U[1] = [1],

) [ai;]U[ai;)° = [1],
)

)

=

5) [ai;]0[bij] = [bi510[as;],
6) [ai;]U([bi;]U[cij]) = ([aig)U[bi;])U[eis)-

Proposition 2.6.13 Let [a;], [bij], [cij] € SMmxn. Then

1) [aij]Nfai;] = [as),
2) [as]0[0] = (0],
3) [au]ﬁ[]-] = [ay],
[au]ﬂ[au]" = [0],
5) [ai]N[bi;] = [bij]N[as;),
6) [aiIN([bij]N[eis) = ([ai)N[biz])N[eij]-

Proposition 2.6.14 Let [a;], [bi], [cij] € SMyxn. Then

([a,-j]ﬂ[b,_,])" [ai;|° U[bl}]
2) ({ﬂijJU[er])o [ai;]° ﬂ[bu]o
3) [{1;‘_;][1 [bij]

[bij]

ﬁ[ﬂaj] [“%J]U [bi])N [“t U] [ei]
Ul[e

4) [“-ij]ﬁ ([bi;]V[es;]) = [“U]n[bu] [aulﬁ[“ul-

Definition 2.6.15 Let [a;;], [bi] € SMyxn. Then And-product of [a;;] and [by] is

defined as
Xt SMpixin X SMpmxn = SMpy, i n2, [“'t'j] A [bik] = [Cip]v

where ¢;, = min{a;;, by} such that p=n(j — 1) + k.

Definition 2.6.16 Let [a;;], [bic] € SMyxn. Then Or-product of [a;;] and [by] is
defined as
Y S.ﬂarrnxn X Sﬂ{mxn — Sﬂ’.{mxﬂ_z [agj] V [b@k] [C;p

where ¢;p = max{ai;, bip} such that p=n(j— 1) + k.

Definition 2.6.17 Let [a;;], [bi] € SMyxn. Then And-Not-product of [a;;] and [b;]
is defined as

A SMyxn X SMpxn — SM k2. [2i7] A [bik] = [ipl,

where c;, = min{a;j, | — bji} such that p =n(j — 1) + k.
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Definition 2.6.18 Let [a;j], [bik] € SMyxn. Then Or-Not-product of [ai;] and [b] is
defined as
Ve Sﬂ/fmx“ X Sﬂ*{mx,l — Sﬂ/fmxn?. [a,;j] v [b,;k] = [Cl‘p],

where ¢;p = max{a;;, 1 — bix} such that p=n(j— 1) + k.

Proposition 2.6.19 Let [a;;], [bi] € SMynyyn. Then the following De Morgan’s types

of results are true.

1) ([aii] A [bir])? = ([ai])® V ([bik])°,
2) ([aij] V [bik])® = ([ai5])° A ([bir])°,
3) ([aiz] ¥ [bik])® = ([ai])° A ([bik])°,
4) ([ai;] A [bik])® = ([aii])° ¥ ([bar))°.




Chapter 3

Graded Soft Expert Sets

3.1 Introduction

Liang and Liu introduced hesitant fuzzy sets into decision theoretic rough sets and
explored their decision mechanism [43]. Zhang and Wu investigated the deviation of
the priority weights from hesitant multiplicative preference relations in group decision-
making environments [85]. Although this theory proved to be valuable in the context of
decision analysis, yet there are some deficiencies in it. No standard inclusion measure
has yet been developed. In its application in decision analysis, experts’ individual
weightage has totally been ignored. To overcome these problems, we introduce graded
soft expert (GSFE) sets which can be treated as a generalization of hesitant fuzzy sets.
This structure is a modified form of soft expert sets but its structural and operational
approach is totally different. We mainly focussed to fill the gaps in hesitant fuzzy set
theory. In Section 3.2, graded soft expert sets (GSFE) have been introduced. Some
basic operations have been defined and related laws have been proved. Section 3.3 has
been devoted to the study of decision making problems with the aid of GSE sets. At

the end, Section 3.4 contains some concluding remarks.

3.2 Graded Soft Expert Sets (GSE Sets) Versus Hesitant
Fuzzy Sets and Soft Expert Sets

In this section soft expert set defined by Alkhazaleh and Salleh [7] has been redefined
and revised which may be called as graded soft expert set. In order to strengthen the
structure, its basic operations have been redefined in a more fruitful manner. Several
laws and related results have also been investigated some of which does not hold in
hesitant fuzzy sets.

Hesitant fuzzy sets are basically introduced to handle decision making problems

20
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in which there are several alternatives and decision makers. But in the definition of
hesitant fuzzy sets, alternatives and decision makers have not been specified. This
may lead to the wrong use and interpretation of the set. Also, if we take xq, x9, and
x3 as three alternatives and hesitant fuzzy set h represents a particular criteria then
for each i (i = 1,2, ...,n) h(x;) represents opinions of various decision makers in which
there is no space to highlight individual decision maker’s opinions separately. For that
purpose different techniques and algorithims were introduced which makes the decision
making problems somehow difficult to handle. One of them is to assign weights to the
opinions. But again since opinions of the decision makers have been collected in a set
without specifying their individual decisions, it is not possible to give more weightage
to a particular decision maker. It may be possible by introducing a complex algorithimn.

To avoid such type of situations, GSE set can prove its worth. In GSE set, each
alternative (or attribute) and decision maker have been specified separately. Formally

it is stated as below:

Definition 3.2.1 Let U be a finite universe set containing n alternatives, E; a set of
criteria and X; a set of experts (or decision makers). Let O be a set of opinions with a
gwen preference relation 3 among the opinions. A graded soft expert set (abbreviated
as GSE set) (F,A,Y) is characterized by a mapping F : AxY — P(U x O) defined
for everye € A andp €Y by F(e,p) = {(uj,0i) 1 i € I}, where I = {1, 2, 3,...,n},
ACE,Y C X and P(U x O) denotes the power set of U x O. Here the set of opinions
O contains graded values of the given parameters i.e. the values 0y,0s,...,0, can be
graded as 01 23 02 3 ... 2 0, which means that o, is the most preferred value while o,

is the least preferred one and so forth.

The above definition states that for a given criteria e the decision maker p gives
the opinion o; for each alternative u; (i = 1,2,...,n). As an example of the preference
relation in the above definition consider the set of opinions O = {excellent, very good,
good, poor, very poor} . It is obvious that “excellent” is preferred over “very good”
which is preferred over “good” which is preferred over “poor” and the least preferred
one is “very poor”. For simplicity we can fuzzify these values according to their grading
and preference, that is, the opinions can be assigned values from the interval [0, 1] based
on their preference. For U, in the above mentioned set O of opinions, “excellent” is
the most preferred opinion, so it can be assigned value 1 from the interval [0, 1] while
“very poor” is the least preferred opinion, so it can be assigned the value 0. Rest of
the opinions will be assigned values between 0 to 1.

In the rest of the chapter, the set of opinions O will be taken as a subset of [0, 1].
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Example 3.2.2 Let U = {uy, ug, u3, ua, us} be a set of wheat types (alternatives),
E = {e) =maouster content, es =protein content, es =milling quality, e =baking qual-
ity} be a set of criteria, X = {a,b,c} be a set of experts and O = {0.0, 0.1, 0.2, 0.3,
0.4. 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} be the set of possible grades for the given parameters.

Suppose that a farmer has distributed a questionnaire to the team of experts to
Judge the quality of wheat types on the basis of given criteria. Decision of experts in
the form of graded soft expert set F : A x X — P(U x Q) is given below:

F(ey,a) = {(u1,0.5), (u2,0.1), (u3,0.7), (u4,0.9), (us,0.2)}, F(e1,b) = {(u1,0.5),
(1u9,0.2), (us3,0.7), (u4,0.3), (us,0.4)}, F(e1,¢) = {(uy,0.4), (ug,0.3), (us,0.3), (ug,0.6),
(u5,0.7)}, Flez,a) = {(11,0.9), (u2,0.3), (ug,0.2), (u4,0.3), (u5,0.6)}, F(e2,b) =
{(11,0.8), (uz2,0.9), (usz,0.4), (u4,0.1), (us,0.4)}, F(ea, ) = {(uy,0.7), (uz,0.0), (u3,0.3),
(24,0.3), (us,0.6)}, F(es,a) = {(u1,0.5), (ug,0.5), (us,0.9), (u4,0.7), (us,0.2)}, F(es, b) =
{(uy,0.4), (uz,0.4), (us,0.8), (u4,0.2), (us,0.3)}, F(es,¢) = {(ul 0.4), (us,0.4), (us3,0.9),
(14,0.7), (u5.0.2)}, F(eq,a) = {(u1,0.6), (u2,0.7), (uz.0.5), (14,0.9), (us,0.7)}, Feq,b) =
{(u1,0.5), (u2,0.8), (usz,0.4), (u4,0.6), (us,0.3)}, F(eq,c) = {(ul 0.3), (u2,0.9), (uz,0.5).
(u4,0.0), (us,0.6)}.

In soft set theory, basic concept is parametrization of objects in a given universe
set. The various operations thus defined on soft sets depend upon the e-approximate
elements of a given set for all attributes e. Since soft expert set does not only depend
upon the various parameters involved but also on the opinion of experts, which is
basically the main purpose of introducing soft expert sets, the operations on soft
expert sets should consider these opinions as well. In the rest of the section, we define
operations on GSFE sets taking into consideration the respective opinions as well.

In particular, we can see that the operation of complement on soft expert set
defined in [7] takes into consideration the objects of universe and their respective
attributes only ignoring their respective opinions. As in U 3.9 of [7] we can see that
the complement of F(ey,p,1) = {us} is given as F°(ley,p,1) = {uy,ug, usg} which
means that according to the expert ‘p’ only the object ug has attribute e; and its
complement states that according to the same opinion of expert ‘p’ the objects wuy, us
and uy do not have attribute e;. This idea can work if we are taking only two opinions
(agree 1, disagree 0). If we consider more than two opinions (as in GSE sets) the
idea may not work. In the same above case, if we take F(ej,p,0.3) = {us} and
Fe(Iey,p,0.3) = {uy,u2,us} then the objects not having attribute ‘e’ in the same
degree 0.3 as the objects having that attribute does not sound accurate. Thus, for

more than two opinions we define complement of GSE set as follows:

Definition 3.2.3 The complement of a« GSE set (F,A,Y), denoted by (F,A,Y)". is
defined as (F,A,Y )" = (F A% Y) where F° : A° xY — P(U x O°) is a mapping
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glen as
Fe(e,p) = {(ui ,0f) : i € I},
whenever

F(e,p) = {(ui,0;) : i € [} and of = 1 — o;.

Example 3.2.4 Consider U 3.2.2. Then

Fe(ef,a) = {(u1,0.5), (u2,0.9), (us,0.3), (u4,0.1), (us,0.8)}, F(ef,b) = {(u1,0.5),
(u2,0.8), (ug,0.3), (uq,0.7), (us,0.6)}, F(ef,c) = {(u1,0.6), (u2,0.7), (u3,0.7), (ug,0.4),
(us,0.3)}, Fe(e§,a) = {(u1,0.1), (u2,0.7), (us3,0.8), (u4,0.7), (us,0.4)}, F(e§,b) =
{(u1,0.2), (ug,0.1), (uz,0.6), (14,0.9), us,(}.b)}, Fe(e5,¢) = {(u1,0.3), (ug,1.0), (u3,0.7),
(u4,0.7), (us,0.4)}, F¢(e5,a) = {(u1,0.5), (ug,0.5), (u3,0.1), (usg,0.3, (us5,0.8)}, F(e5,b) =
{(11,0.6), (u2,0.6), (u3,0.2), (uy4,0.8), (us,0.7)}, F(e§, ¢) = {(u1,0.6), (up,0.6), (u3,0.1),
(ug,0.3), (us,0.8)}, Fe(e§,a) = {(u1,0.4), (ug,0.3), (u3,0.5), (ug,0.1), (us5,0.3)}, F¢(ef,b) =
{(u1,0.5), (u2,0.2), (us,0.6), (u4,0.4), (us,0.7)}, F(e5, ¢) = {(u1,0.7), (u2,0.1), (us3,0.5),
(ug,1.0), (us,0.4)}.

Definition 3.2.5 The union of two GSE sets (F, A,Y) and (G, B, Z) over U, denoted
by (F,A,Y)U(G,B, Z), is a GSE set (H,C,X) where C = AUB, X =Y UZ and
foralle e C andp € X;

{(ui, max{o;,0}):i€I} if(e,p)€e(ANB,YNZ)
H(e,p) {(ui,0:) +i € I} if (e,p) € (A, Y)\ (B, Z)
{(ui,0) :i €I} if (e,p) € (B,Z2)\ (A,Y)

whenever F(e,p) = {(u;,0;) :i € I} and G(e,p) = {(u;,0}) :i € I}.

Example 3.2.6 Let A x Y = {(ey,a), (e1,b), (e2,a), (e2,b), (e2,¢), (e3,a), (es,b),
(ea,a), (ea,b), (es,0)},

B x Z = {(e1,a), (e1,b), (e1,¢), (e2,a), (ea,c), (e3,b), (e3,c¢), (ea,a), (es,b)}.

Let two GSE sets (F,A,Y) and (G, B, Z) over U are given by

F(e1,a) = {(u1,0.5), (u2,0.1), (u3,0.7)}, F(e1,b) = {(11,0.5), (u2,0.2), (u3,0.7)},
F(eg,a) = {(u1,0.9), (u2,0.3), (u3,0.2)}, F(eg,b) = {(u1,0.8), (ug,0.9), (u3,0.4)},
F(eg,¢) = {(u1,0.7), (u2,0.0), (us,0.3)}, F(ez,a) = {(u1,0.5), (ug,0.5), (us3,0.9)},
F(es,b) = {(u1,0.4), (u2,0.4), (u3,0.8)}, F(eq,a) = {(u1,0.6), (u2,0.7), (u3,0.5)},
F(eq,b) = {(u1,0.5), (u2,0.8), (u3,0.4)}, F(eq,c) = { uy,0.3), (ug,[] 9), (u3,0.5)}.

Gley,a) = {(u1,0.8), (u2,0.3). (u3,0.4)}, G( el, = {(u1,0.3, {ugD 7), (u3,0.9)
Gl(er,¢) = {(u1,0.4), (u2,0.3), (u3,0.3)}, G(es,a {(u.l 0.5), (u2,0.2), (ug,0.8)
)s ( )
( )

L]

L

Gles,c) = {(u1,0.6), (u2,0.8), (us,0.1)}, G(es, b = {(u1,0.6), (u2,0.4), (u3,0.2
Gles.c) = {(u1,0.4), (u2,0.4), (u3,0.9)}, Gles,a) = {(uy,0.6), (ug,0.6), (us3,0.8
Gleq. b) = {(u1,0.6), (ug,0.4), (us,0.2)}.

}
}
b
b
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Hence (F,A,Y) U (G,B,Z) = (H,C, X) is given as

H(ei,a) = {(u1,0.8), (ug,0.3), (u3,0.7)}, H(e1,b) = {(u1,0.5), (ug,0.7), (u3,0.9)},
H(ey,e) = {(u1,0.4), (u2,0.3), (us,0.3)}, H(es,a) = {(u1,0.9), (us,0.3), (u3,0.8)},
H(ez,b) = {(u1,0.8), (u2,0.9), (u3,0.4)}, H(ep,c) = {(u1,0.7), (uz,0.8), (u3,0.3)},
H(es,a) = {(u1,0.5), (u2,0.5), (u3,0.9)}. H(es,b) = {(u1.0.6), (uz,0.4), (u3,0.8)},
H(ez,c) = {(u1,0.4), (u2,0.4), (u3,0.9)}, H(es,a) = {(u1,0.6), (ug,0.7), (u3,0.8)},
H(eq,b) = {(u1,0.6), (u2,0.8), (u3,0.4)}, H(es,c) = {(u1,0.3), (ug,0.9), (us,0.5)}.

Definition 3.2.7 The intersection of two GSE sets (F,A,Y) and (G, B, Z) over U,
denoted by (F,A,Y)N(G, B, Z), is a GSE set (H,C,X) where C = ANB, X =YNZ
and for alle € C and p € X;

H(e,p) = {(ui, min{o;,0}}) : i € I},
whenever F(e,p) = {(ui,0;) : i € I'} and G(e,p) = {(u;,0) :i € I}.

Example 3.2.8 Consider U 3.2.6. (F,A,Y) N (G,B,Z) = (H,C,X) is given as:

H(e1,a) = {(u1,0.5), (u2,0.1), (u3,0.4)}, H(e1,b) = {(u1,0.3), (u2,0.2), (u3,0.7)},
H(es,a) = {(u1,0.5), (u2,0.2), (u3,0.2)}, H(ez,c) = {(u1,0.6), (u3,0.0), (us,0.1)},
H(es,b) = {(u1,0.4), (u2,0.4), (us3,0.2)}, H(eq,a) = {(u1,0.6), (u2,0.6), (u3,0.5)},
H(eq,b) = {(u1,0.5), (u,0.4), (us,0.2)}.

In classical set, the hierarchy is characterized through set containment. But, in
case of other generalizations of classical set like fuzzy set, soft set or hesitant fuzzy set,
it is characterized through different ways. Alkhazaleh and Salleh [7] defined soft expert
subset by using the classical set containment approach in which grading of opinions is
not considered. Taking into consideration the opinions of experts, we define the notion
of subset for graded soft expert sets in a more generalized way as below:

Definition 3.2.9 For a GSE set (| A,Y) over U and for any e, e’ € A, p,p' €Y, if
F(e,p) = {(ui,0;) i € I} and F(e,p') = {(u;,0}) : i € I},

then F(e,p) is said to be contained in F(€',p') (or equivalently F(e,p) is subset of
F(€,p"), denoted by F(e,p) C F(,p'), if

0; < 0] for eachi € {1,2,3,...,n}. L \

The above condition states that the degree of each alternative in F'(e, p) is less,
than the corresponding degree in F(e',p’). 3
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Example 3.2.10 InU 3.2.2, F(ey1.b) = {(u1.0.2), (u2.0.5), (us, 0.4), (uq4,0.5), (us,0.6)} C
Fleg,e) = {(u1,0.3), (u2,0.8), (u3,0.5), (uq,0.5), (u5,0.6)} because opinion for each

u; in F(ey, b) is less than or equal to its corresponding value in F(eq,c).

Definition 3.2.11 For two GSE sets (F,A,Y) and (G, B,Z) over U, (F,A,Y) is
called subset of (G, B, Z), denoted by (F,A,Y) C (G,B,2), if

1) AC B,
N YC2Z
3) F(e,p) C G(e,p) for all eeA, peY.

In this case (G, B, Z) is called a superset of (F, A,Y’) denoted by (G,B,Z) 2 (F,A,Y).

Example 3.2.12 Let B x Z = {(ey,a), (e1,b), (e2,a), (e2,b), (e2,¢), (e3,a), (e3,b),
(eq,a), (es,b), (ea,e)}, AXY = {(e1,a), (e3,b), (es,a), (e4,b)}.

Let two GSE sets (G,B,Z) and (F,A,Y) over U are given by

Gler,a) = {(u1,0.5), (ug,0.1), (u3,0.7)}, G(e1,b) = {(u1,0.5), (u2,0.2), (us3,0.7)},
Gles,a) = {(u1,0.9), (u2,0.3), (u3,0.2)}, Gles,b) = {(u1,0.8), (u2,0.9), (u3,04)},
Gleg,c¢) = {(u1,0.7), (u2,0.0), (u3.0.3)}, Gles,a) = {(u1,0.5), (u2,0.5), (us,0.9)},
Gles,b) = {(u1,0.4), (u2,0.4), (u3,0.8)}, Gles,a) = {(u1,0.6), (uz,0.7), (us,0.5)},
G(eyq,b) = {(u1,0.5), (ug,0.8), (u3,0.4)}, G(eq,c) = {(u1,0.3), (uz,0.9), (u3,0.5)}.

Fej,a) = {(u1,0.3), (u2,0.1), (us3,0.4)}, F(es,b) = {(u1,0.2), (us2,0.1), (us,0.2)},
Fl(eq,a) = {(u1,0.3), (ug,0.6), (uz,0.2)}, F(eq,b) = {(u1,0.4), (u,0.7), (u3,0.2)}.

Clearly A C B, Y C Z, F(e,p) C G(e,p) for all ecA, peY. Hence (F,A,Y) C
(G,B, 7).

By Definition 3.2.11, we can see that the comparison of two GSFE sets is pointwise
which means that the values of the two GSE sets are compared for each pair of values
separately. In case of soft expert sets, containment as defined in [7], is a global property
which ignores individual opinions completely. Also, in that case two soft expert sets

can be compared but there is no way to compare their respective values separately.

Definition 3.2.13 Two GSE sets (F,A,Y) and (G, B, Z) over U are said to be equal,
denoted by (F,A,Y) = (G,B,Z), if A= B,Y = Z and F(e,p) = G(e,p) for all
e€ A(=B),peY(=2).

Proposition 3.2.14 For two GSE sets (F,A,Y) and (G, B, Z) over U, if (F.A,Y)
C(G,B,Z) and (G,B,Z) C (F,AY), then (F,AY) = (G, B, Z).

Proof. It can easily be proved using Definitions 3.2.13 and 3.2.11. =
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This is one of the most significant results for GSE sets. The inclusion here is based
on graded values or opinions as in hesitant fuzzy sets but the above result does not hold
in case of hesitant fuzzy sets. To overcome this shortcoming many inclusion measures
and criteria have been developed. Hesitant equality has also been introduced. But all
these attempts were more or less useless in practical implementations.

Xia and Xu [70] defined the score function of hesitant fuzzy element h, that is,

s(h) = | >_~ | /#h, where s(-) is the score function and #h is the number of elements
~Eh

in h. This score function serves as a measure to compare two hesitant fuzzy sets.

Following the same technique, we define score function for a GSE set as below:

Definition 3.2.15 For a given GSE set (F,A,Y) over U = {uy,us,...,un}, where
A contains m criteria, score function for any w; (i = 1,2,...,n) with respect to the

opinions of an expert p € Y is denoted by s(w;,p) and is defined as

s(uj, p) = (ic{,) /m,
i=1

where oy, 0y, ..., 0, are the respective opinions of the expert p for the alternative u;

with respect to the eriteria eq, eq, ..., e,.

Theorem 3.2.16 For any two GSE sets (F.A.Y) and (G, B, Z) over U, we have

1) (F,A,Y)N(G,B,Z)C (F,AY), (G, B, Z);
2) (F,A,Y), (G,B,Z)C (F,A,Y)U (G, B, Z).

Proof. 1) For any GSE sets (F,A,Y) and (G, B, Z), let (F,A.Y)N(G,B,Z) =
(HLANB,YNZ). Since ANBC A, Band YNZ CY,Z and for any e € AN B,
p € Y N Z using Definition 3.2.7 we have

H(e,p) = {(wi,min{o;,0}}):i¢€ I},

where F(e,p) = {(ui,0;) : ¢ € I} and G(e,p) = {(u,0,) : i € I}. Thus, by
Definition 3.2.9, H(e,p) C {(ui,0;) :i € [} = F(e,p) and H(e,p) C {(ui,0}) :i €[} =
G(e,p). This shows that (F,A,Y)N(G,B,Z) C (F,AY), (G, B, Z).

2) Let (F,A,Y)U(G,B,Z)=(J,AUB,YUZ). Since AC AUBandY CYUZ,
for any e € A, p € Y, using Definition 3.2.5, we have

Heid] = {(u;, max{o;,0}):ie I} if(e,p) e (ANB,YNZ)
HITN e edy if (e,p) € (A, Y)\ (B,Y)

In both the cases, using Definition 3.2.9, we have F(e,p) C J(e, p). Similarly,
G(e,p) C J(e,p). Thus, (F,A,Y), (G,B,Z)C (F,A,Y)U(G,B,Z). m
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Theorem 3.2.17 Let U be the universe set. For oll GSE sets (F,AY), (G, B, Z)
and (H,C, X) over U, the follouing properties hold:

1) Idempotent: (F,A,Y)N(F,A,Y) = (F,AY), (F,AY)U(F,AY)=(F,AY);

2) Commutatwe: (F, A, Y)NG,B.Z) = (G,B.Z)N(F, A, Y), (F.AY)U(G,B,Z) =
(G,B,Z)U (F,AY);

3) Associative: (F,A,Y)N((G,B,Z)n (H,C,X)) = (F,AY)N (G,B,Z)) N
(H,C, X),

(F,A,YJU((G,B,Z)uU (H,C, X)) = ((F,A,Y)U(G,B,Z2))uU (H,C,X);

4) Distributive: (F,A,Y)N ((G,B,Z)U (H,C,X)) = (F,AY)Nn (G,B,Z)) U
(F,A,Y)N(H,C, X)),

(F, A, YU((G,B,Z)n(H,C, X)) = ((F, A, Y)U(G, B, Z))n((F, A, Y)U(H,C, X));

5) De Morgan’s laws: ((F,A,Y)N(G,B,Z))*=(F,A,Y)°U(G,B, Z), ((F,A,Y)U
(G,B,2))=(F,A,Y)nN(G,B, 2);

6) Double negation law: ((F,A,Y)*) = (F.A,Y).

Proof. 1) By Definition 3.2.7, for any GSE set (F,A,Y)N (F, A Y) = (F,AnN
AYNY)= (FAY). Since foranye € ANA=AandpeYNY =Y by
similar definition for any F(e,p) € (F,A,Y) we have F(e,p) = {(wi,0;) : 1 € I} =
{(u;i, min{o;,0;}) :i € I} = F(e,p)NF(e,p) € (F,A,Y)N(F,A,Y). Hence (F,A,Y) C
(F,A,Y)Nn(F,AY).

Conversely by similar definition for any F(e,p) € (F, A, Y) N (F, A, Y) = {(w;,
min{o;, 0;}) : i € I} = {(us,0;) : 1 € [}. Hence (F,A,Y)N(F,AY) C (F,A,Y). So
(F,A, Y)N(F,AY)=(F,AY).

2) By Definition 3.2.7, for any GSE sets (F.A,Y) and (G,B,Z), (F,A,Y) N
(G,B,Z)= (H,ANB,YNZ). Since foranye € ANB=BNAandpe YNZ =2ZnNY.
let H(e,p) € (F,A,Y)N (G, B, Z) by Definition 3.2.7 we have H(e,p) = {(u;, min{o;,
o)) + i € I} = {(wi, min{o;, 0;}) : i € I} = G(e, p) N F(e, p) where F(e,
p) = {(ui, 0;) : i € I} and G(e, p) = {(w;, 0}) : 7 € I'}. Thus (F,A,Y)N(G,B,Z) C
(G,B,Z)N(F,AY).

Conversely let H(e,p) € (G, B, Z)N(F., A,Y) by similar definition we have H (e, p) =
{(ui,min{o;,0;}) : i € I} = {(u,min{o;,0,}) : i € I} = F(e,p) N G(e,p) where
F(e,p) = {(ui,0;) : i € T} and G(e,p) = {(u;,0}) : i € I'}. Thus (G, B, Z)N(F,A,Y) C
(F,A,Y)N (G, B, Z). Hence (F,A,Y)N(G,B,Z) = (G,B,Z)N (F,A,Y).

3) By Definition 3.2.7, for any GSE sets (F,A.Y), (G,B,Z) and (H,C, X), let
(F,A,Y)N((G,B,Z)N(H,C, X)) =(I,AN(BNC),YN(ZNX)). Since AN(BNC) =
(ANB)NC and YN(ZNX)=(YNZ)NX and forany e € AN(BNC) = (ANB)NC,
reYN(ZNX)=(YNZ)NnX,let I(e,p) € (FAY)N((G,B,Z)n (H,C,X)) by
similar definition we have I(e, p) = {(u;, min{o;, (¢}, 0;)}) : i € I'} = {(ui, min{(o;, ),
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0;}):ie I} = ((F(e,p)NG(e,p))NH(e,p) € (F,A.Y)N(G, B, Z))N(H,C, X). where
F(e,p) = {(ui, o) :i € I}, G(e,p) = {(ui, o) :i € I} and H(e, p) = {(ui, 0, ) : i € I}.
Thus (F,A,Y)N((G,B,Z)N(H,C,X))C ((F,A,Y)Nn(G,B,Z))N(H,C, X).

Conversely let I(e,p) € (F AY)N(G,B,Z))N(H,C,X) by similar definition we
have I(e,p) = {(w;, min{(0;,0}),0; }) : i € I} = {(u;, min{o;, (d},0,)}) :i € [} =

F(e, p)ﬂ(G(e,p)ﬂH(e,p)) e(F,AY)N((G,B,2))N(H, C',X)). where F(e,p) =
{(ui,0;) : i € I} , G(e,p) = {(ui,0}) : i € I} and H(e,p) = {(ui,o0,) : i € I}. Thus
(F,A,Y)Nn((G,B,Z))n(H,C,X) C (F,A,Y)n((G,B,Z))n(H,C, X)).

Hence (F,A,Y)N((G,B,Z)Nn(H,C, X)) =((F,AY)N(G,B,Z))Nn(H,C,X).

4) By Definitions 3.2.7 and 6.2.13, for any GSE sets (F,A,Y), (G,B,Z) and
(H,C,X),let (F,A,Y)N((G,B,Z)U(H,C,X))=(I,An(BUC),YN(ZUX)). Since
foranye e AN(BUC) = (ANB)U(ANC)andpe Y N(ZUX)=(YNZ)U(Y NX),
let I(e,p) € (F,A,Y)N((G,B,Z)U(H,C, X)) by similar definitions we have I(e,p) =
{(uwi, min{o;, max{o}, 0, }}) : i € I} = {(u;, max{min{o;, 0}}, min{o;,0. }}) : i € I} =
(F(e,p)NGle, p))U(F(e, )N H(e,p)) € ((F, A,Y)N(G, B, 2))U((F, A,Y)N(H, C, X))

where F(e,p) = {(ui,0;) : i € I} , G(e,p) = {(ui,0}) : i € I} and H(e,p) =
{(wi,0;) :i € I}. Thus (F,A,Y)N((G,B,Z)U(H,C, X)) C ((F,A,Y)N(G,B,Z))U
((F A Y)N(H,C,X)).

Conversely, let I(e,p) € ((F,A,Y)N (G,B,Z))U ((F,A,Y)N (H,C, X)) by sim-
ilar definitions we have I(e,p) = {( u,-,max{min{oz- o}, min{o;,0;}}) : i € I} =
{(us, min{o;, max{o,0; }}) : i € I} = F(e,p) N ((G(e,p) U H(e,p)) € (F,A,Y)N
((G,B,Z)uU (H,C, X)). where F(e,p) = {(u;,0;) : i € I} , G(e,p) = {(uy,0}) : i € I}
and H(e,p) = {(w,0,) : i € I}. Thus ((F, A, Y)N(G, B, Z))U((F, A, Y)N(H,C, X)) C
(F,A,Y)N ((G,B,Z)U(H,C,X)).

Hence (F,A,Y)N ((G,B,Z)U (H,C, X)) = ((F,A,Y)Nn(G,B,Z))U((F.A,Y)Nn
(H,C,X)).

Rest of the parts can be proved in a similar way. m

In general, absorption laws do not hold for hesitant fuzzy sets. But these laws hold
in case of GSF set as can be seen in the next result.

Theorem 3.2.18 For any two GSE sets (F, A,Y) and (G, B, Z) over U, the following
absorption laws hold:

1) (F,A,Y)N((F,A,Y)U(G,B,Z2) = (FA,Y),
2) (FLAY)U((FLAY)N(G, B, Z)) = (F,AY).

Sr”

Proof. 1) By Definitions 3.2.5 and 3.2.7 we have (F, A, Y)N((F,A.Y)U(G, B, Z)) =
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(HLAN(AUB),YN(YUZ))=(H,A,Y) such that for any e € A and p € Y we have

Hie,n) = F(e,p)N (F(e,p)UG(e,p)) if(e,p) e (ANB,YNZ)
Fle.p)n(Flep) i (e.p) € (A Y)\(B,2)

In the first case when (e,p) € (AN B, Y NZ), Fle,p) = {(u;j,0;) : i € I'} and
G(e,p) = {(u3,0}) : i € I}, using Definitions 3.2.5, 3.2.7 and 3.2.9 we get

F(e,p)N(F(e,p) UG(e,p)) ={(wi,0;):i€l}N({(wi,o0;):i€l}U{(uj0}):i€1Il})
= {(ui,0;) : 3 € I} N {(u;, max{o;,0,}) : i € [}
= {(u;, min{0;, max{o;,0;}}) : i € I'}
C {(ui,0i) :1 € I} = F(e,p)
C {(us, max{o;, min{o;,0,}}) : i € I}
= {(u;, min{o;, max{o;, 0,}}) : i € I'}
= F(e,p) N (F(e,p) UGle,p)).

The above arguments gives us our required result for the first case.
In the second case when (e,p) € (A,Y)\ (B, Z), using Definition 3.2.5, we have

(F,AY)N((F,AY)U(G,B,2)) = (F,A,Y)N(F,A,Y) = (F,AY)
which is our required result for this case as well, Thus, in both the cases we have
(FLAY)N((F,AY)U(G,B,2))=(F,A,Y).

2) This can be proved in a similar way. =

3.3 Decision Making with the Aid of GSE Sets

Decision making problems have extensively been studied using hesitant fuzzy sets in
which there are several experts who have to decide among various alternatives. For
that purpose, the most common approach is to aggregate the opinions first for each
criteria and alternative. Then, alternatives are ranked by aggregating the average
criteria.

As already mentioned, the experts’ individual opinions have been ignored while
modelling decisions by hesitant fuzzy sets. Experts may have different expertise re-
garding different criteria. To overcome this shortcoming, GSE sets can be used to
give due weightage to the opinions of experts individually.

In this section, we develop an algorithm with the aid of GSE sets for decision
analysis in which experts will be given weightage according to their area of expertise.

Let {w1.ug,...,u,} be a finite set of n alternatives and E = {e, €, ..., &, } be a set of
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m criteria. Further, we take X as set of experts and O as set of possible opinions. Our
goal is to decide among the varions alternatives subject to expert’s opinion regarding
given criteria. This is a decision making problem. To handle such type of problems
by using GSFE sets, we propose following algorithmic steps:

Step 1: Utilize the evaluations of experts in the form of GSE sets to determine
the opinions regarding given alternatives and criteria.

Step 2: Find weighted average of opinions for each pair (u;,e;) (1 = 1,2,...,n,
j = 1,2,...,m) by assigning suitable weights to the experts according to their area of
expertise.

Step 3: Using Definition 3.2.15, calculate the scores s(u;) of u; (i = 1,2,...,n)
considering the aggregate values of experts in step 2.

Step 4: Rank all the alternatives according to s(u;) in descending order.

Step 5: End.

Example 3.3.1 A person wants to start a small business with low capital. He is
considering five different business; wyis computer and mobile repair business, wp is
baby sitting and child care business, ug is dairy products business, uy is real estate
agency business and us is artist freelance business. Let us denote the set of these
business types (alternatives) by U.

Let Q = {e1 =High profit, es =Markei area, e3 =Revenue and profitability, ey
=ownership and tazes} be the set of criteria. Let Y = {a,b,c} be the set of experts.
Expert a is selected for acknowledged expertise in evaluating ey and ey, expert b in
evaluating ey, es and es, and expert ¢ in evaluating ez, ez and ey. Also we take
O = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} as the set of possible opinions
of experts regarding risk factor.

Step 1: Utilize the evaluations of experts in the form of GSE sets for the given
problem. For ease of calculation, these can also be written in tabular form as in Tables
5.8.1, 332 and 3.3.8.

F(ey,a) = {(u1,0.3), (u2,0.4), (u3,0.2), (u4,0.5), (us,0.8)}, F(e1,b) = {(11,0.2),
(u2,0.5), (us, 0.4), (uq,0.5), (us,0.6)}, F(ey,e) = {(u1,0.4), (ug,0.5), (u3,0.3), (uqg,0.6),
(us,0.7)}, F(ez,a) = {(u1,0.9), (u2,0.0), (u3,0.2), (u4,0.3), (us5,0.6)}, F(ez,b) =
{(u1,0.8), (u2,0.1), (u3,0.4), (u4,0.1), (us,0.4)}, Fles, c) = { uy,0.7), (ug,0.3), (u3,0.3),
(u4,0.3), (u5,0.5)}, F(es,a) = {(u1,0.5), (uz,0.3), (us,0.9), (u4q,0.7), (us,0.2)}, F(e3,b) =
{(11,0.4), (us,0.4), (u3,0.7), (ug,0.5), (us,0.3)}, F(es, ) = {(u1,0.5), (u2,0.3), (u3,0.9),
(u4,0.7), (us,0.2)}, F(eq,a) = {(u1,0.6), (u2,0.8), (us,0.5), (u4,0.7), (us,0.6)}, F(es,b) =
{(11,0.5), (u2,0.6), (u3,0.4), (uq,0.6), (u5.0.3)}, F(eq,c) = {(u1,0.3), (uz,0.8), (u3,0.5),
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{'Hr,-[ 3 05) ("H._r,. 06)}

(e1,a) | (e2,a) | (e3,a) | (e4,a)
up | 0.3 0.9 0.5 0.6
uy | 0.4 0.0 0.3 0.8
ug | 0.2 0.2 0.9 0.5
wi |05 (03 |07 |07
us | 0.8 0.6 0.2 0.6

Table 3.3.1. Opinions of expert a

(e1,0) | (e2,b) | (e3,b) | (ea,b)
uy | 0.2 0.8 0.4 0.5
us | 0.5 0.1 0.4 0.6
us |04 |04 |07 |o04
ug | 0.5 0.1 0.5 0.6
us | 0.6 0.4 0.3 0.3

Table 3.3.2. Opinions of expert b

(er,c) | (ea.c) | (es,c) | (eq,€)
uy | 0.4 0.7 0.5 0.3
ug | 0.5 0.3 0.3 0.8
ug | 0.3 0.3 0.9 0.5
ug | 0.6 0.3 0.7 0.5
us | 0.7 0.5 0.2 0.6

Table 3.3.3. Opinions of expert c

Step 2: Find weighted average of opinions for each pair (u;,e;) (i = 1,2,3,4,5,

j = 1,2,3,4) by assigning weight 2 to expert a for e; and ey and 1 for ey and e3.

Similarly, assign weight 2 to expert b each for e, es and ez and 1 for ey and assign

weight 2 to expert ¢ each for es, e3 and eq and 1 for ey. Thus, opinions of experts

have been aggregated in this step and results have been displayed in Table (3.3.4).

ey €9 €3 €4

up | 0.28 1 0.78 | 0.46 | 0.46
ug | 0.46 | 0.16 | 0.34 | 0.76
uz | 0.30 1 0.32 ] 0.82 | 0.48
ug | 0.52 1 0.22 | 0.62 | 0.60
us | 0.70 | 0.48 | 0.24 | 0.54

Table 3.3.4.
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For U, for the pair (uy, e1) weighted average has been caleulated as:

[2(0.3) +2(0.2) + 1(0.4)]/(2+ 2+ 1) = 0.28.

Rest of the entries can be calculated in a similar way.

Step 3: Using Definition 3.2.15, for aggregated experts’ opinions instead of indi-
vidual values, calculate scores s(u;) (i = 1,2,3,4,5) to get:

s(uy) = 0.495, s(ug) = 0.43, s(ug) = 0.48, s(uy) = 0.49, s(us) = 0.49.

Step 4: Rank all the business types u; (1 = 1,2,3,4,5) in accordance with their
scores s(u;) to get the preference relation uy = ug = uq =~ uz = wy (alternatwe with
lowest overall risk factor is the most preferred one while the one with highest overall

risk factor is least preferred). Thus, the most appropriate business is us.

3.4 Conclusion and Future Work

In this chapter, GSE set has been discussed which can be treated as a generalization
of hesitant fuzzy set. Some basic operations associated with the structure have been
defined and analyzed. For comparison purpose, notions of ‘subset’ and ‘score’ have
also been defined. Some important results have been proved which fail to hold in
case of hesitant fuzzy sets. For U, the notion of containment in hesitant fuzzy sets
is an open problem. One of the most widely used measure of containment was given
by Xia and Xu [70]. But in that case inclusion of two hesitant fuzzy elements in
each other does not imply their equality. This issue can be resolved by using the
proposed structure. In addition, a decision making algorithm with the aid of GSF set
is developed. There are so many techniques to solve decision making problems through
hesitant fuzzy sets. But the suggested technique has an advantage over the existing
methods that it considers relative importance of the experts according to their area
of expertise. A practical risk decision making U is presented to reveal significance of
the algorithm. As future work we aim to study and define appropriate aggregation

operators, distance and similarity measures for GSE sets.



Chapter 4

Cubic Soft Expert Sets and their
Applications in Decision Making

4.1 Introduction

In this chapter we define cubic soft expert sets (CSESs) by using fuzzy sets and
interval valued fuzzy sets as opinion of experts. Corresponding to each attribute
every expert gives his expertise in the relevant field through fuzzy sets and interval
valued fuzzy sets. There are so many methods to solve decision making problems in
various fields but this technique has the advantage over the existing ones in that the
decision makers may take decision on the basis of different conditions such as climate
condition, time period condition and geographical conditions. We define internal,
external CSESs, P — order, P — union, P — intersection, P — AND, P — OR and
R—order, R—union, R—intersection, R— AND and R—OR. We also investigate the
properties of these operations on CSFESs. C'SESs satisfy commutative, associative,
De Morgan'’s, distributive, idempotent and absorption laws. We derive the conditions
for P—=OR, P— AN D of two internal cubic soft expert (ICSE) sets to be internal cubic
soft expert set. We also give the conditions for the P — OR, R — OR and R — AND
of two external cubic soft expert (ECSE) sets to be an external cubic soft expert set.
We provide conditions for the R— AND and P— AN D of two cubic soft expert sets to
be an internal cubic soft expert (/CSE) set and an external cubic soft expert (ECSE)
set. At the end, an algorithm has been presented to support our structure in decision
analysis.

33
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4.2 Cubic Soft Expert Sets

In this section we define the concept of cubic soft expert sets, give their types and
definitions of their basic operations namely, P—order, R—order, P—containment, R—
containment, P—union, P —intersection, R —union, R —intersection, complement,
PAND, P—0OR, R— AND and R — OR. Several laws and related results have also
been investigated.

Definition 4.2.1 Let U be a finite universe set containing n alternatives, E; a set
of eriteria and X ; a set of experts (or decision makers). A pair (8, E, X) is called a
cubic soft expert set over U if and only if 3 : E x X — CP(U) is a mapping into the

set of all cubic sets in U. Cubic soft expert set is denoted and defined as
(B, E, X) = {B(e, ) = {(u, A(e,z)(u), /\(g_x,(u)) cuelU(ex) e Ex X},
where A, ;)(u) is an interval valued fuzzy set and A, (u) is a fuzzy set.

Example 4.2.2 Let U = {uy,us, uz} be the set of countries, E = {e; =Physiological
natality, eo = Potential mortality} be the set of factors affecting population , X =
{1, 22} be the set of experts. Let E x X = {(e1,x1), (e1,x2), (€2, 1), (€2, 2)}. Then
the cubic soft expert set (3, E, X) i U is given by
Bler, z1) = {(u1,[0.07,0.09],0.09), (uz, [0.06,0.08],0.02), (us. [0.03,0.06],0.04) }
Bleg, x1) = {(u1,[0.03,0.05], 0.06), (u2, [0.05, 0.06],0.03), (ug, [0.07,0.08].0.05)},
Bler, z2) = {(u1,[0.05,0.08],0.08), (uz, [0.06,0.09], 0.07), (us, [0.05,0.08],0.06)},
Alea, xa) = {(u,[0.07,0.09],0.02), (w2, [0.05,0.08], 0.08), (us, [0.04, 0.07],0.04) }

In above example interval valued fuzzy set indicates the experts opinion for future
time period and fuzzy set indicates the experts opinion for present time period under
the different circumstances related to the given problem.

Definition 4.2.3 A cubic soft expert set is said to be an internal cubic soft expert

(ICSE) set if A{'M} W)= A(+ %) u) for all (e,x) € Ex X and for allu € U.

Example 4.2.4 Let U = {uj, us,us} be the initial universe, E = {ey,ea} be the set
of attributes, X = {xz1,x2} be the set of experts. Then the cubic set (3,E, X) =
{8(e,x) = {(u, Apez)(u), A, ,,(w);u€ U, (e,x) € (Ex X)} in U is an internal cubic
soft expert set.
Aler, 1) = {(uy,[0.5,0.8],0.7), (uz,[0.6,0.9].0.8), (us, [0.4,0.7],0.5
Bles, x1) = {(u1.[0.4,0.7),0.6). (uz, [0.7,0.9], 0.8), (u3, [0.3,0.5]. 0.4
B(er, z2) = {(u1,[0.4,0.8],0.5), (u2, [0.6,0.9], 0.8), (u3, [0.4,0.6]. 0.5
Blea, x2) = {(uy,[0.3,0.8],0.4), (uz, [0.6,0.9], 0.7), (

— S et et

}
}
};
ug, [0.5,0.7],0.6) }
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Definition 4.2.5 A cubic soft expert set is said to be an external cubic soft expert
(ECSE) set, if A, (u) & A(_evr)(u}.fl:m)(u) for all (e,z) € E x X and for all
uel.

Example 4.2.6 Let U = {uy,us,u3} be the initial universe, E = {ej,es} be the set
of attributes and X = {x1, 29} be the set of experts. Then the cubic set (8,E,X) =
Ble,x) = {(u, Aper)(u), Mewy(0)iu € U, (e,z) € E X X} in U is an external cubic
soft expert set.

B(e1, z1) = {(u1,[0.5,0.8],0.3),
fleg, x1) = {(u1,[0.4,0.7],0.4),
(e x9) —{ u1,[0.4,0.8],0.9),
Bles = {(u4, [0.3,0.8],0.2),

us, [0.6,0.9],0.5), (uz, [0.4,0.7],0.2)},
ug, [0.5,0.9],0.9), (uz, [0.3,0.5],0.8)},
us,[0.7,0.9],0.6), (us, [0.5,0.7],0.8)}

us, [0.6,0.9],0.4), (us, [0.4,0.6], 0. 7)}

e, — —

4.3 Operations on Cubic Soft Expert Sets (CSESSs)

Some operations on cubic soft expert sets have been discussed in below.

Definition 4.3.1 Let (3, E, X) be a CSES over U. For any ey, e € E. x1, 20 € X
éfﬁ(ﬁ],fﬂ{) = {(U,, Al{el.xl)(u): A‘i'l-“l‘(u)) TuE U} and 13(82,1’2) - {('U., A;;(Pg,:r:g}(u‘)f
As(egieg) (W) 1 W E U}. Then P — order, denoted by 3(ey.xz1) Cp B(ez. x2), is defined as

below:
1) Aj(eyan)(w) X A.Z(eg z) (1), Yu e U,

2) ’\m- @ )(“) = mzx (u), Vu e U.

Example 4.3.2 In Ezample 4.2.6, 3(es, x2) = {(uy, [0.3,0.8],0.2), (u2, [0.6,0.9],0.4), (u3

[0.4,0.6],0.7)} Cp Bler, @2) = {(uy, [0.4,0.8],0.9), (us2, [0.7,0.9], 0.6), (uz, [0.5,0.7],
0.8)}.
Clearly conditions 1) and 2) of Definition 4.3.1 hold.

Definition 4.3.3 A CSES (51, E1, X1) over U is said to be P — order contained in
another CSES (P2, Ea, X2) over U, denoted by (81, E1,X1) Cp (B2, B2, X2), if the

following conditions are satisfied:

1) Ey C Es,
2) X1 € Xo,
3) Bile, x) Tp Bale, x) for all eeEy, zeXy.

Example 4.3.4 Let (E1 X X]) = {(61,.7:1)._ (62,.1:1), (81,."8‘3). (82._;1:3)}, {Eg X X‘g} =
{(e1, @), (e2,21)}. Let (31, By, X1) and (39, E2, X3) be two CSESs over U defined as

below:

Biler, 1) = {(u1,[0.5,0.8],0.7), (us, [0.6,0.9],0.8), (us, [0.4,0.7],0.5)},
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Biles, 1) = {(u1,[0.4,0.7], 0.6), (ug, [0.7,0.9],0.8), (ug, [0.3,0.5],0.4)},

Biler, ze) = {(u1,[0.4,0.8],0.5), (ug, [0.6,0.9],0.8), (ug. [0.4,0.6],0.5)},

Bi(ea, x9) = {(u1,[0.3,0.8],0.4), (us, [0.6,0.9],0.7), (us, [0.5,0.7],0.6) }.

Baler, x1) = {(u1,[0.2,0.5],0.6), (ug, [0.5,0.7],0.3), (ug, [0.1,0.4],0.3) },

Balea, x1) = {(u1,[0.2,0.5],0.1), (ug, [0.5,0.9],0.6), (us, [0.2,0.4],0.4) }.

Clearly conditions 1), 2) and 3) of Definition 4.3.3 hold. So, (B2, F2, X2) Cp
(81, Er, X1).

Definition 4.3.5 Let (3, E, X) be a CSES over U for any ey, ey € E, x1, 3 € X.
If Bler, 21) = {(u, Ay(ey,an) (), Mq,,.0yy(u) : w € U} and Bea, 22) = {(t, Aney,em) (1),
/\3(52 N ‘( u)) : w € U} then the R — order denoted by 3(ey,x1) Cr B(es, x2), is defined
as below:

1) Ai(ey,ar) (1) X Az(ey,00)(u), Yu € U,
2) Moy (@) 2 Ay, Ly (0), Vu € UL

Example 4.3.6 In Ezample 4.2.6, B(es,zy) = {(u1, [0.4,0.7], 0.4), (u2, [0.5,0.9],
0.9), (us, [0.3,0.5], 0.8)} Cgr Bler,z1) = {(uy, [0.5,0.8], 0.3), (uz, [0.6,0.9], 0.5),
(u3,[0.4,0.7], 0.2)}

Clearly conditions 1) and 2) of Definition 4.3.5 hold.

Definition 4.3.7 A CSES (51, E1, Xy) over U is said to be R — order contained in
another CSES (By, E9, X3) over U, denoted by (51, E1,X1) Cr (82, Ea, Xa), if the

following conditions are satisfied:

1) Ey C E»,
2) X1 € X,
3) Bi(e,x) Cgr Bale, x) for all eeEy, xeXy.

Example 4.3.8 Let (Eq x Xi) = {(61,3:1), (e2, 1), (e1.x2), (Bg,:i‘:g)},(EQ x Xg) =
{(er,21), (e2,21)}. Let (31, E1, X1) and (B2, E2, X2) be two CSESs over U defined as
below.

Bier, 1) = {(uy,[0.5,0.8],0.6), (uz, [0.6,0.9],0.3), (u3, [0.4,0.7],0.3)},
Bilea, x1) = {(u1,[0.4,0.7),0.1), (ug, [0.7,0.9],0.6), (us, [0.3,0.5],0.4)},
Bi(er, x2) = {(u1,[0.4,0.8],0.5), (uy, [0.6,0.9],0.8), (us, [0.4,0.6],0.5)},
Bi(ez, m3) = {(u1,[0.3,0.8],0.4), (us, [0.6,0.9],0.7), (uz, [0.5,0.7],0.6)}.
Ba(er, 21) = {(u1,[0.2,0.5],0.7), (ug, [0.5,0.7], 0.8), (uz, [0.1,0.4],0.5)},
Bales, a1) = {(u1,[0.2,0.5,0.6), (uy, [0.5,0.9],0.8), (us. [0.2,0.4],0.4)}.

Clearly conditions 1), 2) and 3) of Definition 4.3.7 hold. So, (32, Es. X3) Cpg
(jl-ElaXI)'
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Definition 4.3.9 Two CSESs (81, FE\, X)) and (B2, Ey, Xo) over U, are equal, de-
noted by (31. El.Xi) = (32, Ez,ﬁ-g), zf

1) By = By,
2) X1 =Xy,
3) Bi(e,x) = Ba(e, x) (that is Ayezy(u) = Agez)(u) and
Al(g_;;(u) = Aoy (U w)) for alle € Ey = Es, ©x € X1 = Xa.

Corollary 4.3.10 For any two CSESs (61, E1,X1) and (B2, Ea, X2) over U;

1) If (61, E1, X1) Cp (B2, E2, X2) and (B2, E», X2) Cp (51, E1, X1),
then (61, E},X]) = (.32,E21 Xg},
2) If (81, E1, X1) Cr (B2, E2, X2) and (B2, E2, X2) Cr (61, E1, X1),
then (B1, B, X1) = (B89, Ea, X»).

Definition 4.3.11 The P—union of two CSESs (81, E1, X1) and (8, E2, X3) over U
is denoted by (B3, F,Y') = (51, E1, X1) Up (B2, E9, X3) where F = E\UEs, Y = X1UX>
and for all g € F and z € Y, it is defined as:

{(uy Aygg,z)(u); Argg,z) (1))} if (9,2) € (B1 x X1) \ (B2 x X2)
{(Lt Aq(g )(u /\2(9 z,(u))} Ef (g‘, Z} € (E_g X X-g) \ (Ei X .Xl)
{(u, sup{Ay(g,-y(w), Agyz)(w)} i (9,2) € (E1N Ey x X1N X2)

y sup{/\ug,z)( ): ’\2(9,:)( )})}!

whenever 31(g, z) = {(u, Ay(g,)(w), Al(g,z)(u)) u € U} and Ba(g, z) = {(u, Ag(g,2)(u),
/\2{9,:){”)) ‘uE U}

Example 4.3.12 Consider Ezample 4.3.8. Let (1, E1,X1) and (82, Ea, X3) be two
CSESs over U defined as below:

Biler, z1) = {(u1,[0.5,0.8],0.6), (uz, [0.6,0.9],0.3), (us, [0.4,0.7],0.3) }
Bilez, z1) = {(u1,[0.4,0.7],0.1), (uz, [0.7,0.9],0.6), (us, [0.3,0.5],0.4) },
Bi(er, z2) = {(u1,[0.4,0.8],0.5), (uz, [0.6,0.9],0.8), (us, [0.4,0.6],0.5)},
Bi(ea, z2) = {(uy,[0.3,0.8],0.4), (uz, [0.6,0.9],0.7), (us, [0.5,0.7],0.6) }
Ba(er, z1) = {(u1,[0.2,0.5],0.7), (us, [0.5,0.7],0.8), (us, [0.1,0.4], 0. 5)}
Ba(ea, 21) = {(u1,[0.2,0.5],0.6), (uz, [0.5,0.9], 0.8), (uz, [0.2,0.4],0.4)}.
Therefore, (B3, F,Y) = (81, E1, X1) Up (B2, B2, X2) is given below:
Bs(er, z1) = {(u1,[0.5,0.8],0.7), (ug, [0.6,0.9],0.8), (u3, [0.4,0.7],0.5) };
Ba(ea, x1) = {(u1,[0.4,0.7),0.6), (us, [0.7,0.9],0.8), (us, [0. 3{:5} 0.4},
Ba(er, ) = {(u1.[0.4,0.8],0.5), (us, [0.6,0.9],0.8), (us, [0.4.0.6],0.5)},
B3(ea, x2) = {(uy,[0.3,0.8],0.4), (uz2,[0.6,0.9],0.7), (us, [{].5,0\7].’05(5,);}.‘
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Definition 4.3.13 The P—intersection of two CSESs (81, By, X1) and (B, Ey, X»)
over U is denoted by (83, F.Y) = (51, E1. X1) Np (B9, Es, Xo) where F' = E; N Ey.
Y=X\NXy and for all g € F and z € Y, it is defined as:

B3(9,2) = {(u, inf{Ay,.)(u), Ay z(u)}, nf{Ayg 2 (w), Aggz)(w)})},

whenever 31(g, 2) = {(u, Ay(g,2)(u), Mg, () s u € U} and Ba(g,2) = {(w, Ag(g,2(u),
Ag(g.2) (1)) : u € U}

Example 4.3.14 Consider Example 4.3.8. Let (8, E1, X1) and (32, E2, X2) be two
CSESs over U defined as below:
Biler, x1) = {(u1,[0.5,0.8],0.6), (usz, [0.6,0.9],0.3), (us, [0.4,0.7],0.3) }
Bi(ea, 1) = {(u1,[0.4,0.7],0.1), (us, [0.7,0.9], 0.6), (ug, [0.3,0.5],0.4)},
Bi(er, w2) = {(u1,[0.4,0.8],0.5), (us, [0.6,0.9], 0.8), (us, [0.4,0.6],0.5)},
Bi(ea, x2) = {(uy,[0.3,0.8],0.4), (uz, [0.6,0.9],0.7), (us, [0.5,0.7],0.6) }
Ba(er, x1) = {(u1,[0.2,0.5],0.7), (u2, [0.5,0.7],0.8), (uz, [0.1,0.4],0.5)},
Bales, 1) = {(uy,[0.2,0.5],0.6), (ug, [0.5,0.9],0.8), (u3,[0.2,0.4],0.4)}.
Therefore, (83, F,Y) = (81, E1, X1) Np (B2, E9, Xa) is given below:
Ba(er,x1) = {(u1,[0.2,0.5],0.6), (uz, [0.5,0.7],0.3), (us, [0.1,0.4],0.3) }
Bs(es, 1) = {(ug,[0.2,0.5],0.1), (ug, [0.5,0.9], 0.6), (uz, [0.2,0.4], 04)}

Definition 4.3.15 The R—union of two CSESs (f1, E1, X1) and (82, Ea, X2) over U
is denoted by (B3, F,Y) = (51, By, X1) Ug (82, Es, X3) where F=E|UE>, Y = X ,UX>
and for all g € F and z € Y, it is defined as:

{(u, Ayggz)(u), Aygg,zy(u)} if (9,2) € (Ey x X1) \ (B2 x X3)
(s Asgay(), Aoy (W)} if (9.2) € (Bz x Xa) \ (E1 x X1)
{(u, sup{Ay(g,2y(u), Aggg o (w)} if (g9.2) € (E1N E2 x X1 N X2)

. hlf{/\l(g,z) (u)' ’\Q{Q,z) (u')} )}!

whenever 31(g,z) = {(u, Ay(g,z)(1), Ag.2)(n)) : w € U} and Ba(g, z) = {(u, Ag(y,)(u),
’\2(9.2}(“)) HETRS U}

Bs(9,2) =

Example 4.3.16 Consider Evample 4.3.4. Let (81, Ey, X1) and (39, Ea2, X3) be two
CSESs over U defined as below:
Bi(er, 1) = {(us,[0.5,0.8],0.7), (uz, [0.6,0.9],0.8), (us, [0.4,0.7],0.5)}
Bi(e2, x1) = {(u1,[0.4,0.7],0.6), (us, [0.7,0.9], 0.8), (u3, [0.3,0.5],0.4) },
Biler. z2) = {(u1.,[0.4,0.8],0.5), (uz,[0.6,0.9],0.8), (us, [0.4,0.6],0.5) }
Bi(ea, w2) = {(u1,[0.3,0.8],0.4), (us, [0.6,0.9], 0.7), (us, [0.5,0.7],0.6)}.
Ba(er, x1) = {(u1,[0.2,0.5],0.6), (us, [0.5,0.7],0.3), (us, [0.1,0.4],0.3) }
Bo(eq, x1) = {(u1,[0.2,0.5],0.1), (us, [0.5,0.9],0.6), (us, [0.2,0.4], 0. 4)}
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Therefore, (33, F,Y) = (1, E1, X1) Ur (B2, Ea, Xo) is given below:

Ba(ey, z1) = {(u1,[0.5,0.8],0.6), (uz, [0.6,0.9],0.3), (us, (0.4,0.7],0.3) },
Palea, x1) = {(u1,[0.4,0.7],0.1), (ug,[0.7,0.9],0.6), (us, [0.3,0.5],0.4) },
Ba(er, xe) = {(u1.[0.4,0.8],0.5), (us2,[0.6,0.9],0.8), (us, [0.4,0.6],0.5)},
Balea, xo) = {(uy,[0.3,0.8],0.4), (ug,[0.6,0.9],0.7), (ug, [0.5,0.7],0.6) }

Definition 4.3.17 The R—intersection of two CSESs (51, E1. X1) and (82, Ea, X2)
over U is denoted by (33, F\Y) = (51, E1,X1) Ng (B2, B2, Xo) where F =E; N Ey,
Y =X1NXy and for all g € F and z €Y, 1t is defined as:

B3(g,2) = {(u, inf{Ay.y(u), Asyy(w)}, sup{Aig ) (w). Agg ()]},

whenever 31(g, z) = {(u, Ay(g,)(u), Mg,y (w) : u € U} and Ba(g, z) = {(u, Agy 2 (u),
z\-z(g‘,_)(u)) S E U}

Example 4.3.18 Consider Example 4.3.4. Let (81, E1. X1) and (B2, Es, Xo) be two
CSESs over U defined as below:

Bi(er, z1) = {(uy,[0.5,0.8],0.7), (us, [0.6,0.9],0.8), (us, [0.4,0.7],0.5)},
Bi(ea, z1) = {(u1,[0.4,0.7],0.6), (usz, [0.7,0.9],0.8), (us, [0.3,0.5],0.4)}
Bi(er, z2) = {(u1,[0.4,0.8],0.5), (ua, [0.6,0.9], 0.8), (us, [0.4,0.6],0.5)},
Bi(es, #2) = {(u1, [0.3,0.8], 0.4), (uz, [0.6,0.9],0.7), (us, [0.5,0.7], 0.6)}
Baler, 1) = {(u1,[0.2,0.5],0.6), (1.',3 [0.5,0.7],0.3), (ug, [0.1,0.4], 0. -3)}1

Balea, z1) = {(u1,[0.2,0.5],0.1), (uz, [0.5,0.9],0.6), (us, [0.2,0.4],0.4) }.
Therefore, (83, F.Y ) = (81, E1, X1) Ng (B2, B2, Xo) is given below:

Ba(er, z1) = {(uy,[0.2,0.5], 0.7), (uq, [0.5,0.7],0.8), (us, [0.1,0.4],0.5) }
Ba(ea, z1) = {(u1,[0.2,0.5], 0.6), (uz, [0.5,0.9],0.8), (us, [0.2,0.4],0.4)}.

Definition 4.3.19 The complement of a CSES (3, E, X) is denoted and defined as
(8, E,X)¢ = (B¢ E°, X) where 3¢ : B¢ x X — CP(U) is a mapping given as

B 2) = {(u, AL, (), XS

(5,11("')) cuel, (ef,z) € E° x X},

where Al () = 1- (e I)(u,) A{‘”}(u)] and X{, x)(u) = 1- A, (u) whenever
Ble,x) = {(U, A{e..r)(“) ,\(e,;}( )) u € U}

Example 4.3.20 Consider Example 4.2.6. The complement of CSES is given as
follows:

Bé(ef,z1) = {(u1, [0.2,0.5], 0.7), (ug, [0.1,0.4], 0.5), (ug, [0.3,0.6], 0.8)}

B¢(es, x1) = {(u1,[0.3,0.6],0.6), (us, [0.1,0.5],0.1), (us, [0.5,0.7].0.2) },

Be(ef, x2) = {(u1,[0.2,0.6],0.1), (us. [0.1,0.3].0.4), (uz, [0.3,0.5],0.2) },

B(es, x2) = {(u1.[0.2,0.7], 0.8), (ug, [0.1,0.4], 0.6), (us, [0.4, 0.6],0.3) }
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4.4 Properties of Cubic Soft Expert Sets (CSESS)

In below we discuss some properties of CSES's.

Proposition 4.4.1 For any CSESs (61, E1, X1). (32, B2, X3), (83, E3, X3) and (34, F4, X4)

over U, we have

1) If (B1, Er, X1) Cp (B, B, X2) and (B2, Ea, X2) Cp (B3, £3, X3),
then (81, Ey, X1) Cp (83, E3, X3).

2) If (B1, E1, X1) Cp (B, B2, Xa), then (B2, Ea, X2)° Cp (81, E1, X1)“.
3) If (81, Er, X1) Cp (B2 Ez, 2)) and (81, Er, X1) Cp (B3, E3, X3),
then (81, E1, X1) Cp (P2 X2))Np (B3, E3, X3).
4) If (A1, E1, X1) Cp (132,E2,X2J and (33, E3, X3) Cp (B2, E2, X2),

then (31, E1, X1) Up (B3, E3, X3) Cp (32, F, Xa).

5) If (81, En, X1) Cp (B2, B2, X2) and (83, E3, X3) Cp (B4, Ea, X4a),
then (B, E1X1) Up (83, E3, X3) Cp (B2, E2, X2) Up (B4, E4, X4) and
(81, E1, X1) Np (B3, E3, X3) Cp (B2, B2, X2) Np (Ba, B4, X4).

All the above results also holds for R — order.

Proof. These can easily be proved by using Definitions 4.3.11, 4.3.13, 4.3.15, 4.3.17
and 4.3.19. m

Theorem 4.4.2 For any CSESs (31, Ev, X1), (82, Ea, Xa), (83, E3, X3) and (B4, E4. X4)
over U the following properties hold.

1) Idempotent (5, E1, X1) Up (81, E1, X1) = (81. E1.X1) = (61, E1, X1) Np
(81, Er, X1),

(81, E1, X1) Ug (B1, Ev, X1) = (Br, Er, X4) = (61, B1, X1) NR (81, B, X1)-

2) Commutative (31, E1, X1) Up (82, (Ea, X2) = (89, Ea, Xo) Up (51, E1, X1).

(81, E1, X1) Ur (B2, Ea, Xa) = (B2, E2, X2) U (81, Er, X1),

3) Associative ((S1, E1,X1) Up (B2, B2, X2)) Up (B3, E3, X3) = (51, F1,X1) Up
((B2, B2, X2) Up (83, E3, X3)),

((B1, E1, X1) Ur (Ba, E2, X2)) Ugr (B3, E3, X3) = (81, E1,X1) Ur ((B2, B2, X2) U
(B3, E3, X3)).

4) Distributive (31, E1, X1) Up ((B2, B2, X2) Np (B3, E3, X3)) = ((B1, £1, X1) Up
(82, E2, X2)) Np ((81, E1, X1) Up (B3, E3, X3)),

(81, E1, X1) Np ((B2, B2, X2) Up (83, E3, X3)) = ((B1, E1,X1) Np (B2, By, X3)) U
(81, E1. X1) Np (B3, E3, X3)),

(81, E1, X1) Ug ((B2, E2, X2) Ng (B3, E3, X3)) = ((61, E1, X1) Ug (B2, B2, X2)) Nk
((B1, E1, X1) Ug (B3, E3, X3)),
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(81, E1, X1) Ng ((82, E2, X2) Ur (B3, E3,X3)) = ((B1, E1, X1) Nr (B2, E2, X2)) Ur
((B1, B1, X1) Ng (83, E3, X3)).

5) De Morgan’s laws ((31. E\, X1))Up(3s, Es, X9))° = (51, E1, X1)"Np(Ba, £y, X2)°,

((B1, E1, X1) Np (B2,, E2, X2))° = (B1, E1, X1)° Up (B2, Ez, X2)°,

((B1, Ex, X1) Ug (B2, E2, X2))° = (81, E1, X1)° Ng (B2, E2, X2)°,

((B1, Er, X1) Ng (B2, B2, X2))¢ = (B1, E1, X1)° Ur (B2, E2, X2)°.

6) Involution law ((51, E1, X1)°)° = (51, E1, X1).

Proof. These properties can be verified using Definitions 4.3.11, 4.3.13, 4.3.15,
4.3.17 and 4.3.19. =

Proposition 4.4.3 For any two CSES (1, E1, X1) and (B2, E», X2) over U the fol-
lowing are equivalent.

1) (41, E1.X1) Cp (8o, B2, X3),
2)(81, E1,X1) Np (B2, B2, X2) = (51, E1, X1),
3)(81, E1, X1) Up (B2, Ea, X2) = (B2, Ez, X32).

Proof. 1) = 2) By Definition 4.3.13, we have (3, E1, X1) Np (B2, E2, X2) =
(81 Np B2, Ex N Es, X1 N Xa) = (B1Np B2, E1,X1) as By € Ep and X; C X3 by
hypothesis. Now, for any (e,z) € E| X X, since Fi(e,z) Cp Ba(e, x), Definition
4.3.1 implies that Ay, .)(u) X Ag(eq)(u) and Ay qz)(u) < Ageeqz)(u) for any v € U,
where Bi(e,z) = {(u, Ayer)(1), M(es)(n)) : w € U}. By Definition 2.1.5, we have
Al_(e,,:)(' u) < A, J:]I(u.) and AT(’ r)( u) < A;L(e » (). Thus inf{Ay(e,0) (1), Aser)(u)} =
[inf{A1 o) < Ay, ()}, lnt{Al(E (W) < Ag(g.x](u)}] = [Aj(on(w) < Al{e ()]
and inf{Al (er)(1); Aaer)(u)} = Ay(ep)(w). By using Definition 4.3.13, 3i(e, ) Np
Bale, @) = { (u, inf {Ay(er)(w), Agea)(w)) }, inf {Nj(ea) (@), Aggeay(w)}) s u€ U} =
{(u, Aje2) (1), M(ez)(w)} ) : uwe U} = Bi(e, x). Hence Bile,x)Np Bo(e, ) = Pi(e, ).

2) = 3) By Definition 4.3.11, we have (3, Eq, X;) Up (B2, E2, X3) = (61 Up B2,
E1UE;, X1 U X3) = (81 Up B2, E2, X2) as EyN E» = Ey and X; N X3 = X1 by
hypothesis. Now for any (e,2) € Ey x Xy, since B1(e,z) Np Ba(e,xz) = Bi(e, ), by
Definition 4.3.13, we have inf{ A ,y(u), Ay )(v)} = Ay (u) and inf{A . ;) (u),
Ag(e,a) (1)} = A(e,z)(u). This implies that sup{A,(. ,)(u), Ay ) (u)} = Ay z)(u) and
SUP{ A (e o) (1), Ag(ez) (1)} = Ag(ery(u). Thus, we have Bi(e,x) UpBa(e,z) = {< (u,
SUP{ Ay (e,z) (1), Agger) (W}, SUP{Ai(e,z) (), Agery(u)}) : u € Ul = {(u, Ageq)(u),
Ag(ea)(w)}) s uw € U} = Ba(e, z). Hence, Bi(e, z) Up Ba(e, x) = Ba(e, x).

3) = 1) By hypothesis, we have (£, E1, X)) Up (82, E2, X2) = (81 Up B2, E1 U
E», X1 UX3) = (B1Up Bo, B2, Xa) as ByUEs =By and XiUXo = Xa = E1 € By
and X7 C Xo.
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Also, Bi(e, z)UpBa(e, ) = {(u, sup{Ayer) (%), Ager) ()}, sup {A(ea) (), Aer)(w)})
ru € Uy = {(u, Agery(u), Ayez)(u)) : u € U} = Ba(e,x). This implies that
Al(e,e) (1) 2 Ag(epy(u) and Ay 1y (1) < Ag(e 0y (1) for any u € U. Hence (31, E1, X1) Cp
(B2, B2, X2). =

Corollary 4.4.4 [f we take X\ = X9 = X in the above proposition, then the following

are equivalent.

1)(B1, E1, X) Cp (B2, B2, X),
2)(81, E1, X) Np (B2, B2, X) = (81, £1, X),
3)(B1, E1, X) Up (B2, Eo, X) = (B2, B2, X),
4)(B2, E2, X)° Cp (b1, E1, X)°.

Definition 4.4.5 Let {L;},e5 = {(Bi, Ei, Xi) }ieg be a family of CSES's over U, where
Bi(e, @) = {(u, Aje,z) (1), Ai(e,r)(w)) : u € U,for any e € E;, © € X;}. Then P — union,
P —intersection, R — union and R — intersection are defined as below:

UP{-C }={(u, SUPAa(”))(u) V f\,(“) (w)) :u € U}.

ﬁp{L’ b= {(u, (mfAi(”) ) /\ Aiesy)(w)) :u e U}
UR{E b= {(u, {sup‘ll(”)) (u). ( /\ Aitez)) (1)) :u € U}

€3 ey
4) ﬂR{E } = {(u, (mfAz(e 2))(W), (V Aier))(w)) :w € U}
IE\

Theorem 4.4.6 Let {L;}ics = {(8i, Ei, Xi)tiex be a family of ICSESs over U,
where Bi(e,x) = {(u, Ajez) (1), Ni(ez) (1)) : u € U,for any e € E;, © € X;}. Then
the Up{L;} and Np{L;} are ICSESs over U.

ey =

Proof. As {L;}icq be a family of ICSESs over U. Then, Ai_ie.x}(u) < Xige,r) (1)
< A;.'Ee I)(u) for each i € S. This implies that (supAje.)) (1) < (V Aie,))(u) <
: €S ES
A'i . + d i fA ; o < /\ 3 ' < i x> + & i
(?gg (B,.z:j) (u} an (:éla 3(&,.1:)) (u)_ (ié\ﬁ' l(e..l:))(u') == (géléAa{e,x)) (u) Hence L:Efg[‘c}
and Np{L;} are ICSESs over U. m
IES

Theorem 4.4.7 Let (51, E1,X1) and (32, B3, X3) be two ICSESs over U, where
Bile,x) = {(u, Ar(e,a)(1); M(ez)(w) : w € U} for any (e,x) € By x Xy and B2(f,y) =
{(u, Ay gy (1), Ag(pyn(w) : w € U} for any (f,y) € Es x Xa . Then the P — union of
(81, E1, X1) and (Bs, Ey, X») is also an ICSES.

Proof. Since (3, 1, X1) and (82, Es, X3) are ICSESs over U so Al_{g.z)(-u) <
Al(g,»)(u) < AT{ ( ) forall w € U and Ag{q )(u) < Ag(g.o) () < 42(q )(u) forall u € U.
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Then we have Hup{Al-(q,;}(“}' A;(g':}(u.)} < (Mgiz) V Ao, (1) < anp{ﬂlm (),
A.'_,"(g.z)(u)} for all w € U and (g,2) € (E, U Es x X; U X3). By Definition 4.3.11, we
have (33, FY) = (81, E1, X1) Up (B9, Ey, X2) where FF =E{ U Ey and Y = X| U X»

and for any g € F' and z €Y.

{('U., Al(y,z)('u)’ ’\l(g,z}(u))} if (gv € (£ x Xl) \ (E2 X XQ)
{(u, A‘.Z(_q,z)(u)!’\2(g.:)(u)}} if (9,2) € (B2 x X2) \ (E1 x Xy)
{(‘l.‘., sup{Al(g‘zJ(u), Ag(g‘z](u)} if (g.2) e (E1NEyx X1 N X5)

,SUP{ A1 (g,2) (1), Ag(g 2y (u) }) },

-‘33(9! 2) =5

if (g.2) € (E1 N Ey x X1 N Xy), then 83(g,2) = {(u, sup{Ay(, ) (u), Ay (u)},
(M(g,2) V Ag(g.)) () s w € U }. Thus (81, Eq, X1) Up (B2, Ea, X32)) is an ICSE set. It
(g,2) € (B1 x X1)\ (Ea x X») orif (g,2) € (F2 x X3)\ (E1 x Xi), then the result is
trivial. Hence (81, E1, X1) Up (B2, B2, X») is an ICSES over U. m

Theorem 4.4.8 Let (81, Ey1, X1) and (82, Es, Xo) be two ICSESs over U, where
Bi(e, @) = {(u, Ay(en) (1), M) (w) : w€ U} for any (e,x) € Ey x Xy and fa(f.y) =
{(u, Ay (), Aa(pyy(w)) : w € U} for any (f,y) € Ey x Xo. Then the P—intersection
of (By, By, X1) and (2, By, X3) is also an [CSES.

Proof. Since (51, E1. X1) and (89, Ea, Xo) are ICSESs over [J so ’41_(3 ;)(") <
A(gz) (1) < Aﬁg‘zl(u) for all w € U and A' )(-u) < Aggn)(u) < A;'( )(' u) for all
u € U. Then we have inf{Al‘(g.:){-u), . Y J{u)} < (A(g,2) N Aa(g,2)) (1) < inf{ 41(,: (W),
Aj{y )( u)} for all w € U and (g,2) € (E; N E2 x X; N X3). By Definition 4.3.13 we
have (83, F,Y) = (51, E1, X1) Np (B2, B2, Xo) where FF =E; N Es and Y = X; N X»

and for any g€ F and z € Y.

s lllf{ A 1(g.z) (u)! ’\2(9,2.’) (u) }) } :

Thus (81, E1, X1) Np (B2, B2, X)) is an ICSES over U. m

’33(9. z) - { {(u,inf{Al{g‘z)(u}, Ag(g‘z)('ll.)} if (q. Z.') (S (E1 n E2 X .X] N X‘Z)

Theorem 4.4.9 Let (31, E1,X1) and (B2, E9, Xo) be two ECSESs over U, where
Bi(e, ) = {(u, Ay(en)(u), M) (1) : w € U} for any (e,x) € By x Xy and Ba(f,y) =
{(u, Ay (1), Aagsyy(w) s w € U} for any (f,y) € E2 x X such that

lnf{qup{Al(g (@), Agy u}} sup{A, . (u), A;'{ 5@}
sup{inf{ A}  (u), A5 . (u)}, mf{Al{J (), Ag(q 2) (u)}},

2(g, )
forall (g,z) € (E1NE2%x X1NX2) andu € U. Then the P—intersection of (31, E\, X1)
and (39, Ea. X9) is also an ECSES over U.

(A1(g,2) A Agg,2))(u) € {
(g, *)
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Proof. By Definition 4.3.13, we have (33, F3, X3) = (8,, E1, X)) Np (B2, Fs, X»)

where

/j B { {('IL,SLIP{AI_(Q‘Z}(?.L], Azmlz}(u}} if (‘fj.x"‘) € {El n E-‘z X )(1 n /Y?)
3(.{}! 2) - . y
.lnf{/\lty,_,_)(ll.), }kg(grzl('u)})},

if (g,2) € (E1NEyx X1NXy), take h = mF{qup{Al( z) w), A;(( )(' },sup{Al'(g'zl(u),
A;(g »(w)}} and R = sup {inf {47, ,( )= Ay} Inf {47 (), A5 ) (W)}
Then A is one of AI{J z)(u) 2( ,z)( u), A 1( ) (u), Ag{g zl( u). We only consider h =

Al(g ,)(u) or 41(g z)( u) because remaining cases are similar to this one. If A = A;(g ,:)(u)
then A, (u) < A;r{g‘z)(u) < Ajy(w) < A;r{g.z)(u) and so R = A;,’(g .y(u). Thus

2[_} -)(U') ll'!.f {Al(g.z}!A‘Z[g.z)})-(u) % (inf{Al(g,z]tA?.(g.z}} '('H.
= A,',"{g z}( u) =R < (Mg, A )‘2(5,'3)}[1;}. Hence (Ay(g,:) A Ag(g,2)) () & ((inf{Ayy.2),
Ag(g‘_')} (U,),l[lf{Al(g 2)s AQ{Q‘-‘-)}-‘_(I Jifh = 4+ ){’U.) then A2( z}('ﬂ-} < A](q ,)( ]
< AZ(g’ v)(u so R = sup{Al(g (1), Ag(q o(u u)}. Absume R=A], x;.( u), then we hr:fve
Ag_(gy }( u) < Al(g z)(u (Mg, 2) A Ao(g,2)) (1) < Al(g z](u} < A- b }( u). So we can write
A2(y‘zi( u) < A1( ~)( w) < (Ayqg, )/\,\g(g 9)(u) < Al(g ,}(u) < A.j(‘ ( i) or AQ{ *)( u) <
Al_[g.z)(u) < (Ai(g,z) A Agg,2)) () = 1(0 z}(u.) <A 2(9 z)(u)

The case A2_(g, )( u) < Al(q )( u) < (A(g,z) A Agg.) (1) < 41{5; )( u) < A%;|r )( )
which contradicts the fact that (8, E1, X1) and (Fe, Ey, X3) are ECSESs. For the
case Ag(y.z)(-a:.'J < Al_(g o) < (A1(g,2) N Ag(g,z }}(.u) = 4;"(0 ~}(m) < A+ (*u.) we have
("\l(g,z) A /\2(9':))(10 ¢ ( IDf{Al{g,Z) Az(q z}} lllf{AI(q 2) AZ{g z]} be(,d.ll.b(,
(Mg,z) A Ag(g,2))(u) = Al{q _)( gt = (lnf{Al(g 255 Az(y.:,})ﬂu. . Agam assume that
R = Ay, .,(u), then we have A (u) < Ay (1) < (Ayg,2)Ada(g,)(u) < A?L(J ()
< A;’“{gz}(u) We can write A} (u) < Ay (1) < (Mg, A /\2{9 2)(u) < Ally o (w)

< Ay, (W) or AT (u) < Ay o (u) < (/\1(5;,:)/\/\2{9.;) (u) = Aj, ~J(1¢)<A3(q ().
For I:he case Ai(g ~J( u) < A2(§ ~)(u. (A(g,2) N Agg,2))(u) < Al(_; )( u) < 2(5 )(u)
which contradict the fact that (51, E1, X1) and (82, Ea, X2) are ECSESs. For the

case Al{g Z)( u) < Ag{g z)( u) < (A(g.z) A Aag, ~,}(' u) = A;r{g z)(u) A;'(g )(u) we have
(’\l[g,z] A /\2 J,z)) u) ﬁ (Il]f{/'ll(g 2)» Az(g z) }) IIlf{Al{g }, AZ[g,z)} becau%e
(/\1(9‘:] A /\2(9_:})[1&) = A—l’-(g,z)(" = (mf{AI(q z)r AZ(Q,MJ} . Hence (31, E]_, z\rl) Mp

(B2, Ea, X3) is an ECSES over U. m
The following example yields that R — union of two ICSESs need not to be an
ICSES.

Example 4.4.10 Let (51, E1, X1) and (B2, Es, X2) are two ICSESs over U, where
Bi(e,z) = {(u, Ayeqa) (1), Mez)(n)) : u € U} for any (e,z) € Ey x Xy and Ba(f,y) =
{(w, Ay (), Ao g gy () = w € U} for any (f.y) € Ey x Xo in which Ay, .)(u) =
[0.5,0.8] Ay(g,2) (1) = 0.6 and Ay oy (u) = [0.2,0.5] Mgy 2y (u) = 0.3. Now by Definition
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4.3.15, we have Az, .)(u) = [0.5.0.8], Ay, .)(u) = 0.3 Hence R — union s not an
ICSES because Ay, . (u) & [A;(g‘:)(u). A'_L;(g_:)(u)].

The following theorem gives the condition that R — union of two ICSESs is also
an ICSES.

Theorem 4.4.11 Let (31, E1. X1) and (32, Ea, X2) are two ICSESs over U, where
Bile, x) = {(u, Ayez)(u), Mer)(w) :u € U} for any (e, x) € Ey x Xy and 32(f,y) =
{(u, Ag(f,y)( u), Ag(py)(w) s u € U} for any (f, y) € Bz x X such that S“P{A;(g,z) (u),
A‘z(q o w)} < (Ag,z) A Aa(g,))(u) for all u € U and (g,z) € (Ey N E2 x X1 N Xo).
Then the R — union of (31, E1, X1) and (32, Ea, X3) is also an ICSES over U.

Proof. By Definition 4.3.15, we have (83, F,Y) = (81, E1, X1) Ur (B2, E2, X32)
where FF =F; U Es and Y = X1 U Xy and for any g € F and 2z € Y.

{(u, Ay(g,z) (1), Ay(g,z) () } if (g,2) € (E1 x X1) \ (E2 x X3)
{(1, Ag(g,z) (), Mg,z (1)) } if (9,2) € (B2 x X2) \ (E1 x Xi)
{(u,sup{Ay(g,:)(u), Ay ) ()} if (g,2) € (E1 N Ey x X1 N Xo)

1 inf{'xi(g‘:)("-"']' ’\2(9,:) (u)} )}

If (g, 2) € (E1 x X1)\ (B2 x X2) or (g, 2) € (B2 x X2) \ (E1 x X1), then the result
holds trivially. If (g,z) € (E1 N Ez x X, N X3), then

B3(g,2) =

B3(g9, z) = {(u,sup{Ay(g2)(u), Ay, ()}, iInf{Ay(g ) (1), Aagg 2y (u)})}- Smm (B1, En,

and (s, Es, X9) are [CSESs over U. So we have Au ~)(M) < Age)(w) < ](u) for
all w € U and 42{ ,)(u) < Aggg,2y(u) < 2( ~J(ea) for all w € U. Also sup{A ) (u),

Ay (W} S i) A Agg,z))(u) < bup{Al(“) u), A}_"(q ,(w)} for all u € U and
(9,2 z) € (E] N Ey, X1 N Xs). Hence, (‘dl,E[,){l )Ur (32 Es, X5) is an ICSES over U.
-

The following example yields that R — union of two ICSESs need not be an
ECSES.

Example 4.4.12 Let (8, E1, Xy) and (Bs, Es, X2) be two ICSESs over U, where
Bile,x) = {(u, Ay(en) (), Ayen) (1) : w € U} for any (e,x) € Ey x Xy and Ba(f,y) =
{(u, Agu‘y)(u)./\g{f!y)(u)) u e U} fOT' any (f, y) € Fs x Xy in which Al(g.;}(u) =
[0.5,0.8] Ay(g,5)(u) = 0.6 and Ay, .)(u) = [0.2,0.9] ,Ayq 2y (u) = 0.8. Now by Definition
4.3.15, we have Ag, .)(u) = [0.5,0.9], Ag(y-)(u) = 0.6 Hence R — union is not an
ECSES because A, (u) € [A:;(g‘z)(u). A_,)'!'{g?z}(u)].

The following theorem gives the condition that R — union of two ICSESSs is also
an ECSES.

X1)
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Theorem 4.4.13 Let (81. E1. X1) and (89, E9, X5) be two [CSESs over U, where
Bile, x) = {(u, Ar(e,z)(1), AM(e,a)(u)) :u € U} for any (e, z) € Ey x Xy and Ba2(f, y) =
{(x, A;{f ) (1)y Aggpap () :w € U} for any (f, y) € Eq x Xg such that Hli]J{Al(q (),
42(9 (U )} = (Mig.z) A Aaqg.zy)(u) for all w € U and (g,z) € (E1 N Ep x X; N X3).
Then the R — union of (51, E1, X1) and (8, Ey, Xo) 1s an ECSES.

Proof. Straightforward by using Definition 4.3.15. =
The followingt example yields that R — intersection of two ICSESs need not be
an ICSES.

Example 4.4.14 Let (81, E\. X1) and (B2, E3, X2) be two ICSESs over U, where
Bile, ) = {(u, Ay(ea) (1), Mew) () : uw € U} for any (e, x) € Ey x Xy and Ba(f,y) =
{(u, AQ(f‘y)('u)./\g(f'y)('lf.)) cu € U} for any (f,y) € Ea x Xo in which Ay, . (u) =
(0.2,0.5], Ay(g.2)(u) = 0.4 and Ay, .y (u) = [0.5,0.8] Ay (u) = 0.7. Now by Definition
4.3.17, we have Agy . (u) = [0.2,0.5], Ay, ‘_)(u) = 0.7 Hence R — intersection is not
an ICSES because A, , . (u) & [A3(g,;)(”)' 3(9.2)(W)]-

The following theorem gives the condition that R — intersection of two ICSESs
is also an ICSES.

Theorem 4.4.15 Let (8, Ey, Xy) and (Ba, Eq, X3) be two ICSESs over U, where
Bile, ©) = {(u, Ay(ea)(®), Ai(en)(w)) : u € U} for any (e, x) € Ey x Xy and Ba(f,y) =
{(u, Ay (1), Ag(py) () :u € U} for any (f, y) € Ez x X such that 11\.1{&'11(J )(u).
A}L{J :) (w)} = (Ag,2) V Ag(g,))(u) for all u € U and (g,z) € (Ey N E3 x X1 N Xy).
Then the R — intersection of (81, E1, X1) and (8s, E9, X») s also an ICSES over U.

Proof. By definition 4.3.17, we have (33, E3, X3) = (51, F1, X1) Ng (B2, B2, Xa)
where E3 = F1 N Ey and X3 = X1 N Xy, g € E3 and z € X3.

B3(g,2) = {(u, inf{Ayg,2) (), Ag(g,2y (1)}, sup{Ay(g 2y (1), Aagg,z) (1) })}-

Since (81, E1,X1) and (39, F9, X3) are ICSESs over U. We have Al_(g‘z)(u) <
Ai(g,s)(n) < Al( o (u) for all u e U and A, )(u ) < Ay, (u) < A ( ) for all u €
U. Also inf{A], 10.2) (u), A_ (0.2) u)} < (/\1(9.2; VI\Q{Q.Z))(U) < inf {A]_{g,z](u ; A;‘(g.ﬂ(u)}
for all w € U and (g,2) € (E1 N Ey x X7 N Xs). Hence, (81, By, X1) Ng (B2, B2, X3) is
an ICSES over U. m

The following example yields that R — intersection of two ICSESs need not be

an ECSES.

Example 4.4.16 Let (81, Ev, X1) and (8, Ea, X)) are two ICSESs over U, where
Bi(e, ) = {(u, Ay(eq) (1), Ay(en) (1) s w € U} for any (e, x) € Ey x Xy and Ba(f.y) =
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{(w, Ag(p0) (1), Ao(pany(w) 2 u € U} for any (f,y) € Es x Xa in which Ay, .(u) =
[0.5,0.7], Ai(g,2) (1) = 0.6 and Ay .y(u) = [0.2,0.9] ,Agq.2)(u) = 0.8. Now by Definition
4.3.17, we have A;;tg'_,(u) = [0:2,0: 9] A3(q, ,(u) = 0.8 Hence R—intersection is not an

ECSES because A, ,(u) € [A5

9 39 (W) Az oy (w))]-

The following theorem gives the condition that R — intersection of two ICSESs
is also an ECSES.

Theorem 4.4.17 Let (81, E1,X4) and (B2, Ea, X3) be two ICSESs over U, where
Bile, x) = {(u, Ayez)(1), AM(ez)(w)) : w € U} for any (e, x) € Ey x Xy and B2(f, y) =
{(u, Agsy)(u), Ag(syy(u)) s w € U} for any (f, y) € E2 x X3 such that mf{Al(q (),
A.}'{g,z)(u)} < (Ai(g,2) V Agg,z))(w) for all w € U and (g,z) € (E1 N Ey x X3 N Xy).
Then the R — intersection of (1, E1,X1) and (B, Es, X2) s an ECSES over U.

Proof. By Definition 4.3.17, we have (33, E3, X3) = (31, E1. X1) Ng (B2, By, X2)
where Ey3 = E1 N Ey and X3 = X1 N Xy, g€ Ey and 2 € X3.

B3(g,2) = {(u,inf{ Ay, 2y (1), Aagg ) () }, sup{Ay(g,2) (1), Mg,z (w) }) }-

Since (B4, Eq, X1) and (32, E2, X9) are ICSESs over U. So we have A;(g.zj(u) <
Al(g,2) (1) < Al(q ,)(u) for all w € U and A;(y‘;)(u) < Ag(g,zy(u) < A;(y';j(u) for all
uw € U. Given condition is that inf{ 41( y}( }.A;{w)(u)} < (Ar(g,2) V Agqg,2))(u) for
all w € U and (g, z) € (E1 N Ey x X1 N Xy). This implies that (Ay,2) V Agg,2)) (1) &
(inf{ 41(5' 5 u), A 20, ~] (u)},inf{AT 4}@ )( u)}). Hence (81, By, X1)Ng(B2, B2, X2)
isan ECSEinU. m

The following example shows that R — union of two ECSESs need not be an
ECSES.

L(g, ~J u),

Example 4.4.18 Let (5, E1, X1) and (82, Ea, X3) be two ECSESs over U, where
Bile, ©) = {(u, Aye ) (), Ay(ez) (1) : w € U} for any (e,z) € Ey x Xy and B2(f,y) =
{(u, Ag(pa (1), Ao(syy(w) : u € U} fm' any (f,y) € By x Xy in which Ay .y(u) =
[0.4,0.5], Ay(g,2) (1) = 0.6 and Ay, -y (u) = [0.3,0.7], Agq,z)(u) = 0.7. Now by Definition
4.3.15, we have Ay ) (u) = [0.4,0.7], Ag{g 5y(u) = 0.6. Hence R—union is not ECSES
because A, , (u) ¢ (A3(y.z](u]'A3[g.z}( w)).

In the next theorem, we derive a condition for R — union of two ECSESs to be
an FCSES.

Theorem 4.4.19 Let (8, E1, X1) and (B2, Eq, X3) be two ECSESs over U, where
Bile.x) = {(u, Ay(eq) (1), M(ez)(u) : w € U} for any (e,x) € By x Xy and B2(f,y) =
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{(u, Agsay (1), Ag(p ) (1) :w € U} for any (f,y) € Ey x X3 such that

mf{snp{Al{g o(u), Ay, Ly (@)} sup{ Ay ( z) ), A;“g‘z}(-u)}}‘
sup{lnf{Al{g o), Ay, ()} inf{A](u), A;‘g.z}(u)}}

for all (g,z) € (E1NEy x XN X3) and u € U. Then (51, Er, X1) Ur (B2, E2, X2)
is also an ECSES over U.

(A1(g,2) A Ag(g,2))(u) € {

Proof. By Definition 4.3.15, we have (83, F3, X3) = (81, E1, X1) Ug (B2, E2, X2)

where

{(u,Aug‘;)(u). /\I(g‘z)(u))} if (g, z) € (E] X X[) \ (Eg X X‘)_)
Ba(g,2) = {(u, Ag(g,z) (1), Ag(g,2y (u)) } if (g,2) € (B2 x X2) \ (E1 x X1)
SR {(u,sup{Ay(g,z)(u), Aggy(w)} if (g,2) € (E1N E2 x X1 N X3)

N inf{)‘l(g,z) (u)= ’\2(g,z) (u)})},

if (J, z) € (E1NEyx X1NX3), take h = mf{sup{Al{g o(u), Ay, z)('u 1 sup{Al'{g,z)(u),

A;(q (1) )}} and R = sup {inf {Al(g o(w), Ay, . (w)}, inf {Al{g z)( u), A;-(g,z)(u')}}'
Then h is one of Aﬁg z)( u), Ag{g,z}( w), Al{g'z)( u), Ag(g,z)( u) we only consider A =
A2(g';)(u} or A2(g‘z)( 1) because remaining cases are similar to this one. If A = Ag_(q‘z) (u)
then Al_(g,:)(“') < Ai"‘glz)(u) < A )(u < A:e{g )(u) and so R = Al(_; )[ u). Thus
(sup{Aj(g,z), Az(g.2)}) ™ (u) Ag(gz)( u) = h > (Mg A Aag,z))(u). Hence (A ) A
Mag,))(w) & ((sup{Ay(g,z), Ag(gs)} (W), sup{Ay(q ), Aoy}t (). If b = AJ, . (u)
then Aig'z)(u) < A+ )(u < A (u) so R = sup{A;(g,:)(u), 20.) (u)}. As-
sume R = A\ (u), then we have A g.yz){u < Ajyn) (@) < (Mg A Ag(g,)) (1) <
A,j{g )( u) < Al(g z](u). So we can write Az_(g,;)(“) < Al_(g‘z)(u) < (Aq(g.2) AN Ag(g,2)) (1)
< Az(g z)("’ ) < Al(g ~)( u) or Ag_(g‘z)(u) < Al—(g,z](u) = (M(g,2) /\’\2(9..?.))( u) < A2[g )( u)
< Aflga) (W)

The case A, )( ) < Ajy () < (A, A Ag(g,2))(u) < A}'{g z}( u) < A;F(g‘z)(u)
which contradicts the fact that (51, E1, X1) and (B2, F2, X3) are E’CSESs For the
case A;(g,z)(u) 2% A;(g,;)(“) = (Ai(g,2) N Ag(g,2)) (1) < A;'{g z}(u) < 1{9 )
(M(g,z) A Aa(g,)) (1) & ((sup{Ai(g,), Ao(g,2)}) ™ (1), (Sup{Ai(g,z), A2(g,2)}) (1)) because
(sup {Ay(g,2), Aa(g,2)}) (u) = Al(g (@) = Mg,z A Ayg,z))(u). Again assume that
R= A2'(g Z)( u), then we have Al(g‘z)(u) < 2(9'2)( ) < (Ay(g,2) AAo(g,2)) (1) < A;{g,z)(u)
< Af(g )(u) We can write A} )(u) < 2_( (u) < (A1(g,) A Aag,2))(u) < A;{g z)(u)

1(g z)(u) or A1( z)( u) < Az(g -,)( u) = (Ay(g,z) A Age,)) (1) < Ag(g z)( u) < Al(g 5 (w).
For the case Ay, ) (u) < AQ(g.z)("') (M(g,2) N Aag,2))(u) < AQ{Q }(u.) < A1{g,z)(“)
which contradict the fact that (81, E1, X1) and (82, E9, Xo) are ECSFESs. For the

(u) we have

case Al( ( ) < A;(g‘;](u) - (/\1(9.2} A /\2(9‘2))('11.) < A:’!—(g )( ) < Ar{g )(L'- we have
(M(g,z) A A)[g‘z))(u) ¢ (sup{Ay(g,z), Aa(g.2)}) " (u), (sup{Ai(.2), Ag{g )} ) because

A5
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(sup{Ai(g.2), Aa(g)}) " (u) = /lz(J }( u) = (Ai(g,2) A Aagg,))(u). if (g, 2) € (Ey x X1)\
(Fq x Xa) or (g,z) € (Ea x X2)\ (E1 x X7). Then the result holds trivially. Hence
(81, E1. X)) Ug (B9, B9, X3) is an ECSES over U. m

The following example shows that R — intersection of two ECSESs need not be
an ECSES.

Example 4.4.20 Let (51, E1, X1) and (89, Ea, X3) be two ECSESs over U, where
Bile,z) = {(u, Ay(e,e) (1), A(ea) () : w € U} for any (e,x) € Ey x X1 and B2(f,y) =
{(u, Ag(sy)(w), Ag(p gy (w) = w € U} for any (f,y) € Ea x X in which Ay z)(u) =
[0.5,0.6], Ayg,z)(u) = 0.4 and Ay, .y (w) = [0.3,0.7], Ayq,2) (1) = 0.3. Now by Definition
4-3.17, we have Ay, . (u) = [0.3,0.6], Ay, ) (u) = 0.4. Hence R — intersection is not
an ECSES because Ay, . (u) & (Ag, (), A;r(g ().

In the next theorem, we derive a condition for R — intersection of two ECSESs
to be an EC'SES.

Theorem 4.4.21 Let (3, E1, X1) and (B9, Es, X3) be two ECSESs over U, where
Bile,x) = {(u, Ayea)(u), AMea) () : w € U} for any (e,x) € By x X1 and Ba(f,y) =
{(w, Aggy) (1), Mg gy (w) s w € U} for any (f,y) € Ez x X such that

inf{%llp{A+ olu), Az( o(u)}s sup{Al( (), Az(J 2) (u)}},
sup{mf{Al{ (W) Ay (W)}, inf{A7, n.),A;(g‘I)(u.)}}

for all (g,2) € (E1 N Ey x X1NXy) and w € U. Then (84, E1, X1) Ng (B2, B9, X2)
is also an ECSES over U,

(’\l(q, )V/\z{q ))("’) {

Proof. By Definition 4.3.17, we have (33, E3, X3) = (51, E1, X1) Ng (B2, E2, X2)
where

ﬁ’j[g z) = '{(R,SUP{AL(Q.z)(H)'Ag(y‘zj(u)} if (g‘ 3) c (El N EQ % Xl ﬂXg)
3\Y; ,inf{r\l(g‘;)(u),,\Q(g.z)(u)})}‘

if (g, 2z) € (E1NEyx X1NXs), take h = mf{sup{Au ~) )A;(g J( u)}, sup{Al_gz)(u),
A;{g,z)(u)}} and R = sup {inf {Al(g 3 (u), Ag{g { } inf {Al(g 5 (u), Ag(g 3 (u)}}
Then A is one of Al(g,z)(u), Ag{y‘z)(u) Al(g 2) (u), A 2(g z,(u). We only consider h =
Az{g z}( w) or A2(q )( 1) because remaining cases are similar to this one. If h = A.;(g‘z] (u)
t.hen AT g,:){u) < i"(g‘z){'u) < 4 2(g ,)( u) < A;r(g z}(' u) and so R = A;r(g )( u). Thus
(lllf{Al{g‘z), A2(g_:;)})+{“-) = l(y‘:](u) =R < (’\l(g z) V ’\z(g z))(u) Hence ('\l(g %) vV
/\g(g.:))(u} é ((inf{Altg z) Ag(q )} 'H) IIIF{AI[J =) Al{g .)}+(u)) If h = AZ{Q *}(”]
then 41_“ glw) < 2(9 o) < A )(u) so R = wp{Al(J )( ), z(q‘z)(u} As-
sume R = ‘41(9;)(”) then we llfwe AQ( g (W) < Ap (1) < (Ay(gz) V Ag(g,n)) (1) <
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4+ )(n} < 11{_; .y(1). So we can write Ag_(g,;)(”') < Ajy (1) < (Aygg,2) V Ag(g.2) ) (1)
< Ag(g ,j(u < AY g‘:}(u.) or /-lz(g':)(u) < Al_(g.:)(”‘) < (A1gg.z) V Ag(g.n) () = A;{g,:](“)
= Al{y J(“)

The case A, (u) < A, (w) < (Aq(g,z) A Agg,2)) (1) < AQ{J H(u) < Al(q »(w)
contradicts the fact that (&, Ey, X;) and (82, B9, X2) are FCSESs. For the case
A‘E_(g..‘:j(u) < A;(g‘z)(u) < (Mg V ,\2(9‘:))(1;) A;(g olu) < Aﬁg. (u} we have
(M(g,2) V Aag,2))(u) & ((inf{Ay(g ), Aoy }) (), (inf{Ay( ), Aag,2)}) T (1)) because
(inf{Ay g2y, Ay t(u) = Ag(g z)( u) = (Agz) V Agg,2)) (1) Ag'un assume that
R= Ag{q (u), then we have Al ,)( u) < Ayigy (1) < (Argg,2)V Az, 2)(u) < A‘Z(g ,}( u)
< AI(Q oy(u). We can write Al_( z](u) < A").(g,z]{u) < (Mi(g,2) V Agg,n)(u) < A‘Z(g ,]( )
< A+( ){u) or Aj, z)(u] < A2[g ~)( u) < (A1(g,2) V Ag(g,2)) (1) = ;,'(g 3)( u) < Al(q z)(u
The case Al( z)(“) < Ay (u} < (Mgz) V Ag(g))(u) < AZ(qz)(u) < Al(g ,)( )
contradicts the fact that (,61,E1 X1) and (G2, Es. X9) are ECSESs. For the case
Allgy() < Agy (1) < (g V Aag)(w) = Ag, (u) < Af ,;(U) we have
(Mg,z) V Mg,y (u) & (inf{Ay(gzy, Aog=}) (u), (inf{Aygz), Asg,z}) T (u) because
(inf{Ay(g,2), Aoy} T (u) = A;"(g (1) = (Ag.z) V Agg,z)) (u). Hence (dl, E],Xl) Ng
(82, By, Xy) is an ECSES over U. m

The following example shows that the P — union and P — intersection of two

ECSESs need not to be an ECSES.

Example 4.4.22 Let (31, E\, X)) and (32, B2, X3) be two ECSESs over U, where
Bile.x) = {(u, Aye,zy (1), M(eny(w) s u € U} for any (e.x) € Ey x Xy and Bo(f,y) =
{(w, Ag(py (1), Aasyy(0) + w € U} for any (f,y) € By x Xo in which Ay .)(u) =
0.5,0.8], Ay(g,2)(u) = 0.2 and Ay, .y (w) = [0.1,0.4], Xy, -y (u) = 0.7. Now by Definition
4.3.11, we have Ag(y -y (u) = [0.5,0.8], A3(y .y () = 0.7 and by Definition 4.3.13 we have

Ay(gz)(w) = 0-1,0.4], Ag(e,z)(u) = 0.2. Hence P — union and P — intersection both
are not E‘CSESs because A;;(g,z)( u) < Ay () < A-3+(g *J( )

In the next theorems, we derive conditions for P — union of two ECSESs to be
an ECSES.

Theorem 4.4.23 Let (81, E1,X1) and (B2, By, X3) be two ECSESs over U, where
Bile, @) = {(u, Aye,) (1), Mi(en) (1) 1 u € U} for any (e,x) € Ey x Xy and B3(f,y) =
{(u, Ay (1), Aaggyy(u) s w € U} for any (f,y) € Es x Xa such that

mf{'-‘.up{Al(q ) (), Ay o) (W} sup{AI‘(g ,) u) A;’U ;)(“)}}1

{inf{A], . (u), Aygoy (W)} inf{ A

(Mi(g,z) V Ag(g.))(u) € {
1(g.0) (W) Agg ) (W)}

for all (g.z2) € (E1 N Ey x X1 N X3) and u € U. Then (B, E1. Xy) Up (32, Fa, X3) is
an ECSES over U.
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Proof. By Definition 4.3.11, we have (83, E3, X3) = (81. Fy, X1) Up (8. Es, Xa)

where

{(u, Ayg) (), Arggey (1)) if (g,2) € (E1 x X1)\ (B2 x X2)
{(u_.flg(g.z)(u), .\2[9.:)(11.) >)} if (g 5) € (Eg X .X:g) \ (E] X JY[)
{(u,sup{Ay(g,2)(u), Agg -y (w)} if (g,2) € (E1N E2 x X1 N X)
sSIIP{Al(g,z}(?-"): A‘Z{g,:)(”’)})}v

(u)}, sup{A;,

if (g, 2) € (E1NEyx X1NX3), take h = mf{sup{Al(g _)(u 2'(“) 1(9,3)(u)’
A;{g )(u)}} and!R—‘suP{lnf{Al(g z](u) AQ{Q o )}, mf{Al(g (), A;'( y(u)}}. Then
h is one of Al(a (W) Ay (1), Ay, (u), A 2(g oy(u). We only consider A = Aygny(®)

or A2(g z){u ) because the remaining cases are similar to this one. If h = A]_(g (W)

-‘3:3(5"! 3) =

then Ay, . (u) < A;(g'z)(u) < Aj, () < Aﬁg,»}(“) and so R = A;'(g o (w). Thus
(sup{Ay(g,z), Aa(g,)}) (1) = Al W) =1 > (Mg V Agg,z))(u). Hence (A1(g,2) V

)‘2(5; z)) ¢ {Sup{Al[q z)» A2(_q z}}) (?J. Sup{Al(g z)!A2(g z}}) )

If h = A:'( ~)( u) then Ay i (u) < Al(q z](“) < Ag(q o(u) soR = sup{A u),
A;[y o(u)}. Assume R = Al(g ){u.), then we have A, g,y:]( ) < A—g,z) u) < (/\1(9,”) v

Ag(g,2)) (1) < Al{ o(u) < A ){u} So we can write A_ )(u) < Al_[g,,:}("‘) < (Mg.0)V
’\2(9 z))(u) < Al(gz)( u) < Az(J )( w) or Ag(J -.)(”') < A](J 2)( u) = (’\](g.z} v ’\‘_’(g,:])(u)
< Affg.n (W) < Az, (w).

For theccl.seA (u)< 4 (u) < (A(g,z) V Aaq. )){u)<A:r( _)( )<A2(qz{ )
which contradict tll(. tact thal (p'l, Ey, X,) and (B2, Es, X2) are ECSESs. For the

case A,(y _,){n) < Al(y )( u) = (Ai(g,2) V Ag(g,2)) (1) < AT(J }(u) J’{ )(u) we have
(M(g,2) V Aagg,2)) (1) & ((sup{Ay(g,z). Aagz)) ™ (u). (sup{Ay z), Aag, 5}) T (u)) because

(sup{Ay(g,2), Az, }) (u) = Al (g (1) = (M(g,2) V Agg,5)) (u). Again assume that R=
A;(g_z)( u), then we have Al( ,)(1.'.) < AQ( ')(1.'. (Ag,2) V Ag(g,2))(w) < Al(g »u) <
A;’(g o (u). We can write Al ]{t 1) < Ay, z)( u) < (Ayg,2) V Ag(g,2)) (1) < Al(g :.)(“)
Ajg,zy () or Ay y(w) < A’z(qz) u) = (Mg V Aag)() < Afjy () < A5 ) (w).
For the case Ay (u) < Ay (1) < (Ayg,z) V Ag(g,z)(u) < AI{Q o) < AQ{Q (W)
which contradict the fact that (3y, £y, X1) and (82, Ea, Xo) are ECSESs. For the

case A_ )( u) < Ag( z)(u) (A(g,2) V Axg, ‘_))(u) < Aﬁq z)( u) < Ag(g zJ(' u) we have
(Mgg,2) \/,\2(9 o) (u) € ((sup{Al(g 2)s Aggg.) 1) (1), (sup{Ay(g,2), Azg,n}) )* (1)) because

(bup{Al[g z): A.!(g ")}) (U 2(9 z)( (’\l{g.c) A A.2(9'.2.))( ) if (g! ) (El X Xl)\
(Fy x Xg) or (g,2) € (Es x Xa)\ (E1 x X;) then the result holds trivially. Hence
(81, E1,X1)Up (B2, B2, X3) is an ECSES over U. m

Theorem 4.4.24 Let (81, By, X1) and (82, E», X3) be two CSESs over U, where
Bi(e,x) = {(u, Aye,e) (1), A,y (1) : w € U} for any (e,x) € Ey x Xy and 32(f,y) =
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{ (. Ag (1), Nog 5y () tw € U} for any (f,y) € By x Xy such that

iIlf{Sllp{A+ (), Ay, .y (u) posup{A; ,(u), A z(g ~J(-h:}}}
{”t{Al[J " u),fl.z_{.‘ (u)}, mf{Ai(q (), AQ(“ u)}},

for all (g,z) € (E1N Ey x X1 N X3) and uw € U. Then (81, E1, X1) Np (B2, E2, X3)) is
both an ECSES and ICSES over U.

(A1(g,2) A Aaqg,2)) (1) = {

Proof. Consider (81, E1, X1) Np (B2, Ea, Xa) = (B3, E3, X3) where (E3 x X3) =
(E1 N By x X1 N X3)). Also B3(g,2) = {(u, inf{Ajeq(u), Aoy}, Men) V
Aa(s)(w)) s uw € U} for any (g, 2) € (E1NEyx X1NXo). If (g,2) € (E1NE2x X1NXy),
take h = 1nf{sup{A1(g ] ), Aypn)l ~) w)}, sup{Ay . (u), A,,(g 2) u.)}} and

R= bup{mf{Al(q (W) Ay, u)}, mf{Al[g H(u), A 2(9 2) (u)}}. Then h is one
of Af, (W), Ay, (w), Af, . u) Ag(g .(uw). We only consider h = A} (u) or
Ai"(g ‘)[ u) because remaining cases are 911111]511 to this one. If h = A” }(u ) then
Ag(g‘z)(u) < A;(g,;){“') S Ajynlu) < 1( o(u) and so R = A?[g oy(u). This im-
plies that A_ )( u) = h = (Ayg, z) A /\2(%))(15) R =AY _(u). Thus Az(g,z)(“) <

2(g,2)
A3, MO (/\1(9 ) Mg (u) = Ap, L (u) < Al (g.2)(w), which implies that (Ayg,z) A
’\2(9,:))(“} 2(!}- }( ) (lnt{Al(g z): A(g z]}] (1"' Hence (’\I(J z) A )\2[3 z)) “) §é
((i[lf{Al(g_:J.Ag{g‘;)}) U} l[ii{Al(E 2) 4)(9, )} (111(_1 (lllf{AI(g_') A2(J )} ( <

(A1g,s) A Ag(g,)) (1) < (inf{Ay(, ., Aag})"( u.] If h= 41(:, )(u) then *42(;;,,:)(“) <
Aﬁg )(u) < A;{g‘z)(u] and (Aq(g,2)AAag,2)) (1) = 1(? )(u. (inf{A1(g,2), A2(Q‘zl})+(u).
Hence (/\1{9’3) A )\2(9_:))(' ) (lnf{Al(J z)s Ag(J )} 'l.'. iﬂ[{Al(q z)s Az(q z]})+

and (inf{Ay(, ), Aag}) (1) < Aigs) A Ag(g,z)) () < (inf{Ayg2), Ay )™ (u,
Hence (84, E1, X1) Ng (B2, Ea, X2) is both an ECSE set and ICSES over U. m

Theorem 4.4.25 Let (81, E1,X1) and (32, Ey, X3) be two CSESs over U, where
Bile, @) = {(u, Ay(e,z) (1), M(ea)(w)) : w € U} for any (e,x) € Ey x Xy and Ba(f,y) =
{(w, Ag(pyy (1), Ao gy (w) s w € U} for any (f,y) € Ea x Xa such that

mf{sup{Al(q 4 (u), A u)}, Sup{Al(g ,)(n} A.Z(g al (u)}},
sup{luf{A“gz) (u), A‘Z(g ){u} inf{A} . (u s Agg (W)}

for all (g,z) € (E1N Es x X1 NXy) and uw € U. Then (61, Ey, X1) Ng (82, B2, X2) s
both an ECSE set and ICSES over U,

Ot Vg =

Proof. Consider (81, (Fy x X1)) Ng (82, (Fs x X3)) = (F3.(F3 x X3)) where
(B3 x X3) = (E1 N Ey x X1 N Xy). Also 83(g.2) = {(u.inf{A(er)(u), Agcsy(u)}.
().1(,, ) VA1) : uw € U} for any (g, 2) € (E1NE,, X1NX3). if( z) € (EhNEy, XN

X3), take h = 1nt[sup{Al(q 2 u), A.;(y'_}(u}},aup{Aug 2 (u), A z(g 2 (u)}} and R =
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su[){i:lf{4+ a3
2(9 J[“’) 41{9

(u), .4;( (u)},inf{ ‘11“ (), A;‘m:){u}}}. Then A is one of A+ (1),
){u), A;{g.: (u). We only consider i = Al'(g‘:}(u) or A“g‘: (u) bl?(‘auae
the remaining cases are similar to this one. If h = A]_(g‘ (u) then A;( )('u) < Aj[g o)
< A, n@) < 4:} (u) and so 5}{ = 43}9 (). ThlS implies that A (u) = h
= (Mi(g,s) V Az(q ) (u) = R = Z(J ,)(u) Thus A"g‘z( u) < A?(y‘z)( u) = (Al(g'z) \%
Aa(g,2)) (1) = 1(; ,)(u) < A1(; z)(“J which implies that (Ay 2V Ag(g,2)) (1) = A;'{g.z) (u)
= (inf{Ay(g,2), A(g,5)}) T (u). Hence (A .2y V Ag(q))(u) & ((inf{Ay(,2), A2y, }) ()
(inf{A1(g,s), Angy ,.)})+(f )) and (inf{Ay(g,0. Ang)}) (1) < (Aigge) V Aaggue)) (1) <
(inf{ Ay 2), Aog D) (u). If h = AT{ o(w) then Ay (u) < A;r(g, y(u) < Ag{ ()
and (Aq(g,5) V Ag(g,2)) (u} = 1{ﬂ.z}(u.) = (inf{Ay,2), Ag(g‘z)}J"'(u). Hence (A2 V
Ag(gz)) () & ((inf{Ayg..y, Aogy})~ (u), (inf{Ay,..), Agg, .,]} )*(u)) and (inf{A;..),
Az(g,) 1) 7 (1) < (Myqg,2) VA(g,2)) () < (inf{Ay(q 2y, Ao(g, )T Hence (81, E1, X1)Ng
(82, Ea, X5) is both an ECSES and ICSES over U. m

Theorem 4.4.26 For any two cubic soft expert sets (31, E1, Xy) and (39, Ea, X3), the
following absorption laws hold

1) (81, Eq, X1) Up ((B1, E1, X1) Np (B2, Ea, X2)) = (51, E1, X1),

2) (81, E1, X1) Np ((Br. En, Xl}UP (B2, E2, X2)) = (B1, E1, X1),

3) (81, E1, X1) Ug ((81, Er, X1) Ng (B2, B2, X2)) = (B1, E1, X1),

4) (61, E1, X1) Nr ((B1, Er, X1 )UR (B2, By, X3)) = (81, E1, X1).

Proof. 1) By Definitions 4.3.11 and 4.3.13 we have (31, E1, X1)Up ((51, E1, X1)Np
(B2, Ea, X3)) = (83, E1 Up (E1Np E3), X1 Up (X1 Np X2)) = (B3, E1, X1)

such that for any g € Fy and z € X, we have

B3(g:z) = B1(g,2) Up ((B1(g,2) Np Ba(g, 2)) if(g.2) € Ex x Xi.

B1(9,2) Up ((B1(9,2) N B2(9:2)) = {(ts Avgeray (), Mgey(w)) : 4 € U, (e,) € Ey X
Xipup {{(u, Aiea)(u), Mi(eay(v) 1 u € U, (e,x) € Er x Xq} Np{(u, Agypy)(u),
Ayrpy(w) 2w € U, (f, y) € Ea x Xo}} = {(u, Ayer)(1), Mer)(u)) : v € U,
(e,z) € Ey x X1} Up{(u, inf{A(c ) (u), Aggsy(u)}, lnf{/\;(”) u), Ag(pyy(W)})} =
{(u, sup{Ay(ez) (), inf{ Ay z) (1), Agsy) (W) }}, SUP{ A y(e.z) (w), Inf{A (e 2y (1), Aa(sy)(w)} )} €
{(U,Al(e‘__,_.)(u A]{EI)(H) ru e U, (E xz) € Eq X X]} = /31(6 ) C { u illf{Ai(e_r) u]
rsup{Aj(ez) (1), Ag(sy) (W)} inf{A1 (e 2y (), SUp{A (e vy (), Aoy () }}) = {(u, sup{A(ez)(u),
inf{ A 2y (w), A(ry) (W)}, sup{A(ez) (), inf{ A 2y (u), Apy) (W)} 1)} = Bile, 2)Up((Bile, x)Np
Ba(f, ).

In the second case when (g,2) € (E; x X;)\ (F2 x X»), using Definitions 4.3.11
and 4.3.13, we have 3y (e, z)Up ((Bi(e,z)Np Ba(f.y)) = Bile.z)Up Bi(e, ) = Bi(e, x)
which is the required result for both the cases. Similarly, we can prove 2), 3) and 4).
-
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Definition 4.4.27 For two CSESs (81, F1.X) and (82, Es, X3) over U, P— AND
is denoted and defined as

(81, E /\(32 Es, Xa) = (B3, (E1 x E3), (X1 x X2)),

where m(( 7). (29)) = Bule,z) Np Ba(f, ) for all (e, ), (2,9)) € (By x Ea)x
(X1 x X2)),

whenever Bi(e,x) = { (u, Ayer)(u), AMez)(w) : u € U} and Bo(f,y) = {(u,
Ag( (1), Ag(pyy(u)) s ue Ul

Example 4.4.28 Let U = {uy,us,uz} be the initial universe, E = {ey,es} be the set
of attributes, X = {x1,x2} be the set of experts. Then the cubic set (51, E,X) over U
is given below:

piler, 1) = {(u1,[0.5,0.8],0.7), (us, [0.6,0.7]. 0.8), (us, [0.4bb, 0.8],0.5) },

pi(ea, 1) = {(uy, [0. 2 0.7],0.6), (u2,[0.7,0.8],0.5), (us, [0.2,0.5],0.4) },

pi(er,xa) = {(u1,[0.4,0.8],0.5), (us, [0.4,0.9],0.8), (us, [0.4,0.7],0.5)},

Bi(ea, x2) = {(u1,[0.3,0.8],0.4), (ug, [0.2,0.9],0.7), (us, [0.3,0.7],0.6) }.

Let U = {uy,us,usz} be the initial universe, F' = { fi, fa} be the set of attributes
andY = {y1,y2} be the set of experts. Then the cubic set (32, F\Y) over U is given
below:

Bo(f1.31) = { (w1, [0.5,0.8],0.4), (2. [0.6,0.9],0.9), (3, [0.4,0.7],0.8)}

Bal fo, 1) = {(u1,[0.4,0.7],0.3), (usg, [0.7,0.9],0.8), (u3, [0.3,0.5],0.6) },

Ba(fr y2) = {(u1,[0.5,0.8],0.9), (uz, [0.7,0.9], 0.6), (us, [0.5,0.6],0.7)}

Ba(fa, y2) = {(u1,[0.3,0.8],0.2), (us, [0.6,0.9],0.4), (u3, [0.2,0.7],0.8)}.

By using Definition 4.4.27 we have (3, E, X) /\(33 F.Y)= (B3, (EXF),(XxY),

where B3((e, f), (z,y)) = Bi(e,x) Np Bo(f,y) fm all ((e, f), (z,y)) € ((Ey x Eg)x
(X1 x X2)).

Ba((e1, fr), (z1,1)) = {(uy,[0.5,0.8],0.4), (ug,[0.6,0.7], 0.8), (us, [0.4,0.7],0.5) },
Bs((ez, f2), (z1,11)) = {(w1,[0.2,0.7],0.3), (ug,[0.7,0.8],0.5), (us, [0.2,0.5],0.4) },
Bs((er, f1). (z2,y2)) = {(w1,(0.4,0.8],0.5), (us,[0.4,0.9], 0.6), (us, [0.4,0.6],0.5) },
Ba((e2, f2), (z2,y2)) = {(u1,[0.3,0.8],0.2), (ug,[0.2,0.9],0.4), (u3, [0.2,0.7],0.6) }.

Definition 4.4.29 For two CSESs (31, E1, X1) and (82, Eq, Xs) over U, R— AND
is denoted and defined as

(81, B, Xl)/;(ﬁm Ey, X3) = (B3, (E1 x E2), (X1 x X3)),

where ﬁg((e, f)a ('T! y)} = B (8‘:'8) Nr ‘32(f- ",f) for all ((83 f)- (112, y)) € ((El X EQ) X
(X1 x X2)),

whenever Bi(e.x) = {(w. Ayeqr)(u). Meery(u)) : u € U} and Bo(foy) = {(u
‘42”‘!})(&}, /\2”_”)(“)] TS U}.
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Example 4.4.30 Consider Example 4.4.28, by using Definition 4.4.29, we have (8,
E, X) A\ (B2, F, Y) = (8s, (E x F), (X x Y)),

where Bs((e, £), (z,y)) = Bile,x) Mg Ba(fy) for all ((e, f), (z,y)) € ((Er x Ep)x
(X1 x X3)).

Aa((ex, fr), (x1,31)) = {(u1,[0.5,0.8],0.7), (uz, [0.6,0.7],0.9), (u3, [0.4,0.7],0.8)},

Bs((ea, f2), (x1,31)) = {(u1,[0.2,0.7],0.6), (ug, [0.7,0.8], 0.8), (u3, 0.2, 0.5], 0.6)

Ba((er, fr), (x2,y2)) = {(u1,[0.4,0.8],0.9), (uq, [0.4,0.9],0.8), (u3, [0.4, 0.6], 0.7)

Ba((ea, fa), (z2,y2)) = {(u1,[0.3,0.8],0.4), (uz, [0.2,0.9],0.7), (u3, [0.2,0.7],0.8)}.

Il

1

}
b
}
}

Definition 4.4.31 For two CSESs (4. E1,X1) and (82, E2, X2) over U, P — OR
is denoted and defined as

(.319 Els le)V(ﬁ?f EZ- /YQ) i (539 (El X E2)¢ (X] X XQ)):

P

where 63((81 f)! (xay)) = 161(6$ 1) UP ﬁ?(ﬁ y) fo"” all ((e! f)! (SB, y)) = ((El X E?} X
(X1 x X3)),

whenever 3y(e,z) = {(u, Ajea) (W), Afeny(u)) + u € U} and Bao(f.y) = {(u,
A'B(f.y) (u), AQ(f.y] (u)) ru e U}

Example 4.4.32 Consider Example 4.4.28, by using Definition 4.4.31, we have (53,
E, X)V (B2, F,Y) = (B3, (Ex F), (X xY)),

P
where B3((e, f), (z,y)) = Bile,xz) Up Ba(f.y) for all ((e, f),(x,y)) € ((E1 x Ez)x
(X1 x X2)).

Ba((e1, fr), (z1,11)) = {(u1,[0.5,0.8],0.7), (u2,[0.6,0.9],0.9), (u3.[0.4,0.8],0.8)},
Ba((ea, f2), (x1,31)) = {(u1,[0.4,0.7],0.6), (uz, [0.7,0.9], 0.8), (us, [0.3,0.5], 0.6) },
Ba((er, f1), (w2, y2)) = {(u1,[0.5,0.8],0.9), (uz, [0.7,0.9], 0.8), (us, [0.5,0.7],0.7) },
B3((ea, fa), (2, y2)) = {(u1,[0.3,0.8],0.4), (usg, [0.6,0.9],0.7), (us, [0.3,0.7],0.8) }.

Definition 4.4.33 For two CSESs (51, E1, X1) and (82, E2, X2) over U, R—OR is
denoted and defined as

(51, En, Xﬂ\é(ﬁz, Ey, X3) = (B3, (E1 x Ep), (X1 X X3))

where By((e, f), (2,)) = Bile,x) U Ba(f,y) for all (e, £), (2,9)) € (Er x Ba) x
(X1 x X»)),

whenever By(e,x) = {(u, Ayea)(1), M(en)(w)) : w € U} and Bao(f,y) = {(u,
Ag(g ) (1), Agpyy(u)) s u € U}

Example 4.4.34 Consider Example 4.4.28 by using Definition 4.4.33 we have (3;.
E’ X) \é (ﬁz: F1 Y) == (,83. {E X F) (X o Y')),

where Bs((e. f), (x.y)) = Bile,x) Ug Ba(f,y) for all ((e, ), (z,y)) € ((Ey x E3)x
(X1 x Xa)).
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Ba((e1, f1), (z1, 1)) = {(u4,]0.5,0.8],0.4), (us, [0.6,0.9],0.8), (u3,[0.4,0.8].0.5)},
ﬂ ((e2, f2), (x1, ql)) = {(u1,[0.4,0.7],0.3), (u2, [0.7,0.9],0.5), (us, [0.3,0.5],0.4) }
Ba((e1, f1), (2, y2)) = {(u1,[0.5,0.8],0.5), (us,[0.7,0.9], 0.6), (us, [0.5,0.7], 0.5) },
Ba((ea, fa), (w2, qz)) = {(u1,[0.3,0.8],0.2), (ug, [0.6,0.9],0.4), (u3, [0.3,0.7],0.6) }.

Theorem 4.4.35 Lel (8, E1,X1) be a CSES over U. If (81, Ey, Xy) is an I[CSES
(ECSES) then (51, B1,X,)° ICSES (ECSES) respectively.

Proof. Since (81, E1,X1) is an ICSES (ECSES) over U, so for any (e,z) €
(E1 x X1) we have 3(e,z) = {(u, Aye ) (), Ay(e,q) (1)) : w € U}. By Definition 4.2.3,
we have A;(e': () < Meq)(u) < Ai(e )( u). This implies that 1 — A;“(e‘a:)(u) <1-—
Alfez)(u) < 1— 1{2"1:){1:_) Hence (3, E1, X1)¢ is an ICSE set. Also by U 4.2.5, we
have (Ay(e)(u) € (Al_(‘,3 T)( u), Aﬂe T)( ))) for all w € U. This gives 1 — Ay p)(u) ¢

(1— A;'(”)( u), 1 Ai_(e 2 (w)). Hence (81, E1, X1)¢ is an ECSES. =

Definition 4.4.36 Let A .., A, 2;) € CSES over U, 1 < i < n. The cubic soft
expert weighted average quotient operator (CSEW AQO) is denoted and defined as

(1 + Ag ()™~ TL(1— A ()"
pﬂ-:(A(e c,}v'}‘(ﬂ.a.)) = ([ ; !
H (1 + A(_- ){u))w. .0 _Hl(.l - A(‘_J_](u))”’*
(1+A{;”( w))@ — M (1 AN (1)) L. ,
— I l,£[l{’\(e,_.“:,){u)]'”II)

i=1

T (14 AL () + T = AF ()
i= %

=1

where {w; }ic(12,.n) are the weights of experts’ opinions, where w; € [0,1] and

T
E w; = 1.
=1

Definition 4.4.37 Let 3 = ([A,
S of CSES wvalue is defined as

(&)’ A, r)] Aew)) be a CSE value. A score function

" Aex +Aea:'

— Ae,a)

where S(8) € [-1,1].

4.5 Decision Making Problem Based on Multicriteria Cu-
bic Soft Expert Sets

Decision making problems have been studied using fuzzy soft sets. Now we are going
to present the multicriteria cubic soft expert sets in decision making along with their

weights and score function.
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Step 1: Input the cubic soft expert set (3. E. X).

Step 2: Utilize the opinions of experts in the form of CSESs to determine the
opinions regarding the given criteria. Make a separate table for the opinions of each
expert.

Step 3: Assign weights to the experts according to their expertise.

Step 4: Apply cubic soft expert weighted average quotient operator to each of the
above tables and find the cubic soft expert weighted average corresponding to each
attribute.

Step 5: Calculate X{:’J

Step 6: Calculate the scores of each f}j.

Step 7: Generate the non-increasing order of all the alternatives according to their
scores.

Fuzzy soft set theoretic approach has been used in decision making problems by
Roy et al. [58]. In this section, we give an application of C'SES theory in a decision
making problem.

Example 4.5.1 Let U = {u; =Guinea ,uy =Liberia, ug =Sierra leone, uy =Nigeria}
be the set of countries, E = {e, = Diarrhea,e; = Severe Headache ,e3 = Explained
bleeding, eq = Fever and Vomiting} be the set of symptoms of Ebola patients , X =
{@y, 29,23} be the set of Physicians.

Step 1:

Bi(er, xy) = {(uy, [0.4, 0.6], 0.8), (uq, [0.1, 0.5], 0.3), (us, [0.6, 0.7], 0.5), (u4, [0.1,
0.9], 0.8)}

Bi(es, zy) = {(uy, [0.3, 0.7], 0.4), (uq, [0.7, 0.9], 0.8), (ug, [0.3, 0.9], 0.5), (u4, [0.4,
0.6], 0.5)},

Bi(es, 1) = {(uh [0.5, U.ﬁ], 0.6), (us, [0.5, U.?'], 0.6), (us, [0.2, 0.6], 0.4), (ua, [(].3‘
0.5], 0.4)},

Bi(eq, z1) = {(u1, [0.3, 0.9], 0.5), (uz, [0.2, 0.8], 0.6), (us, [0.5, 0.7], 0.9), (u4, [0.4,
0.8], 0.7)},

Biler, z2) = {(u1, [0.3, 0.6], 0.4), (uz, [0.6, 0.9], 0.3), (us, [0.4, 0.7], 0.3), (us, [0.4,
0.6], 0.4)},

Bi(ez, x2) = {(u1, [0.7, 0.9], 0.2), (ug, [0.5, 0.8], 0.8), (u3, [0.4, 0.7], 0.4), (uq, [0.6,
0.9], 0.7)},

B1(es, x2) = {(u1, [0.6, 0.8], 0.4), (ug, [0.3, 0.7], 0.5), (us, [0.5, 0.9], 0.7), (u4, [0.4,
0.8], 0.8)},

Br(eq, x2) = {(u1, [0.5, 0.8], 0.8), (uz, [0.8. 0.9], 0.4). (us, [0.7, 0.9], 0.8), (u4, [0.5,
0.6], 0.6)},
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(4, [0.2,

Biler, x3) = {(uy, [0.6, 0.8], 0.5), (u2, [0.5, 0.7], 0.5), (us, [0.7, 0.8], 0.6), (u4, [0.6,
0.9], 0.6)}
Bilea, z3) = {(uy, [0.2, 0.7], 0.5), (ug, [0.3, 0.7], 0.5), (us. (0.7, 0.8], 0.9),
0.5], 0.3)},
‘(31(83,.’1.'3) = {(ul, [08, 09], 0.9), (1.',2, [06, 0.7], 06), ('&3, [04 08], 05), ('u4, [U.l.
0.6], 0.4)}
Bi(eq, z3) = {(u1, [0.1, 0.9], 0.4), (ug, [0.2, 0.9], 0.8), (us, [0.5, 0.9], 0.6), (ua, [0.4,
0.8], 0.5)}.
Step 2:
Uy Uy us Uy
(e1,z1) | ([0.4,0.6],0.8) | ([0.1,0.5],0.3) | ([0.6,0.7],0.5) | ([0.1,0.9],0.8)
(e2,21) | ([0.3,0.7],0.4) | ([0.7,0.9],0.8) | ([0.3,0.9],0.5) | ([0.4,0.6],0.5)
(es, z1) | ([0.5,0.6],0.6) | ([0.5,0.7],0.6) | ([0.2,0.6],0.4) | ([0.3,0.5],0.4)
(es, 1) | ([0.3,0.9],0.5) | ([0.5,0.7],0.6) | ([0.5,0.7],0.9) | ([0.4,0.8],0.7)
Table 4.5.1. Opinion of expert x;
wy Uy ws Uy
(e1,x2) | ([0.3,0.6],0.4) | ([0.6,0.9],0.3) | ([0.4,0.7],0.3) | ([0.4,0.6],0.4)
(e2,z2) | ([0.7,0.9],0.2) | ([0.5,0.8],0.8) | ([0.4,0.7],0.4) | ([0.6,0.9],0.7)
(e3,22) | ([0.6,0.8],0.4) | ([0.3,0.7],0.5) | ([0.5,0.9],0.7) | ([0.4,0.8],0.8)
(eq,z2) | ([0.5,0.8],0.8) | ([0.8,0.9],0.4) | ([0.7,0.9],0.8) | ([0.5,0.6],0.6)
Table 4.5.2. Opinion of expert x»
] U ug U4
(e1,23) | ([0.6,0.8],0.5) | ([0.5,0.7],0.5) | ([0.7,0.8],0.6) | ([0.6,0.9],0.6)
(e2,z3) | ([0.2,0.7],0.5) | ([0.3,0.7],0.5) | ([0.7,0.8],0.9) | ([0.2,0.5],0.3)
(es, z3) | ([0.8,0.9],0.9) | ([0.6,0.7],0.6) | ([0.4,0.8],0.5) | ([0.1,0.6],0.4)
(eq,z3) | ([0.1,0.9],0.4) | ([0.2,0.9],0.8) | ([0.5,0.9],0.6) | ([0.4,0.8],0.5)
Table 4.5.3. Opinion of expert x3
Step 3: W = (0.36,0.21,0.43)" where weight 0.36 is assigned to the expert 1, weight

0.21 is assigned to the expert 9 and weight 0.43 is assigned to the expert z3.

Step 4: The cubic soft expert weighted average for each attribute have been cal-

culated in Table 4.5.4.
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Uy s iy tq
([0.47,0.70],0.56) | ([0.39,0.70],0.37) | ([0.61,0.74],0.48) | ([0.40,0.86], 0.61
([0.36,0.75),0.38) | ([0.50,0.81],0.65) | ([0.51,0.83],0.61) | ([0.36,0.66],0.43

es | ([0.67,0.80],0.65) | ([0.50,0.70],0.57) | ([0.35,0.77],0.49) | ([0.23,0.62],0.46
([0.26,0.88],0.50) | ([0.47,0.85],0.62) | ([0.55,0.85],0.73) | ([0.42,0.76],0.58

Table 4.5.4. CSE weighted averages

€1

€2

R e I

€4

Step 5: Calculate the P — union of 1st, 2nd, 3rd and 4th columns of the above
Table by using Definition 4.4.31. So we have
i = ‘{‘/1{(64?-,-{.-.1) = ([0.67,0.88], 0.65)
J:
U, = ,{‘/1{(e}-,ug)} = ([0.50, 0.85], 0.65)
J:
05 = _\‘}l{(ej,ue,)} = ([0.61,0.85], 0.73)
J:
Uy = ,{‘/1{(ej,u4)} = ([0.42,0.86], 0.61).
J:

Step 6: Now calculate the score of the above C'SES elements by using Definition
4.4.37.

S(Uh) = 0.30
S(Up) =0.23
S(Us3) = 0.24
S(Us) = 0.22

Step T: Generate the non-decreasing order of the score of CSES set values.
Corresponding to P — union we have the following order:

Uy > Uz > Uy > Ug.

In the above U, we want to check which country is more affected by Ebola. Hence

Guinea is more effected by Ebola.

4.6 Conclusion and Future work

In this chapter, CSES has been discussed which can be used in decision analysis.
Some basic operations have been defined for CSES. Several properties have been
investigated. We derive different conditions for different operations of two ICSES's
(ECSESs) to be an ICSESs (ECSESs). There are so many methods to solve
decision making problems in various fields but this technique is more suitable because
in decision analysis there are some problems in which decision makers take decision
on the basis of different conditions such as climate condition, time period condition

and geographical conditions. If a decision maker wants to take a decision in some
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problems on the basis of such conditions then this structure is very useful. At the
end, an algorithm has been presented along with an illustrative U. In future we aim
to study TOPSIS for group decision making with CSES also we want to define
different aggregation operators similarity and distance measures and distances and
similarity degrees between CSESs.



Chapter 5

Some New Operations on Cubic
Soft Expert Sets (CSES's)

5.1 Introduction

Cubic sets are basically a combination of fuzzy sets and interval valued fuzzy sets.
Cubic sets was defined by Jun et al. [34]. Jun et al. defined basic operations of
inclusion, union and intersection. There are certain operations which were not defined
in this paper for U, addition, multiplication of two cubic sets, power and scalar product
of cubic sets ete. In this chapter we have introduced some new operations such as
addition and multiplication of two CSESs, product of a CSESs with real number
k > 0, power of CSESs, score and accuracy function of C'SESs. The purpose of
defining score function and accuracy function is that we can determine the ranking of
CSESs which helps us in some aggregation operators. Some aggregation operators
on CSESs have been introduced. Fuzzy sets and interval value fuzzy sets play a
fundamental role in decision analysis. Similarly, CSESs also gives fruitful results in
decision making. Therefore, the aim of this chapter is to determine the most preferable
choice among all possible choices, when data is in cubic set form. At the end, an
algorithm has been presented. Finally, an U has been presented to highlight the
applicability of the proposed algorithm.

5.2 Preliminaries

Definition 5.2.1 [17] The simplest and most common way to aggregate is to use a

simple arithmetic mean (also know as the average). Mathematically we have :

1] n n ]
M(zy,x9,..,2p)=—2X ;= ¥ —.1;
ni=1 =171

61
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The average 1s often used since it is simple and satisfies the properties of monotonic-
ity, continuity, symmetry, associativity, wempotence and stability for linear transfor-
mations.

But it has neither absorbent nor neutral element and has no behawvioral properties.

Definition 5.2.2 [17] The weighted mean is a classical extension which allows placing
weights on the arguments. But we loose the property of symmetry. It is expressed
mathematically by :

'Mrwl,,..,w,,(xle R i:n) = igl('wémi)s

mn
where w; > 0 and ¥ w;.

1=

Definition 5.2.3 [21, 22] A very notable particular case, studied in detail by Duj-
movic and by Dyckhoff corresponds to the function f is defined by f : x — z* . We

obtain then a quasi arithmetic mean of the form :

n

1.8 i dised
M(z1, 22, ..., Tn) = [EEII‘E]“ = [El(;{x" )= (5.1)

It generalizes a group of common means, only by changing the value of a. When
a =1 we obtain the arithmetic mean, when a — 0, equation 5.1 tends to the geometric
mean, when a = 2 we obtain the quadratic mean or the Euclidean mean and for

a = —1 we obtain the harmonic mean.

Definition 5.2.4 [79] The ordered weighted averaging operators (OW A) were origi-
nally introduced by Yager in [55] to provide a means for aggregating scores associated
with the satisfaction of multiple criteria, which unifies in one operator the conjunctive

and disjunctive behavior:
It
OWA(21, 22, ..., Zn) = .E}wj:i:a(j),
J=
where o is a permutation that orders the elements
ZTa(1) S To(2) S - S To(n)

The weights are all non negative and their sum equals 1, that is, w; > 0 and gl w;.
The OW A operators provide a parameterized family of aggregation opemto;';, which

include many of the well-known operators such as the mazimum, the minimum, the

k-order statistics, the median and the arithmetic mean. In order to obtain these par-

ticular operators we should simply choose particular weights (see Table 5.2.1).
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OWA
. wy =1
Minimum .
w; =0 ifi#1
n=1
Mazximum » o
w; =0 ifi#n
Wntr = 1 if nois odd
2
Median wy = 3 and Wz = 5 if nis even
w; =0 else
Arithmetic mean | w; = TI; for all i

Table 5.2.1

The ordered weighted averaging operators are commutative, monotone, idempotent,

they are stable for positive linear transformations and they have a compensatory be-
havior.

Definition 5.2.5 [82] A mapping M : I" — [ is called a generalized ordered weighted
aggregation (GOW A) operator of dimension n if

M(21,..sZn)=( X mjh"-‘
i

. 1
where, {w;}ie(1,9,.. 0} i a collection of weights satisfying w; € [0, 1] and IEle- =1
J:
A is a parameter such that A € [—o0o,00] ; bj is the jth largest among the a;.
The important special case is when w; = % In this case
1

n
M(zy,vy@n) =( E=:1 -

bj}
This is the generalized mean operator discussed by Dyckhoff and Pedrycz (1984).

We note these are also mean operators: they are symmetric, monotonic and bounded.

5.3 Some New Operations on C'SESs

Definition 5.3.1 Let U be a finite universe set containing n alternatives, E be a set
of criteria and X be.a set of experts (or decision makers). A pair (3,E, X) is called
a cubic soft expert set over U if and only if § : E x X — CP(U) s a mapping into
the set of all cubic sets in U. Cubic soft expert set is denoted and defined as

(8. B, X) = {B(e,z) = {(u; A(e,z)(u), A, ) (0)) 1 u € U, (e,z) € E X X}.
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where A, ;y(u) is an interval valued fuzzy set and A, (u) is a fuzzy set. Here decision

makers give their opinions in the form of cubic set.
The collection of all cubic soft expert sets CSES's is denoted as 3.

Definition 5.3.2 Let (81, E1, X1) = {B(e,z) = {(u, Ayen)(u), A1, ., (0)) s u €U, (e.a) €
Ey x X1} and (B, B, X2) = {B(f.y) = {(u, Ag(sy(u), Ao, ,(0) 1 u € U, (f,y) €
Eyx Xo} be two CSESs over U. Addition of two CSESs (81, Eq1, X1) and (32, Ea, X3)

1s denoted and defined as follows

(w [Af ey T Aoy — Aoy A2

| 2(!!}) Lew)  2(fy)’
(B B X0) ® (B Be Xo) = § i) + Afiry) — Ao s )

AM(e) + A2(fy) = M(es) A2(f.y)

Example 5.3.3 Consider two CSESs (3, E1, X1) and (B2, Ea, X») over U.
Bi(er, z1) = {(u1, [0.5,0.8],0.7), (ua, [0.6,0.9], 0.8), (uz, [0.4,0.7], 0.5)},
Balf1, 1) = {(w1,[0.2 07] 0.3), (uz, [0.3,0.5),0.5), (uz, [0.5,0.9],0.2)}.
Therefore (By, E1, X1)®(Ba, Ea, Xa) = {(u1, [0.60,0.94], 0.79), (uz, [0.72, 0.95], 0.90),
(us,[0.70,0.97],0.60)}.

Definition 5.3.4 Let (31, F1, X)) and (89, s, X3) be two CSESs over U. Product
of two CSESs (81, Ey, X1) and (82, E3, X3) is denoted and defined as follows

(B, EI‘XI)(B?‘E‘!HYﬁ = { [('11(!= x) J{fy]’A?_(e ) ;)‘_(f.y)]ﬂ’\l(e,.:]’\2(f,y))}'

Example 5.3.5 Consider Example 5.3.3 (81, E1, X1)(B2, E2, X2) = {(u1, [0.10, 0.56],
0.21),
(uz, [0.18, 0.45], 0.40), (us, [0.20,0.63],0.10)}

Definition 5.3.6 Let (3, E, X) be a CSES over U. Product of CSES (3, E, X) with
real number k > 0 is denoted and defined as follows

k(B! EX) == {{'“‘! [1 = (1 = A(_e‘m))k, (1 = AEI; x) ]‘l = <1 - /\(Er))k)}

Example 5.3.7 Consider 3(fi,y1) = {(u1,[0.2,0.7],0.3), (uz, [0.3,0.5],0.5), (u3, [0.5,0.9],0.2) },
k = 5. Product of CSES with scalar is given by
58, E, X) = {(u1,[0.672,0.997], 0.831), (us, [0.831, 0.968], 0.968), (i3, [0.968,0.999], 0.672)}

Definition 5.3.8 Let (3,E,X) be a CSES over U. Power of CSES (3, E, X) with
real number k > 0 is denoted and defined as follows

(8, B, X)* = {(u, (A5, )" (A 2] M) )}-
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Example 5.3.9 Consider Example 5.3.7. Power of CSES with scalar is given by
(8,E,X)" = {(u1, [0.0003, 0.1680], 0.0024), (uz2, [0.0024, 0.0312], 0.0312),
(ug, [0.0312, 0.5904}, 0.0003)}.

Definition 5.3.10 Let 3 = ([A,
S of CSE value is defined as

(eqx)’ A, _.;)l Aea)) be a CSE value. A score function

Asy T Alezy = Mew)

3

S(8) =
where S(B) € [-1,1].

Definition 5.3.11 Let 3 = [A(E 2y’ E’;I}], AMew)) be a CSE value. Accuracy function
A of CSE value is defined as

Y A_ex +Ae.r +}‘(¢’-‘J-')

where A(B) € [0,1].

Definition 5.3.12 Let 3 = [Al(”} "1"(8‘1}], Mew)) and By = ([A‘.:(e..r}‘ .,(? r)}
Ag(e,z)) are two CSE wvalues. S(81) and S(Bs) are scores of 31 and By respectively, let
z’:l(_ﬁ'l) and 151( 3s) are accuracies of 31 and 3y respectively.

If S(B1) < 8(B2) then By < fa
If S(B1) > S(32) then By > B2
If S(B1) = S(3s) then By = B3y
If A(B1) < A(Ba) then By < B
If A(By) > A(B2) then By > Ba
If A(3y) = x‘i(ﬂg) then 3, = 3.

5.4 Some Aggregation Operators on Cubic Soft Expert
Sets

Definition 5.4.1 Let 8; = ([A7,Af] ,\i) (i = 1,2,..n) be CSES sets. A mapping

TR ,r’3v — B; is called cubic soft expert weighted geometric operator if its satisfies

720 By, Ba, v Bn) = TLB",

where w; = (wy. wy. ..., wy)" is a weight vector of B; satisfying the conditions w; € [0,1]
n

and ¥ w, = 1.
i=1
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Theorem 5.4.2 Suppose that 8; = ([A7 . A]] . \i) (i =1,2,..n) are CSES sets. By
using cubic soft experi weighted geometric operator (CSEW G'O) aggregation result is
also CSES.

TGO (B, Bay s Ba) = ([IL (A7), TL(AF)™], TL(N)™),

where w; = (wy, wa, ..., wy)" is a weight vector of 3; satisfying the conditions w; €

[0,1] and éwﬁ =1,
Proof. It can be easily proved by using Definitions 5.3.4, 5.3.8, and 5.4.1. =

Definition 5.4.3 Let 8; = ([A;,A]] ,\) (i = 1.2,..n) be CSES sets. A mapping

o E:‘ — B; is called cubic soft expert weighted average operator if its satisfies

B f L
Tﬁ," (-'1311 !132\ vaey Jlal'l) = .g-_)lu:li.sil

where w; = (wy, wy, ..., w,)" is a weight vector of 3; satisfying the conditions w; €
n
[0,1] and _Elw.,- =1,
1=

Theorem 5.4.4 Suppose that 3; = ([A; . A}] ,\) (i =1,2,..n) are CSES sets. By
using cubic soft ecxpert weighted average operator (CSEW AQ) aggregation resull is
also CSES.

TS (B1, Bay -y Bn) = ([1 = _fll(l — A7 )", 1= _fll(l — AN, 1 - _ﬁ (1 — X)),

i=1
where w; = (wy, ws, ..., wy,)" is a weight vector of 3; satisfying the conditions w; €
[0,1] and éllwi =1L
Proof. By using Definition 5.4.3 we have rﬁ' (B1, B2, ..y Bn) = iﬁrglwgﬂ,;. Now we

using mathematical induction, for n = 1, we have 74/ (1) = w181 = ([1 — (1 - A7),
1—(1 —2 A7), 1= (1= Ay)*') by using Definition 5.3.6. For n = 2, we have 7, (51,
Be) = Engﬁg =wBBwfy = ((1—(1—AD", 1 —(1—AD)™), 1—-(1=A)") &
1 = (1 — A, 1 — (1 — A7), 1—(1 = Mg)*%) = ([1 - (1 - A1 = A ),
L= (L) = AP 1= (= A=) = (- 11 (1 A7), 1- T (1 -
A", 1—, (1= A4)™).

By using Doﬁmtlons 5.3.6 and 5.3.2. Suppose it is true for n = k, T,f,' (81, B2y ..., Bk) =
(-Dw,f,_[l—-l'l(l— AP, l—ﬁ( A+“]1—_k(1—/\)-).
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Now we prove it for n = &k + 1, T,‘E*(;‘.’i’l. Fo ooy By Brpr) = t%: w;B3; = w B b
wa Ba®, ----Gi'f.vA-IﬁkEB'u-‘Htm--.-l = fﬁj“-‘:ﬂi ® Wrs18k+1 = ([L— El(l — A7 M, 1 ‘iiil(l -
Fywil, 1— (1=20)") @ (L= (1= Apy )", 1= (1= Af, ) "], 1= (L= Ap) "541) =
([l-‘iEl{l—-A;)'”", 1—1_51(1—:4.;")“"], I—}fl‘-_i..[](l-—/\,-)w‘) by using Definition 5.3.2. Hence

it is true for n = k+ 1. So 724 (81, Bas. Ba) = ([1 = II A7 1 T0(1— AF)™],

— =

ST (1= A)™). m

1=1

Example 5.4.5 Let there are five experts who give their opinions corresponding to

different attributes in the form of cubic set By = ([0.5,0.8],0.7), B2 = ([0.2,0.6],0.7),

A3 = ([0.1,0.5],0.8) .84 = ([0.3,0.9],0.6), 85 = ([0.1,0.6],0.5). The weight vector corre-

sponding to experts is w = (0.32,0.14,0.20,0.16,0.18)". The aggregated result of these

experts can be computed by using Theorem 5.4.4 as follows:

3 . 5 5
(B, By Bs) = (1= (1= A7), 1 — (1= AF)"], 1~ TL(1— A)™)

= ([1-(1-0.5)%%%(1 - 0.2)°1(1 0. 1)”2“(1 - 0 3)%16(1 - 0.1)%18,
1—(1-0.8)%3(1 - 0.6)"14(1 — 0.5)%20(1 — 0.9)%1%(1 — 0.6)>-18],
1—(1—0.7)°32(1-0.7)"1(1 - 0.8)*2°(1 — 0.6)*1%(1 — 0.5)"18)
= ([0.29542, 0.73160], 0.68244).

Definition 5.4.6 Let 3; = ([A;,A]] ,\i). (i=1,2,..n) be CSES sets. A mapping
79 3{‘ — B, is called cubic soft expert OW A operator if its satisfies the following:

n i~
72(51,32, oy Pn) = _(:Blwi;’?‘i,
1=

where @ = (@1, s, ..., )" is a position weight vector associated with the mapping

T ~ - — —-—
79 satisfying w;, € [0, 1] and L.Elw;,. =1. B = ([A;, A;] , Ax) is the k-th largest cubic
soft expert set which can be determined by using score function or accuracy function.

Theorem 5.4.7 Suppose that 3; = ([A,-’,Af'] WAi), =1,2,...n) are CSES sets. By
using cubic soft expert OW A operator aggregation result is also CSES.

?l n e T —~
T2(B1, B2, -, Bn) = (1 = I (1= A7)®%, 1= I (1 - AF)®*],1— II (1= A)™*),
k:l k=1 k=1
where @ = (wy, @y, ...70,)" is a position weight vector associated with the mapping

9 satisfying w;, € [0,1] and é]wk = 1.8 = ([ﬁ;ﬁ:] ,Ag) is the k-th largest
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cubic soft expert sets 8; which can be determined by using score function or accuracy
function.

Proof. It can be proved by using mathematical induction and by using Definitions
5.3.2, 5.3.6, and 5.4.6. =

Example 5.4.8 Let there are five experts who give their opinions corresponding to
different attributes in the form of a cubic set §; = ([0.5,0.8],0.7), B2 = ([0.2,0.6],0.7),
B3 = ([0.1,0.5],0.8) ,34 = ([0.3,0.9],0.6), B35 = ([0.1,0.6],0.5). Assume that the asso-
ciated weight vector of 3; is w = (0.28,0.16,0.12,0.24,0.20)". The aggregated result of

these expert can be computed by using Theorem 5.4.7 a follows:

By using Defintion 5.3.11, scores of the CSFESs are 5’(_31) =02 5'(132) = (.034
S(83) = —0.067, S(B1) = 0.2, S(B5) = 0.067. It is clear that S(3;) = S(841) > S(35) >
S(B2) > S(B3). Since the score of 8 = 34, now we calculate accuracies of 8, and
B4. A(B1) = 0.67, A(B4) = 0.6. So we can establish the ranking order of CSES 5;
(i=1,2,...,5) as follows

B1 > Ba > Bs > B2 > Bs.

Then, we have

By = = ([0.5,0.8],0.7)
Ba= B4 =([0.3,0.9],0.6)
By = = ([0.1,0.6],0.5)
By = = ([0.2,0.6],0.7)
Bs = = ([0.1,0.5],0.8)

By using Theorem 5.4.7, we ha.ve

(81, Ba, -, B5) =([1— ,H (1—A7 )1 — : l(1 — A=, 1- iI;il(l — X))
= ([1 - (1 o 0_5)[} 25(1 . 0’3){],16(1 . 0_1)0.12(1 o 0.2)0.24(1 . 0_1)0.2(}‘
1—(1-0.8)%28(1—0.9)*16(1 — 0.6)%!2(1 — 0.6)*24(1 — 0.5)%2],
1= (1 = 0‘7)0,?8(1 — 0.6)0'16(1 - 0_5)0.12(1 - 0.7)0'24[1 - 0.8)0‘20)
= ([0.2871,0.7240], 0.6920).

Definition 5.4.9 Let 8; = ([A;, A}] ,\i), (i = 1,2,..n) be CSES sets. A mapping
70 ; §:‘ — 3; is called cubic soft expert GOW A operator if its satisfies the following:

T6(Br, By -1 Bn) = {] & @i,

where @ = (w1, @3, ..., )" is a position weight vector associated with the mapping

GO

To" satisfying wy. € [0,1] and 2] Tk = 1. B = [;1; :1+i A) is the k-th largest cubic

soft expert set which can be rleterunnod by using score function or accuracy function.
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Remark 5.4.10 Ifr = 1 in Definition 5.4.9 then cubic soft expert GOW A operalor

59 degenerates to cubic soft expert OW A operator 75.

Theorem 5.4.11 Suppose that 3; = ([A7,Af] ,\i), (i = 1,2,..n) are CSES sets.
By using cubic soft expert GOW A operator aggregation result is also CSES.

[{f1- JLa- )=, ffi- fa- A;ﬂml,)

{/1— I1 (1 — Ap)=s

k:l

rGO(B, By, ... Ba) = (

where w = (w, @3, ...w,)! is a poaition weight vector associated with the mapping
T8O satisfying wy, € [0,1] and Z k=L >0 Br = (A7, A}] JAx) is the k-
th largest cubic soft expert set whlch can be determined by using score function or
accuracy function.

Proof. It can be proved by using mathematical induction and by using Definitions
[5.3.2, 5.3.6, 5.3.8 and 5.4.9].

5.5 Multicriteria Decision Making of Cubic Soft Expert
Sets with Cubic Soft Expert GOW A Operator

In this section, we develop an algorithm with the aid of CSE sets for decision analysis
in which experts will be given weightage to attributes according to their area of ex-
pertise. Let U = {uy,ug, ...u,} be the set of alternatives, E = {ey, €2, ..., ¢} be the set
of attributes and X = {z,y,...,z,,} be the set of experts. Further, we take opinion
of experts in the form of C'SFE elements.

Step 1: Utilize the evaluations of experts in the form of CSFE sets.

Step 2: Separate the opinion of each expert.

Step 3: Calculate the score of each entry corresponding to (e, u,). Arrange these
attributes according to their scores.

Step 4: Assign weights to each attribute.

Step 5: Aggregate the attributes by using cubic soft expert GOW A operator.

Step 6: Calculate accuracies of all alternatives corresponding to different experts.

Step 7: Find the average of these alternatives.

Step 8: Arrange these alternatives in ascending order.

Step 9: Choose the best alternative.
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Example 5.5.1 let U = {uy,ug,ug,uq} be the set of cars, E = {e| = cheap, eg =
exp ensive, ez = model 2010 and above, ey =Made n japan, es =white color} be the
set of attributes, and X = {x1, x9,x3} be the set of experts. Evaluation of these experts
is represented in the form of CSE set. Mr. A want to choose best car with respect to

the given set of the attributes.

Step 1: Utilize the evaluations of experts in the form of C'SE sets.
Bler, z1) = {(u1,[0.0025,0.0876],0.0034), (ug, [0.0225, 0.0446], 0.0369),
(ug, [0.0245, 0.0546], 0.0345), (u4, [0.0525, 0.0646], 0.0387)},
Blea, 1) = {(u1,[0.0225,0.0984], 0.0139), (u2, [0.0289, 0.0646], 0.0276),
(u3,[0.0287,0.0486], 0.0765), (w4, [0.0238, 0.0446], 0.0987) },
Bles, x1) = {(u1,[0.0350, 0.0498], 0.0265), (ug,[0.0478, 0.0946], 0.0876),
(ug, [0.0476, 0.0876], 0.0876), (u4, [0.0275, 0.0546], 0.0028) },
Bleq, z1) = {(u1,[0.0122,0.0646], 0.0975), (us2, [0.0376, 0.0846], 0.0987),
(u3,[0.0277,0.0765], 0.0298), (u4, [0.0229, 0.0346], 0.0834) },
Bles, z1) = {(uy, [0.0765, 0.0946], 0.0256), (us, [0.0027, 0.0046], 0.0187),
(ug, [0.0377,0.0974], 0.0098), (u4, [0.0453, 0.0496], 0.0287)},
fley, z2) = {(u1, [0.0176, 0. U‘746] 0.0876), (u2,[0.0176, 0.0746], 0.0027),
(ug, [0.0276, 0.0843]. 0.0234), (u4, [0.0035, 0.0046], 0.0209)},

Aleg, o) = {(uy, [0.0987, 00994] 0.0267), (usg,[0.0987, 0.0996], 0.0376),
(ug, [0.0228,0.0777],0.0072), (uq, [0.0533, 0.0876], 0.0002) },
Bles, xa) = {(u1,[0.0346, 0. 044(5] 0275), (ug, [0.0176, 0.0246], 0.0987),
(ug, [0.0425,0.0678], 0.0088), (u4, [0.0345, 0.0987],0.0134)},
(e, x9) = {(uq,[0.0543,0.0746], 0.0987), (uz, [0.0198, 0.0346], 0.0376),
(ug, [0.0345, 0.0698], 0.0376), (14, [0.0654, 0.0877], 0.0087)},
Bes, x2) = {(u1,[0.0123,0.0946], 0.0256), (uz,[0.0196, 0.0646], 0.0986),
(ug, [0.0445, 0.0868], 0.0098), (u4, [0.0234, 0.0843],0.0018)},

ey, xz3) = {(u1,[0.0543, 0.0846], 0.0097), (u2, [0.0472, 0.0546], 0.0287),
(ug, [0.0222,0.0446], 0.0287), (u4, [0.0432, 0.0876], 0.0007) },

Bleg, x3) = {(u1,[0.0098,0.0146],0.0189), (uz, [0.0675, 0.0746], 0.0376),
(u3, [0.0356, 0.0946], 0.0765), (14, [0.0156, 0.0276], 0.0087) },
Bles. z3) = {(u1,[0.0090, 0.0346], 0.0109), (us2, [0.0354, 0.0446], 0.0098),
(ug [0.0234, 0.0746], 0.0970), (u4, [0.0321,0.0762], 0.0034) },

B(eq, z3) = {(uy, [0.0037,0.0046], 0.0018), (ug, [0.0375, 0.0846], 0.0187),
(ug, [0.0543, 0.0646], 0.0365), (14, [0.0254, 0.0876], 0.0098) },

B(es, w3) = {(u1,[0.0656, 0.0696], 0.0186), (12, [0.0316, 0.0546], 0.0465),
(3, [0.0541, 0.0648], 0.0876), (w4, [0.0765, 0.0954], 0.0365)}.
Step 2:
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1]

)

(0.0025, 0.0876], 0.0034)
(10.0225, 0.0984], 0.0139)
([0.0350, 0.0498], 0.0265)
([0.0122, 0.0646], 0.0975)
([0.0765, 0.0946], 0.0256)

(10.0225, 0.0446], 0.0369)
(10.0289, 0.0646], 0.0276)
([0.0478, 0.0946], 0.0876)
([0.0376,0.0846], 0.0987)
([0.0027, 0.0046), 0.0187)

us

thy

([0.0245, 0.0546], 0.0345)
([0.0287, 0.0486], 0.0765)
([0.0476,0.0876], 0.0876)
([0.0277,0.0765], 0.0298)
([0.0377,0.0974], 0.0098)

([0.0525, 0.0646], 0.0387)
([0.0238,0.0446], 0.0987)
([0.0275, 0.0546], 0.0028)
(0.0229, 0.0346], 0.0834)
([0.0453,0.0496], 0.0287)

Table 5.5.1 Opinion of expert x;

&Ia

uny

Uy

€1
€2
€3
€4

([0.0176, 0.0246]. 0.0876)
([0.0987, 0.0994], 0.0267)
(10.0346, 0.0446), 0.0275)
([0.0543, 0.0746], 0.0987)
([0.0123,0.0946], 0.0256)

([0.0176,0.0746], 0.0027)
([0.0987,0.0996], 0.0376)
([0.0176, 0.0246], 0.0987)
([0.0198, 0.0346), 0.0376)
([0.0196, 0.0646], 0.0936)

P

u3

1Ly

€1
€2
€3
€4
€5

([0.0276,0.0843], 0.0234
([0.0228,0.0777],0.0072
([0.0425, 0.0678], 0.0088
([0.0345,0.0698], 0.0376
([0.0445,0.0868], 0.0098)

— e e

([0.0035, 0.0046], 0.0209)
([0.0533, 0.0876], 0.0002)
([0.0345,0.0987], 0.0134)
([0.0654, 0.0877], 0.0087)
([0.0234, 0.0843], 0.0018)

Table 5.5.2 Opinion of expert s
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€T3

1wy

s

€1
€2
€3

€4

([0.0543, 0.0846], 0.0097)
([0.0098. 0.0146], 0.0189)
([0.0090, 0.0346], 0.0109)
([0.0037, 0.0046], 0.0018)
([0.0656, 0.0696], 0.0186)

[0.0472, 0.0546], 0.0287)
0.0675, 0.0746], 0.0376)
(0.0354, 0.0446], 0.0098)
)
)

— — — —

[0.0375, 0.0846], 0.0187
([0.0316, 0.0546], 0.0465

T3

U3

o

€1
€3
€3

€4

€5

([0.0222, 0.0446], 0.0287)
([0.0356,0.0946], 0.0765)
([0.0234, 0.0746], 0.0970)
([0.0543, 0.0646], 0.0365)
([0.0541,0.0648], 0.0876)

([0.0432, 0.0876], 0.0007)
([0.0156, 0.0276], 0.0087)
([0.0321,0.0762], 0.0034)
([0.0254, 0.0876], 0.0098)
([0.0765, 0.0954], 0.0365)

Table 5.5.3 Opinion of expert x3

Step 3: Calculate the scores of above attributes corresponding to different experts.

zy | [ U3 g
ep | 0.0289 0.0101 0.0149 | 0.0261
ey | 0.0357 0.0220 0.0003 | —0.0101
eg | 0.0194 0.0183 | 0.0159 | 0.0264
ey | —0.0069 | 0.0078 | 0.0248 | —0.0086
es | 0.0485 —0.0038 [ 0.0418 | 0.0221

Table 5.5.4 Scores of expert x;

<ey=eyg< e =e3<e=ey<e;=e foru,

<e=¢e4<e=¢e3<e3=ey<ey=e; foruy,

s<el=e1<e3=e3<eL=ex<e;=e; forug,

eq = €5
es = €5
ey = €3
€y = €5

5<eyg=€<es=e3<e =e<e3z=e for uy.

Table 5.5.5 Arrange attributes according to their scores
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Uy

U

([0.0765, 0.0946], 0.0256)
([0.0225,0.0984],0.0139)
([0.0025, 0.0876], 0.0034)
([0.0350, 0.0498], 0.0265)
([0.0122, 0.0646], 0.0975)

([0.0289, 0.0646], 0.0276)
([0.0478,0.0946], 0.0876)
([0.0225,0.0446], 0.0369)
([0.0376,0.0846], 0.0987)
([0.0027,0.0046], 0.0187)

w3

Uq

([0.0377,0.0974], 0.0098)
([0.0277,0.0765], 0.0298)
([0.0476,0.0876], 0.0876)
([0.0245, 0.0546], 0.0345)
([0.0287, 0.0486], 0.0765)

([0.0275, 0.0546), 0.0028)
([0.0525, 0.0646], 0.0387)
([0.0453, 0.0496), 0.0287)
((0.0229, 0.0346], 0.0834)
([0.0238, 0.0446], 0.0987)

Table 5.5.6 Arranged attributes

Ty | Uy ) ug U4
ep | —0.0151 | 0.0298 0.0295 [ —0.0043
ey | 0.0571 0.0536 0.0311 | 0.0469
eg | 0.0172 —0.0188 | 0.0338 | 0.0399
eq | 0.0101 0.0056 0.0222 | 0.0481
es | 0.0271 —0.0048 | 0.0405 | 0.0353

Table 5.5.7 Scores of expert a3

e1=¢€5<eqg=¢€3<ez3=e3<e;=e <ey=e foru,

e3=¢€5 < e5=¢e4 <e4=e3<e =e <ey=e foru,
eg=¢€3<el=ey <ey=e3<e3=e<es=e for us,
e1=e5<es =€y <ey3=e3<e=e <eqs=e foruy.

Table 5.5.8 Arrange attributes according to their scores
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Ty | Uy o

e | ([0.0987,0.0994],0.0267) | ([0.0987,0.0996],0.0376)
& | ([0.0123,0.0946],0.0256) | ([0.0176,0.0746],0.0027)
é3 | ([0.0346,0.0446],0.0275) | ([0.0198,0.0346],0.0376)
éx | ([0.0543,0.0746],0.0987) | ([0.0196,0.0646],0.0986)
és | ([0.0176,0.0246],0.0876) | ([0.0176,0.0246],0.0987)

X9 | ug Uy
é1 | ([0.0445,0.0868],0.0098) | ([0.0654, 0.0877],0.0087)
& | ((0.0425,0.0678],0.0088) | ([0.0533,0.0876],0.0002)
e3 | ([0.0228,0.0777],0.0072) | ([0.0345,0.0987],0.0134)
(
(

éx | ([0.0276,0.0843],0.0234) | ([0.0234, 0.0843],0.0018)
és | ([0.0345,0.0698],0.0376) | ([0.0035,0.0046], 0.0209)

Table 5.5.9 Arranged attributes

xy | uy s 3 iy

e1 | 0.0431 | 0.0244 | 0.0127 | 0.0434
ey | 0.0018 | 0.0348 | 0.0179 | 0.0115
ez | 0.0109 | 0.0234 | 0.0003 | 0.0350
eq | 0.0022 | 0.0345 | 0.0275 | 0.0344
es | 0.0389 | 0.0132 | 0.0104 | 0.0451

Table 5.5.10 Scores of expert x3

ep=¢€;<eg=€<e3=e3<e;=¢e <e =e foru,
85=e~5<e3=§:1<61=é?3<84=€2<82=8-} for us,
eg3=¢5<e; =€ <e =e3<ey=ey <eq=e for ug,
eg=¢€5<eq=¢6 <ey3=¢e3<e =e <ez=e foruy.

Table 5.5.11 Arrange attributes according to their scores
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1o

x| up
é | ([0.0543,0.0846],0.0097)
5 | ([0.0656,0.0696], 0.0186)
és | ([0.0090.0.0346],0.0109)
([0.0037, 0.0046], 0.0018)
(

[0.0098, 0.0146], 0.0189)

([0.0675, 0.0746), 0.0376)
([0.0375, 0.0846], 0.0187)
([0.0472, 0.0546], 0.0287)
(10.0354, 0.0446], 0.0098)
([0.0316,0.0546], 0.0465)

&ry | us

Wy

0.0543, 0.0646], 0.0365)
0.0356,0.0946], 0.0765)
)
)

{f (0.0765, 0.0954], 0.0365
([
é3 | ([0.0222,0.0446),0.0287
([
([

)
([0.0432, 0.0876)., 0.0007)
(0.0321,0.0762],0.0034)
0.0541,0.0648], 0.0876) | ([0.0254, 0.0876], 0.0098)
0.0234,0.0746], 0.0970) | ([0.0156,0.0276], 0.0087)

Table 5.5.12 Arranged attributes

Step 4: Assign weights to each attributes @ = (0.28,0.25,0.19,0.16,0.12)"
Step 5: Aggregate the attributes by using cubic soft expert GOW A operator. By

taking r = 2 we have

= n “_2_'7-'1( il i - ~o 1. -
([\/lkI_I](l—Ak) ,\/1 JL (1= ALT) ].)

7GO(8y, Bay -y Ba) = _n -
r\z/l = B =gy

i U9
([0.0445, 0.0853],0.0386) | ([0.0335,0.0702],0.0632)
w3 Wy

([0.0348,0.0796],0.0510) | ([0.0379,0.0526],0.0531)

Table 5.5.13 Aggregated values corresponding to expert x;

uy U9
([0.0592, 0.0796], 0.0547) | ([0.0546,0.0717],0.0582)
us3 g

([0.0370,0.0782],0.0177) | ([0.0471,0.0840], 0.0104)

Table 5.5.14 Aggregated values corresponding to expert s
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] U9
([0.0439,0.0589],0.0133) | ([0.0487,0.0677],0.0302)
3 Uy

([0.0308, 0.0715], 0.0659) | ([0.0493,0.0830],0.0199)

Table 5.5.15 Aggregated values corresponding to expert x3

The GOW A operator has been applied to the C'SE element corresponding to the

pair (z1,u;) as below:
([3/1— (1 —0.07652)0-28(1 — 0.02252)9-25(1 — 0.00252)9-19(1 — 0.0350%)0-16(1 — 0.01222)0.12
, Y1 —(1—0.09462)0-28(1 — 0.09842)0-25(1 — 0.08762)0-19(1 — 0.04982)0-16(1 — 0.06462)0-12],
Y1 — (1 —0.02562)0-28(1 — (0.01392)0-25(1 — 0.00342)0-19(1 — 0.02652)%-16(1 — 0.09752)0-12)
= ([0.0445, 0.0853], 0.0386)
Similarly rest of the entries can be calculated.

Step 6: Now we calculate scores of all alternatives corresponding to different

experts.
uy w9 us Uyq
Ty =
! 0.0304 | 0.0135 | 0.0211 | 0.0124
Table 5.5.16 Scores corresponding to expert @
Uy U9 13 Uq
Ton =
’ 0.0280 | 0.0227 | 0.0325 | 0.0402
Table 5.5.17 Scores corresponding to expert @y
—_—— Uy U9 us g
: 0.0298 | 0.0287 | 0.0121 | 0.0374
Table 5.5.18 Scores corresponding to expert xg
Step T:

U1 U us3 uq
0.0294 | 0.0216 | 0.0219 | 0.0300

Table 5.5.19 Average of alternatives
Step 8: Arrange these alternatives in ascending order.
Uz < Uz < uyp < Uyg

Step 9: Hence uy is the best. Mr. A chooses uy.
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5.6 Multicriteria Decision Making of Cubic Soft Expert
Sets with Cubic Soft Expert OW A Operator

Consider Example 5.5.1. Proceed to step 4 as in the above example.
Step 5: Aggregate the attributes by using cubic soft expert OW A operator.
mn

72 (81,82, s Bn) = ([L = IL (1= A7, 1= L (1— A7, 1= T1 (1= M) ™).

(1 U3z
([0.0349, 0.0836],0.0276) | ([0.0307,0.0647],0.0552)
us wy

(10.0339,0.0777],0.0420) | ([0.0360, 0.0518],0.0416)

Table 5.6.1 Aggregated values corresponding to expert x;

Uy U
([0.0487,0.0752),0.0459) | ([0.0417,0.0667], 0.0466)
Uy Uy

([0.0360,0.0779],0.0146) | ([0.0425, 0.0796],0.0078)

Table 5.6.2 Aggregated values corresponding to expert g

uy U9
(10.0354, 0.0506], 0.0120) | ([0.0467, 0.0662],0.0278)
s Uy

([0.0398, 0.0696],0.0608) | ([0.0445,0.0806],0.0137)

Table 5.6.3 Aggregated values corresponding to expert w3

Step 6: Now we calculate scores of all alternatives corresponding to different

experts.

Uy g u3 Uq
0.0487 | 0.0502 | 0.0512 | 0.0431

B =

Table 5.6.4 Scores corresponding to expert z,
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y 7y s g
0.0566 | 0.0516 | 0.0428 | 0.0433

T9 =

Table 5.6.5 Scores corresponding to expert xg

uy U9 w3 Uy
0.0326 | 0.0469 [ 0.0567 [ 0.0462

I =

Table 5.6.6 Scores corresponding to expert g

Step T:

3] (1] us g
0.0459 | 0.0495 | 0.0502 | 0.0442

Table 5.6.7 Average of alternatives

Step 8: Arrange these alternatives in ascending order.

g < uyp < ug < ug

Step 9: Hence ug is the best.

5.7 Multicriteria Decision Making of Cubic Soft Expert
Sets with Cubic Soft Expert Weighted Average Op-
erator

Let U = {u1,uy,..up} be the set of alternatives, £ = {ej,es,...,e;} be the set of
attributes and X = {x1,x2,...,x;m} be the set of experts.

Further, we take opinion of experts in the form of C'SE elements. Algorithm for
cubic soft expert weighted average operator is given below:

Step 1: Utilize the evaluations of experts in the form of CSE sets.

Step 2: Separate the opinion of each expert.

Step 3: Assign weights to each attribute.

Step 4: Aggregate the attributes by using cubic soft expert weighted average
operator.

Step 5: Calculate accuracies of all alternatives corresponding to different experts.

Step 6: Find the average of these alternatives.
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Step 7: Arrange these alternatives in ascending order.

Step 8: Choose best alternative.

Consider Example 5.5.1 proceed to step 2 as in above example.

Step 3: Assign weights to each attributes @ = (0.28,0.25,0.19,0.16,0.12)"

Step 4: Aggregate the attributes by using cubic soft expert weighted average

operator

T0(1— AF)™),1— I (1= Ag)™)

—_ 1=1

Bi(By, Bay vy Bn) = ([1 = ,fIl(l — A7) 1 -

1y o

([0.0138, 0.0778],0.0155)

([0.0232, 0.0476],0.0436)

U3

Uy

([0.0310, 0.0656], 0.0422)

([0.0327, 0.0500], 0.0323)

Table 5.7.1 Aggregated values corresponding to expert x;

i

w9

([0.0353, 0.0548], 0.0459)

([0.0279,0.0564], 0.0242)

u3

Uy

([0.0313,0.0771],0.0140)

([0.0214, 0.0390], 0.0038)

Table 5.7.2 Aggregated values corresponding to expert

uy (D]
([0.0167,0.0282],0.0096) | ([0.0448,0.0609], 0.0247)
3 Uy

([0.0324, 0.0658], 0.0549)

([0.0311,0.0645], 0.0043)

Table 5.7.3 Aggregated values of alternatives corresponding to expert xj

Step 5: Accuracies of all alternatives corresponding to different experts.

uy w3
0.0357 | 0.0381

us
0.0462

g

0.0383

T =

Table 5.7.4 Accuracies corresponding to expert
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{15 g RS (7]
0.0453 | 0.0361 | 0.0408 | 0.0214

Ty =

Table 5.7.5 Accuracies corresponding to expert

{15 Uy U3 Uy

0.0181 | 0.0434 | 0.0510 | 0.333

T =

Table 5.7.6 Accuracies corresponding to expert xg

Step 6:

U 1wy s Uy
0.0330 [ 0.0392 | 0.046 | 0.031

Table 5.7.7 Average of alternatives

Step 7: Arrange these alternatives in ascending order.

g <ty < uy < Uy

Step 8: Hence ug is the best.

5.8 Multicriteria decision Making of Cubic Soft Expert
Sets with Cubic Soft Expert Weighted Geometric Op-

erator

Let U = {u,ug,..uy} be the set of alternatives, E = {ej,es,...,e} be the set of
attributes and X = {zy,22,...,2,,} be the set of experts.

Further, we take opinion of experts in the form of CSE elements. Algorithm for
cubic soft expert weighted average operator is given below:

Step 1: Utilize the evaluations of experts in the form of CSFE sets.

Step 2: Separate the opinion of each expert.

Step 3: Assign weights to each attribute.

Step 4: Aggregate the attributes by using cubic soft expert weighted geometric
operator.

Step 5: Calculate accuracies of all alternatives corresponding to different experts.

Step 6: Find the average of these alternatives.
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Step 7: Arrange these alternatives in ascending order.

Step 8: Choose the best alternative.

Consider Example 5.5.1 proceed to step 2 as in above example.

Step 3: Assign weights to each attributes @ = (0.28,0.25,0.19,0.16, 0.12)"

Step 4: Aggregate the attributes by using cubic soft expert weighted geometric
operator.

TSEU(ﬁl,ﬁz, v Bn) = (1T (Ai—)w'-‘,;n (A:r)wi]’sgl(/\i)wlj

f=1 =1
(15 w3
([0.0138,0.0778],0.0155) | ([0.0232, 0.0476], 0.0436)
Uy g
(0.0310, 0.0656], 0.0422) | ([0.0327, 0.0500], 0.0323)

Table 5.8.1 Aggregated values corresponding to expert a4

wy g
(0.0353,0.0548], 0.0459) | ([0.0279,0.0564], 0.0242)
ws thy
([0.0313,0.0771],0.0140) | ([0.0214, 0.0390], 0.0038)

Table 5.8.2 Aggregated values corresponding to expert

£L9
U] s
([0.0167, 0.0282], 0.0096) | ([0.0448, 0.0609], 0.0247)
U3 Uy

([0.0324, 0.0658], 0.0549) | ([0.0311,0.0645],0.0043)

Table 5.8.3 Aggregated values corresponding to expert 3

Step 5: Accuracies of all alternatives corresponding to different experts.

] 19 w3 1y

0.0357 | 0.0381 | 0.0462 | 0.0465

Ty =

Table 5.8.4 Accuracies corresponding to expert

1] U9 U3 Ty

0.0453 | 0.0361 | 0.0408 | 0.0214

Ty =

Table 5.8.5 Accuracies corresponding to expert xp



5. Some New Operations on Cubic Soft Expert Sets (CSESs) 82

i p) sy g
0.0181 | 0.0434 | 0.0510 | 0.0333

T3 =

Table 5.8.6 Accuracies corresponding to expert x3

Step 6:

uy ] us g
0.0330 | 0.0392 | 0.046 | 0.0337

Table 5.8.7 Average of alternatives

Step 7: Choose the best alternative.

U < ug < ug < uy

Step 8: Hence ug is the best.

5.9 Conclusion and Future Work

Cubic sets are defined by Jun et al. [34]. Jun et al. defined basic operations of
inclusion, union and intersection. There are certain operations which were not defined
in the said paper. In this chapter we have introduced some new operations such as
addition and multiplication of two CSESs, product of a CSESs with real number
k > 0, power of CSESs, score and accuracy function of CSES. The purpose of
defining score function and accuracy function is that we can determine the ranking of
CSESs which helps us in aggregation. Some aggregation operators on CSESs have
introduced. Therefore, the aim of this chapter is to determine the most preferable
choice among all possible choices, when data is presented in cubic set form. At the end,
an algorithm has been presented along with an illustrative example. In this example
we have used U of GOW A operator for CSESs. In future we aim to study TOPSIS,
AHP and ANP for group decision making with CSESs. We also aim at defining
similarity and distance measures and distances and similarity degrees between C'SES's.



Chapter 6

Aggregation Operators of

Interval Valued Intuitionistic
Fuzzy Soft Expert Sets (IVIFSE

sets)

6.1 Introduction

The ordered weighted geometric averaging operator was introduced by Xu [73]. Yager
introduced the ordered weighted averaging operator [81]. Yager provides a parame-
terized family of aggregation operators which have been used in many applications
in [79]. Yager provides a generalization of OW A operator by combining it with the
generalized mean operator [22, 80]. This combination leads to a class of operators
which is reffered to as the generalized ordered weighted averaging (GOW A) operators
[82]. Li developed a new methodology for solving multiple attribute group decision
making problems using intuitionistic fuzzy sets in which multiple attributes are ex-
plicitly considered [42]. Xu introduced different approaches to group decision making
(74, 75, 76]. Szmidt proposed some solution concepts in group decision making with
intuitionistic fuzzy preference relations, such as intuitionistic fuzzy core and consensus
winner and also investigated the consensus-reaching process in group decision making
based on individual intuitionistic fuzzy preference relations in [62, 63].

This chapter consists of definition of IVIFSE sets, null IVIFSE set, absolute
IVIFSE set and some of the operations such as containment of two elements of
IVIFSE sets, equality of two elements of IVIFSE sets, subsets, equality of two
IVIFSE sets, complement of IVIFSE set, addition, product, union and intersection

83
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of two IVIFSE sets, product of scalar with IVIFSE set, power of IVIFSE set,
score and accuracy function of IVIFSE sets. Also some of the aggregation operators
are presented. Further we introduce the multiple attribute decision making problem
with IVIFSE sets by using IVIFSE ordered weighted arithmetic operator. An
illustrative example is also presented.

6.2 Interval Valued Intuitionistic Fuzzy Soft Expert Sets
(IVIFSE sets)

Definition 6.2.1 Let U be the initial universe, A be the set of attributes and G be
the set of experts. Interval valued intwitionistic fuzzy soft expert set (IVIFSE set)
is a triplet (€,A,G) which is characterized by a mapping & :Ax G— K (U) where the
set of the interval-valued intuitionistic fuzzy sets on the universe set U is denoted by
Ki(U). For be A and p € G we define

66, ) = {< 1, Py (9,75 (W), GG py (0, Gy ()] 2w € U

Example 6.2.2 Suppose that there are four cars in the universe set U = {uy,ua, u3, u4}.
A= {by = cheap, by= model, by = exp ensive} be the set of attributes and G= {p1,p2}
be the set of experts. Then we can view the IVIFSE Set (£,A.(G) as consisting of
opinions of experts on the cars subject to the given altributes following collection of

approximations:

E(b,p1) = {< wy, [04,0.5,[0.2,04] >, < u
[0.3,0.4],[0.4,0.5] > , < ug, [0.2,0.4],[0.5,0.6] >},

E(ba,p1) = {< w, [0.2,0.4],[0.5,0.6] > , <
[0.1,0.3],[0.3,0.5] > , < ug, [0.3,0.4],[0.2,0.5] >},

(s, p1) = {< w, [0.1,0.2],[0.3,0.5] > , < ug, [0.3,0.5],[0.1,0.5] > , < ug,
[0.3,0.4],[0.2,0.4] > , < uy, [0.0,0.2],[0.3,0.5] >},

E(b,p2) = {< w, [04,0.7],[0.2,0.3] >, <
[0.3,0.5],[0.4,0.5] > , < ug4, [0.1,0.3],[0.2,0.5] >},

E(bo,p2) = {< wy, [0.3,0.5],[0.0,0.3] > , < up, [0.1,0.4],[0.3,0.6] > , < us,
0.2,0.5],0.3,0.4] > , < ug, [0.2,0.3],[0.3,0.5] >},

£(bs,p2) = {< w, [0.2,0.5],[0.0,0.3] >, < ug, [0.1,0.3],[0.5,0.6] > , < 1
0.2,0.4],[0.1,0.4] > , < ug, [0.2,0.4],0.2,0.5] >}.

, [0.1,0.5],[0.4,05] >, < ug,

L=

, [0.2,0.4],[0.4,0.5] > , < us,

=
¥

=

2, [0.2,0.5],[0.2,0.3] >, < wug,

-

RE

Definition 6.2.3 The null IVIFSE set over U is denoted by P and defined as

["f(:,.p} (‘”}rﬂ}’[t,.p](u)l = [17 I}, [g(_b‘_,,)(“):g{-:,‘p)(u)] = [lL U]
forallbe 4, pe G andu e U.
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Definition 6.2.4 The absolute IVIFSE set over U is denoted by A and defined as

V(0.9 () Vo9 (] = 0,01, (€, (1), Gy gy (] = [L, 1],
forallbe A, pe G and u € U.

Definition 6.2.5 Foran IVIFSE set (£,A,G) over U and for any by, by €A, p1,p2 €G,
an element £(by, p1) is said to be contained in &(by, pa), denoted by &(by,p1) C E(by, p2)
if the following conditions are satisfied:

1) FY(_"Jl -Pl)(u) e 7(;2-132)(“)‘ T(-I!‘H‘m){u) = 7?;2-?2)(“)'
2) C@l‘Pl)(u) 2 C(_bz,m)(u)’ C(—El,m}(u) = C(—Ez»m)(u)‘

where €(b1,21) = {< 1, [, oy (Y oy (0] o) (9 G oy ()] 2 € U
and §(by, p2) = {<u, [ﬂf(}-iz‘Pz)(u)‘Ta;z'P‘z)(u)]’ [C{_bmpz)(u)‘ (;(‘E?m}(u)] > u €U}

Example 6.2.6 Consider £(by,p1) = {< w1, [0.2,0.4], [0.2,0.4] > , < ug, [0.1,0.3],
[0.4,0.5] >, < ug, [0.1,0.3], [0.3,0.5] > , &(b2,p2) = {< w1, [0.4,0.5], [0.3,0.5] > ,
< ug, [0.2,0.4], [0.4,0.5] > , < ug, [0.2,0.4], [0.4,0.5] >. Clearly &(by,p1) C &(ba, p2).

Definition 6.2.7 For an IVIFSE set (§,4,G) over U, for any by,by €A, p1,p2 €G,
an element £(by, p1) is said to be equal to &(by, p2), denoted by (b1, p1) = (b2, p2) if

following conditions are satisfied:
1) '7(_*11.:?1)(“) . T(—bz_pz)(u)’ ’Y(-Ex.m)(u) - 7(12,132)(“)’
2) C(_bl-Pl)(u) - c(_b'z,.vz](u)‘ C(J!:l,m)(“) - C(I?.Pz)(u)'
Definition 6.2.8 Fortwo IVIFSE sets (£1,A1,G1) and (&2, A2, G2) over U, (&1, A1,G1)

is a subset of (€2, Ag, G2) if following conditions are satisfied:

1) A1 CAo,
2) Gl gGm
3) &1(b,p) € &2(b,p) for allb €Ay and p € Gy,

where & (b, p) = {< u, [71_(blp)(“)s'7ﬂb‘p)(u)]s [Cl_(b,p)(u)u C?(-b_p}(“)] >:u € U}
and £3(b,p) = {< u, [Wg?b.p)(”):'}’;ib_p) (u)]v [Cﬂ_(b‘p)(u)‘ C‘;Eb-PJ (u)] >y elU}.

Example 6.2.9 Let U = {uy,uz,u3}. A1 = {b1, ba} G1 = {p1} then IVIFSE Set
(&1, 41, Gy) is given by

E1(by, p1) = {< u, [0.1,0.4], [0.2,0.4] >, < uy, [0.1,0.3], [0.4,0.5] > , < us,
0.1,0.3], [0.3,0.5] >},
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E(by, p1) = {< w, [0.2,0.3], [0.4,0.5] > . < uy, [0.1,0.2], [0.2,04] > , < us,
0.2,0.5], [0.1,0.3] >}.

Also Ay = {by, ba, b3} Go = {p1.p2} then IVIFSE Set (€2, Ay, Go) is given by

&by, p1) = {< u, [0.2,0.5), [0.3,0.5] > , < ug, [0.2,0.4], [0.4,0.5] > , < us,
[0.2,0.5], [0.4,0.5] >},

Ea(ba, p1) = {< w1, [0.2,0.4], [0.5,0.6] > , < ua, [0.3,0.5], [0.4,0.5] > , < ug,
0.4,0.5], [0.4,0.5] >},

Ea(bs, p1) = {< w1, [0.1,0.3], [0.2,0.4] > , < w9, [0.4,0.5], [0.3,0.4] > , < ug,
(0.2,0.3], [0.3,0.5] >},

€a(b1, p2) = {< w1, [0.8,0.9), [0.0,0.1] > , < ug, [0.5,0.7], [0.2,0.3] > , < us,
0.1,0.3], [0.4,0.5] >},

Ea(ba, pa) = {< uy, [0.1,0.4], [0.2,0.4] > , < ug, [0.1,0.3], [0.4,0.5] > , < ug,
(0.1,0.2], [0.4,0.6] >},

Ea(bs, p2) = {< w1, [0.2,0.4], [0.3,0.5] > , < us, [05,0.7), [0.2,0.3] > , < ug,
[0.2,0.5], [0.1,0.3] >}.

Clearly Ay CAs, Gy CGo and &(b,p) C &a(b,p) for all b €A, and p €Gy. Hence
(&1, A1, Gy) is a subset of (&3, Az, Gs).

Definition 6.2.10 For two IVIFSE sets (&1, Ay, Gy) and (€2, Aa, Go) over U, (&, Ay, G))
is equal to (£, Ao, Ga) if following conditions are satisfied:

1) 41 =4s,
2) G =Ga,
3) &1(b, p) = Ea(b,p) for allb €Ay and p €Gy.

Definition 6.2.11 The complement of IVIFSE set (£,A,G) is denoted by (€,4,G)°,
and is defined for allb €A and p €G as follows:

(€A 6" = {< U (G0 (0, G (), e (0, Ve y (0] >2 € U,
where €(5,p) = {< ty (1) (1 75 (0 [Ga gy (), Gy ()] >3 w € U},
Example 6.2.12 Consider Example 6.2.9, (€1, Ay, G1)° is given by

E1(b5, p1) = {< w1, [0.2,04], [0.1,04] > , < ug, [0.4,0.5], [0.1,0.3] >, < ug,
0.3,0.5], [0.1,0.3] >},

&1(b%, p1) = {< w1, [0.4,0.5], [0.2,0.3] >, < ug, [0.2,0.4], [0.1,0.2] > , < ug,
[0.1,0.3], [0.2,0.5] >}.
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Definition 6.2.13 For two IVIFSE sets (&, A1, G)) and (£2, Ay, Ga) over U, union
of two IVIFSE sets is denoted as (£3,43,G3) = (61, A1, G1) U (€2, Ag, Ga) where
Az =41UAs and Gy =G UGy and for all { €Az and m €G3 it is defined as follows:

[ &i(L,m) if (6,m) € (AixGr) \ (A2x Go)
§a(l,m) if (€,m) € (A2x G2) \ (A1x Gy)
{< u, [Afl_(f.m}("’) vV 72_“‘?")(1&),
'Yilig.m;(u) Vv ')’;ig'm)(u)]i
[Sage.m) () A Cogemy (1),
L Cﬁg.m)(u) A C;Ee‘m) (w)] >},

&3(l,m) = ¢
if (¢,m) € (AiNA42Xx G1NGy)

where § (¢, m) = {< u, ["fl_.(g.m)(u)v'}'i?g,m)(u)]’ [C;(g‘m){u)e Cﬁg,,,l)(u)] >:ue U}
and &y(l,m) = {< u, ['T;(e,m)(”)!'72+(e,m)(“)]! [Cie.m)(u)‘cgi&m](u)] >:u € U}.

Example 6.2.14 Let U = {w,uz,uz}, 41 = {b1, b} and G\ = {p1, pa} then
IVIFSE set (&1, 44, Gy) is given by

€1(b1, p1) = {< w1, [0.1,0.4], [0.2,04] > , < uy, [0.1,0.3], [0.4,0.5] > , < wus,
0.1,0.3], [0.3,0.5] >},

€1(ba, p1) = {< w1, [0.2,0.3], [0.4,0.5] > , < ug, [0.1,0.2], [0.2,04] > , < uo,
[0.2,0.5], 0.1,0.3] >},

&1(b1, p2) = {< uy, [0.6,0.9], [0.0,0.1] > , < ug, [0.4,0.6], [0.2,0.3] > , < ug,
(0.3,0.5], [0.2,0.5] >},

€1(bz, o) = {< w1, [0.3,0.4], [0.4,0.5] > , < ug, [0.2,0.5], [0.1,0.5] > , < us,
0.3,0.7], [0.2,0.3] >},

Also if Ay = {by, ba, b3}, Go = {p1,p2} then IVIFSE set (€2, Ay, Go) is given by

&a(b1, p1) = {< wy, [0.2,0.5], [0.3,0.5] > , < ug, [0.2,0.4], [0.4,0.5] > , < us,
[0.2,0.5], [0.4,0.5] >},

&a(b2, p1) = {< uy, [0.2,0.4], [0.5,0.6] > , < uy, [0.3,0.5], [0.4,0.5] > , < ug,
[0.4,0.5], [0.4,0.5] >},

€a(b3, p1) = {< w1, [0.1,0.3], [0.2,0.4] > , < ua, [0.4,0.5], [0.3,0.4] > , < us,
[0.2,0.3], [0.3,0.5] >},

&a(b1, p2) = {< wuy, [0.8,0.9], [0.0,0.1] > , < ug, [0.5,0.7], [0.2,0.3] > , < wug,
[0.1,0.3], [0.4,0.5] >},

Ea(by, p2) = {< wy, [0.1,0.4], [0.2,04] > , < ug, [0.1,0.3], [0.4,05] > , < ua,
0.1,0.2], [0.4,0.6] >},

Ea(bs, pa) = {< w1, [0.2,0.4], [0.3,0.5] > , < ua, [0.5,0.7), [0.2,0.3] >, < us,
[0.2,0.5], [0.1,0.3] >}.

Now, (€3,43,G3) = (&1, A1, G1) U (&2, Az, G9) is given by
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Ea(br, p1) = {< wuy, [0.2,0.5], [0.2,0.4] >, < uy, [0.2,0.4], [0.4,0.5] > , < us,
(0.2,0.5], [0.3,0.5] >},

€a(ba, p1) = {< w1, [0.2,0.4], [0.4,0.5] > , < ug, [0.3,0.5], [0.2,0.4] > . < ug,
[0.4,0.5], [0.1,0.3] >},

§3(bs, p1) = {< wy, [0.1,0.3], [0.2,0.4] > , < uy, [0.4,0.5], [0.3,0.4] > , < ug,
[0.2,0.3], [0.3,0.5] >},

&3(b1, p2) = {< wug, [0.8,0.9], [0.0,0.1] > , < ug, [0.5,0.7], [0.2,0.3] > , < ug,
(0.3,0.5], [0.2,0.5] >},

€3(ba, p2) = {< uy, [0.3,0.4], [0.2,0.4] > , < ug, [0.2,0.5], [0.1,0.5] > , < ug,
[0.3,0.7], [0.2,0.3] >},

E3(bs, pa) = {< uy, [0.2,0.4], [0.3,0.5] >, < ug, [0.5,0.7], [0.2,0.3] >, < uy,
(0.2,0.5], [0.1,0.3] >}.

Definition 6.2.15 For two IVIFSE sets (£1,41.G1) and (€2.49,G2) over U, inter-
section of two IVIFSE sets is denoted as (€3,43,G3) = (€1,41,G1)N(E2,A2,Ga) where
A3 =41UAs and G3 =GUG, and for all { € A3 and m € Gy, it is defined as below:

[ &(t,m) if (6,m) € (A1xGh) \ (A2x G2)
&a(f,m) if (€,m) € (A2x G2) \ (41x G1)
{<w Drygeamy () A Yagemy (W),
’Y:Ef'm](u) A '?;Eg‘m)(“m
[Criem) () V Cagpmy ()

q C:Efl,“)(?"") \% C;ig'm](u)] >},

&3(¢,m) = ¢
if (€,m) € (AiNA2x GhiNGy)

where &;(¢,m) = {< u, [Ti-(f,m)(u)’7ﬁf,ﬂa)(u)l’ [Cl_(“z.]_”)(u)1 Ci}&f,ﬂl)(u)] >:u € U}
and §(€,m) = {< u, h2—(£‘m)(1"')’Hr;ié'.m}(u)]' [Cg_(g‘mj (u), C;Ef‘m_](u)] >ru€ U}

Example 6.2.16 Consider (&1,41,G1) and (€2,A5,G) of Example 6.2.14. Now (£3,A3,G3)
= (&1, 41,G1) N (&2, A2, G2) is given by

Ea(b1, p1) = {< w1, [0.1,0.4], [0.3,0.5] > , < ug, [0.1,0.3], [0.4,0.5] > , < ug,
[0.1,0.3], [0.4,0.5] >},

€3(ba, p1) = {< w1, [0.2,0.3], [0.5,0.6] > , < ugy, [0.1,0.2], [0.4,0.5] > , < ug,
0.2,0.5], [0.4,0.5] >},

€3(b3, p1) = {< w1, [0.1,0.3], [0.2,0.4] > , < uy, [0.4,0.5], [0.3,0.4] > , < ug,
0.2,0.3], [0.3,0.5] >},

€3(by, p2) = {< w1, [0.6,0.9], [0.0,0.1] > , < ug, [0.4,0.6], [0.2,0.3] > , < ug,
[0.1,0.3], [0.4,0.5] >},

E3(ba, p2) = {< w1, [0.3,0.4], [0.2,0.4] > . < uy, [0.1,0.3], [0.4.0.5] > , < us,
[0.1,0.2], [0.4,0.6] >},
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€3(b3, p2) = {< wuy, [0.1,0.4], [0.4.0.5] > , < ug, [0.5,0.7], [0.2,0.3] > , < wuy,
0.2,0.5], [0.1,0.3] >}.

Definition 6.2.17 The sum of two IVIFSE sets (£1,41,G1) and (€2,A2,Ge) over U
1s denoted as (£1,41,G1) + (&2,42,G2) and defined as:

{< u, [’Y]._(g'm)(u) ¥ 'Tr;{,glm}(u} - 71_(5.,,”(“)7-2_(&,“)(”)'
él(gs 'ﬁ'l) + 62(8! Tﬂ.) = Afﬁg‘m)(u) + 'T;(g.m)(u) = P})E’ﬂ‘m)(u’)’}l;(f,-rn) (‘U.)],
[Cl_(f‘m) (u}g'z_(g‘?n) (“) L] Ci‘if.;n} (u)Cgif‘r“) ('u.)] >} ?

where & (€, m) = {< u, hl_(t’,m)(u} '}i'ie m) (w)], [Cl_(f m) ), C;?F m) (% u)] >:u e U}
and &(6,m) = {< u, ["fg_[g‘m)( w), 'Tz(g m} u)], [Qg(gm)(“’) C;(g m)(“’ )] >:ueU}.

Example 6.2.18 Consider &(by, p1) = {< uy, [0.1,0.4], [0.2,0.4] > , < ug, [0.1,0.3],
[0.4,0.5] > , < ug, [0.1,0.3], [0.3,0.5] >}, &(by, p1) = {< uy, [0.2,0.5], [0.3,0.5] >,
< ug, [0.2,0.4], [0.4,0.5] > , < ug, [0.2,0.5], [0.4,0.5] >}. Now, (§1,41,G1)+(£2,42,Ga)
is given by

€1(by, p1)+E(by, p1) = {< w1, [0.28,0.7], [0.06,0.2] > , < us, [0.28,0.58], [0.16, 0.25] >
, < uz, [0.28,0.65], [0.12,0.25] >}.

Definition 6.2.19 The product of two IVIFSE sets (£1,41,G1) and (§2,42,G2) over
U is denoted as (£1,41.G1)(§2,A2,G2) and defined as:

{< u, [71_(5',,1)(“)’}'2_(9.”3](u): "(1+(g‘m) (u)ﬁ!';_(g‘m](u)]‘
tEl(f: 7”')52(& m') = Kﬂg!m)(”) + C-Z_(g‘m)(u) = Cl_(f m)("-)(;g_(g m)(. )
C;Ee,m)(“} + C;Ee.m)(“) - Cﬁe.m)( Cz(e my (W] >},

where €1(6,m) = {< t, Pigm) (02 im0 KiGgumy (0 Gy ()] >2 0 € U}
and &(f,m) = {< u, [Afz-(e.m)(“)"}'z"-{e,m)(um [C.;(flm}(u),g’;elm)(u)] >:ueU}.

Example 6.2.20 Consider &;(by, p1) = {< uy, [0.1,0.4], [0.2,0.4] > , < us, [0.1,0.3],
[0.4,05] > , < uz, [0.1,0.3], [0.3,0.5] >}, Ea(b, p1) = {< w1, [0.2,05], [0.3,0.5] > ,
< us, [0.2,0.4], [0.4,0.5] > , < uz, [0.2,0.5], [0.4,0.5] >}. Now (€1,41,G1)(E2,42,G2)
is given by &1 (by, p1)éa(br, p1) = {< uq, [0.{]2,0.2]. [0.44,0.7] > , < ug, [0.02,0.12],
[0.64,0.75] > , < ug, [0.02,0.15], [0.58,0.75] >}.

Definition 6.2.21 The product of IVIFSE set (£,A,G) with an arbitrary real number
k > 0 is denoted by k(£,A.G) and defined for all as follows:

k(b p) = {< v, [1_(.1_'}'(_1,",,)(”))”‘ 1—{1-— f(b ) )] (€ “(bp} (u))" (Q(bp; (u))"] >:u € U}
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Example 6.2.22 Consider £1(by, py) = {< uy, [0.1,0.4], [0.2,0.4] > |, < uy, [0.1,0.3],
[0.4,0.5] > , < ug, [0.1,0.3], [0.3,0.5] >}, & =6.

The product of IVIFSE sel (£,A,G) with 6 is denoted by 6(&,A,G) and given as

661 (b1, p1) = {< w1, [0.468559, 0.953344], [0.000064, 0.004096] > , < us, [0.468559, 0.3],
[0.004096,0.015625] > , < ug, [0.486559, 0.882351], [0.000729, 0.015625] > }.

Definition 6.2.23 The power of IVIFSE set (£,A,G) with an arbitrary real number
k > 0 is denoted by (,A4,G)" and defined as follows:

(€)= (< 1y (15 (W) (3 (W) [1=(1=Cp y (0))*, 1= (1= ()] >:w € U,

Example 6.2.24 Consider &;(by, p1) = {< uy, [0.1,0.4], [0.2,04] > , < ug, [0.1,0.3],
[0.4,0.5] > , < ug, [0.1,0.3], [0.3,0.5] >}, k= 0.5.
The power of IVIFSE set (€,4,G) with 0.5 is denoted by (€,A,G)%° and given as
E1(br, 1) = {< uy, [0.3162,0.6324], [0.1055,0.2254] > , < uy, [0.3162,0.5477],
[0.2254,0.2928] > , < ug, [0.3162,0.5477], [0.1633,0.2928] >}.

Definition 6.2.25 The score and accuracy function of an interval-valued intwitionis-

tic fuzzy soft expert set
£(b,p) = {< u, [",'(_b‘p)(u).'}(Elm('u.)}, [(;[B.p){rm)_.c(;p)(-u)] >:u € U},
are defined respectively as follows

- + o o+ 4
S(ﬁ(f), A= '}‘(b‘p}(u) =1 (b,p) (u) ; C{b‘p)(u) g(b,p}(“)‘

and
v Y ) T () F G () + Gy ()
RIE (b)) = -

where §(€(b,p)) € [—1,1] and R(&(b,p)) € [0, 1].

We can build up ranking method of IVIFSE sets by using score function and
accuracy function. The larger score and larger accuracy indicate the greater IVIFSE
element.

Example 6.2.26 Consider &(by, p1) = < uy, [0.4,0.5], [0.2,0.4] >, &(ba, p1) = <
uy, [0.2,0.4], [0.5,0.6] >, &(b3, p1) = < w1, [0.1,0.2], [0.3,0.5] >, &(by, p2) = < wi,
(0.4,0.7], [0.2,0.3] >, &(ba, p2) = < uy, [0.3,0.5], [0.0,0.3] >, &(bs, p2) = < uy, [0.2,0.5)],
[0.0,0.3] >.
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Now calculating scores of the above IVIFSE elements, we have
a

S((by, 1)) = 0.15,

(& (b2, p1)) = —0.25,
S(§(bg, p1)) = —0.25,
S(&(b1,p2)) = 0.3
9(&(ba, p2)) = 0.25
(& (b3, p2)) = 0.2

Now arranging the scores in ascending order we have

E(ba.p1) = €E(bg.pr1) < E&(b1,p1) < E(b3,p2) < E(ba,pa) < E(b1,p2).
Since scores of E(ba, p1) and E(bs, p1) are equal, we calculate their accuractes

R(&(b2, p1)) = 0.85,
R(&(bg, p1)) = 0.55.

Hence elements are ranked as

E(b3,p1) < &(ba,p1) < &(by,p1) < E(b3,p2) < E(ba,p2) < (b1, p2).

6.3 Aggregation Operators on IVIFSE Sets

In this section, we develop new operators with interval-valued intuitionistic fuzzy soft
expert sets (IVIFSE sets).

Definition 6.3.1 Let (&5, 4k, Gr)vpc = (< [",z,:(b‘p},'n;"[b‘p)], [C’:(b_p)’gi:r(b‘z?}] =i B=1;2,.:n0)
be IVIFSE sets. A mapping } K7W(U) —K;(U) is called an IVIFSE weighted

average operator if it satisfies
bsﬁv({gl- Al' Gl)‘ (52! 42! Gﬂ!) hhl (fma Amv Gm)) . Li:lwk(gkf Ak'- Gk)w_.k_(,‘.?

where K7'(U) denotes m copies of IVIFSE sets, w = (wy, @2, ..., @m )t is a weight
vector of A, k = 1,2,....m .mtz'sfyfng the normalized conditions i wr=1; w €
0,1, k=1

If @ = (1/m,1/m,....1/m)" then the IVIFSE weighted average operator can be
written as

T

!5‘;((51 Al‘. GI)' (62! “12' GQ)? say (ém‘ Am' Gm)) = %Z(&kv Akv GA)

k=1

Thlk"

In this case P reduces to IVIFSE arithmetic mean operator.
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Theorem 6.3.2 Suppose that (Ex Ak, Gr)yece = {< [E}I;(b'p)’n‘(:{b.p]l'[Cﬁ‘_{b,p}’('-;ir'),p)} >
k= 1,2,..m} are IVIFSE sets. Then, by using the IVIFSE weighted average op-
erator aggregation is also an IVIFSE set and

( m

<0 IL= %)™
pﬁw((glr Al! GI)| (629 ‘427 G?)a ey (gmv Am‘ Gm)) = e knl(l - T:ibp))w'&]
[H Ck(bp))m H (C!.,(b e ] >,

Proof. We prove this result by using mathematical induction. The result holds
for k = 1, by using Definition 6.2.21, .Now we have to show that it is true for k = 2.
By using Definitions 6.3.1 and 6.2.21, we have, pi,((gl, Ay, Gy), (&2, A2, Go)) =

3
g}wk{fkv Ak, Gi) = m1(61, Ar, Gi) + ma(€e, A2, Ga) = < [1 = (1 =y ()™

L—{i= 'Y]*(b,,)( )] (G ()" (c;qb,,) N > + < [L= (1= 75 @)™,
= '}'2[bp) u)) ][C2(bp) w))*? (Cg(b) )73 >=< [1-(1= 71(6,0}(“)) t41=(1-
Yoty ()72 = (L= (1= () ™) (1= (=730 () 72), 1= (1= (1)) 41— (1
iy ()72 = (1= (L= ()™1) (1= (L= ())2)], (G570 ()™ (G gy (W)™,
(G (W)™ (G (W) ™2] >=< L= (L =555 )™ (L= ™ L= (=75 = (1~
Vi) Mt )™ s V7% e PG

¢ 2

<[1= T1( =)™
B k=1
=4 1= H( 7;,“”,)) k]’

2
[H (C-‘n(bp) wk* l;[](Ck(b,p))w"] >

Suppose this result holds for k = n, that is bw((él, A1, Gh), (&2, Ag, Ga), ..y (€ny Ay GL))
Zwk (&ks Ak, Gi) = @1(61, A1, Gi) + wa(€2, A2, Ga) +...+ @a(€ny Ans Gi)

'd

n
< [1 i knl(l - '}";{b‘p))mk‘
= —
=g = L:[_Il(l = W*j—(blp])wk]' (6.1)

\ [kl;ll(g’:(b-P))Wk’Lgl(c-‘;bm})w*] =2

Further we show that this result holds for £ = n + 1.
.+—

bi((61, A1, G1), (€2, A2, G2), .oy (€ns1s Antts Grgr)) z r(Eks Ak, Gi) =

gw L-.L ‘SUH Gf-) +Wn+1(‘£u+l Am-l—l Gn—f—l)
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Again using Definitions 6.2.17 and 6.2.21 and Equation 6.1 we have , l}‘.f;((.ﬁl, Ay,
Gl}' (‘52 "3{2 G?)""' (‘EJI+1- Aﬂ-}-l? (;':n-}-l))

¢ n-i—l(
<=1 (=g, .)"
[ = k(b,p)

_'_
= 4 H W;jib.p))wk]a
N n+1

+
[1;[ (L(bp) » kl;_[l(cab,p})wk] > .

Hence proved. =

Definition 6.3.3 Let (£, Ak Gr)ypc (B =1,2,...,m) be IVIFSE sets. A mapping
b2 K7 (U) —K(U) is called an IVIFSE ordered weighted average operator if it
satisfies

P2((Er. Ar, G (€2 A, Go). o Eons A G)) = il A G,

where w = (wy, @3, ..., wm)" is a weight vector of A, k=12, ..., m satisfying the
normalized conditions Zw‘ =1;w; €[0,1]. (&, A, G;) =< [’Yt“, p) "“(bp)] [C i(bop)? C‘!-(bp)] >

is the i — th largest of fhe m IVIFSE sets (€. Ak, Gk)w,, ¢ which can be determined
by using ranking method of IVIFSE sets such as score and accuracy function.

Remark 6.3.4 If @ = (1/m,1/m, ..., 1/m)" then the IVIFSE ordered weighted av-
erage operator B2 degenerates to the IVIFSE arithmetic mean operator.

Theorem 6.3.5 Suppose that (&, Ak, Gr)vice (K = 1,2,...,m) are IVIFSE sets.
Then by using the IVIFSE ordered weighted arithmetic operator aggregation is also
an IVIFSE set and

<[1—H(1 a(bp s

m

B2 (6, vy G (€ Ay Ga)s oo (6m Ay G)) = { 1= TTA =i ™)

m
[.Hl i) H(‘uw )™ >
\ = i=1
(6.2)

where (&, A4is Gi)s, 2. =< [ipp) Titop) Cicop) Sitop)] > 18 the i — th largest of the m
IVIFSE sets (£, Ak.Gr)ypco which can be determined by using ranking method of

IVIFSE sets such as score and accuracy function.

Proof. It is straightforward by using mathematical induction and Definitions
6.3.3, 6.2.21 and 6.2.23. =
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The IVIFSE weighted average operator pb% considers importance of the aggre-
gated IVIFSE sets themselves. The IVIFSE ordered weighted arithmetic operator
b2 concerns with position importance of the ranking order of the aggregated IVIFSE
sets. The underlying aspects of the two aggregated operators have been combined in
next U.

Definition 6.3.6 Let (&, 4k, Gr)ycr (K= 1.2,...,m) be IVIFSE sets. A mapping
})g,w KT (U) —K[(U) is called an IVIFSE fusion weighted average operator if it

salisfies
Hoo((€1, A, G €2 A, Ga). o (s A Go) = St A0 G 2

where w = (w1, w2, ...,wn)" is a position weight vector. The IVIFSE set of
(Eks Ak Gl )vpce weighted with mzoy, is denoted by

(& Ag, Gk)'\’k-c.f: = mw@y(Ek Ak Gk )y cps

—

where @ = (wy, @, ..., Wm)" is a weight vector of Ay, , (k= 1,2,...,m) and (&, A,, G*)’r'. 2

is the i — th largest of the m IVIFSE sets i&k, A, Gk)“,k‘,;,: which can be determined
by using ranking method of IVIFSE sets such as score and accuracy function.

Remark 6.3.7 If w = (1/m,1/m, ..., 1/m)" then IVIFSE fusion weighted aver-
age operator pL ., degenerates to IVIFSE weighted average operator b fow =
(1/m, 1/m, ..., 1/m)" then IVIFSE fusion weighted average operator pL, , degenerates
to the IVIFSE ordered weighted arithmetic operator p<. So ,b;' o 15 a generalization
of I and be. bL ., concerns with both the characteristics of b and e

Theorem 6.3.8 Suppose that (&, Ak, Gk)yec (B = 1,2,...,m) are IVIFSE sets.
Then, by using the IVIFSE fusion weighted average operator })’;,‘u aggregation is
also an IVIFSE set and

( m

< [1 - H (1 . iﬁ?b‘p))m‘n
m =l

Pg,u((ﬁl- Air Gl)! (52: A'E!! G?)r iy (gmw Am! Gm)) =4¢ 1- l;[l(l -— :)":(-b‘p))w’.]'
[‘ﬁl{‘zﬁ,p)}”ﬂ ﬁ (G >

=1

where (€, Ai, Gi), . =< Fitop) Tatop) s [Citopy Safpy] > 88 the i — th largest of the

m IVIFSE sets ’(§k.A,;.. Gk).m(,-; = m@(Ek, Ak Gr)yp e which can be determined by
using ranking method of IVIFSE sets such as score and accuracy function.
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Proof. It is straightforward by using mathematical induction and Definitions
6.3.6, 6.2.21 and 6.2.23. m

Definition 6.3.9 Let (§,Ak,Gk)rec, (k= 1,2,...,m) be IVIFSE sets. A mapping
PSP K7 (U) —K;(U) is called an IVIFSE generalized ordered weighted average

operator if it satisfies

BEO(€1, Ars G0 (62 A Ga). o (oms s G) = [ o6 i GO

where w = (w1, ws,...,wn)" is a position weight vector of Ay ; v > 0 is a control
parameter which can be chosen according to the given condition and (&;,4:,Gi) 5.6 =<
Wi—(f’m}‘;}\:(-bm)]‘ [Ct?b.p}‘ C:{b,p}] > is the i—th largest of the m IVIFSE sets (§k, Ak Gk )ye
which can be determined by using ranking method of IVIFSE sets such as score and

aceuracy function.

Theorem 6.3.10 Suppose that (i, Ak, Gr)ypc (b = 1,2,...,m) are IVIFSE sets.
Then, by using the IVIFSE generalized ordered weighted average operator ]ﬁg ag-
gregation is also an IVIFSE set and

T

< [ r ]. - Hl{l e (,:I‘(‘ib.m)?')u,’
=

m _
(/1= L0~ ),

P26, Ar, 1), (62 As, G), ooy (G Ay Gim)) = S - E
=g l= _H{l = (L= Gpp)" )™

m ~
3= Jj1— ‘:E(l - (1 . i‘;'b‘p])r)w.-] >,
where (6;,/1;,6,:)%‘5 =< [:?ib.p)‘:}?;tb‘p)]‘ [Cifb,p]‘g.:(_b,p}] > is the i — th largest of the
m IVIFSE sets (&, Ak, Gk)v.c which can be determined by using ranking method of
IVIFSE sets such as score and accuracy function.

Proof. It is straightforward by using mathematical induction and Definitions
6.3.9, 6.2.21 and 6.2.23. m

Corollary 6.3.11 If r = 1 then the IVIFSE generalized ordered weighted average
operator SO degenerate to the IVIFSE ordered weighted average operator p2.
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Definition 6.3.12 Let (§, Ak, Gk )pc (K =1,2,...,m) be IVIFSE sets. A mapping
pg'f] K7 (U) —K((U) is called an IVIFSE generalized fusion weighted averaging
operator if it satisfies

Ibg:i((gl, 4i, GIJ! (§29 ‘42! G2)! sang {gms Ams Gm)) = g ' wi(gi’ A Gi)"f:‘.é‘ir’

where w = (w1, wa, ..., wn )" is a position weight vector . v > 0 is a control parameter.
The IVIFSE set of (&k,Ak, Gk )yi.c. weighted with mwy. is denoted by

(€ Ak, G)yece = m@k(Ek, Ak, Gi),
where w = (w1, @3, ..., wm)" is a weight vector for Ax IVIFSE sets (£, Ak, Gk)vich

and (¢, A, Gi). . is the i — th largest of the m IVIFSE Sets (&, Ak, Gi)rpcy which
can be determined by using ranking method of IVIFSE Sets such as score and accu-

racy function.

Remark 6.3.13 Ifw = (1/m, 1/m,...,1/m)! then IVIFSE generalized fusion weighted
average operator pg;ﬁ degenerates to IVIFSE generalized ordered weighted average
operator f)go.

Theorem 6.3.14 Suppose that (€, Ak, Gk)ypc where k = 1,2,..m are IVIFSE
sets. Then, by using the IVIFSE generalized fusion weighted average operator pz GF

aggregation is also an IVIFSE set and

< [\/1 - ﬁ (1 - (%i{,‘p))r)wls

73[5},)) )]s

PS5, AL, G), (€2, A2, Ga)y ooy (Emy Ay Gim)) = 4 \/
1-

=

(1= (1= G )™,

\/1_ [1(1 - ;(bp)) )4] >,

where (£§i,4i,Gi)3, 7. =< [igp,p) Vito.py) [Q(b‘p 3(5 p)] > is the i — th largest of the
m IVIFSE Sets (gk‘Ak’Gk)Tka —nwk(z;’k,/ik,Gk),m‘ck which can be determined by

using ranking method of IVIFSE sets such as score and accuracy function.

(‘\n:]a

Proof. It is straightforward by using mathematical induction and Definitions
6.3.12, 6.2.21 and 6.2.23. =

Corollary 6.3.15 If r = 1, then the IVIFSE generalized fusion weighted average
operator [Jg‘i, degenerates to the IVIFSE fusion weighted average operator 1’; )
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6.4 Multicriteria Decision Making Of [VIFSE Sets with
The [VIFSE Fusion Weighted Average Operator

Suppose U = {u;;j = 1,2,...,1} be the initial universe, G= {p;; i = 1,2,...,n} be the
set of experts, A= {by; k = 1,2,...,m} be the set of attributes. Opinion of the experts
corresponding to each attribute is represented in the form of an IVIFSE set. The
algorithm and process of the IVIFSE fusion weighted average operator method for
multi attribute decision-making with IVIFSE sets can be summarized as follows.

Step 1: Utilize the evaluations of experts in the form of IV I F'SE sets to determine
the opinions regarding the given alternatives and criteria.

Step 2: Separate the opinions of each expert.

P iy i i .| Uy
- + — o = + — B
b | < Doyp Yorwod Worw Yorwn! > | L | | < DGipnr Yorwo Dy o Yoy pa] >
b2 | < Miowmy Yo Vibewy Toawad] > |- |- | ¢ | < Mitamid Yebaod) Viba o) Yebapid] >
(bapi)® "(bapi)it '(bopi)® "(bopi) (ba.pi)’ "(ba,pi)it '(ba.pi)? '(bapi)
- e — + — - B ¥
bm | < Vo) Vb)) Vo) Yol > 1< | | < | < Do 3 Yibmipd Wb ) Ybmpd] >

Step 3: Assign weights to each criteria.

Step 4: Assign position weights vector. The purpose of this weight vector is to
eliminate the effect of individual preconception on comprehensive assessment.

Stepb : Aggregate attributes by using IV IFSFE fusion weighted average operator.

Step 6: Find the accuracy of each member of U corresponding to each expert.

Step T: Calculate the average accuracy of each member of U.

Step 8: Generate the non decreasing chain of these averages.

Step9: Conclusion.

Example 6.4.1 Let U = {u; =Dairy farming, us =Fish farming, uz =Poultry
Jarming, uy =Goat fattening farm} be the set of small and medium enterprises; G=
{p1,p2,p3} be the set of experts; A= {by =project cost, by =space requirement, by =human
resource requirement} be the set of attributes. Three experts evaluate some enterprise
and their evaluations are expressed in the form of interval valued intuitionistic fuzzy
soft expert sets IVIFSE sets. Compute the comprehensive evaluation of the experts
on the enterprise by using the interval valued intuitionistic fuzzy soft expert fusion

weighted average operator.

Step 1: Utilize the evaluations of experts in the form of IV I FSE sets to determine

the opinions regarding the given alternatives and criteria.
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£(by, p1) = {< uy, [0.4,0.5], [0.2,0.3] >, < ug, [0.1,0.2], [0.6,0.7] >, < ug, [0.2,0.4],
0.5,0.6] > , < uyg, [0.3,0.5], [0.1,0.5] >}, &(b1, p2) = {< w1, [0.2,0.4], [0.4,0.5] >,
< ug, [0.4,0.6], [0.1,0.3] > , < ug, [0.1,0.2], [0.3,0.5] >, < uq, [0.3,0.5], [0.4,0.5] >} ,
£(b1, p3) = {< w1, [0.4,0.5], [0.3,0.4] > , < ug, [0.4,0.5], [0.2,0.4] >, < ug, [0.4,0.7],
[0.2,0.3] >, < w4, [0.1,0.3], [0.5,0.6] >} , &(ba, p1) = {< wy, [0.2,0.3], [0.5,0.6] > ,
< ug, [0.6,0.7], [0.1,0.2] >, < ug, [0.2,0.4], [0.4,0.5] > , < uq, [0.3,0.4], [0.2,0.4] >}
y&(b2, p2) = {< w1, [0.4,0.6], [0.1,0.2] >, < ug, [0.3,0.5], [0.3,0.4] > , < u3, [0.3,0.5],
[0.1,0.5] > , < uq, [0.2,0.5], [0.3,0.4] >}, &(b2, p3) = {< w, [0.2,0.4], [0.3,0.5] >,
< uy, [0.1,0.5], [0.4,0.5] > , < ug, [0.3,0.5], [0.0,0.3] >, < uyg, [0.4,0.5], [0.2,0.4] >},
£(b3, ;) = {< w1, [0.4,0.5], [0.1,0.3] >, < ug, [0.3,0.4], [0.3,0.5] > , < ug, [0.1,0.3],
(0.3,0.5] >, < ug, [0.2,0.3], [0.2,0.4] >},£(bs, p2) = {< w, [0.3,0.4], [0.4,0.5] > ,
< uy, [0.4,0.5], [0.2,0.3] >, < ug, [0.3,0.4], [0.2,0.4] > , < (u4, [0.2,0.4], [0.1,0.4] >}
, €(b3, p3) = {< uy, [0.4,0.5], [0.2,0.3] >, < ug, [0.3,0.4], [0.4,0.5] >, < ug, [0.2,0.5],
(0.0,0.3] >, < w4, [0.2,0.3], [0.2,0.5] >}.

Step2:

P | w u9

< [0.4,0.5],[0.2,0.3] >

< [0.1,0.2],[0.6,0.7) >

< [0.2,0.3],[0.5,0.6] >

< [0.6,0.7],[0.1,0.2) >

< [0.4,0.5],[0.1,0.3] >

< [0.3,0.4], [0.3,0.5] >

U3

Uy

< [0.2,0.4],[0.5,0.6] >

< [0.3,0.5],[0.1,0.5] >

< [0.2,0.4],[0.4,0.5] >

< [0.3,0.4],[0.2,0.4] >

< [0.1,0.3],]0.3,0.5] >

< [0.2,0.3],[0.2,0.4] >

Table 6.4.1. Opinion of expert p;

P2

Uy

P

by

< [0.2,0.4],0.4,0.5] >

< [0.4,0.6],[0.1,0.3] >

< [0.4,0.6],0.1,0.2] >

< [0.3,0.5],[0.3,0.4] >

< [0.3,0.4],[0.4,0.5] >

< [0.4,0.5],[0.2,0.3] >

P2

w3

Uq

by

<1[0.1,0.2],[0.3,0.5] >

< [0.3,0.5],[0.4,0.5] >

< [0.3,0.5],[0.1,0.5] >

< [0.2,0.5],[0.3,0.4] >

by

< [0.3,0.4],[0.2,0.4] >

< [0.2,0.4],[0.1,0.4] >

Table 6.4.2. Opinion of expert p;
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p3 | U1 U

by | <[0.4,0.5],(0.3,0.4] > | < [0.4,0.5],[0.2,0.4] >
by | <[0.2,0.4],[0.3,0.5] > | <[0.1,0.5], [0.4,0.5] >
by | <[0.4,0.5,[0.2,0.3] > | < [0.3,0.4],[0.4,0.5] >

P3| u3 Uy

b | <[0.4,0.7),[0.2,0.3] > | < [0.1,0.3],[0.5,0.6] >
by | <[0.3,0.5],[0.0,0.3] > | < [0.4,0.5],[0.2,0.4] >
b | < [0.2,0.5],[0.0,0.3] > | < [0.2,0.3],[0.2,0.5] >

Table 6.4.3. Opinion of expert p3

Step3: w, = (0.34,0.28,0.38)" be a normalized weight vector of criteria.

Stepd: w = (0.25,0.50,0.25)" be a position weight vector. The purpose of this
weight vector is to eliminate the effect of individual preconception on comprehensive
assessment.

Step5: Aggregate criteria by using the I'VIFSE fusion weighted average operator

< [1 = ﬁ(l s(bp)
b;..d((glJAl‘Gl)’(EE‘AE'G2]?“" [Em' Am'Gm)} = A 1 - I_I(]' o Iﬁp))dr]’

| [H S ;H( )1 >

where (&;, A& Giy.z. =< Diwpy i[bp)] [C;(bp)‘ L(bm] > is the i — th largest of the

m IVIFSE sets (!;'L., Ak,Gk)q,,,(k = mwg &k, AksGr)ve.c,, Which can be determined by
using the ranking method of IVIFSE sets such as score and accuracy function.,

First, we calculate ’{ék,Ak,Gk]ﬂ,k‘C; = mw(&k,Ak.Gr)v,.c. by using normalized
weight vector of criteria. In this example, m = 3, ’-f;? = 3(0.34) < [0.4,0.5],[0.2,0.3] >=
1.02 < [0.4,0.5],[0.2,0.3] >=< [1—(1—0.4)102,1 — (1-0.5)192], [0.2192 0.3102] >=<
[0.4061, 0.5069], [0.1937,0.2929] > .
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S
oy

Ul

U3

< [0.4061,0.5069], [0.1937,0.2929] >

< [0.1019, 0.2036], [0.5939, 0.6950] >

< [0.1709, 0.2589], [0.5586, 0.6511] >

< [0.5368,0.6363], [0.1445, 0.2587] >

she )=}

< [0.4414,0.5462], [0.0724, 0.2535] >

< [0.3341,0.4414],[0.2535, 0.4538] >

b
=

ug

Uy

< [0.2036,0.4061], [0.4931, 0.5939] >

< [0.3050, 0.5069], [0.0955, 0.4931] >

< [0.1709, 0.3489], [0.4632, 0.5586] >

< [0.2589,0.3489), [0.2587, 0.4632] >

BE

o
w

< [0.1132,0.3341], [0.2535, 0.4538] >

< [0.2246,0.3341], [0.1597, 0.3518] >

Table 6.4.4.

=
(%]

uy

Uz

< [0.2036, 0.4061], [0.3927, 0.4931] >

< [0.4061,0.6073], [0.0955, 0.2929] >

< [0.3489, 0.5368], [0.1445, 0.2587] >

< [0.2589,0.4414], [0.3637, 0.4632] >

10

o
Y]

< [0.3341,0.4414], [0.3518, 0.4538] >

< [0.4414,0.5462], [0.1597, 0.2535] >

3
v3

3

g

< [0.1019,0.2036], [0.2929, 0.4931] >

< [0.3050,0.5069], [0.3927, 0.4931] >

< [0.2589, 0.4414], [0.1445, 0.5586] >

< [0.1709,0.4414], [0.3637, 0.4632] >

11

< [0.3341,0.4414], [0.1597,0.3518] >

< [0.2246, 0.4414], [0.0724, 0.3518] >

Table 6.4.5.

uy

Uy

< [0.4061,0.5069], [0.2929, 0.3927] >

< [0.4061,0.5069], [0.1937, 0.3927] >

< [0.1709,0.3489], [0.3637, 0.5586] >

< [0.0847,0.4414], [0.4632, 0.5586] >

< [0.4414, 0.5462], [0.1597, 0.2535] >

< [0.3341,0.4414], [0.3518, 0.4538] >

u3

Uy

< [0.4061,0.7071], [0.1937, 0.2929] >

< [0.1019, 0.3050], [0.4931, 0.5939] >

< [0.25809, 0.4414], [0.0000, 0.3637] >

< [0.3489,0.4414], [0.2587, 0.4632] >

NN A

< [0.2246, 0.5462], [0.0000, 0.2535] >

< [0.2246,0.3341], [0.1597, 0.4538] >

Table 6.4.6.
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Find scores of each of the above elements by using Definition 6.2.25 as below:

P1| ug u3 Uy
by | 0.2132 —0.4917 | —0.2387 | 0.1117
by | —0.3900 | 0.3850 —0.2510 | —0.0571
by | 0.3309 0.0341 —0.1300 | 0.0236
Table 6.4.7.
P2 | w01 U9 us i
by | —0.1381 | 0.3107 —0.2403 | —0.0370
by | 0.2413 —0.0633 | —0.0014 | —0.1073
by | —0.0151 | 0.2872 0.1320 0.1209
Table 6.4.8.
P3| u1 ug us Uy
by | 0.1137 0.1633 0.3133 | —0.3401
by | —0.2013 | —0.2479 | 0.1683 | 0.0342
by | 0.2872 —0.0151 | 0.2587 | —0.0274
Table 6.4.9.

Now find the i — th largest of the m IVIFSESs.

uy

uj

< [0.4414, 0.5462], [0.0724, 0.2535] >

< [0.5368,0.6363], [0.1445,0.2587] >

< [0.4061,0.5069], [0.1937, 0.2929] >

< [0.3341,0.4414], [0.2535, 0.4538] >

< [0.1709,0.2589], [0.5586, 0.6511] >

< [0.1019,0.2036], [0.5939, 0.6950] >

U3

g

< [0.1132,0.3341], [0.2535, 0.4538] >

< [0.3050, 0.5069], [0.0955, 0.4931] >

< [0.2036,0.4061], [0.4931, 0.5939] >

< [0.2246,0.3341], [0.1597, 0.3518] >

< [0.1709,0.3489], [0.4632, 0.5586] >

< [0.2589, 0.3489)], [0.2587, 0.4632] >

Table 6.4.10.

3

I
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]

Uy

< [0.3489,0.5368], [0.1445,0.2587] >

< [0.4061,0.6073], [0.0955, 0.2929] >

< [0.3341,0.4414], [0.3518, 0.4538] >

< [0.4414,0.5462], [0.1597, 0.2535] >

< [0.2036,0.4061], [0.3927, 0.4931] >

< [0.2589,0.4414], [0.3637,0.4632] >

U3

Uq

< [0.3341,0.4414], [0.1597,0.3518] >

< [0.2246,0.4414], [0.0724, 0.3518] >

< [0.2589,0.4414], [0.1445, 0.5586] >

< [0.3050,0.5069), [0.3927, 0.4931] >

< [0.1019,0.2036], [0.2929, 0.4931] >

< [0.1709, 0.4414], [0.3637, 0.4632] >

Table 6.4.11.

Uy

U3

< [0.4414,0.5462], [0.1597, 0.2535] >

< [0.4061,0.5069], [0.1937, 0.3927] >

< [0.4061, 0.5069], [0.2929, 0.3927] >

< [0.3341,0.4414], [0.3518, 0.4538] >

< [0.1709, 0.3489], [0.3637, 0.5586] >

< [0.0847,0.4414], [0.4632, 0.5586] >

us

i

< [0.4061,0.7071], [0.1937, 0.2929] >

< [0.3489, 0.4414], [0.2587, 0.4632] >

< [0.2246, 0.5462], [0.0000, 0.2535] >

< [0.2246,0.3341], [0.1597, 0.4538] >

< [0.2589, 0.4414], [0.0000, 0.3637] >

<[0.1019, 0.3050], [0.4931,0.5939] >

Table 6.4.12.

Further, aggregate criteria by using the IV I FSE fusion weighted average operator.
For example for u; corresponding to expert py, < [1—(1—0.4414)%25(1—0.4061)%2°(1—

0.1709)%25, 1—(1—0.5462)%-25(1—0.5069)%5°(1—0.2589)°-25], [0.0724°-2%0.19370-500.5586°-25,

0.2535%-250.2929%-500.6511%2%] >=< [0.3643, 0.4652], [0.1974, 0.3450] > .

Uy

U2

”

< [0.3643,0.4652], [0.1974, 0.3450] >

< [0.3446,0.4517], [0.2725, 0.4387] >

P2

< [0.3075,0.4587], [0.2895, 0.4026] >

< [0.3912, 0.5390], [0.1725, 0.3056] >

P3

< [0.3643,0.4823], [0.2657, 0.3844] >

< [0.2993,0.4585], [0.3246, 0.4610] >

u3

g

P1

< [0.1736,0.3747], [0.4111, 0.5468] >

< [0.2540, 0.3857], [0.2256, 0.4100] >

P2

< [0.2430,0.3896], [0.0000, 0.4823] >

< [0.2535,0.4752], [0.2524, 0.4462] >

P3

< [0.2828,0.5716], [0.0000, 0.2876] >

< [0.2300, 0.3559], [0.2388, 0.4879] >

Table 6.4.13. Aggregated criteria
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Step6: Calculate accuracy of each member of U corresponding to each expert,

wy U9 uy 1y
p1 | 0.6860 | 0.75638 [ 0.7531 | 0.6377
p2 | 0.7292 | 0.7042 | 0.5575 | 0.7137
pa | 0.7484 | 0.7717 | 0.5710 | 0.6563

Table 6.4.14. Accuracies

StepT: Calculate average uy = 0.7212, uy = 0.7432, ug = 0.6272, uy = 0.6692.

Step8: Generate the non decreasing chain of these averages, we get
Uz > UL > Ug > U3

Step9: Hence us is the best one,

6.5 Conclusion and Future Work

In this chapter, IVIFSE set has been defined. In this structure at the same time
we consider three features of the membership degree, nonmembership degree, and
hesitancy degree. In decision analysis this structure is more flexible and realistic
for dealing with ambiguity and uncertainty than the fuzzy sets. Some operations of
IVIFSE Set have been defined. We have introduced some operators for IVIFSE
sets. Through these operators we can make a good decision in multi criteria decision
making. An algorithm has been developed for multi criteria decision making problems
with the aid of IVIFSE sets. The suggested technique is better than the existing
techniques on the basis of experts opinion. We aim to construct decision making
techniques parallel to AHP and TOPSIS using this structure. We also aim to study
distance, entropy measures and similarity measures for this structure.



Chapter 7

Matrix Algebra of GSFES's,
CSESs and IVIFSESs

7.1 Introduction

Cagman et al. presented the concept of soft matrices and fuzzy soft matrices in [L1] and
[14]. Chetia et al. also commented on some results of intuitionistic soft matrix theory
in [16]. There are certain multicriteria decision making problems in which ordinary
matrix algebra work to fail due to its own operations. But by using soft matrices
structure we can easily tackle these types of problems. Ordinary matrix algebra have
some limitations in their laws. In order to get rid of these problems we may use soft
matrices operations.

In this chapter, we first define graded soft expert matrices, cubic soft expert matri-
ces and interval-valued intuitionistic fuzzy soft expert matrices which are representa-
tions of graded soft expert sets, cubic soft expert sets and interval-valued intuitionistic
tuzzy soft expert sets. Using matrix representation the information can be stored and
manipulated easily. This representation also makes the multicriteria decision making
problems easy to handle. Using this representation, we can easily compare the opinion
of experts in meaningful way. There are some interesting results which do not hold in
ordinary matrix algebra but these results holds in graded soft expert matrices, cubic
soft expert matrices and interval-valued intuitionistic fuzzy soft expert matrices, for

example, commutative law with respect to product holds.

7.2 Matrix Algebra of Graded Soft Expert Sets (GSESs)

In this section, we define matrices algebra for graded soft expert sets. Further we

discuss some operations on it and investigate several properties with respect to their

104
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operations,

Definition 7.2.1 Let U be a finite universe set containing n alternatives, E; a set of
criteria and X; a set of experts (or decision makers). Let O be a set of opinions with a
gwen preference relation = among the opinions. A graded soft expert set (abbreviated
as GSE set) (F,A,Y) is characterized by a mapping F : AxY — P(U x O) defined
for everye € A andp € Y by Fle,p) = {(ui,0;) : i € 1}, where I = {1, 2, 3,...,n},
ACE|Y C X and P(U x O) denotes the power set of U x O. Here the set of opinions
O contains graded values of the given parameters i.e. the values oy,0,...,0, can be
graded as 01 2 09 2 ... 3 0, which means that o, is the most preferred value while o
is the least preferred one and so forth.

Definition 7.2.2 Let U be the initial universe, E; a set of criteria and X; a set of
experts (or decision makers). and O be a set of opinions. F(a,y) = {(up,0p) : p € I},
where I = {1, 2, 3, ...,q} is a graded soft expert set

y | w U9 g o | i

ay | (ar,uy) | (@, ug) | (ay,us) (a1, um)
ag | (ag,u1) | (az,w2) | (a2, u3) | ... | (a2, um)
agz | (az,u1) | (a3, u2) | (a3, us) (a3, um)

a | (a,ur) | (ag,uz) | (ag,us) | .. | (ar, um)

Table 7.2.1

If a;j = opinion of expert y corresponding to pair (a;,u;) = o;we can define

ain @12 ... Om
= a9 9o ... (121
Ay = [aijllxm =

an ap ... Qm

it is called Graded soft expert matriz (GSEM) of the Graded soft expert set (GSES)

of order I x m over U.

Example 7.2.3 Let U = {uy, us, us, uq, us} be a set of alternatives, E = {ay, as} be
a set of criteria, X = {y1,y2} be a set of experts and O = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0} be the set of possible grades for the given parameters. Let GSE
set is given as follows F(ay,y1) = {(u1,0.5), (u9,0.1), (u3,0.7), (u4,0.9), (us,0.2)},
Flay,y2) = {(u1,0.5), (u20.2), (u3,0.7), (u4,0.3), (us,0.4)}, Flag,y1) = {(u1,0.9),
(u2,0.3), (ug,0.2). (ug,0.3), (us,0.6)}, Flas, y2) = {(uy,0.8). (u2,0.9), (uz.0.4). (ug,0.1),
(us5,0.4)}.
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Graded soft expert matriz (GSEM) of the Graded soft expert set (GSES) corre-
[ 05 01 0.7 09 0.2
i 09 03 02 03 06 e

Graded soft expert matriz (GSEM) of the Graded soft expert set (GSES) corre-
[ 05 02 07 03 04 ]
08 09 04 01 04
Collection of all GSE matrices is denoted by GSEMsixm.

sponding to expert yy is given as A'y, =

sponding to expert ys is given as sz =

7.2.1 Operations on GSE Matrices

Now we define some operations on GSE matrices.

Definition 7.2.4 Let Ay = [@ij]ixm € GSEM 8ixm- A is called zero GSE matrix if
for all i and j a;; = 0.

00 00
Example 7.2.5 Ay = il S
0000
0000

4x4

Definition 7.2.6 Let Ay = [aijlixm € GSEMsixm. Ay is called universe GSE ma-
trix of for all i and j a;; = 1.

Example 7.2.7 Ay =

— e e

1
1
1
1

=t = et

1
1
1
1 x4

Definition 7.2.8 Let Ay = [aijlixm where a;; = o, A, = [bijlixm where bjj = o;v €
GSEMsixm.

Product of two GSE matrices is denoted and defined as Ay RA, = (@ij ® bijlixm
where a;; ® bij = (05)(0;).

03 03 04 0.3 0.1 0.2 0.7 0.2
Example 7.2.9 LEtAy _ 0.2 01 09 05 i 04 04 03 0.5

09 04 06 0.7 05 0.6 05 0.6

0.5 0.7 0.8 0.2 . 07 08 02 02], ,

0.03 0.06 0.28 0.06
0.08 0.04 0.27 0.25
045 024 0.30 0.42 ' £
0.35 0.56 0.16 0.04

then Ay ®A, =

Ax4

A




7. Matrix Algebra of GSESs, CSESs and IVIFSESs 107

Definition 7.2.10 Let Ay = [aij)ixm where a;; = o;, A, = [bijlixm where bj; = O; €
GSEM sy m.
Min-Product of two GSE matrices is denoted and defined as A v A, = (@i Abijliscm

where a;;Abij = (0; A o;-).

0.1 0.2 04 0.2
0.2 01 03 0.5
0.5 04 0.5 0.6
0.5 0.7 02 0.2

Example 7.2.11 Consider Ay, A, of Example 7.2.9, then A.yAAz =

4x4
Definition 7.2.12 Let fiy = [ﬂ'ij]!xm where (jj = 0Of, Az = [bij]Ixm where bgj = O; S
GSEMsixm.
Max-Product of two GS E matrices is denoted and defined as A,,v A, = (@i Vbijlixm
where angb,'j = (OJ Vv O;)
0.3 03 0.7 0.3
5 . 5 — & 04 04 09 05
Example 7.2.13 Consider A,, A of Example 7.2.9, then A,VA. =
0.9 06 06 0.7
0.7 08 0.8 0.2
4x4

Definition 7.2.14 Let z;-ily = [@ijixm where a;; = o, A, = [bijlixm where b;; = r); €
GSEMspym.
Addition of two GSE matrices is denoted and defined as .1511{_, ®A, = [@ij ® bijlixm

! )
where a;; & bj; = oj + 0; — 0j0;.

0.1 02 07 0.2
04 04 03 0.5
05 06 05 0.6
0.7 08 0.2 0.2

Example 7.2.15 Consider f'l'y, A, of Example 7.2.9, and A, =

4x4
037 0.44 082 044

0.52 0.46 0.93 0.75
095 0.76 08 0.88

0.85 0.94 0.84 0.36 P

then f-iy @A, =

Definition 7.2.16 Let A'y = [aijlixm where aij = 0j € GSEM sixm. Scalar product
of GSE matriz with real number k > 0 is denoted by kﬁiy = [(kai;] where ka;; =
1—(1—o0;)*.

Example 7.2.17 Consider A, of Evample 7.2.9, let k = 0.9 then
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0.2745 0.2745 0.3685 0.2745
0.1819 0.0904 0.8741 0.4641
0.8741 0.3685 0.5616 0.6616

0.4641 0.6616 0.7650 0.1819 -

0.94, =

Definition 7.2.18 Lel f'iy = |ai;lixm where aij = 0j € GSEM58ixm. Power of GSE
matriz is denoted by (A,)* = [(aij)*] for k > 0 where (ai;)* = (0j)*.

Example 7.2.19 Consider fliy € GSEMS;«m of Example 7.2.9, let k = 0.34 then
0.6640 0.6640 0.7323 0.6640
0.5785 0.4570 0.9648 0.7900
0.9648 0.7323 0.8405 0.8858

0.7900 0.8858 0.9269 0.5785 s

(“'!.Ls.'){]'34 =

Definition 7.2.20 Let _,Zi_y = [aijlixm where a;; = 0; € GSEMs;y,,. Complement of

GSE matriz is denoted by (A,)° = [(ai;)] where (a;;)° =1 — oj.

0.7 07 06 07
0.8 09 0.1 0.5
0.1 06 04 03
0.5 03 02 08

Example 7.2.21 Consider Ay of Ezample 7.2.9, then (fliy)" -

4x4

Definition 7.2.22 Let ?iy = [aijlixm where ai; = o0;,, A, = [bijlixm where b;; = o; €
GSEMspym. Then Ay = [aijlixm 15 @ GSE sub matriz of A, = [bijlixm if @iy < by;
for all i and j. It is denoted by /:iy € A: .

7.2.2 Properties of GSE Matrices

In below we discuss some properties of GSE matrices.

Proposition 7.2.23 Let Ay = [a4;]iems A, = [bijlixm € GSEM S m. Then commu-
tative, De Morgan's, involution laws with respect to Min-Product and Max-product and
double negation law also hold:

1) A, v A, = A, 7 A,
2) A, A A, = A, A A,
3) (Ay v A.)° = (A.)° A (4,)°
4) (Ay A Ay)° = (A:)° v (Ay)°

5) Az \4 A: = I'Eiz
6) A, AA, = A,
7) (A:)°)° = A..
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Proof. Straightforward. m

Proposition 7.2.24 Let Ay =] [a,:j]“m, Az = [bij]!xrn: Ar = [Cij].t'xm € GSEMSsum.
Then associative and distributive laws also hold with respect to Min-Product and Max-
Product:

1) JV(A VA:) (yVA)VAt
2)A A(A, N A) = (A, A A) A Ay
3) A (szf)=(AyAA) (A A 4)
4) A yv (A: D Ay) = (A, v A;) & (A v Ay).

Proposition 7.2.25 Let Ay = [@5)ixm, A, = [bijlixm € GSEM5sixm. Then Commu-
tative and De Morgan’s laws with respect to Addition and product also hold:
1) Ay® A, = A, @ 4,
2) A, @A, = A, @4,
3) (A, @ A.)° = (A.)° ® (4,)°
4) (Ay @ A:)° = (A.)° @ (A4y)°.
Proof. Straightforward. m

Proposition 7.2.26 Let Ay = [aij]!xm1 ['iz = [bgj]gx,n, /L = [cij]lxm € GSEMSs)ym.
Then associative law also hold with respect to addition and product:

) A,eA:-a0d)=(4,0A.)s A
2) A, @ (A, ® Ay) = (4, ® 4.) ® AL

) i .’ ;
Proof. Consider Ay = [a;j]ixm, where a;; = 0, A = [bijlixm, where b;; = o},

"

A‘ = [cfj]ixma where Cij = 0;

Y2
1) A f'B(AzEBAt) = au@(bu!@cij) OJEB(O +0 0"0;) —. oj+(o; J}
Oj(o'-—l—o ojoj)_oj-l—o +o ; 0; —0j0;— o —I—ajr 0; —oJ-+o o;,o +o oJoJ-

+o_,oo —(03+o ooJ)EBo “(A GBA)'EBA;
z)A ® (A, @At)_azjsg(szgclj)_oj(J J) (0] J) = (A, @A) 4. n

Proposition 7.2.27 Let Ay = [aij]ixm, Ay = [Bis)ixms Ay = [cijlixm € GSEM Sixm.
Then

1) A(J@Ay 9) Au@ﬁ;,:fig

2) A, e Ay 10) Ay ® 4, = 4,

3) (%O)C=A;U 11) Ay v A, = Ay

4) (Ay)c=4y |[12) Ay A A, =4,

5) dgw Ay = 4, | 13) Ay @ 4o = Ay

6) Ay ® A, = Ag | 14) AU@:AO = Al
) AoV Ay = 4, A

)

8) Ag A Ay = Ay
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Proof. Straightforward. =

Remark 7.2.28 Distributive law with respect to addition over product do not hold in
GSEMs.

Example 7.2.29 Let Ay = [0.5]1,1, Ay = [0.3];,; and A, = [0.9];,; -
Ao (A ®A)—[Uo]€[-) [03]@[09] = [ 0.5] @ [0.27] = [0.635].
(A @A) ® (A, @ A,) = ([0.5] @ [0.3]) ® ([0.5] ® [0.9]) = [0.65] ® [0.95] = [0.6175].
Hence A, ® (A, @ A,) # (A, ® A,)) ® (A, @ A,).

7.3 Matrix Algebra of Cubic Soft Expert Sets (CSESs)

In this section, we define matrices algebra for cubic soft expert sets. Further we
discuss some operations on it and investigate several properties with respect to their
operations.

Definition 7.3.1 Let U be a finite universe set containing n alternatives, E; a set
of criteria and X ; a set of experts (or decision makers). A pair (3, E, X) is called a
cubic soft expert set over U if and only of 3 : E x X — CP(U) is a mapping into the
set of all cubic sets in U. Cubic soft expert set is denoted and defined as

(B, B, X) = {B(e,x) = {< u, Aer)(u), A, ., () >:u €U, (e,z) € E x X}.

where Agz)(u) is an interval valued fuzzy set and X, (u) is a fuzzy set. Here decision
makers give their opinions in the form of cubic set.

The collection of all cubic soft expert sets CSESs is denoted as B.

Definition 7.3.2 Let U be the initial universe, E; a set of criteria and X; a set of
experts (or decision makers). Ble,z) = {< u, Apzy(u), A, (u) > u € U, (ex) €
E x X be the cubic soft expert set.

xz iy Ug w3 wee | Um

e1 | (er,u1) | (er,ug) | (er,ug) | ... | (€1, um)
ea | (ea,u1) | (e2,u2) | (ez,u3) | ... | (€2, um)
es | (es,u1) | (es,u2) | (es,u3) | ... | (es,um)
e | (e, up) (eg,ug) (er,uz) | ... | (er,um)

Table 7.3.1
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If a;j; = opinion of expert x corresponding to pair (e;,u;) =< A =[A7,A%], A >, we

a1 412 ... Gim
e ag1 aoy ... 1921

can define By = [aijlixm =
an a2 .. Am

it is called cubic soft expert matriz (CSEM) of the cubic soft expert set (CSES)
of order | x m over U,
Collection of all cubic soft expert matrices (CSE matrices) is denoted by CSEM sjxm.

Example 7.3.3 Let U = {u,us,u3} be the initial universe, E = {e1,ea} be the set
of attributes, X = {x1,x2} be the set of experts. Then the cubic set (8,E,X) =
{Beyz) = {< u, Aegy(u), A, (u) >u € U, (e,z) € (Ex X)} in U is an internal
cubic soft expert set.
B(e1,z1) = {(u,[0.5,0.8],0.7
Bleg, z1) = {(u1,[0.4,0.7],0.6

(e.x)

, (u2,[0.6,0.9],0.8), (us, [0.4,0.7],0.5) },
, (u2,[0.7,0.9],0.8), (us, [0.3,0.5],0.4) },
B(er, zg) = {(u1,[0.4,0.8],0.5), (usg, [0.6,0.9],0.8), (us, [0.4,0.6],0.5)},
Blea, x2) = {(u1,[0.3,0.8],0.4), (usg,[0.6,0.9],0.7), (us, [0.5,0.7],0.6) }.
Cubic soft expert matriz (CSEM) of the Cubic soft expert set (CSES) correspond-
ing to expert xy s given as
s | <[05,0.8],0.7> <[0.6,0.9],0.8> < [0.4,0.7],0.5>
o { <[0.4,0.7),06 > <[0.7,0.9,08 > < [0.3,0.5],0.4 > anl
Cubic soft expert matriz (CSEM) of the Cubic soft expert set (CSES) correspond-
ing to expert xy is given as
< [0.4,0.8],0.5 > <[0.6,0.9],0.8> <[0.4,0.6],0.5>
<[0.3,08],04 > <[0.6,0.9],0.7> <[05,0.7,06> |, .

— e et

T2

7.3.1 Operations on C'SE Matrices

This subsection gives various operations defined on C'SE matrices:

Definition 7.3.4 Let :5.’0 = [aijlixm € CSEMsixm. E)'.o is called zero CSE matriz if
for all i and j a;; =< [0,0],0 >.

<[0,0],0 > <[0,0],0 > <0,0,0> <[0,0],0>
< [0,0,0 > <[0,0],0> < [0,0],0> <[0,0],0>
<[0,0,0> <[0,0,0> <[0,0],0> < [0,0],0>
< [0,0,0 > <[0,0,0> <[0,0],0> <[0,0],0>

Example 7.3.5 g’o =

4x4

Definition 7.3.6 Let By = [aijlixm € CSEMsjxm. By is called universe CSE ma-
trix of for all i and j a;j =< [1,1],1 >. I



7. Matrix Algebra of GSESs, CSESs and IVIFSESSs 112
<[L1,1> <[1,1,1> <[1,1],1> <[L1,1>

Example 7.3.7 }5”: <1 <Y1 <[l <l
LIS <EA1s <[Gais <115
<13 <it1,1> <l <@l -

Definition 7.3.8 Let By = [aij]ixm € CSEMsiym. By is called null CSE matriz if

Jor all v and j a;; =< [1,1],0 >.

<[1,0> <[L1,0> <[L,1],0> <[1,1],0>

Example 7.3.9 EN =

<[,1,0> <[1,1,0> <[1,1,0> <[1,1],0>

<[,1,0> <[1,1,0> <[1,1,0> <[1,1],0>
<[,1,0> <[1,1,0> <[1,1,0> <[1,1},0>

4x4

Definition 7.3.10 Let B = [aijlixm € CSEMsixm. By is called absolute CSE

matriz if for all i and j ai; =< [0,0],1 >.

< [0,0],1> < [0,0,1> <[0,0],1>
< [0,0,1> <[0,0],1> <[0,0],1>
<[0,0,1> <[0,0),1> <[0,0],1>
<[0,0,1> <[0,0,1> <[0,0],1>

Example 7.3.11 E_,; =

Definition 7.3.12 Let By, = [aij|ixm where a;; =< [A], AT], M1 >, By,

where b;; =< [A;, A;], Ao > e CSEMsium.

< [0,0],1 >
< [0,0],1 >
< [0,0],1 >
< [0,0],1 >

4%

4

[bij]i xim

Addition of two CSE matrices is denoted and defined as Em EB}:':’,_-Q = [aij ®bijlixm-
where ai; D bij =< [Al_ + A‘z_ = AIA.;, AT + A;_ — ATA;],/\; + A — AjAg >,

. < [0.6,0.9],0.2> <[0.2,0.3],0.1 >

Example 7.3.13 Let B,, = | <[0.3,0.5],0.1 > < [0.4,0.5],0.3 >

< [0.6,0.7,0.6 > < [0.6,0.7],0.5 >
. < [0.7,0.9],0.5 > < [0.1,0.7],0.3 >
By, = | <[0.8,0.9,0.7> <[0.2,0.5,0.7 >

<[0.2,0.7,06 > <[0.3,0.8,05> ], ,

- - < [0.88,0.99],0.6 > < [0.28,0.79],0.37 >

then By, ® Ba, = | <[0.86,0.95],0.73 > < [0.52,0.75],0.79 >

< [0.68,0.91],0.84 > < [0.72,0.94],0.75 >

. and

Jx2

3Ix2

Definition 7.3.14 Let By, = [aijlixm where a;j =< [A], AT], A1 >. Bzy = [bijlixm

where b;; =< [Ay, AJ), A2 > € CSEMsixm.
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P-Min Product of two CSE matrices s denoted and defined as By, Ap B, =
[a"éj Ap btj]ixm-
where a;j Ap bij =< [AT AA;, AT ANAT, A AN >

Example 7.3.15 Consider Exl.:éx.z of BEvample 7.3.13,
. . < [0.6,0.9],0.2> < [0.1,0.3],0.1 >
then By, Ap Bry = | <[0.3,0.5,0.1> < [0.2,0.5],0.3 >
< [0.2,0.7,0.6 > < [0.3,0.7],0.5 > i
Definition 7.3.16 Let Exl = [aijlixm where a;; =< [A], AT], A1 >, .B.mg = [Bij)ixm
where b;; =< [A5, AS], A2 > € CSEMsixm.
P-Maz Product of two CSE matrices is denoted and defined as .ém Vp EIE =
[@ij VP bijlixm-
where a;j Vp bij =< [AT V A7, AT VAT, A\ v >.

Example 7.3.17 Consider EII,EIQ of Exvample 7.3.13,
< [0.7,0.9,0.5 > < [0.2,0.7],0.3 >
then By, Vp Bay = | < [0.8,0.9],0.7> < [0.4,0.5),0.7 >
< [0.6,0.7],0.6 > < [0.6,0.8],0.5 > —_—
Definition 7.3.18 Let EII = [aijlixm where a;; =< [A7, AT], A >, Em = [Bis)isxm
where bj; =< [A5, AT], Ao > € CSEMsixm.
R-Min Product of two CSE matrices is denoted and defined as }_;II AR :’f:’r_! =
[aij AR bijlixm-
where a;j Ag bij =< [A]7 AN A5, AT ANAT, AV e >

Example 7.3.19 Consider :E;r_l. En of Bxample 7.5.13,
. - < [0.6,0.9],0.5 > < [0.1,0.3],0.3 >
then By, Ar B, = | < [0.3,0.5],0.7> < [0.2,0.5],0.7 >
< [0.2,0.7,0.6 > < [0.3,0.7],0.5 > 4
Definition 7.3.20 Let :B.r, = [aijlixm where a;; =< [A], Af], M1 >, Témg = [bijlixm
where bjj =< [A5, AJ], A2 > € CSEM sy pn.
R-Max Product of two CSE matrices is denoted and defined as Exl VR :B.’,,.z =
[@ij V& bijlixm.
where a;; Ve bij =< [AT VA7, AT VAT, M AN >
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Example 7.3.21 Consider B_,, - E‘,:z of Example 7.3.13,
<[0.7,09,02> <[0.2,0.7],0.1 >
then By, Vy Byy = | < [0.8,0.9],0.1> < [0.4,0.5],0.3 >
<[06,0.7,0.6 > <[0.6,08],05> ], ,
Definition 7.3.22 Let Exl = [aijlixm where aij =< [A], Ai’], A1 >, 332 = [bijlixm
where bjj =< [A5, Aj], Aa > € CSEMsixm.
Product of two C'SE matrices is denoted and defined as EII ® 352 = [aij ® bij)ixm-
where a;; @ bij =< [AI_A; ATA_;], AAg >

Example 7.3.23 Consider Ezl,g’m of Example 7.3.13,
< [0.42,0.81],0.10 > < [0.02,0.21],0.03 >
then By, ® Bay = | < [0.24,0.45],0.07 > < [0.08,0.25],0.21 >
< [0.12,0.49],0.36 > < [0.18,0.56],0.25 > o
Definition 7.3.24 Let .é,,-l = [@ijlixm where a;j =< [A7, Ai’], AL > € CSEMSixm.
Sealar Product of CSE matrices with arbitrary real number k > 0 is denoted and
defined as L.E?m = [kaijlixm-
where kaij =< [L— (1— A7), 1= (1= AP, 1= (1 = Ak >

Example 7.3.25 Consider Erl of Example 7.3.13, let k = 0.4
. < [0.3068, 0.6018],0.0853 > < [0.0853,0.1329],0.0412 >
then 0.4B;, = | < [0.1329,0.2421],0.0412 > < [0.1848,0.2421},0.1329 >
< [0.3068, 0.3822],0.3068 > < [0.3068,0.3822],0.2421 > | |
Definition 7.3.26 Let B, = [aj|ixm where a;; =< [A], A}], A > € CSEM s .
Power of CSE matrices with arbitrary real number k > 0 is denoted and defined
LL]
as (Bqg,) = (( aaj kl{xm
where (a;;)* =< [(A7)¥, (AD)¥], (A)* > .

Example 7.3.27 Consider Exl of Example 7.3.13, let k = 0.10
. < [0.9502,0.9895],0.8513 > < [0.8513,0.8865], 0.7943 >
then (B,,)*1% = | < [0.8865,0.9330],0.7943 > < [0.9124,0.9330], 0.8865 >
< [0.9502,0.9649],0.9502 > < [0.9502,0.9649],0.9330 > |,

(1]
Definition 7.3.28 Let B,, = [aj]ixm where a;j =< [A], A+] A > € CSEMsixm-

Complement of CSE matrices is denoted and defined as US’J.:1 ¢ = [(aij)Tixm:
where (a;;)° =< [L— A, 1-A7],1-M\ >.
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Example 7.3.29 Consider E’,H of Example 7.3.13, then
. < [0.1,0.4},08 > < [0.7,0.8],0.9 >
(By) = | <[0.5,0.7],09 > < [0.5,0.6],0.7 >

< [0.3,0.4],04 > < [0.3,0.4],0.5 > 58

Definition 7.3.30 Lel :‘f;xl = [@ijlixm » EM = [bijlixm € CSEM $1xm. Then E’zl =
[aij]ixm is an CSE P-sub matriz of Bay = [bijlixm if aij <p bij, that is, Ay < Ay and
A1 < Ao where

aij =< A1 = [A], AT], M >, bij =< Ay = [A], AJ], A2 > for all i and j. It is
denoted by E’wl Ep J.[;m.

Definition 7.3.31 Let B, = [ﬂij]lxm S = [bijlixm € CSEMSixm. Then Bm —

[@ijlixm is an CSE R-sub matriz of BJCZ [bu]gxm if aij <g byj, that is, A} < Ay and
A1 2> Ag where a;j =< Ay = [AT,AT], M\ >, bij =< As = [A; ,A;’],/\Q > for all i and
J. It is denoted by By, € Bg,.

7.3.2 Properties of CSE Matrices

In this subsection we check the properties and associative. commutative, distributive,
De Morgans, double negation and involution laws of C'SE matrices with respect to

their operations.

Proposition 7.3.32 Let B, = [aijlixm ;, Bo = [bijlixm € CSEMS5ixm. Then

1) BI1$BU~B
)Bn@Bo—Bo
3) BUCP BJ,l
4) (Bo)° = By.

Proof. Straightforward. m
.e L1
Proposition 7.3.33 Let By, = [aijlixm , Bu = [bijlixm € CSEMSixm. Then

.o .. L 1]
1) Bn ® BU = By
2) Brl ® BU = B,,
3) B.n Ep BU

4) (BU) = Bu
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Proof. Straightforward. m

The following proposition shows some of the properties of absolute CSEM, zero
CSEM, universe CSEM and null CSEM with respect to the operation of P-Min
Product, P-Max Product, R-Min Product, R-Max Product and complement.

Proposition 7.3.34 Let By = [aijlixm » Ba = [bijlixm »Bu = [Cijlixm: Bo =
[dij]fxm = CSEPVIS{K”!. Then

1) (Bn)° = Ba

2) (B,) = By

3) (Bn)° Ve BN - :5.’0 = (BA) Vp BA
4) (:5.’;»)" Ap By = Bo = (BA) Ap BA
5) (Bn)¢ Vg B By = BN = (BA) VR B,l
6) (Bn)° Ar BN = Bl = (BA) Ve Ba
7) (EUJ Vp BU =By = (Bn) Vp By
8) (Bu)° Ap Bu = Bo = (Bo)° Ap Bo
9) (:éu)" VR Err = EN = (:5’0) Vi By

Proof. Straightforward. m

Proposition 7.3.35 Let By = [ﬂ.ijl{x,n , By = [btjlixm. By = [r;i_,-];xm, By =
[f—l{:‘j]!xm € CSEMsjwm. Then

Proof. Straightforward. m
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PrOPOSitiOH 7.3.36 Let By = [aij]!x'm , Ba = [bij]b(m By = [C'ijllxnl- By =
[dijlixm € CSEMsixm. Then

1) If EA Ep EU and EN Ep Eu then
a) BaVp By €gr By
b) :E}A Ap .B.'N ER EU
¢) BA VRBN €r BU
d) BA AR BN €Rr BU
9) If B4 €g By and B4 € By then
a) Ba €r By ApBy
8) Ba € By VpBx
c) J'E},q Er J.B.’U /\REN
d) Ba €r By VrBy
3) 1f féo cr, EN and By €p By then
) Bg €p BN APEU
b) Bg €r BN vaU
c) Bo Ep BN /\RBU
d) Bo Ep BN VRBU
4) If By €g By and By € By then
a) EU Vp EA €Rr EN
b) By Ap Ba €g By
c) EU VR:B.'A En E’N
d) By Ar B €r Bn.
Proof. Straightforward. m

(1] (1] (1] as
Proposition 7.3.37 Let By = [aijlixm » Ba = [bijlixm ,Bu = [Cijlixm, Bo =




7. Matrix Algebra of GSESs, CSESs and IVIFSESs 118

[dlj]!xm T [Fullx m € cS Eﬂ’['ﬂxm Then

1) 'é.f_, Vp :E;‘U = EU
9) By, Ap By = Ba,
8) B, V5 By= Bay
4) B,, Ap By = By
5) Eti Vg EN = E’N
6) le A BN ~ B.,

7) BT,1 VRBA = By,

Proof. Straightforward. =

Next proposition shows some of the properties of absolute CSEM, zero CSEM,
universe CSEM and null CSEM with respect to the operation of P-Min Product,
P-Max Product, R-Min Product and R-Max Product.

Proposition 7.3.38 Let By = [(Iu];xm v aBg = [bij]ixm By = [f,'g_j],'xm, By =
[dijlixm € CSEMSi5,. Then

1 BN vpﬁ,l_'é” l's)ﬁ‘vp'éf;:'é”

B.V Ap B,l =By, 14) BA Ap B” “",1
3 BN Vi Bi=By 15} B4iVgBy=By
4 BN AR }-;'A = EA 16) }-;A AR :éu = BA

6 BN /\pBU—-BN
7 BNVR BU—BN
8 B,V/\REU_EU
9) B,\ vag_BN
10) By Ap Bo = By
11) EN VRE{,:EN
12) By Ag Bo = Bo

)
2)
)
)
5) BN Vp By =By 17) EA VP§0~§U
)
)
)

18) BA i Bg = By
19) BA Vi B(] Ba
20) 34 AR B[, B

21) By Vp By = B,_;
22) EU Ap :B.o - Eo

23) B” VR Bo = By
24) Br,r Ap Bn = BA

Proof. Straightforward. =

Proposition 7.3.39 Let B, = [aijlixm + Bzy = [bijlixm € CSEMS;xm. Then com-
mutative, involution with respect to P-Max Product, R-Max Product, R-Min Product
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P-Min Product and double negation laws hold:

1) By, V Bay = Bay Ve Bay  6) By Vi BQ = Erz VR BJ:,
9) Bay Ap Buy = Bay Ap Bz, 7T) Bey Ar B;, = B;,/\R B.,
3) Bu, Vp By, = Ba, 8) B, Vi Bay = Ba,
4) By, Ap Be, = Ba, 9) Ba, A Ba, = Ba,.

5) ((Bsy))° = B,

Proof. Straightforward. =
The following result is very significant result. In ordinary matrices algebra product

of two matrices is not commutative but in C'SEMs commutativity holds.

Proposition 7.3.40 Let Bz, = [aijlixm ; Bzs = [bijlixm € CSEMsixm. Then com-
mutative law holds in CSEMs with respect to the product operation.

Ba, ® By, = By, ® By,
Proof. Consider ‘.én = [aijlixm where a;; =< [A], AT], A1 >, :ém = [Biiliscm
wh(,r(' bij ~< (45, AF], Ao > .
BJ;,@B” =< [A], AT, M1 > @ < [A7, AF], ha >=< [A] 4] A A*] ,\1,\2 >=<
[A5 AT, AT AT], Jadi >=< [A], AF], Mo > @ < [A], A], M >= B,rao_o By
The given below proposition shows that De Morgan's laws holds in CSEM s under
the operation of addition and product.

Proposition 7.3.41 Let Erl = [asilixm » ng = [bij]ixm € CSEM sixm.

1) (Bay ® Bry)® = (B ) ® (Ban)’

Proof. Consider Em = [aijlixm where a;; =< [A], AT], Ay >, :5.’,2 = [bijlixm
where by; =< [4, Af], A >.

1) (B2, ®Bx) = (< [A], AT, M > @ < [A7, AF], h2 >)° = (< [A] +4; - AT A7,
AT+ AT —ATAT), M+ e —Mhe >) =< [L—(A] + A7 — AT AF), 1 — (AT + A; -
ATAD), 1= (M + X2 =Ade) > = < [1= Af — A + AT AT, 1 - AT — A7 + A7 47],
1- A=A +Ade > =< [(1-A4])1 - A), 1— A7) - A7), A =A)(1=Ag) >=<
[1—-A4F, 1- A7), 1—A1) >®<[1-AF, 1-A47], (1-X9) > = (< [A], AT], M >)°
® < ([A7, Af], h2 >)° = (Bay)* ® (Bay)".
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2) (BI,@BH) = (< [AT, AT, M > @ < [45, AT, Ao >)¢ = (< [A] A5, AT AT,
Adg >) =< [l—-ATA], 1- AIA.Z‘]._1—,\1,\-3>=<[1+l—1+AT~AT+A§“—
AT — AT AT,

l+1—1+A] —A7 +A; —A7 —ATAF, 1+1—14XM = A+ — Ao — AjAg >
=<[2-Af —A] -1+ Af + A] — ATAS 2- A7 — A; — 1+ A7 + A5 — AT A7),

2—M—M-1l4+M+M—-Ma>=<[1-A +1-A4F - (1- A1 - Af),
1— AT +1-A; —(1L—-AD)A=AD), L=M+1=2d—(L=A)(1=Ag) > =
<[1—AT,1—A1‘],1—/\1>EB<[1—A+ 1—.42‘],1—,\2>={<[A,‘.A1“],,\1>}"

< [A‘.;‘A;-]"\2 >)C — [BII) P ( .::2)

Remark 7.3.42 Distributive law with respect to addition over product do not hold in
CSEM:s.

.e

Example 7.3.43 Let .E»'.'u.:l = [€[[0.2, 0.8]; 0.5 >]1;4; Bay = [< [0:1; 0:4]; 0.3 5]y.4
and.B.xa [<lo4 07] 0.9 >, .

By, ® (B,, ® Byy) = [< [0.2, 0.6], 0.5 >] & ([< [0.1, 0.4], 0.3 >] ® [< [0.4, 0.7],
0.9>]) =[< 0.2, 06] 05>] @ [< [0.04, 0.28], 0.27 >] = [< [0.232, 0.712], 0.635 >].
(Byy ® Bay) ® (B, ® Bay) = (< 0.2, 0.6], 0.5 >] @ [< [0.1, 0.4], 0.3 >]) @ ([< [0.2
06], 05 >]@[< (0.4, 0.7], 0.9 >]) = [< [0.28, 0.76], 0.65 >]®[< [0.52, 0.88], 0.95 >]

[< [0.1456, 0.6688], 0.6175 >]. HenceB“GB(B @ Buy) # (Bay @ Buy) @ (Ba, @ Bay).

Proposition 7.3.44 Let B,, = [a,-jhx,,,_ 2 Bag = [bij]lxm € CSEMsixm.

1) if TE"“J:1 Cp Téh then
a) Bxi Vp Bzg - Bm

b) Buy Ap Bry = B,
2) afle ERr B_,-_2 then

Proof. Consider 31:1 = [aijlixm where aij =< [A], AT], A1 >, }_5_,:2 = [bijlixm
where b;; =< [A45, A7), A2 > .

1a) Since By, €p Bz, = AT < Ay, At < Af, M < Mg. Now By, Vi Ba, =< [A7,
AT), M > Vp < [47, AF], A2 >=< [A7 V A5, AT Vv AT, MV A2 >=< [47, 4F),
Ng 3= By,

16) Now Bz, Ap By =< [AT, AT], M > Ap < [A5, AF], ha >=< [AT A 43,
AF AAF), M A Xy >=<[AT, A}], M >= By,
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(1) a9 a0 L L]
2a) Since By, €g Ba, = A7 < A7, A7 < A7, M\ 2 Xg. Now By, Vg B, =< [A7,
AT ,\1“> Vr < [A7, AT, A2 >=< [AT V A5, AT V Af], M1 A X2 >=< [A7, AT,
Ay >= Bzg-
2b) Now Bg, Agr B, =< [A], A+] A > Ar < [A7, Ag_], A2 >=< [A] NA7,

AT AAF], MV A >=<[A], Af], i\ >=B,,. n

L 1] L1 L1
Proposition 7.3.45 Let By, = [aijlixm , Bey = [bijlixm and Bgy = [cijlixm €
CSEMsixm. Then Associative, De Morgan’s and distributive laws also hold with re-
spect to P-Maxz Product, R-Maz Product, R-Min Product and P-Min Product:

1 (B Vp Bm) Vp 15’;,3 = Bz1 Vp (B Vp Bm)
3 (B VR B_-Q) VRB;;:; —-Bg:l Vg (B VRBa:s)

4 (_Jf:s’m1 /\RB )/\RBIS_B,i/\R(B /\RBR)
p (Bay)®

6 (leVRBxg = (Bay)* A (é

7 (Bn Apé )¢ = ( 21)° VP (Bay)©

8 (Bc. Ar Bay)* (Bx,) & (B o

)
)
)
)
) (Bz, Ve By, ~(' DEA
)
)
)
)

9 Bm. Ap (B Vp Bm) = (Bz, Ap B-Eg) Vp (Bz1 Ap BI:;)
10) B:rl AR (B VR B.l:a) (le AR BI’:z) Vi (Bsy Ar Bx;;)

11) Bz, ve (B AP Bay) = (Bay Ve Buy) Ap (Bay Ve Bry)

12) le VR (B AR BI:;) - (B:rl VR B.:g) AR (le VR Bza)-

Proof. Straightforward. m

7.4 Matrix Algebra of Interval Valued Intuitionistic Fuzzy
Soft Expert Sets (IVIFSESs)

In this section, we define matrices algebra for interval valued intuitionistic fuzzy soft
expert sets. Further we discuss some operations on it and investigate several properties
with respect to their operations.

Definition 7.4.1 Let U be the initial universe, 4 be the set of attributes and G be
the set of experts. Interval valued intuitionistic fuzzy soft expert set (IVIFSE set) is
a triplet (§,4,G) which is characterizegd'by mapping € :Ax G— K;(U) where the set of

o
3

: A

A
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the interval-valued intuitionistic fuzzy sets on the universe set U is denoted by K;(U).
Forbe A and p € G we define
€08 = (< s [y (9, 7oy (9] Gy (9, Gy (0] > w € T,

Definition 7.4.2 Let U be the initial universe, E; a set of criteria and X; a set of

experts (or decision makers). £(b,p) = {< u, [’y{;‘m(u),'}'(’;'p}(u)], [Q{;‘P) (1&],C(E‘p)(1.'.)] >
ue U, (byp) € E x X be the interval-valued intuitionistic fuzzy soft expert set.

P uy wa wy e Wi

by | (br.wr) | (brug) | (b, ug) | ..o | (b1, wm)
by | (ba,u1) | (ba,ug) | (b2, u3) | ... | (b2, tm)
by | (bg,u1) | (bs,ua) | (b3, u3) | ... | (b3, tm)

by | (by,ur) | (byyuz) | (byus) | ..o | (bryum)
Table 7.4.1

If a;j = opinion of expert p corresponding to pair (b;,u;) =< [y, v*], [, (] >,we

a1l 412 ... Qim
i s azy aze ... a2

can define Cp = [aijlixm =
a . Qg

it is called interval-valued intuitionistic fuzzy soft expert matriz (IVIFSEM) of
the interval-valued intuitionistic fuzzy soft expert set (IVIFSES) of order | x m over
U.

Collection of all interval-valued intuitionistic fuzzy soft expert matrices (IVIFSE
matrices) is denoted by IVIFSEM sy, p,.

Example 7.4.3 Let U = {uy, us,u3} be the initial universe. A= {by, ba} be the set of
attributes and G= {p1,pa} be the set of experts. Then we can view the IVIFSE Set
(£,A,G) as consisting of opinions of experts subject to the given attributes following
collection of approximations:

E(by,p1) = {< wu, [04,0.5],[0.2,04] > , < ue, [0.1,0.5],[0.4,0.5] > , < ug,
[0.3,0.4],]0.4,0.5] > ,

E(ba,p1) = {< wy, [0.2,04],[0.5,0.6] > , < g, [0.2,0.4],[0.4,0.5] > , < ug,
[0.1,0.3], [0.3,0.5] > ,

E(b1,p2) = {< w1, [0.4,0.7],[0.2,0.3] > , < wug, [0.2,0.5],[0.2,0.3] > , < ug,
[0.3,0.5],[0.4,0.5] > ,

E(by.pa) = {< w1, [0.3,0.5],[0.0,0.3] > , < ug, [0.1,0.4],(0.3,0.6] > , < ug, [0.2,
0.5], [0.3, 0.4] >}.
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Interval-valued intuitionistic fuzzy soft expert matriz (IVIFSEM) of the interval-
valued wintwitionistic fuzzy soft expert set (IVIFSES) corresponding to expert py is
quen as

e | <[0.4,0.5],[0.2,0.4] > <[0.1,0.5],[0.4,0.5] > < [0.3,0.4],[0.4,0.5] >

" <[0.2,04],[05,0.6] > < [0.2,0.4],[0.4,0.5] > <[0.1,0.3],[0.3,0.5] > -

Interval-valued intuitionistic fuzzy soft expert matriz (IVIFSEM) of the interval-

valued intuitionistic fuzzy soft expert set (IVIFSES) corresponding to expert py is

guen as
S < [0.4,0.7],[0.2,0.3] > < [0.2,0.5],[0.2,0.3] > < [0.3,0.5],[0.4,0.5] >
" <[0.3,05],0.0,03] > <[0.1,0.4],(0.3,0.6] > <[0.2,05],(0.3,04] > |, .-

7.4.1 Operations on [VIFSE Matrices

In this section, we define operations of addition, product , Min-Product, Max-Product,

complement, power and scalar product of IVIFSE matrices.

Definition 7.4.4 Let Oy = [aij]ixm € IVIFSEMsxm. Oy is called null IVIFSE
matriz if for all i and j a;; =< [1,1],[0,0] >.

. < [1,1],[0,0] > < [1,1],[0,0] > < [1,1],[0,0] >

Example 7.4.5 Cy = | <[1,1],[0,0] > < [1,1],[0,0] > < [1,1],[0,0] >

<[1,1],[0,0] > <[1,1,[0,0] > <[1.1,0.0] > |, ,

Definition 7.4.6 Let E‘A = [aijlixm € CSEMsixm. EA 15 called absolute IVIFSE
matriz if for all i and j a;; =< [0,0],[1,1] >.

<[0,0,[L,1]> <[0,0,[L,1]> <[0,0],[L,1]>
Example 7.4.7 Cy = | <[0,0],[L.1] > <[0,0},[1,1] > <[0,0],[L,1] >
<[0,0,[1,1] > <[0,0],(1,1] > <[0,0},[1,1] > |, ,
Definition 7.4.8 Let .C.‘Pl = [8iilixm where aij =< [y, W KT €] > .C.m =
[bijlixm where b < [vg, 75), (3, (5] > € IVIFSEM sy .
Addition of two IVIFSE matrices is denoted and defined as .C.'m @ .C.'.ug = [ai; ®
biilisem-
where aij ® bij =< [y +72 =70 ¥ WL GG GET>

- < [0.6,0.9],[0.0,0.1] > < [0.2,0.3],[0.1,0.6] >
Example 7.4.9 Let C,, = | <[0.3,0.5],[0.1,0.4] > < [0.4,0.5],[0.3,0.5] >
< [0.6,0.7],[0.2,0.3] > < [0.6,0.7],[0.1,0.2] > -

and
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< [0.7,0.9],[0.0,0.1] > < [0.1,0.7],[0.2,0.3] >
Cpy = | <[08,09],(0.0,01] > < [0.2,0.5],(0.3,0.4] >
<[0.2,0.7,[0.2,03] > <[0.3,0.4],[0.2,0.5] > |, ,
< [0.88,0.99],[0.0,0.01] > < [0.28,0.79],[0.02,0.18] >
then Cp@ Cpy = | < [0.86,0.95],(0.0,0.04 > < [0.52,0.75], [0.09, .20] >
< [0.68,0.91],[0.04,0.09] > < [0.72,0.82],0.02,0.10] > |, ,
Definition 7.4.10 Let Ep, = [aijlixm where aij =< [y, v, KTy ] >, E’pz =
[Bijlixm where bi; < [v5, v5 ), [C5, (F] > € IVIFSEM spxm.
Product of two IVIFSE malrices 1s denoted and defined as Em ® mC"';;.2 = [a;; ®
bi;liscm-
where a;; ® bij =< [y 73,719 ] [T +¢a — Grée &F + 6 =66 >

Example 7.4.11 Consider Cp,, Cyp, of Evample 7.4.9 then
L < [0.42,0.81),[0.0,0.19] > < [0.02,0.21],[0.28,0.72] >
Co® Cpa=| <[0.24,0.45],[0.0,0.46] > < [0.08,0.25], [0.51,0.70] >

< [0.12,0.49],[0.36,0.51] > < [0.18,0.28],[0.28,0.60] > |,

Definition 7.4.12 Let Em = [aijlixm where ai; =< [yi. %I 1 > Epz =
[bijlixm where by =< [v3, 73], (C5, 3] > € IVIFSEM spxm.

Min-Product of two IVIFSE maitrices is denoted and defined as EPI A 8},2 =
[@ij A bijlixm.

where aij A b; =< [vy7 Ava, 7 AT 6T VGG VG >,

Example 7.4.13 Consider Cp,, Cyp, of Evample 7.4.9 then
< [0.6,0.9],[0.0,0.1] > < [0.1,0.3],[0.2,0.6] >
Co R Cpy= | <[0.3,0.5],(0.1,04] > < [0.2,0.5],[0.3,0.5] >
<[0.2,0.7],0.2,0.3] > <[0.3,0.4],[0.2,0.5] > |, ,
Definition 7.4.14 Let 8}91 = [aijlixm where ai; =< [v{, %L KTs ¢ > E‘m =
[Bijlixm where bij < [v5, 73, (¢G5 s ¢F] > € IVIFSEM sixm.
Maz-Product of two IVIFSE maitrices is denoted and defined as E’m X E'p._, =
[aij ¥ bijlixm.

where ai; ¥ bij =< [y{ Vg v V] G0 A GG AGT >

Example 7.4.15 Consider .C:pl, Em of Example 7.4.9 then
. . < [0.7,0.9],[0.0,0.1] > < [0.2,0.7],[0.1,0.3] >
Cp ¥ Cp,=| <[0.8,0.9],[0.0,0.1] > < [0.4,0.5],[0.3,0.4] >

< [0.6,0.7),[0.2,0.3] > <[0.6,0.7,[0.1,0.2] > |, ,
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Definition 7.4.16 Letg'm = [aijlixm where ai; =< [y, 7;'] ¢y, g{f] >e IVIFSEMSiym.
Product of IVIFSE matrices with an arbitrary real number k > 0 is denoted and
defined as k.ém = [kasij)ixm-
where kai; =< [1—(L—~7)"1— (1= %) (G056 >

Example 7.4.17 Consider Epl of Example 7.4.9 then let k = 0.7Tand then
. < [0.4734,0.8004], [0.0,0.1995] > < [0.1446, 0.2209], [0.1995, 0.6993] >
kCp, = < [0.2209,0.3844],[0.0,0.1995] > < [0.3006, 0.3844], [0.4305, 0.5265] >

< [0.4734,0.5694], [0.3241,0.4305] > < [0.4734,0.5694], (0.1995,0.3241] > |, ,

Definition 7.4.18 Let .C:pl = [aijlixm where a;; =< [v{, 1], (1, ¢ > € IVIFSEM sjxm.
Complement of IVIFSE matrices is denoted and defined as (C, ) = [(aij)ixm-
where (ai;)¢ =< [(¢7)*, (¢ ()5 (D) > -

Example 7.4.19 Consider .C.'m of Example 7.4.9 then
- < [0.0,0.1],[0.6,0.9] > < [0.1,0.6],[0.2,0.3] >
(Cp)¢=| <[0.1,0.4],[0.3,0.5] > < [0.3,0.5],[0.4,0.5] >

<[0.2,0.3].[0.6,0.7] > < [0.1,0.2],[0.6,0.7] > |, ,

Definition 7.4.20 Letg'pl = [aijlixm where aij =< [v{, 77 ], KT s (,f] > € IVIFSEMsixm.
Power of IVIFSE matrices with an arbitrary real number k > 0 is denoted and defined
s (.5:11)]c = [(ai5)*lixm-

where (ai;)" =< [(0)* (D1 - A=) 1= (1-¢N1 >

Example 7.4.21 Consider '}C“‘,,1 of FExample 7.4.9 let k = 0.37 and then
. < [0.8277,0.9617],[0.0,0.0382] > < [0.5512,0.6405], [0.0382,0.2875] >
(Cp)?3 = | < [0.6405,0.7737],(0.0382,0.1722] > < [0.7124,0.7737], [0.1236, 0.2262] >

< [0.8277,0.8763], [0.0792,0.1236] > < [0.8277,0.8763], [0.0382,0.0792] > Bk

Definition 7.4.22 Let .C.'p,l = [ailixm where aij =< [v7, WLKT, 6] > »C"'I,2 =
[bijlixm where bij =< [v5, 7§, (¢35, () >€ IVIFSEM 81xm.

Then 3,,; = [aijlixm i an IVIFSE sub matriz of.('} = [bijlixm if aij < b;; for
all i and j, that is, v <75,V <75 and (] > (5, ¢ > C;.R is denoted by .C.'pl €
s

7.4.2 Properties of IVIFSE Matrices

In this section we check the properties and associative, commutative, distributive, De
Morgans, double negation and involution laws of C'SE matrices with respect to theiv -
operations. ; o h‘b _
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oo o0
Proposition 7.4.23 Let Cm - [U.,;j];x",_ , Cn = [bij]lxm c IVIFSEMSsjym. Then

)CPIEBCN —CN
]CP1®CN _CPI

Proof. Straightforward. m

[ 1] ae
Proposition 7.4.24 Let Cp, = [aijlixm , Ca = [bijlixm € IVIFSEMs|xm. Then

(L]

1) CPIEBCA—C
)CPI®CA—CA

Proof. Straightforward. m

Proposition 7.4.25 Let Bz, = [aijlixm , Bzy = [bijlixm € CSEMSs;xm. Then com-
mutative law holds in IVIFSEM s with respect to the product operation.

8},1 ® Ep-z = .épz ® .ém

Proof. Consider Ep; = [ailixm where ag; =< [yy, %], [T, ¢] >, 5” = Bulisem
whele bij —< 2,7 ] [ Cz ] >

Con ® Cpy =< 7, 1), 67, Cf] >® < by, ) Kz 1 >=< g, 'l
G2+ GG &+ -G >=< e, W) G &> @ < br ol
(1>=CpeCy,. u

Proposition 7.4.26 Let Cp, = [aijlixm » Cpy = [bijlixm € IVIFSEMSsixm. Then
De Morgan’s laws with respect to addition and product holds:

® Cp,)* = (‘ém ) ® (Epz)c
2) (C), ®Cpy)° = (Cp ) ® (Cpy)°

Proof. Consider .C.‘pl = [@ij]ixm Where ai; =< [y, ¥, (T, €] >, .C.'p:» = [Bi5lixm

where bu = [72 v h [y &>

)(C @Cm):<[71!'}’1][C1=(]>@<[72’72][CzsC]> = (<
b +ve = ve s W+ = ] K6, GF] >)° =< (676 67 6] b+ ._.’Yl Y2
— 'Vil_ +72 iy 5t 72] Fes [Cl y & ] [71_1 71+] >®< [C'z_’ C;]} [72_1 "r’;l Z= (CPI}C®
).

2) (Cp ®Cp)* = (< b7, 271, T, 61 > ® < b7, ) (65, 61 >)° = (< by 77,
WAL T +6 =6 65 +6 =G >) =< [T +¢6 —¢rés 6 +c.; -4Gl,
by, 8] >= (< K0 G bl > @ <G G be oy l >) = (Cops %B)(C'pg
it

‘{l'\.
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Remark 7.4.27 Distributive law with respect to addition over product do not hold in
IVIFSEM:s.

Example 7.4.28 Let Cpy = [< [0.2, 0.6], 0.2, 0.4] >)1p1+ Cpy = [< [0.1, 0.4], [0.3, 0.5] >];4
and Cm [< [04 0.7], [0.1, 0.3] >]ix;-
® (Cpy @ Cpy) = [< [0.2, 0.6], [0.2, 0.4] >]@ ([< [0.1, 0.4], [0.3, 0.5] >] @ [< [0.4,

0.7], [01, 0.3] >]) = [< [0.2, 0.6], [0.2, 0.4] >] @ [< [0.04, 0.28], [0.37, 0.65] >] = [<
0:232, 0.712], [0.074, 0.26] >].

(Cpy ® Cpg) ® (Cpy ® Cpa) = ([< 0.2, 0.6], [0.2, 0.4] >] & [< [0.1, 0.4], [03,
0.5] >)) @ ([< [0.2, 0.6], 0.2, 0.4] >] @ [< [0.4, 0.7], [0.1, 0.3] >]) = [< [0.28, 0.76],
0.06,0.20] >]@[< [0.52, 0.88], [0.02, 0.12] >] = [< [0.1456, 0.6688], [0.0758, 0.296] >].
Hence Cp, @ (Cpy ® Cpg) # (Cpy @ Crg) ® (Cpy @ Cig)-

Next proposition shows some of the properties of absolute IVIFSEM and null
IVIFSEM with respect to the operation of addition, product, Min- Product and
Max-Product.

Proposition 7.4.29 Let Cy = [bijlixm: Ca = [¢ijlixm € IVIFSEM syp. Then

1) C.'“'fa 6;\: =E‘N
)61®E'N =.C.‘A
3) CA¥.Cy = Cy
1) é;x‘éN =04

Proof. Straightforward. m

L1 ]
Proposition 7.4.30 Let Cp, = [aijlixm » Cpy = [bijlixm € IVIFSEMs15m. Then
commutative, involution and double negation laws hold:

1) ?”‘ ¥ Cpy = Cpy Y.,
2) Cp 7 G = Cp R
3) Cpy ® Cpy = Cpy ® Cpy
5) CPI X m=Ym
)G, & Gy = Ol
7) (Cp)°) = Cp.-
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Proof. Consider E'm = [@is)ixm Where az; =< [y, 1) [T €] >, Epz = [bijlixm
where f):j =<.£'72_, %) 6,6 > .

1) Cp Y Cp = (< . WL K G > Y <Py, w6, G >) =< by Vg,
NVRL G AG GAGT>=<[e Vvn, X2 V'h] Gz ACT G AGTT > = (< s,
f2][§2:§§]>v<[‘1’1s KDy ¢ >) = 2—Cp1

)Cm ’\C = (<, WL KD G >A<bhg, w6, G1>) =<n A
it AL VG Ve > = < by AT 8 AN G Ve VT > = (< s
72 ) G2 1> A <D WL G GT>) = Cp Y G

In a similar manner we can prove the rest of the result by using U of addition,

product, Min-Product, Max-Product and complement of matrices. =

Proposition 7.4.31 Let Cp, = [@ijlixm » Cpz = [bijlixm and Cpy = [Cijlixm €
IVIFSEMSjyp,. Then Associative, De Morgan's and distributive laws also hold with
respect to Max-Product and Min-Product:

1) (Cpy YCrpa) ¥ Cpy = Cpy ¥.(C,, ¥ Cr)

2) (Cpy & Cpy) A Cpg = Ciy R(C,, K Cio)

3) (Cor ¥ Cp) = (€ ) R (Cpm)°

) € A Cp)* = (€)Y (G’

5) Cpy ¥ (C,, & Clpy) = (cp, v cpz) A (C,,l v cf,s)
6) Cpu A (C,, ¥ ?:' ) = (Cpy & Coy) ¥.(Cyy A Cia)

Proof. Consider gpl [a,J];x,,, “here ai; =< [vrs o) IG5 G =5 E'pz = [bijlixm
where b;J =< [’}5, ’}'2 ] [Cg ) c;] >, Cp3 = [ctJ]{Xm where ('&J =% [’Y:;i ’Y;]' [CS_! C;_] >
)(C,,IVCPQ)VCP:,: (< WL T > Y <e, %) (6L GT>) Y < by,
BhiG Gl>=<m Vv, VRl AG GAGT>Y <hs, G, G1>

< [wr V) Vs, (F VA VAL (T AGIAG, A AG] > =<
[ Ve vz Ve vad)l K A G A, C?-/\(C;/\CSL]>=<["/1“, 6 il
K Gl >Y<[yva vy, va vaal 6o Ay, Cz /\C;ﬂ>—<[7: 'Tl Ll @] s
(<bhz, %) G, Gl>Y <[, 5] K, E1>) = C V(Cpgycps)-

2) Similar as above.

3) (Cpy ¥ Cpr) = (< [ L KT &1 > ¥ < g ) [, 6] =) = (< [ V2,
N VLG AG GFAGT > =< T AG, GFAEL by Vg, WVl > =
(<G W1>A<[6G, G ey 13] >) =(Cp)° A (Cpy)“
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4) (Cy A o)t = (< I W1 6T 61 > R < bz 1), (65, 31 )6 = (< I A%
WARL Ve, GVET>) =<0 Ve, G Ve A i ARl >=
(< [C]:hl['ﬁ ]>V<[C;=Q2][’h!f]> (CPI)CV(C)

5)C (C /\C) <L KD G > Y (< b W) 6. G >A < [,
il (eey >)—<['}1~ ]s[Cl_|C1+]>!<[’?2_"\’)3_"?2+/\73]=[C2Vcsrc'zVC:ﬂ>

< T VOZ AR T VAT AN G ACG VE)LGAGVE) >=<
(T VY2 )AL VA3)s (i VADA(G VAR, (ST AG ) VCT ACs ) (CFACHIVET AC] >

<[ vaz): (F V)l 16T A G, (GEACH] > R < [ Vg)s (0 Vgl
[(Cr AG), (G AGD] > = (< L[S ‘Clﬂ S b < [va, ’}2 <25 C;T] >) A< s
'}’r]' <1, Cr] > ¥ <[y, "f3] (e C:;_] >) CPI ¥ CF‘Z) A (C ¥ C a)-

6) Similar as above. m

The following proposition states some properties of null [VIFSEM with IVIFSEM

under the operation of Min-Product, Max-Product and complement.

Proposition 7.4.32 Let C,, = [aijlixm » Cn = [bijlixm € IVIFSEM $ixp,. Then

1) .C’:Pl b EN = EN
2) Cpy A Cy = Ch,
3) (Cw)° =Ca.

Proof. Straightforward. =

The following proposition states some properties of absolute IVIFSEM with

IVIFSEM under the operation of Min-Product, Max-Product and complement.

Proposition 7.4.33 Let C),, = [agj]gxm , Ca = [bijlixm € IVIFSEM5ixm. Then

1) CPI VC4 —C
2) CPI ACA —04
3) (CA) =C.

Proof. Straightforward. m

The next proposition states the inclusion relation between absolute JVIFSEM,
null IVIFSEM and IVIFSEM.

L1l L1 .e
Proposition 7.4.34 Let Cp, = [aijlixm » Ca = [bijlixms Cn = [Cijlixm € IVIFSEM sixm.
Then " -
1) CA4€Cpn
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Proof. Straightforward. =

7.5 Conclusion and Future Work

In this chapter, matrix algebra has been defined for generalizations of soft expert
sets. In previous chapters we have been defined the modified and the generalized
form of soft expert sets. In this concept we have been given expert opinions in the
form of GSE sets CSE sets and IVIFSE sets. All of these structures have some
specifications. we can easily represent past or future opinions of experts in one type of
structure. By using these structures we have been developed matrix algebra. This type
of representation is very useful in multicriteria decision making analysis. So for that
purpose we have been defined GSE matrices, CSE matrices and IV IFSE matrices.
Also we have been defined some operations on these matrices. These matrices also
satisfied some of the properties which were not hold in ordinary matrix algebra, for
example, commutativity of matrices with respect to product operation. There are also
a very fruitful results which hold in all type of matrices which were discussed in this
chapter, that is, De Morgan’s laws holds with respect to addition over product, product
over addition, Min Product over Max Product, Max Product over Min Product, P-Min
Product over P-Max Product. P-Max Product over P-Min Product, R-Min Product
over R-Max Product. and R-Max Product over R-Min Product. Distributive law with
respect to addition over produet do not holds in GSEMs, CSEMs and IVIFSEMs.
But holds with respect to Min Product over Max Product, Max Product over Min
Product, P-Min Product over P-Max Product. P-Max Product over P-Min Product,
R-Min Product over R-Max Product. and R-Max Product over R-Min Product. In
future we aim to develop some algorithms on these matrices for multicriteria decision
making problems. Also we will develop some programming on it. We will also use this
representation in AHP, ANP and TOPSIS.
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