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Introduction 

Researchers and mathematicians all over the world developed important analytical 
skills and problem-solving strategies to assess a broad range of issues in commerce, 
science and arts. But the most challenging issues were related to the problems which 
were more qualitative rather than quantitative in nature. Thus, the need to handle 
uncertain situations and vagueness in practical as well as theoretical problems led the 
researchers to the development of theories like fuzzy set theory. Many studies show 
that this theory may represent an important theoretical and practical tool to tackle 
uncertainty. In 1965, Zadeh initiated fuzzy sets . Fuzzy sets deal with possibilistic 
uncertainty connected with imprecision of states, perceptions and preferences. Zadeh 
extended the concept of fuzzy sets by interval valued fuzzy sets in 1975. Concept of 
intuitionistic fuzzy sets was introduced by Atanassov in 1983. To develop a model 
that is enriched with parameters, soft set theory was initiated by Molodtsov in 1999. 
It attracted the attention of many researchers as the theory proved its worth in many 
dimensions like medicine and decision analysis. Maji et al. discussed decision making 
problems through soft sets and fuzzy soft sets. Maji et al. defined the operations 
of union and intersection on soft sets. To analyze decision making problems, hesi­
tant fuzzy set theory also proves pretty worthwhile. It was presented by Torra and 
Narukawa as a generalization of fuzzy set theory. Jun et al. introduced a new notion 
of cubic sets in 2011 by using a fuzzy sets and an interval-valued fuzzy sets. In 2011, 
Alkhazaleh et al. defined the concept of soft expert sets where the user can know the 
opinion of all the experts in one model. 

In this thesis, we introduce a generalization of soft expert sets defined by Alk­
hazaleh et al. which may be called graded soft expert (GSE) sets. We give three 
generalizations of soft expert sets named as graded soft expert sets, cubic soft ex­
pert sets and interval-valued intuitionistic fuzzy soft expert sets. Joint application of 
soft expert sets and other theories may result in a fruitful way in multi-criteria deci­
sion making. We also propose matrix algebra by using these generalizations. In each 
generalization, we propose an algorithm in decision analysis. 
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Chapter-wise study 

The present work in this thesis consists of seven chapters. Concluding remarks and 
future work of each chapter are presented at the end of each contribution chapter. The 
first chapter gives a general introduction of the research work where the motivation and 
objectives are defined. In second chapter, some basic concepts of fuzzy sets, interval­
valued fuzzy sets, int uitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, soft 
sets, soft expert sets, hesitant fuzzy sets, cubic sets and soft matrices are given with 
some of their properties and operations, which will be helpful for understanding the 
rest of the thesis . 

Chapter three is a generalization of hesitant fuzzy sets. It is also a modified 
form of the soft expert sets introduced by Alkhazaleh and Salleh. Hesitant fuzzy sets 
playa vital role in decision analysis. With respect to a given set of criteria some 
decision makers have to decide among various alternatives. Although it has proved 
to be a landmark in evaluating informations, yet there are certain deficiencies in the 
structure. To be more specific, there is no standard inclusion mcasure to compare 
two hesitant fuzzy sets. The most significant among them was proposed by Xia and 
Xu [72]. But then, containment of two hesitant fuzzy elements in each other does 
not imply their equality. Also, in decision analysis with the aid of hesitant fuzzy 
sets, relative importance of the decision makers according to their area of expertise is 
ignored completely which may be misleading in some situations. These sort of issues 
have been resolved in this work by using graded soft expert (GSE) sets. The concept of 
the graded soft expert sets are defined and their basic operations such as complement, 
union and intersection are given. Some examples for these concepts, basic properties 
of the operations are also given. On the other hand, an algorithm along with the 
application of graded soft expert sets in decision making problem is illustrated at the 
end. 

In chapter four, as a generalization of soft expert sets the concept of cubic soft 
expert sets have been introduced. In cubic soft expert sets we basically presented 
opinions of experts in cubic sets. Cubic sets consist of fuzzy sets and interval valued 
fuzzy sets. The aim of cubic soft expert sets is to present opinions of expert in the 
form of interval valued fuzzy set as well as a fuzzy set. In some cases experts give their 
opinions for present time period in the form of fuzzy sets and for future time period 
opinion may be represented in the form of interval valued fuzzy sets. In this type 
of structure we will easily aggregate the opinions of experts for present t ime as well 
as for future time. The cubic soft sets are primarily concerned with generalizing the 
soft sets by using fuzzy sets and interval valued fuzzy sets. We introduce the concept 
of cubic soft expert sets (CSESs) which can be considered as a generalization of 

v 



o. Chapter-wise study vi 

both soft expert and cubic soft expert sets . The notions of internal cubic soft expert 
sets (ICSESs) , external cubic soft expert sets (ECSESs), P - order, P - union , 
P - intersection, P - AND, P - OR and R - order, R - union, R - intersection, 
R - AND, R - OR have been defined for cubic soft expert sets (CSESs) . We also 
investigate structural properties of these operations on cubic soft expert sets (C S ESs). 
It has also been proved that cubic soft expert sets (CSESs) satisfy commutative, 
associative, De Morgan's, distributive, idempotent and absorption laws. At the end, 
an application of cubic soft expert sets theory in decision making is given with an 
algorithm and worked out example is provided for decision making with cubic soft 
expert sets. 

In chapter five, we introduced some new operations on cubic soft expert sets 
(CSESs). Jun et al. only defined basic operation of inclusion, union and inter­
section in [34J . These new operations were not defined earlier for cubic sets but in 
this chapter we have defined addition and product of two cubic soft expert sets, scalar 
product, power of cubic soft expert set, ::;COIe and accuracy function of CSESs. The 
purpose of defining score function and accuracy function is that we can determine the 
ranking of CSESs which help us in some aggregation operators. Some aggregation 
operator on CSESs have been introduced. By using these operators we can choose 
best alternative. Since fuzzy sets and interval-valued fuzzy sets play a fundamental 
role in decision analysis therefore, the aim of this chapter is to determine the most 
preferable choice among all possible choices, when data is in cubic set form. Finally, 
an example has been shown to highlight the procedure of the proposed algorithms. 

In chapter six, In this chapter we intend to introduce interval valued intuition is­
tic fuzzy soft expert set (IV F S E set) and certain operations on it . These include 
IV I F S E weighted average operator, ordered weighted average operator, general­
ized ordered weighted average operator, ordered weighted arithmetic operator, fusion 
weighted average operator and generalized fusion weighted average operator. An al­
gorithm of multicriteria decision making has been developed by using these operators 
and applied on practical decision making problem. 

In chapter seven, we have initiated the concept of Graded soft expert matrices 
(GSEMs) , cubic soft expert matrices (CSEMs) and interval-valued intuitionistic soft 
expert matrices (IVIFSEMs). The aim of this work is to handle a big data in easy 
way. We can easily aggregate the opinion of two experts point-wise. We gave some 
types and properties of these matrices. Two matrices are not commutative in general 
in ordinary matrices algebra. But there is a very interesting result that GSEMs, 
CSEMs and IVIFSEMs satisfy commutative law with respect to product. Also De 
Morgan's laws hold with respect to the product over addition and vice versa. 

- .. ' -.-j: 



Chapter 1 

Introduction 

1.1 General Introduction 

The classical set theory, also called crisp set theory, serves as one of the fundamental 

concepts in Mathematics. However , only a limited number of traditional methods of 

modelling and computing can be dealt with the help of crisp set theory. In practice, 

most of the problems in fields such as economics, engineering, environmental sciences, 

medical sciences and social sciences involve information sets which are vague rather 

than precise. Due to vagueness and uncertainties in these domains traditional meth­

ods cannot be applied here. Mathematicians develop important analytical skills and 

problem-solving strategies to assess a broad range of some issues in commerce, sci­

ence and the arts. Mathematical models and simulations, and the interpretation of 

t heir results , are being called on increasingly in global decisions , as business , politics 

and management all become more quantitative in their methods. The application of 

mathematics is also in demand in the social sciences, particularly economics, where 

mathematical tools are used to formulate models of the complex interactions in an eco­

nomic system. In several problems stochastic methods are widely used for uncertainty 

assessment in future performance. The probabilistic approach has always been consid­

ered the most important, but it has often been shown that it can involve problems that 

may be difficult to handle. Many studies show that fuzzy numbers may represent an 

important theoretical and practical tool to tackle uncertainty. In 1965, Zadeh initiated 

Fuzzy sets [83J . Fuzzy sets deal with possibilistic uncertainty, connected with impreci­

sion of states, perceptions and preferences. Zadeh extended the concept of fuzzy sets 

by Interval valued fuzzy sets [84J. Interval-valued fuzzy sets have been used in medicine 

[37J . Klir discussed fuzzy sets, uncertainty and information in [39J. Turken discussed 

interval valued fuzzy sets in detail [67, 68, 69J. Atanassov introduced the concept of 

intuitionistic fuzzy sets [8J . The intuitionistic fuzzy sets can represent three states of 

1 



1. Introduction 2 

the support, opposition, and neutrality simultaneously. Thus, the intuitionistic fuzzy 

sets may represent information more abundant and flexible than the fuzzy sets when 

uncertainty such as hesitancy degree is involved and hereby seems to be suitable for 

dealing with natural attributes of physical phenomena in complex management sit­

uations. He also introduced the notion of interval valued intuitionistic fuzzy sets by 

combining interval valued fuzzy sets and intuitionistic fuzzy sets [9J . Dubois studied 

on the combination of uncertain or imprecise pieces of information in ruled based sys­

tems [19, 20J . Luhandjula used compensatory operators in fuzzy linear programming 

with multiple objectives [44J . Gau and Buehrer proposed the concept of vague sets 

[27]. Further, Burillo and Bustince showed that concept of vague sets coincide wit h 

intuitionistic fuzzy sets in 1996 [10]. Soft set theory is a mathematical theory dealing 

with uncertainty was introduced by Molodstov in 1999 [52J . It attracted the attention 

of many researchers as the theory was well equipped with parameters. The soft set 

t heory has been applied to many different fields. Molodtsov applied this theory to 

several directions [53J . Molodtsov has been given soft sets t echnique and its applica­

tions [54J . Vague soft sets and t heir properties have been discussed in [71J . Yang et 

al. discussed the combination of interval-valued intuitionistic fuzzy sets and soft set s 

in [77] . 

Maji et al. discussed decision making problems through soft sets and fuzzy soft 

sets [46 , 48J. Maji et al. defined the operations of union and intersection on soft 

sets [47]. Ali et al. improved those operations which were based on the selection of 

parameters in particular [4] . Ali et al. examined soft sets algebraically using these 

new operations [5]. Sezgin and Atagun proved certain De Morgan's laws for soft sets 

theory and extended theoretical aspect of operations on soft sets [59J. They also 

discussed soft groups and normalistic soft groups [60J. Chen et al. and Ali studied 

parametrization reduction of soft sets and discussed its application in decision analysis 

[15, 6J . Jiang et al. discussed interval valued fuzzy soft sets and their properties in [30J. 
Feng et al. extended soft sets to soft rough sets [25J and Shabir et al. improved the 

structure by introducing modified soft rough sets [61J . Further extensions can be seen 

in [3 , 26,49, 50] . Maji also defined fuzzy soft sets theory and some properties of fuzzy 

soft sets [45]. Cagman studied fuzzy soft sets theory and its application [13]. Pei et al. 

[56J and Chen et al. [15J improved Maji's work. Li has been given an approach to fuzzy 

multi-attribute decision making under uncertainty in [42J. Szmidt has been discussed 

a consensus reaching process under intuitionistic fuzzy preference relation [63J . He 

also used intuitionistic fuzzy sets in group decision making [62]. Jun et al. has been 

developed soft BCK/BCl-algebras, soft p-ideals of soft B Cl-algebras and applications 

of soft sets in ideal theory of BCK/BCl-algebras [31 , 33, 32J. Gorzalczany discussed 

a method of inference in approximate reasoning based on interval valued fuzzy sets 
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[28J. Xu has been given methods for aggregating interval valued intuitionistic fuzzy 

information and their application to decision making [73J. Soft set theory has been 

applied to decision making problems [12, 23, 38] . Acar has been discussed soft sets 

and soft rings [1]. Aktas has been studied some algebraic applications of soft sets [3]. 

Lee defined bipolar-valued fuzzy sets and t heir operations in [40J. He also compared 

interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar-valued fuzzy sets in [41]. 

The requirement for information combination strategies is increasing in several 

fields of human knowledge. Aggregation is a basic concern for all kinds of knowledge 

based systems, from image processing to decision making, from pattern recognition 

to machine learning. Generally, we can say that aggregation has for purpose the 

synchronous utilization of different pieces of information (provided by several sources) 

in order to come to a conclusion or a decision. Several research groups are directly 

interested in finding solut ions, among t hem t he multi-criteria community, t he sensor 

fusion community, the decision-making community, the dat a mining community, etc. 

and each of these groups use or propose some methodologies in order to perform an 

intelligent aggregation, as for instance the use of rules , the use of neuronal networks, 

the use of fusion specific techniques , the use of probability theory and fuzzy set theory, 

etc. But all these approaches are based on some numerical aggregation operator. 

Dombi defined the aggregated operator in [18]. Fuzzy multicriteria decision making 

is discussed in [29, 35, 57] . The ordered weighted geometric averaging operator is 

introduced by XU [73J. Yager introduced the ordered weighted averaging operator [81]. 

In 1988, Yager provided a parameterized family of aggregation operators which have 

been used in many applications [79J . Yager provided a generalization of OW A operator 

by combining it with the generalized mean operator [22J. This combination leads to 

a class of operators which is called as the generalized ordered weighted averaging 

(GOW A) operators [82J. 
In the context of decision making analysis , Alkhazaleh and Salleh introduced the 

concept of soft expert sets [7]. This structure can be considered as a generalization of 

soft sets in which experts and their opinions have been added to make decision analysis 

more easy to handle. Jun et at. introduced the concept of cubic sets in 2012 by using 

fuzzy and interval valued fuzzy sets [34J. Khan et at. discussed the generalized version 

of Jun's cubic sets in semigroups [36]. Muhiuddin and Al-roqi introduced t he concept 

of cubic soft sets with applications in BCI/ BCK-algebras [55]. 
To analyze decision making problems, hesitant fuzzy set theory also proves pretty 

worthwhile. It was presented by Torra and Narukawa as a generalization of fuzzy 

set theory [66, 65]. Motivation behind t his theory was t he degree of hesitancy while 

making a decision. They introduced some basic operations and also discussed briefly 

its role in decision making analysis. Yang et at. extended hesitant fuzzy sets to hesitant 
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fuzzy rough sets and also discussed operational laws in hesitant fuzzy sets [78]. Xia et 

al. , Meng et al. and Tan et al. developed a series of aggregation operators for hesitant 

fuzzy information and discussed their application in decision making problems [70], 

[51] and [64] . Xu and Xia proposed a variety of distance and similarity measures on 

hesitant fuzzy sets [72]. 

1.2 Research Motivation and Objectives 

Soft expert sets can be considered as a generalization of soft sets in which experts 

and t heir opinions have been added to make decision analysis easier to handle. Soft 

expert sets has the advantage over the existing theories that it gives expert 's opinion 

for each paramet er separately. Joint application of soft expert sets and other theories 

may result in a fruitful way in multi-criteria decision making. These include fuzzy 

soft expert sets and its applications, fuzzy parameterized soft expert sets, fuzzy para­

meterized fuzzy soft expert sets , application of generalized vague soft expert sets in 

decision making and possibility fuzzy soft expert sets. Generalized fuzzy soft expert 

sets is a combination of fuzzy soft expert sets and generalized fuzzy soft sets. 

The objectives of research are: 

1) In this work, we shall redefine and revise soft expert sets defined by Alkhazaleh 

et al. which may be called as graded soft expert (GSE) sets. We shall develop an 

algorithm of decision making with the aid of GSE sets. We'll develop the relationship 

of GS E sets with hesitant fuzzy sets. This will lead us to the generalization of many 

results which were valid for hesitant fuzzy sets. 

2) We shall give the concept of cubic soft expert sets (CSE Ss ). We shall also 

consider the problem of combining soft expert sets with other theories like intuit ionistic 

fuzzy sets , interval-valued fuzzy sets etc. We shall also develop different algorithms to 

support our theories in multi-criteria decision making problems. 

3) We shall give some new operations on cubic soft expert sets. By using these 

operations we will define some aggregation operators which will help us in multicriteria 

decision making problem. 

4) We shall also give the concept of interval-valued intuitionistic fuzzy soft expert 

sets (IV I F S E S s). We shall define some operations and some aggregation operators 

on it. After that we shall develop algorithm for multicriteria decision making problem. 

5) We shall give the concept of graded soft expert matrices, cubic soft expert 

matrices and interval-valued intuitionistic fuzzy soft expert matrices. 
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Chapter 2 

Literature Review 

In this chapter, we recall some definitions related to fuzzy set, interval valued fuzzy 

set, intuitionistic fuzzy set , intuitionistic fuzzy soft set, interval valued intuitionistic 

fuzzy sets. 

2.1 Basic Definitions 

Definition 2.1.1 [34} A fuzzy subset in a set U is defined to be a function A : U ---t I 

where I = [0,1]. The collection of all fuzzy sets in a set U is denoted by I U . For any 

A,I-£ E I U define a relation::; on I U as follows:A ::; p, ¢:::::} A(U) ::; p,(u) 'l/u E U. The 

join (V) and meet (t\) of A and p, are defined by 

(A V p,)(u) = sup{A(u),I-£(u)}, 

(A t\I-£)(u) = inf{A(u),p,(u)} 

respectively, for all u E U. The complement of A, denoted by AC, is defined by 

AC(U) = 1 - A(U) 'l/u E U 

For a family {Aili E A} of fuzzy sets in U, we define the join (V) and meet (t\) 

operations as follows: 

iEu 

(/\ Ai )(U) = inf{Ai(u) liE A}. 
iEu 

respectively, for all u E U. 

Definition 2.1.2 [83} The fuzzy subsets of U, denoted by 0 and I , which map every 

element of U onto 0 and 1 respectively, are called the empty fuzzy set or null fuzzy 

subset and the whole fuzzy subset of U respectively. 

6 
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Definition 2.1.3 (28] Let U be a non-empty set . A fun ction A : U ----+ Int( [O, 1]) is 

called an interval-valued fuzzy set, where Int ( [O, 1]) stands fo r the set of all closed sub 

intervals of [0, 1], the set of all interval-valued fuzzy sets on U is denoted by [I]u. For 

every A E [I] U and u E U, A(u) = [A- (u) , A+(u)] is called the degree of membership 

of an elem ent u to A , where A - : U ----+ I and A + : U ----+ I are f1£ zzy sets in U which 

are called lower fuzzy set and upper fuzzy set in U respectively. For simplicity, we 

denote A = [A -, A +]. For every A , B E [I] U, the complement of A is denoted by 

AC = [1- A +, 1 + A-]. 

Definition 2.1.4 (34] Let A = [A- , A+], and B = [B -, B+ ] be two interval valued 

fuzzy sets in U. Then inf and sup of A and B are defin ed as follows: 

inf{ A( u) , B(u)} = [inf{ A - (u) , B - (u)} , inf{ A + (u) , B+( u)}] 

sup{A(u) , B(u)} = [sup{A - (u), B - (u)} , sup{A+(u) , B+(u)} ] 

Definition 2.1.5 (84] Let A = [A-,A+], and B = [B- , B +] be two interval valued 

fu zzy sets in U . Then, we defin e ":5 ", and " ~", as 

Similarly, 

for all u E U. For every A , BE [I ]U, we defin e A ~ B if and only if A(u) :5 B(u) for 

all u E U. 

Definition 2.1.6 (8] Let U be a non empty set of the universe . If there are two 

mappings on U, 

I-£ A : U ----+ [0 , 1] 

IIA : U ----+ [0 , 1] 

u ~ 11 A( u) satisfying the condition f-£ A( u) + 11 A( u) :s; 1. Ini1£itionistic fuzzy set on 

the universal set U is denoted and defined as A = {< u , f-£ A( u), 11 A( u) > : u E U} . 

f-£ A( u) and 11 A( u) are called the membership degree and nonmembership degree of an 

elem ent u belonging to A ~ U respectively. The set of all intuitionistic fuzzy sets on 

the universal set U is denoted by F(U). ....- -- ~" 
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Definition 2.1.7 [30} Consider U and E as a universe set and a set of parameters 

respectively. Let A s-;;; E. A pair (8, A) is an intuitionistic fuzzy soft set over U, 

where (3 is a mapping given by (3 : A ---t F(U). For any parameter a E A, (3( a) is an 

intuitionistic fuzzy subset of U and it is called intuitionistic fuzzy value set of parameter 

a. (3(a) can be written as an int'uitionistic fuzzy set 

(3( a) = { < 1/" J-l f3 (a) (1/,), vf3 (a)(1/,) > : 1/, E U} 

where {l f3 (a)(1/,) and V,6(a )(1/,) are the m ember'ship and non-membership functions respec­

tively . If for all1/, E U , J-l f3(a)( 1/,) = 1- vf3(a)( 1/,) then (3 (a) will degenerate to a standard 

fuzzy set and then ((3, A) will degenerate to a traditional f11zzy soft set. 

Definition 2.1.8 [9} Let U =1= ¢ be a set of the universe . J-lX and vx determine 

an interval-valued inhlitionistic fuzzy (IV I F) set if on X if the two interval-val1/,ed 

mappmgs 

1/ X : U ---t I [O,lJ 

1/, I----> v X( 1/,) satisfy the following condition: 0 ::; S1/,p{J-l X( 1/,)} + S1/,p{ v X( 1/,)} ::; 1. The 

interval-valued int1/,itionistic fuzzy set is denoted as 

if = {< 1/" {lX(1/,) , vX(1/,) >: 1/, E U} , 

where {l X( 11) and v X( 1/,) are called the interval valued membership degree and non mem­

bership degree of an elem ent 1/, belonging to if respectively. The set of the IV I F sets 

on the universe set U is denoted by Iff (U). The interval valued intuitionistic fu zzy set 

A can be expressed in the interval vahled format as follows 

if = {< 1/" [{l:i(1/,) , J-l !(1/,)], [//X(1/,) , v1('u)] >: 11 E U} , 

where {l -='(1/,) , {l-t(1/,) , V-=' (1/,) , v±(1/,) E [0,1] and {l±(1/,) + v±(1/,) < 1. 
A A A A A A-

Definition 2.1.9 [30} The interval-valued hesitancy degree (or int1/,itionistic fuzzy in­

dex) of an elem ent 1/, belonging to the interval-valued intuitionistic fuzzy set if is de­

noted and defin ed as follows: 



2. Literature Review 9 

In sit uations where more than one expert OpInIOn is necessary, Alkhazaleh [7] 

introduced soft expert sets and claimed that if we want to take the opinion of more 

than one experts, we need some operations such as union , intersection, and so fort h. 

This causes a problem with the user , especially with those who use questionnaires in 

their work and studies. So in this model, the user can know the opinion of all experts 

in one model without using any operations. 

In this section, we give some basic concepts related to soft sets, soft expert sets 

and hesitant fuzzy sets. These will be required in the later sections. 

2.2 Soft Sets 

Let U be a non-empty set representing the universe set and P(U) denotes the power 

set of U. Let E be the set of parameters and A , B be non-empty subsets of E. 

Definition 2.2.1 [52} A pair (F, A) is called a soft set over U , where F is a mapping 

given by F : A -t P(U). Soft set is basically a parameterized family of subsets of the 

set U. Thus , soft set can be considered as a parameterized family of subsets of the 

universe U. For e E A , F(e) gives the set of e-approximate elem ents of the soft set 

(F, A) . 

Definition 2.2.2 !41} For two soft sets (F, A) and (G , B ) over a com mon universe 

U, we say that (F, A) is a soft subset of(G, B) , denoted by (F, A) c (G , B) , if 

(1) A ~ Band 

(2) F(e) ~ G(e) fo r all e E A . 

Definition 2.2.3 [41} Two soft sets (F, A) and (G , B) over a common universe U are 

said to be soft equal if (F, A) is a soft subset of (G , B) and (G , B) is a soft subset of 

(F, A). 

Definition 2.2.4 [4} Let U be an initial universe set, E be the set of parameters, and 

A~E. 

(a) (F, A) is called a relative null soft set (with respect to the parameter set A ) , 

denoted by 0A , if F(e) = 0 for all e E A . 

(b) (G , A) is called a relative whole soft set (with respect to the parameter set A ), 

denoted by Au , if G(e) = U for all e E A. 

Remark 2.2.5 If relative null soft set is taken over E , it is called null soft set over 

U and is denoted by 0 E. In a similar way, relative whole soft set with respect to the 

set of parameters E is called the absolute soft set over U and is ~,~Eu. 

Empty soft set over U , denoted by 0o, is a unique soft set ~ef U with an em pty 

parameter set. 
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The operations of UUiOll and intersection on soft sets have been defined as below. 

Definition 2.2.6 !4] (1) Extended union of two soft sets (F, A) and (G, B) over the 

common un'iverse U is the soft set (H, C), where C = Au B and fo r all e E C, 

{ 

F(e) 

H( e) = G(e) 

F(e) U G(e) 

W e write (F, A) UC (G , B ) = (H , C) . 

if e E A \ B 

if e E B \ A 

if e E An B 

(2) Let (F, A) and (G, B ) be two soft sets over the same universe U, such that 

An B =I- 0. The restricted lmion of (F, A) and (G , B) is denoted by (F, A) Un (G , B) 

and is defined as (F, A) Un (G, B ) = (H , C) , where C = An B and fo r all e E C, 

H (e) = F(e) U G(e) . If A n B = 0, then (F, A) Un (G , B) = 00' 

Definition 2.2.7 (4] (1) The extended intersection of two soft sets (F, A) and (G, B) 

over a common un'iverse U, is the soft set (H , C) where C = AU B and fo r all e E C, 

{ 

F(e) if e EA\B 

H (e) = G(e) if e E B \ A 

F (e) n G (e) if e E A n B 

W e write (F , A) nc (G, B ) = (H, C). 

(2) Let (F,A) and (G,B) be two soft sets over the same universe U such that An 

B =I- 0. The restricted intersection of (F, A) and (G, B) is denoted by (F, A) nn (G, B) 

and is defined as (F, A) nn (G , B ) = (H, A n B) where H (e) = F( e) n G(e) for all 

e E An B. If An B = 0 then (F, A) nn (G , B ) = 00 , 

2.3 Soft Expert Sets 

Now, we give some basic concepts related to soft expert sets. All t he definitions related 

to soft expert sets have been taken from [7]. 

Let U be a universe set, E be a set of parameters , X be a set of experts and 0 be 

the set of opinions. Let A be a non-empty subset of Z , where Z = E x X x O. vVith 

these notations Alkhazaleh [7] defined soft expert set as stated below: 

Definition 2.3.1 A pair (F, A) is called a soft expert set over U, where F is a mapping 

given by F : A ----7 P(U). Thlls, a soft expert set can be considered as a soft set in which 

parameter set is replaced with Cartesian prodllct of set of par'ameters , set of experts 

and set of opinions. 
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Definition 2.3.2 For two soft expert sets (F, A) and (G, B) over U, (F, A) is called 

a soft expert subset of(G, B ) if 

1) A ~ Band 

2) F(a) ~ G (a) for all a EA . In that case (G, B) will be called soft expert superset 

of (F , A). 

Definition 2.3.3 Two soft expert sets (F, A) and (G , B) over U are said to be equal 

if (F, A) is a soft expert subset of(G,B) and (G , B) is a soft expert s,tlbset of (F, A). 

Definition 2.3.4 Let E = {el ' e2, .. . , en} be a set of parameters . The NOT set of E 

denoted by lE is defin ed by IE = {1 el,J e2, ... ,J en } where l ei represents 'not ei ' for 

all i. 

Definition 2.3.5 The complement of a soft expert set (F, A) is denoted and defin ed 

as (F, A)C = (FC,' IA ) where F C : 'IA ------; P(U) is a mapping given by 

F C(a) = U - F(IA) for all a E' IA. 

Definition 2.3.6 The 1mion of two soft expert sets (F, A) and (G , B) over U, denoted 

by (F, A) {; (G, B) , is a soft expert set (H , C), where C = AU B and for all a E C, 

{ 

F (a) if a E A - B 

H(a) = G(a) if a E B - A 

F ( a) U G ( a) if a E A n B. 

Proposition 2.3.7 If (F, A) , (G , B) , and (H, C) are three soft expert sets over U, 

then 
1) (F, A) 0 (G, B) = (G , B) 0 (F, A ) , 

2) (F, A) 0 ((G, B) 0 (H , C)) = ((F, A) 0 (G, B)) 0 (H, C) . 

Definition 2.3.8 The intersection of two soft expert sets (F, A) and (G , B ) over U, 

denoted by (F, A) n (G,B), is a soft expert set (H, C) where C = AUB and for all 

a E C, 

{ 

F (a) if a E A - B 

H (a) = G (a) if a E B - A 

F(a)nG(a) ifaEAnB. 

Proposition 2.3.9 If (F, A) , (G , B) , and (H, C) are three soft expert sets over U, 

then 
1) (F, A) n (G, B ) = (G, B) n (F, A) , 

2) (F , A) n ((G, B ) n (H ,C)) = (( F , A) n (G, B )) n (H ,C) . 
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Proposition 2.3.10 If (F,A) ,(G, B) , and (H,C) are three soft expert sets over U, 

then 

1) (F, A) U ((G, B) n (H, C)) = ((F, A) U (G , B)) n ((F, A) U (H, C)) , 

2) (F,A) n ((G,B) U (H,C)) = ((F, A) n (G , B)) U ((F, A) n (H ,C)). 

Definition 2.3.11 If Z = E x X x {I} in Definition 2.3. 1, then (F, A) is called agree 

soft expert set over U and it is denoted by (F, Ah. 

Definition 2.3.12 If Z = E x X x {O} in Definition 2.3.1, then (F, A) is called 

disagree soft expert set over U and it is denoted by (F, A)o. 

Proposition 2.3.13 If (F, A) is a soft expert set over U, then 

1) ((F, A)C)C = (F, A), 

2) (F, A)~ = (F, A)o , 

3) (F, A)8 = (F, Ah. 

Definition 2.3.14 If (F, A) and (G , B) are two soft expert sets over U then (F,A) 

AND (G,B) denoted by (F,A) 1\ (G,B), is defin ed by 

(F, A) 1\ (G, B) = (H, A x B), 

where H(a , b) = F(a) n G(b), for all (a, b) E A x B. 

Definition 2.3.15 If (F, A) and (G, B) are two soft expert sets then (F, A) OR (G, B) 

denoted by (F, A) V (G, B), is defined by 

(F,A) V (G,B) = (O,A x B). 

where O(a , b) = F(a) U G(b), for all (a , b) E A x B. 

Proposition 2.3.16 If (F, A) and (G , B) are two soft expert sets over U, then 

1) ((F, A) 1\ (G , B))C = (F, A)c v (G , B) C, 

2) ((F, A) V (G , B))C = (F, AY 1\ (G, BY. 

Proposition 2.3.17 If (F, A) , (G, B) , and (H, C) are three soft expert sets over U, 

then 

l )(F, A) 1\ ((G , B) 1\ (H, C)) = ((F, A) 1\ (G, B )) 1\ (H , C), 

2)(F, A) V ((G, B) V (H, C)) = ((F, A) V (G , B)) V (H, C), 

3)(F, A) V ((G, B) 1\ (H, C)) = ((F, A) V (G , B) ) 1\ ((F, A) V (H, C)), 

4)(F, A) 1\ ((G, B) V (H, C)) = ((F, A) 1\ (G, B)) V ((F, A) 1\ (H, C)). 
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2.4 Hesitant Fuzzy Sets 

Definition 2.4.1 [66} Let X be a fixed set. A hesitant fuzzy set (HFS) on X zs zn 

terms of a function that when applied to X ret1Lrns a subset of [0, 1]. 

Thus , if h is a hesitant fuzzy set on X, then h(x) (x E X), being a subset of [0,1]' 

gives the possible degrees of membership. For any x E X , h (x) is called a hesitant 

fuzzy element . 

Remark 2.4.2 Torra [66} defined lower and upper bounds for a hesitant fuzzy element 

as below: 

lower bound: h - (x) = minb : "( E h (x )} 

upper boun d: h+(x) = maxb : "( E h(x)} 

Basic operations on hesitant fuzzy sets are given below. 

Definition 2.4.3 For hesitant fuzzy sets h , hI and h2 on X , the following operations 

have been defin ed: 

1) Containment ['l8}: h I is contained in h2, denoted by hI :::::; h2 , if and only if 

hI (x) ::; h2 (x) and h i (x) ::; ht (x) for all x EX; 

2) Union [66}: union of hI and h21 denoted by hI lliJ h2 , is defined for any x E X 

as (hllliJ h2)( X) = {h E hI(x) U h2(X) : h ~ max{hI(x), h2(x)}; 

3) Intersection [66}: intersection of hI and h2, denoted by hI ffi1 h2 , is defined for 

any x E X as (hI ffi1 h2)(X) = {h E hl( x) U h2( X) : h::; min{hi(x), ht(x)} ; 

4) Complement [66]: complement of h is denoted by hC and is defined for any 

xEX as hC(x) = U {1- "(} . 
-YE h(x) 

Operational laws investigated by Yang et al. [78] are stated in the next theorem. 

Theorem 2.4.4 For hesitant fuzzy sets hI , h2 and h3 on X, following properties hold: 

1) Idempotent: hI lliJ hI = hI , hI ffi1 h I = hI ; 

2) Commutative: hl lliJ h2 = h2 lliJ hI , hI ffi1 h2 = h2 ffi1 hI; 

3) Associative: hllliJ (h2 lliJ h3) = (hI lliJ h2) lliJ h3, hI ffi1 (h2 ffi1 h3) = (hI ffi1 h 2) ffi1 h3; 

4) Distributive: hllliJ (h 2 ffi1 h3) = (hI lliJ h2) ffi1 (hllliJ h3), hI ffi1 (h2 lliJ h3) = (hI ffi1 h 2) lliJ 

(hI ffi1 h3); 

5) D e Morgan's laws: (hI lliJ h2)C = h'1 ffi1 h~L (h I ffi1 h2)C = h'1lliJ h2; 
6) Double negation: (hC) C = h . 
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2.5 Cubic Sets 

Now, we give some basic concepts related to cubic sets. All the definitions related to 

cubic sets have been taken from [34]. 

Definition 2.5.1 Let U be a non-empty set. By a cubic set in U, we mean a structure 

a = {< u , A(u) , >- (1£) >: u E U} in which A is an interval valued ftt zzy set in U (briefly , 

I VF set) and>- is a fu zzy set in U. A cubic set a = {< 1£, A(1£), >- (tt) >: u E U} is 

simply denoted by a =< A , >- >. A cubic set a =< A , >- > in which for all 1£ E U, 

A(1£) = 0 and >-(1£) = 1 (respectively A(u) = 1 and >- (1£) = 0) for all 1£ E U is denoted 

by b (respectively 1). A cub'ic set (3 =< B , ;..t >, in which B CI./,) = 0 and ;..t (1£) = 0 
•• •• 

(respectively B(u) = 1 and ~t (u) = 1) is denoted by 0 (respectively 1). The collection 

of all cltbic sets in U is denoted by G P (U) . 

Definition 2.5.2 A cubic set a = {< 1£ , A(1£) , >-(1£) >: 1L E U} is said to be an internal 

cubic set (JGS) if A -(u) :s >- (1£) :S A+(u) for all 1£ E U. 

Definition 2.5.3 A cubic set a = {< 1£ , A(u) , >- (1£) >: 1L E U} is sa'id to be an external 

cubic set (EGS) if >- (1£) rt. (A-(1L),A+(u)) for all 1£ E U. 

Theorem 2.5.4 Let a = {< 1£ , A(u) , >- (1£) >: 1£ E U} be a cubic set in U which is not 

an EGS . Then there exists au E U such that >-(1£) E ((A-(u) , A+(u)). 

Theorem 2.5.5 Let a =< A, >- > be a cubic set in U. If a is both an IGS and an 

EGS, then 

for all 1£ E U (>- (1£) E (U(A) U L (A)), 

where U(A) = {A+(u) 11£ E U } and L (A) = {A-(u) 11£ E U }. 

Remark 2.5.6 Every intuitionistic fuzzy set A = {>- (u), ;..t(u )lu E U} in U is consid­

ered as a cubic set in U. 

Definition 2.5.7 Let a =< A, >- > and f3 =< B , ;..t > be cubic sets in U. Then we 

defin e 

1) a = f3 if and only if A = Band >- =;..t . (Equality) 

2) a <;;'p (3 if and only if A <;;, Band >- :S ;..t. (P - order) 

3) a <;;'R f3 if and only if A <;;, Band >- 2: ;..t . (R - order) 

Definition 2.5.8 For any ai =< A(u) , >-i(U) : 1£ E U > i E A, we defin e 

1) Upai = {u, (U Ai)(U), (V >-i)(U) : 1£ E U} (P - union) 
iEA ~EA ~EA 

2) npai = {u , (n Ai)(U) , ( /\ >-i )(U) : U E U} (P - intersection) 
iEA ~E A ~ EA 

3) URai = {u , (U Ai)(U), (/\ >- i)(U) : U E U} (R - union) 
iEA ~EA ~EA 

4) nRai = {u, (n Ai)(U), (V >-i)(U) : U E U} (R - intersection) 
iEA ~EA ~EA 
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Definition 2.5.9 The complement of c'ubic set L~ =< A, A >, is defined as 

aC = < u , AC(u), 1 - A(U) : u E U > . 

Proposition 2.5.10 For any cubic sets a =< A, A >, (3 =< B, f.L >, 'Y =< C, v > 
and 6 = < D , v >, we have 

1) If a <;;'p ,6 and (3 <;;'p 'Y, then a <;;'p 'Y, 

2) If a <;;'p (3 then, ,6c <;;'p a C
, 

3) If a <;;'p ,6 and a <;;'p 'Y, then a <;;'p (3 np'Y, 

4) If a <;;'p ,6 and 'Y <;;'p (3, then a Up 'Y <;;'p ,6, 

5) If a <;;'p (3 and 'Y <;;'p 6, then a Up 'Y <;;'p (3 Up 6 and a np 'Y <;;'p (3 np 6, 

6) If a <;;'R (3 and (3 <;;'R 'Y, then a <;;'R 'Y, 

7) If a <;;'R (3, then (3c <;;'R a C
, 

8) If a <;;'R ,6 and a <;;'R 'Y, then a <;;'R (3 nR'Y, 

9) If a <;;'R (3 and 'Y <;;'R (3, then a UR 'Y <;;'R ,6, 

10 ) If a <;;'R (3 and I <;;'R 6, then a UR 'Y <;;'R ,6 UR 6 and a nR 'Y <;;'R ,6 nR 6. 

Theorem 2.5.11 Let a =< A, A >, (3 =< B , f.L > be two ECSs in U, such that 

a* = < A, /-£ >, (3* =< B , A > are ICSs in U. Then a Up (3 is an ICS in U. 

Theorem 2.5.12 Let a = < A, A >, (3 = < B, f.L > be two ECSs in U, such that 

a* = < A, f.L >, (3* =< B , A > are ICSs in U. Then a np (3 is an ICS in U. 

Theorem 2.5.13 Let a = < A, A >, (3 = < B , f.L > be two ECSs in U, such that 

a* = < A, /-£ >, (3* =< B, A > are ECSs in U. Then a np ,6 is an ECS in U. 

2.6 Soft Matrices 

T he material presented in this section is taken from [11]. We give the definitions and 

types of soft matrices and some related results. 

Definition 2.6.1 Let U be an initial universe, P(U) be the power set of U; E be the 

set of all parameters and A <;;. E . A soft set (J A, E) on the universe U is defined by 

the set of ordered pairs 

(JA , E) = {( e, fA( e)): e E E , fA( e) E P(U)} , 

where fA : E ---4 P(U) such that fA( e) =0 if e ~ A. 

Here, fA is called an approximate fun ction of the soft set (J A, E). The set fA (e ) 

is called e-approximate value set or e- approximate set which consists of related objects 

of the parameter e E E. 
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Definition 2.6.2 Let (fA , E) be a soft set over U. Then (j, s'ubset ofU x E is uniquely 

defined by 

RA = {(u, e): e E A, U E fA(e)} 

which is called a relation form of (fA, E). The characteristic function of RA ~s 

written as 

XRA: U x E-+ [0, 1]' XRA(u,e) = { 1, 
0, 

(1/" e) E RA 

(u, e) ~ RA 

D efini t ion 2.6.3 If U = { U1 , U2, , urn }, E = {e1, e2, ... , en } and A <:;;; E , then the RA 

can be presented by a table as in the following f orm 

R A e1 e2 ... en 

U1 XRA (U1 , e1) XRA(u1,e2) ... XRA (U1 , en) 

1L2 XRA (U2, e1) XRA(u2,e2) ... XRA (U2 , en) 

.. . ... ... ... . .. 

Urn XRA (urn , e1) XRA (urn, e2) ... XRA (1/,rn, en) 

Table 2.6. 1 

If aij = XRA (1/,i, ej), then we can define a matrix 

all a12 a13 aln 

a21 a22 a23 a2n 

[aij]rnxn = a31 a32 a33 a3n 

amI arn2 arn3 arnn rn xn 

which is called an m x n soft matrix of the soft set (fA, E) over U. 

The set of all m x n soft matrices over U will be denoted by S NIrnxn . 

Example 2 .6.4 Assume that U = {U1, 1/,2 , U3 , U4, U5} is a universal set and E = 
{e1,e2,e3,e4} is a set of all parameters. If A = {e2 ,e3,e4} and fA(e2) = {U2 , U4}, 

f A(e3) = 0, f A(e4) = U, then we write a soft set (fA , E) = { (e2, {1/,2,u4 } ), (e4,U)} 

and the relation form of (fA , E) is written as 

Hence, the soft matrix [aij] is written by 

0 0 0 1 

0 1 0 1 

[aij] = 0 0 0 1 

0 1 0 1 

0 0 0 1 
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Definition 2.6.5 Let [aij] E SMm x n . Then [aij] is called 

a) a zero soft matrix, denoted by [0], iJ aij = 0 Jar all i and j . 

b) an A-universal soft matrix, denoted by [aij], iJ aij = 1 for all jE f A = {j : ej E A) and i . 

c) a universal soft matrix, denoted by [1], if aij = 1 for all i and j. 

Definition 2.6.6 Let [aij], [bij] E SMmxn . Then 

a) [aij] is a soft submatrix of [biJl , denoted by [aij] ~ [bij] if aij ::; bij for all i and j. 

b) [aij] is a proper soft submatrix of [bij]' denoted by [aij] C [bij] if aij ::; bij for atleast 

one term aij < bij for all i and j. 

c) [aij] and [bij] are soft equal matrices, denoted by [aij] = [bij] if aij = bij Jor all i and j. 

Definition 2.6.7 Let [aij], [bij] E SMm xn . Then the soft matrix [Cij] is called 

(a) union of [aiJl and [bij ], denoted [aij]U[bij] = [Cij] if Cij = max{ aij , bij } for all i and j. 

b) intersection oj [aij] and [bij ], denoted [aij]n [bij ] = [Cij] if Cij = min {aij , bij } Jor all i and j . 

c) complem ent of [aiJl, is denoted by [aij]O = [Cij], if Cij = 1 - aij for all i and j. 

Definition 2.6.8 Let [aij], [bij ] E SMm x n . Then [aij] and [bij] are d'isjoint, if 

for all i and j. 

Proposition 2.6.9 Let [aij] E SMm x n . Then 

1) [[aij]O]O = [aij], 

2) [0]0 = [1]. 

Proposition 2.6.10 Let [aij ], [bij] E SMm x n . Then 

1) [aij ] ~ [1], 
2) [0] ~ [aiJl, 

3) [aiJl ~ [aij ], 

4) if [aij] ~ [bij] and [bij] ~ [Ci j] then [aij] ~ [Cij]. 

Proposition 2.6.11 Let [aij], [bij], [Cij] E SMm x n . Then 

1) if [aij] = [bij] and [b·ij ] = [Cij] if and only if [aij] = [Cij], 

2) iJ[aij] = [bij] and [bij] = [aij] if and only iJ[aij ] = [bij] . 
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Proposition 2.6.12 Let [aij], [bij]' [eij] E SMm x n . Then 

1) [aij ]U[aij] = [aij], 

2) [aij]U[O] = [aij], 

3) [aij]U[1] = [1], 
4) [aij]U[aij]O = [1], 
5) [aiJlU[bij ] = [bij]U[aij], 

6) [aiJlU([bij]U[Cij]) = ([aij]U[bij ])U[Cij]. 

Proposition 2.6.13 Let [aij], [bij], [Cij] E SM mxn . Then 

1) [aij]n[aij] = [aiJl , 

2) [aij ]n[O] = [0], 
3) [aij]n[1] = [aij], 

4) [aij ]n [aij]O = [0], 
5) [aij]n[bij ] = [biJln[aij]' 

6) [aij]n([biJln[Cij]) = ( [aij]n[bij])n[Cij] . 

Proposition 2.6.14 Let [aij], [bij]' [ciJl E SMm x n . Then 

1) ( [aiJln[bij])O = [aijtU[bij]O, 

2) ( [aiJlU[bij])O = [aij]On[bij]O , 

3) [aij]U([bij]n[Cij]) = ([aij]U[bij])n( [aij ]U[cij], 

4) [aij]n([bij]U[Cij]) = ([aij]n[bij])U([aij ]n[Cij] . 

Definition 2.6.1 5 Let [aij], [bik ] E SMmxn. Then And-praduct af [aij] and [bik ] zs 

defined as 

.A. : S Mmxn x SMmxn ~ SMmxn2 , [aiJl !\ [bik ] = [Cip], 

where Cip = min{aij , bid such that p = n(j - 1) + k. 

Definition 2.6.16 Let [aij], [bik] E S Mmxn . Then Or-product af [aij ] and [bik] zs 

defined as 

Y : SMmxn x SMm xn ~ SMmxn2, [aij ] V [bik] = [C'ip], 

where Cip = max{ aij, bik} such that p = n(j - 1) + k. 

Definition 2.6.17 Let [aij], [bik] E SMmxn . Then And- Nat-product af [aij] and [bik] 

is defined as 

where Cip = min{ aij, 1 - bid such that p = n(j - 1) + k. 
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Definition 2 .6 .18 Let [aij], [bik ] E SMmxn . Then Or-Nat-product of [aij] and [bik] is 

defin ed as 

"':{ : SMmxn x SMm xn ~ SlVlmxn2, [aij] "':{ [bik ] = [Cip ], 

where Cip = max{aij , 1 - bid such that p = n(j - 1) + k. 

Proposition 2.6.19 Let [aij], [bik ] E SMmxn. Then the following De Morgan's types 

of results are true . 

1) ([aij]/\ [bik])O = ([aij])O V ([bik])O , 

2) ([aij] V [bik])O = ([aij])O /\ ([bik])O , 

3) ([aij] "':{ [bik])O = ([aij])O 7\. ([bik])O , 

4) ([aij]7\. [bik])O = ([aij])O "':{ ([bik])o . 



Chapter 3 

Graded Soft Expert Sets 

3.1 Introduction 

Liang and Liu int roduced hesitant fuzzy sets into decision theoretic rough sets and 

explored their decision mechanism [43] . Zhang and vVu investigated the deviation of 

the priority weights from hesitant multiplicative preference relat ions in group decision­

making environments [85]. Although this theory proved to be valuable in the context of 

decision analysis, yet there are some deficiencies in it . No standard inclusion measure 

has yet been developed. In its application in decision analysis, experts' individual 

weight age has totally been ignored. To overcome these problems, we introduce graded 

soft expert (GS E) sets which can be treated as a generalization of hesitant fuzzy sets. 

This structure is a modified form of soft expert sets but its structural and operational 

approach is totally different. We ITlainly focussed to fill the gaps in hesitant fuzzy set 

theory. In Section 3.2 , graded soft expert sets (GSE) have been introduced . Some 

basic operations have been defined and related laws have been proved. Section 3.3 has 

been devoted to the study of decision making problems with the aid of GSE sets. At 

the end , Section 3.4 contains some concluding remarks. 

3.2 Graded Soft Expert Sets (OS E Sets) Versus Hesitant 

Fuzzy Sets and Soft Expert Sets 

In this section soft expert set defined by Alkhazaleh and Salleh [7] has been redefined 

and revised which may be called as graded soft expert set . In order to strengthen the 

structure , its basic operations have been redefined in a more fruitful manner. Several 

laws and related results have also been investigated some of which does not hold in 

hesitant fuzzy sets. 

Hesitant fuzzy sets are basically int roduced to handle decision making problems 

20 
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in which there are several alternatives and decision makers. But in the definition of 

hesitant fuzzy sets, alternatives and decision makers have not been specified. This 

may lead to the wrong use and interpretation of the set. Also, if we take Xl, X2, and 

X3 as three alternatives and hesitant fuzzy set h represents a particular criteria then 

for each i (i = 1, 2, ... , n) h( Xi) represents opinions of various decision makers in which 

there is no space to highlight individual decision maker's opinions separately. For that 

purpose d ifferent techniques and algorithms were int roduced which makes the decision 

m aking problems somehow difficult to handle. One of t hem is to assign weights to t he 

opinions . But again since opinions of the decision makers have been collected in a set 

wit hout specifying t heir individual decisions, it is not possible to give more weightage 

to a part icular decision maker. I t m ay be possible by introducing a complex algori thm. 

To avoid such type of sit uations, GSE set can prove its worth. In GSE set , each 

alternative (or at tribute) and decision m aker have been specified separat ely. Formally 

it is sta ted as below: 

Definition 3.2.1 Let U be a fin ite universe set containing n alternatives, E ; a set of 

criteria and X; a set of experts (or decision makers). Let 0 be a set of opinions with a 

given preference relation ~ among the opinions. A graded soft expert set (abbreviated 

as GSE set) (F, A , Y) is characterized by a mapping F : A x Y ~ P(U x 0) defined 

for every e E A and p E Y by F ( e, p) = {( Ui , Oi) : i E I} , where I = {I , 2, 3, ... , n}, 

A ~ E , Y ~ X and P(U x 0) denotes the power set of U x O. Here the set of opinions 

o contains graded values of the given parameters i.e. the values 01,02, ... , On can be 

graded as 01 ~ 02 ~ ... ~ On which means that On is the most preferred value while 01 

is the least preferred one and so forth. 

The above defini t ion states that for a given criteria e the decision maker p gives 

the opinion 0i for each alternat ive Ui (i = 1,2, ... , n). As an example of t he preference 

relation in the above defini t ion consider the set of opinions 0 = {excellent , very good , 

good , poor , very poor} . It is obvious that "excellent" is preferred over "very good" 

which is preferred over "good" which is preferred over "poor" and the least preferred 

one is "very poor" . For simplicity we can fuzzify these values according to t heir grading 

and preference, t hat is, the opinions can be assigned values from t he interval [0, 1] based 

on their preference . For U , in t he above ment ioned set 0 of opinions, "excellent" is 

t he most preferred opinion , so it can be assigned value 1 from t he interval [0, 1] while 

"very poor" is t he least preferred opinion , so it can be assigned the value 0. Rest of 

t he opinions will be assigned values between ° to l. 

In t he rest of the chapter, the set of opinions 0 will be taken as a subset of [0, 1]. 
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Example 3.2.2 Let U = {U1 ' U2 , 'U3, U4, U5} be a set of wheat types (alternatives), 

E = {e1 =moister content, e2 =protein content, e3 =miLling quality, e4 =baking qual­

ity} be a set of criteria, X = {a,b,c} be a set of experts and 0 = {O.O , 0.1 , 0.2, 0.3 , 

0.4, 0.5, 0.6 , 0.7, 0.8 , 0.9 , l.0} be the set of possible grades for the given parameters. 

Suppose that a farmer has distributed a questionnaire to the team of experts to 

judge the quality of wheat types on the basis of given criteria. Decision of experts in 

the form of graded soft expert set F : A x X ----t P(U X 0) is given below: 

F(e1,a) = { (u1, 0.5), (u2 ,0.1), (u3, 0.7) , (1£4, 0.9), (u5 , 0. 2)} , F(e1 , b) = {(u1 ,0.5) , 

(u2 ,0.2), (1£3, 0.7) , (1£4: 0.3) , (1£5, 0.4)} , F(el, c) = {(U1' 0.4) , (1£2 , 0.3) , (1£3, 0.3), (1£4,0.6), 

(u5 , 0.7)}, F(e2, a) = { (u1, 0.9), (U2, 0.3), (1£3 ,0.2), (7.l4, 0.3) , (u5, 0.6)}, F(e2 , b) = 

{(U1 ' 0.8), (1£2,0.9), (U3, 0.4) , (1£4,0.1), (U5, 0.4)} , F(e2, c) = {(U1 ' 0.7) , (1£2,0.0), (1£3,0.3), 

(1£4,0.3), (u5, 0.6)}, F(e3 , a) = { (U1' 0.5), (u2 , 0.5) , (1£3, 0.9), (1£4, 0.7), (u5 , 0.2)} , F(e3 , b) = 

{(U1' 0.4), (U2 , 0.4), (U3, 0.8), (1£4, 0.2), (U5, 0.3)}, F(e3 , c) = {(U1' 0.4), (1£2 , 0.4), (U3 , 0.9) , 

(u4, 0.7) , (u5 , 0.2)} , F (e4 , a) = {(Ul ' 0.6), (u2 , 0.7), (1£3 , 0.5) , (1£4, 0.9), (u5, 0.7)} , F(e4 , b) = 

{(7.Ll ' 0.5) , (U2, 0.8), (U3, 0.4) , (1£4, 0.6), (7.L5, 0.3)} , F(e4' c) = {(7.Ll ' 0.3), (1£2,0 .9) , (1£3, 0.5), 

(U4 , 0.0), (u5 , 0. 6)}. 

In soft set theory, basic concept is parametrization of objects in a given universe 

set. The various operations thus defined on soft sets depend upon the e-approximate 

elements of a given set for all attributes e. Since soft expert set does not only depend 

upon the various parameters involved but also on the opinion of experts, which is 

basically the main purpose of introducing soft expert sets, the operations on soft 

expert sets should consider these opinions as well. In the rest of the section, we define 

operations on GSE sets taking into consideration the respective opinions as well. 

In particular, we can see that the operation of complement on soft expert set 

defined in [7] takes into consideration t he objects of universe and their respective 

attributes only ignoring t heir respective opinions. As in U 3.9 of [7] we can see that 

the complement of F(el , p, l ) = {7.L3} is given as FC(I el,P, l ) = {U1 ,U2 ,U4} which 

means t hat according to the expert 'p' only the object U3 has attribute e1 and its 

complement states that according to the same opinion of expert 'p' t he objects 1£1 , 1£2 

and U4 do not have att ribu te e1. This idea can work if we are taking only two opinions 

(agree 1, disagree 0). If we consider more than two opinions (as in GSE sets) the 

idea may not work. In the same above case, if we take F( e1, p , 0.3) = {U3 } and 

FC(Ie1, P, 0.3) = {Ul ,U2 ,U4} then the objects not having attribute 'el' in the same 

degree 0.3 as t he objects having that attrib ute does not sound accurate . T hus, for 

more than two opinions we define complement of GSE set as fo llows: 

Definition 3.2.3 The complement of a GSE set (F, A , Y) , denoted by (F, A , y)C, is 

defined as (F, A , y)C = (FC, AC, Y) where F C : AC x Y -t P(U X OC) is a mapping 
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gwen as 

whenever 

F (e, p) = {(Ui,Oi) : i E I} and of = 1- 0i· 

Example 3.2 .4 Consider U 3.2.2. Then 

FC(el, a) = {(Ul , 0.5) , (u2 ,0.9) , (1£3 ,0.3 ), (1£4 ,0. 1), (1£ 5, 0.8)} , FC(eJ., b) = {(ul,0.5), 

(1£2 ,0.8) , (1£3 ,0.3) , (1£4 , 0.7) , (U5 , 0.6)} , FC( el, c) = { ( 1£1 , 0.6), (1£2, 0. 7) , (1£3 , 0.7) , (U4 , 0.4) , 

(u5 ,0.3)}, FC (e~ , a) = {(1£l , O.l ), (1£2 , 0.7), (u3 ,0.8) , (u4 ,0.7) , (1£5 ,0.4)} , FC ( e~, b) = 

{(1£l , 0. 2) , (1£2 ,0.1), (1£3, 0.6) , (1£4, 0.9 ), (1£5, 0.6)}, FC (e~, c) = {(Ul , 0.3) , (1£2 , 1.0 ), (1£3 ,0.7) , 

(U4 , 0.7) , (U5 , 0.4)} , FC( e§, a) = {( 1/,1 , 0.5) , (U2 , 0.5) , (U3 , 0.1) , (U4 , 0.3, (1/'5 , 0.8)}, FC( e§, b) = 

{(1£l , 0.6), (1£2 ,0.6 ), (u3 ,0. 2) , (1£4 ,0.8), (1£5 , 0.7) } , FC(e§,c) = { (1£l, O.6), (1£2, 0.6 ), (1£3 ,0.1), 

(U4, 0.3) , (1£5 , 0.8)} , FC( e~ , a) = {( 1/,1, 0.4) , (U2 , 0.3), (1£3 , 0. 5) , (U4 , 0.1), (1£5, 0.3) }, FC( e~, b) = 

{(ul , 0.5), (11,2 , 0. 2) , (u3 ,0.6), (u4, 0.4) , (u5 , 0 . 7)},FC (e~ , c) = {(ul , 0.7) , (11,2 ,0.1 ), (11,3 ,0.5) , 

(11,4,1.0), (u5 , 0.4 )}. 

Definition 3.2.5 The union of two GBE sets (F, A , Y) and (G , B , Z) over U, denoted 

by (F,A ,Y) U (G , B , Z) , is a GBE set (H , C,X ) where C = AUB, X = YU Z and 

for all e E C and p EX; 

{ 

{(Ui, max{oi , o~}) : i E I} if (e,p) E (A n B , Y n Z) 

H (e, p) = {(Ui, 0;) : ~ E I} 2f (e , p) E (A, Y) \ (B , Z) 

{(Ui,oi) : 2 E I} 2f (e,p) E (B , Z) \ (A, Y ) 

whenever F(e, p) = {(Ui ,O'i) : i E I} and G(e ,p) = {(ui, oD : i E I}. 

Example 3.2.6 Let A x Y = {(el , a) , (el , b) , (e2, a) , (e2, b) , (e2, c), (e3, a) , (e3, b) , 

( e4, a), (e4, b) , (e4 , c) } , 

B x Z = {(el , a) , (el , b) , (el , c) , (e2 , a) , (e2 , c), (e3 , b) , (e3, c), (e4 , a) , (e4 , b)}. 

Let two GBE sets (F, A, Y) and (G , B , Z) over U are given by 

F(el , a) = {(ul , 0.5) , (1£2 ,0.1), (u3 ,0.7)} , F(el ,b) = {(ul,0.5) , (11,2,0.2) , (1/'3 , 0.7)}, 

F(e2, a) = {(ul , 0.9), (1£2 , 0. 3) , (u3 , 0.2)} , F(e2 , b) = {(ul , 0.8) , (11,2 , 0.9) , (u3 ,0.4)} , 

F(e2, c) = {(ul, 0.7), (U2' 0.0), (u3 ,0.3)} , F(e3, a) = {(ul , 0.5) , (11,2 ,0.5) , (u3, 0.9)} , 

F(e3, b) = {(Ul'O.4), (U2, 0.4), (u3 ,0.8)} , F(e4 , a) = {(ul , 0.6) , (1/,2, 0.7) , (u3 ,0.5)}, 

F(e4, b) = {(ul , 0.5), (11,2 , 0.8) , (1£3 ,0.4)} , F(e4,c) = {(ul , 0.3) , (11,2,0 .9) , (1£3 ,0.5)} . 

G(el , a) = {(ul, 0.8) , (1/,2, 0.3), (u3 ,0.4)} , G(el, b) = {(ul,0.3, (u2, 0.7), (u3, 0.9 )) , 

G(el , c) = {(1£l, 0.4) , (u2 ,0.3 ), (u3 ,0.3)} , G(e2 , a) = {(ul ,0.5) , (11,2 , 0.2) , (u3 ,0.8)}, 

G(e2,c) = {(ul ,0.6) , (u2 ,0.8) , (u3, 0.1)} , G( e3, b) = {(ul ,0.6) , (11,2, 0.4) , (u3, 0.2)}, 

G(e3, c) = ((ul , 0.4), (u2, 0.4) , (u3, 0.9)} , G(e4 , a) = {(ul, 0.6 ), (11,2, 0.6), (u3, 0.8)}, 

G(e4, b) = {(Ul, 0.6) , (u2 , 0.4) , (u3 ,0.2)}. 
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Hence (F,A ,Y) U (G , B , Z) = (H, C,X) is given as 

H(el , a) = {(u I, 0. 8), (u2, 0.3), (u3,0.7)} , H (e l , b) = {(uI ,0.5), (u2,0.7), (u3,0.9)} , 

H(el ,c) = {(uI ,0.4) , (u2 , 0.3) , (u3 , 0.3)} , H(e2, a) = {(uI,0.9) , (u2,0 .3) , (u3 ,0.8)} , 

H(e2, b) = ((uI,0.8) , (u2 ,0.9) , (U3 ,0.4)} , H( e2, c) = {(uI , 0.7) , (u2 , 0.8) , (u3, 0.3)} , 

H (e3,a) = {(uI ,O.5) , (u2,O.5) , (u3 , O.9)} , H (e3, b) = {(uI ,O.6), (u2 , O.4) , (u3 ,O.8)} , 

H(e3,c) = {(UI , O.4) , (U2 ,0.4) , (u3 , O.9)} , H (e4 ,a) = {(uI , O.6), (u2 ,O.7) , (u3 ,O.8)} , 

H(e4,b) = {(uI,0.6) , (u2 ,O.8) , (U3 , 0.4)} , H (e4 , c) = { (uI , O.3 ), (u2 , O.9) , (u3 , O.5)}. 

Definition 3.2 .7 The intersection of two GSE sets (F, A,Y) and (G , B , Z) overU, 

denoted by (F,A, Y)n(G , B , Z) , is a GSE set (H , C,X) where C = AnB, X = YnZ 

and for all e E C and p EX; 

whenever F(e,p) = {(Ui,Oi) : i E I} and G(e ,p) = { (Ui ' O~) : i E I} . 

Example 3.2.8 Consider U 3.2.6. (F, A, Y) n (G , B , Z) = (H, C, X) is given as: 

H(el , a) = {(uI , O.5) , (u2,O.I), (U3 ,0.4)} , H(el,b) = {(uI,0.3), (u2 ,0.2), (u3 ,0.7)} , 

H(e2, a) = {(uI , O.5) , (u2 , O.2) , (u3 , O.2)} , H(e2, c) = {(uI,0.6) , (U2,O.0), (u3 ,O.I)}, 

H(e3,b) = {(uI,O.4) , (U2 , 0.4) , (u3 ,O.2)} , H(e4,a) = {(uI ,0.6) , (u2 ,0.6) , (u3, O.5)} , 

H(e4, b) = {(UI , 0.5) , (U2, 0.4) , (u3, O.2)}. 

In classical set , the hierarchy is characterized through set containment. But , in 

case of other generalizations of classical set like fuzzy set , soft set or hesitant fuzzy set , 

it is characterized through different ways. Alkhazaleh and Salleh [7] defined soft expert 

subset by using the classical set containment approach in which grading of opinions is 

not considered. Taking into consideration the opinions of experts , we define the notion 

of subset for graded soft expert sets in a more generalized way as below: 

Definition 3.2 .9 For a GSE set (F, A, Y) over U and fo r any e, e' E A, p, p' E Y, if 

F(e,p) = {(Ui,Oi) : i E I} and F(e' ,p') = {(ui , oD: i E I}, 

then F( e, p) is said to be contained in F( e' , p') (or eqltivalently F( e, p) is subset of 

F(e' ,p' ), denoted by F(e ,p) ~ F(e' ,p') , if 

0i :S o~ for each i E {I , 2, 3, .. . , n }. 

,', 
The above condit ion states that the degree of each alternat ive in F(e /pJ ~ le1~l, 

than the corresponding degree in F( e' , p'). ~ .~ ~ '.,' - ., 
, 

, . 
'. 
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Example 3.2 .10 In U 3.2.2, F(el ' b) = {(ul ,0.2), (1£2, 0.5), (1£3,0.4), (1£4,0.5), (1£5, 0.6)} ~ 

F (e4, c) = {(Ul ' 0.3) , (1£2 , 0.8) , (1£3 , 0.5) , (1£4 , 0.5), (u5 , O.6)} because opinion for each 

Ui in F(el ' b) is less than or equal to its corresponding value in F(e4' c). 

Definition 3.2.11 For two GSE sets (F,A,Y) and (G , B ,Z) over U, (F, A ,Y) zs 

called stibset of (G, B , Z) , denoted by (F, A , Y) ~ (G , B , Z) , if 

1) A ~ B , 

2) Y ~ Z, 

3) F (e, p) ~ G(e, p) for all eEA, pEY. 

In this case (G, B , Z) is called a superset of (F, A , Y) denoted by (G, B , Z) 2 (F, A , Y). 

Example 3.2.12 Let B x Z = {(el ' a) , (el ' b), (e2 ' a) , (e2 , b) , (e2 , c), (e3, a) , (e3 , b) , 

( e4 , a) , (e4 ' b) , (e4' c)} , A x Y = {( el , a) , (e3 , b) , (e4' a) , (e4 ' b)} . 

Let two GSE sets (G, B , Z) and (F, A , Y) over U are given by 

G(el ,a) = {(ul , O.5), (1£2,0 .1) , (u3,O.7)} , G(el,b) = {(u l ,0.5) , (1£2 ,0.2) , (u3 ,O.7)} , 

G(e2, a) = {(ul , O.9) , (1£2 , 0.3) , (u3,O.2)} , G(e2, b) {(ul , O.8), (1£2 , 0.9) , (U3 ,0.4)} , 

G(e2' c) = {(Ul ' 0.7), (1£2, 0.0) , (u3,O .3)} , G(e3 , a) = {(ul, O.5) , (1£2, 0.5) , (u3 ,O.9)} , 

G(e3, b) = {(til , O.4) , (1£2, 0.4) , (u3 ,O.8)} , G(e4' a) = {(u l, O.6) , (ti2 ' 0.7) , (u3 ,O.5)} , 

G(e4' b) = {(Ul ' 0.5) , (1£2, 0.8), (U3,0.4)}, G(e4' c) = {(Ul' 0.3) , (1£2,0.9) , (u3,O.5)}. 

F( el' a) = {(Ul ' 0.3) , (1£2, 0.1), (1£3, 0.4)}, F(e3, b) = {(Ul ' 0.2) , (1£2, 0.1), (u3, 0. 2)}, 

F(e4' a) = {(Ul ' 0.3) , (1£2,0 .6) , (1£3 , 0.2)} , F(e4' b) = {(Ul ' 0.4) , (1£2, 0.7) , (u3,O.2)}. 

Clearly A ~ B , Y ~ Z , F(e ,p) ~ G(e , p) for all eEA , pEY. Hence (F, A , Y) ~ 

(G , B , Z). 

By Definit ion 3.2.11 , we can see that the comparison of two GSE sets is pointwise 

which means that the values of the two GSE sets are compared for each pair of values 

separat ely. In case of soft expert sets , containment as defined in [7], is a global property 

which ignores individual opinions completely. Also, in that case two soft expert set s 

can be compared but there is no way to compare their respective values separately. 

D efinit ion 3.2 .13 Two GSE sets (F, A , Y) and (G , B , Z) over U are said to be equal, 

denoted by (F, A, Y) = (G, B , Z) , if A = B , Y = Z and F (e, p) = G(e, p) for all 

e E A( = B ), p E Y (= Z). 

Proposit ion 3.2.14 For two GSE sets (F, A , Y) and (G, B , Z) over U, if (F, A , Y ) 

~ (G , B , Z) and (G , B , Z) ~ (F, A , Y) , then (F, A , Y) = (G , B , Z). 

Proof. It can easily be proved using Definitions 3.2.13 and 3.2.11 .• 
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This is one of the most significant results for GSE sets. The inclusion here is based 

on graded values or opinions as in hesitant fuzzy sets but the above result does not hold 

in case of hesitant fuzzy sets. To overcome this shortcoming many inclusion measures 

and criteria have been developed. Hesitant equality has also been introduced. But all 

these attempts were more or less useless in practical implementations. 

Xia and Xu [70] defined the score function of hesitant fuzzy element h, that is, 

s(h) = (l: ,) I#h, where s(·) is the score function and #h is the number of elements 
'YE h 

in h. This score function serves as a measure to compare two hesitant fuzzy sets. 

Following the same technique, we define score function for a GSE set as below: 

Definition 3.2.15 For a given GSE set (F, A, Y) over U = {U1 ' U2, ... , lin}, where 

A contains m criteria, score function for any Ui (i = 1, 2, ... , n) with respect to the 

opin'ions of an expert p E Y is denoted by s( lii , p) and is defined as 

S(Ui ' p) = ( ~Oj) 1m, 
J=l 

where 01, 02 , ... , Om are the respective opinions of the expert p for the alternative Ui 

with respect to the criteria e1, e2, ... , en. 

Theorem 3.2.16 For any two GSE sets (F, A , Y) and (G , B , Z) over U, we have 

1) (F, A , Y) n (G, B, Z) ~ (F, A, Y), (G, B , Z); 

2) (P, A, Y), (G, B , Z) ~ (F, A, Y) U (G, B , Z). 

Proof. 1) For any GSE sets (F,A,Y) and (G,B,Z), let (F,A,Y) n (G,B,Z) = 

(H, A n B , Y n Z). Since A n B ~ A , Band Y n Z ~ Y , Z and for any e E A n B, 

p E Y n Z using Definition 3.2.7 we have 

H(e,p) = {(ui , min{oi' o~}) : i E I}, 

where F(e,p) = {(Ui , Oi) : i E I} and G(e ,p) = {(Ui'O~) : i E I}. Thus, by 

Definition 3.2.9, H( e,p) ~ {(Ui,Oi): i E I} = F(e , p) and H(e ,p) ~ {(ui,oD: i E I} = 

G(e ,p). This shows that (F, A, Y) n (G , B , Z) ~ (P, A , Y) , (G , B , Z) . 

2) Let (F, A, Y) U (G, B, Z) = (J, A U B , Y U Z). Since A ~ AU Band Y ~ Y U Z , 

for any e E A, p E Y, using Definition 3.2.5, we have 

if (e , p) E (A n B , Y n Z) 

if (e ,p) E (A, Y) \ (B, Y) 

In both the cases, using Definition 3.2.9, we have F(e,p) ~ J(e,p) . Similarly, 

G(e, p) ~ J( e, p). Thus, (F,A,Y), (G,B,Z) ~ (F,A,Y)U(G,B,Z) .• 
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Theorem 3 .2. 17 Let U be the lmiveTse set. F OT all GSE sets (F,A,Y), (G,E,Z) 

and (H , G, X) over U, the follo wing properties hold: 

1) Idempotent: (F,A, Y )n(F,A ,Y) = (F,A,Y), (F,A, Y )U(F,A,Y) = (F,A,Y)i 

2) Commutative: (F, A ,Y)n(G, E ,Z) = (G, E , Z )n (F, A ,Y ), (F,A ,Y)u(G, E ,Z) = 

(G , E , Z) u (F, A , Y); 

3) Associative: (F, A ,Y) n ((G , E , Z) n (H, C, X)) = ((F, A ,Y) n (G , E , Z)) n 

(H, G,X) , 

(F, A , Y) U ((G , E , Z) U (H, G, X)) = ((F, A , Y) U (G , E , Z)) U (H, G, X); 

4) Distributive: (F, A , Y) n ((G , E , Z) U (H , G, X)) = ((F, A , Y) n (G , E , Z)) U 

((F, A, Y) n (H, C, X)) , 
(F, A , Y)U((G, E , Z)n(H, G, X)) = ((F, A , Y)U(G, E , Z))n((F, A , Y)U(H, G, X))j 

5) De Morgan's laws: ((F, A , Y)n(G, E , Z))C = (F, A , y)CU(G, E , Z) C, ((F, A , Y)U 

(G , E, Z))C = (F, A , y)C n (G , E , Z) C; 

6) Double negation law: ((F, A, y)C)C = (F, A , Y). 

Proof. 1) By Definition 3.2.7, for any GSE set (F, A , Y)n (F, A , Y) = (F, An 

A , Y n Y) = (F, A , Y ). Since for any e E A n A = A and p E Y n Y = Y by 

similar definition for any F( e, p) E (F, A , Y) we have F (e, p) = {(Ui, Oi) : i E I} = 

{(ui, min{oi, od ) :i E I} =F(e, p)n F (e, p) E (F, A ,Y )n (F, A ,Y ). Hence (F, A ,Y) ~ 

(F , A, Y) n (F, A, Y ). 

Conversely by similar defini tion for any F (e,p) E (F, A, Y) n (F, A, Y) = {(Ui, 

min{ oi, Oi}) : i E I} = {(Ui,Oi): i E I} . Hence (F, A ,Y) n (F,A, Y ) ~ (F,A,Y). So 

(F, A , Y) n (F, A , Y ) = (F, A , Y ). 

2) By Definition 3.2.7, for any GSE sets (F, A , Y) and (G , E , Z) , (F, A , Y ) n 

(G , E , Z) = (H, AnE, YnZ) . Since for any e E AnE = EnA and p E Ynz = znY. 

let H(e, p) E (F, A , Y) n (G , E , Z) by Definition 3.2.7 we have H( e, p) = {( Ui , min{ 0i , 

oD) : i E I} = {(Ui, min{o:, od) : i E I} = G(e, p) n F(e, p) where F(e, 

p) = {(Ui, Oi): i E I} and G(e, p) = {(Ui, o~): i E I}. Thus (F, A ,Y) n (G , E , Z ) ~ 

(G , E , Z) n (F, A , Y). 

Conversely let H( e, p) E (G , E , Z)n(F, A , Y) by similar definition we have H( e, p) = 

{(lLi,min{o:,od) : i E I} = {(ui, min{oi , o:}) : i E I} = F(e, p) n G(e ,p) where 

F(e, p) = {(Ui, Oi) : i E I} and G(e, p) = {(Ui, oD : i E I} . Thus (G , E , Z) n (F, A , Y) ~ 

(F, A , Y) n (G , E , Z). Hence (F, A , Y) n (G, E , Z) = (G , E, Z) n (F, A, Y). 

3) By Definition 3.2.7, for any GSE sets (F, A , Y) , (G , B , Z) and (H, G, X) , let 

(F, A , Y) n ((G , E , Z)n (H, G, X)) = (I , An (En C) , Yn (ZnX)). Since An (EnG) = 

(AnE)nC and Yn(ZnX) = (YnZ)nX and for any e E An(EnG) = (AnE)nG, 

p E Y n(Zn X ) = (Y n Z )n X , let I (e, p) E (F, A ,Y )n((G, E , Z )n(H ,G, X )) by 

similar defini t ion we have I (e, p) = {(Ui, min{ oi, (o~, a:')} ) : i E I} = {(Ui, min{ (ot, o~ ), 
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o~'} ) : i E I} = (( F (e, p)n G(e, p))n H (e, p) E ((F, A , Y)n (G , B , Z))n (H , C, X) . where 

F (e, p) = {(lli' Oi) : i E I} , G(e, p) = {(lli ' oD : i E I} and H (e , p) = {(lli' o~') : i E I}. 
Thus (F , A , Y ) n ((G, B , Z) n (H, C, X )) ~ ((F, A , Y) n (G, B , Z) ) n (H, C, X ). 

Conversely let I(e, p) E ((F, A , Y) n (G , B , Z )) n (H , C, X) by similar definition we 

have I(e, p) = {(ui, min{(oi' o~) , o~'}): i E I} = {(lli, min{oi' (o~ , o~')}): i E I} = 

F( e, p)n(G(e,p)nH(e, p)) E (F, A ,Y)n((G,B , Z))n(H,C, X)). where F(e, p) = 

{(lli, Oi) : i E I}, G(e, p) = {(lli, oD: i E I} and H( e, p) = {(lli' O~'): i E I}. Thus 

((F, A , Y) n ((G, B , Z)) n (H, C, X) ~ (F, A , Y) n ((G , B , Z)) n (H, C, X)). 

Hence (F, A , Y) n ((G , B , Z) n (H, C, X)) = ((F, A , Y) n (G , B , Z)) n (H, C, X). 

4) By Definitions 3.2.7 and 6.2.13 , for any GSE sets (F, A , Y) , (G , B , Z) and 

(H, C, X), let (F,A ,Y)n((G , B , Z)U(H,C,X)) = (I , An(BUC) ,Yn(ZuX)). Since 

for anye E An(BUC) = (AnB)U(AnC) andp E Yn(ZUX) = (YnZ)u(YnX) , 

let I ( e, p) E (F, A , Y) n (( G, B , Z) U (H, C, X)) by similar definitions we have I (e , p) = 

{(lli , min{oi , max{o~ , o~'}}): i E I} = {(lli , max{min{oi , o~} , min{oi ' o~'}}): i E I} = 

(F( e, p)nG(e, p))U(F(e, p)nH(e,p)) E ((F, A , Y)n(G, B , Z))U((F, A , Y)n (H, C, X)) 

where F(e, p) = {(lli, Oi) : i E I} , G(e, p) = {(lli, OD : i E I} and H( e, p) = 

{(Ui ,O:') : i E I}. Thus (F, A , Y) n ((G , B , Z) U (H, C, X)) ~ ((F, A , Y) n (G , B , Z)) U 

((F, A , Y) n (H, C, X)). 

Conversely, let I(e, p) E ((F , A , Y ) n (G, B , Z) ) U ((F , A , Y ) n (H, C, X)) by sim­

ilar definitions we have I (e, p) = { (lli, max{min{oi , oa , min{ oi ' o~' }} ) : i E I} = 

{(lli, min{oi , max{ o~ , o~'}}) : i E I} = F(e,p) n ((G( e, p) U H(e,p)) E (F, A ,Y) n 
((G , B , Z ) U (H, C, X )) . where F(e, p) = {(tli ' Oi) : i E I} , G(e , p) = {(lli ' oD : i E I} 
and H( e, p) = {(lli ' o~') : i E I} . Thus ((F, A , Y)n(G, B , Z))U((F, A , Y)n(H, C, X)) ~ 
(F, A , Y) n ((G , B , Z) U (H, C, X)) . 

Hence (F, A , Y) n ((G , B , Z) U (H, C, X)) = ((F, A , Y) n (G , B , Z)) U ((F, A , Y) n 
(H, C,X)). 

Rest of the parts can be proved in a similar way. • 

In general, absorption laws do not hold for hesitant fuzzy sets. But these laws hold 

in case of GSE set as can be seen in the next result. 

Theorem 3.2.18 For any two GSE sets (F, A , Y) and (G , B , Z) over U, the following 

absorption laws hold: 

1) (F, A , Y) n ((F, A , Y) U (G , B , Z)) = (F, A , Y) , 

2) (F, A , Y) U ((F, A , Y) n (G , B , Z)) = (F, A , Y). 

Proof. 1) By Definitions 3.2.5 and 3.2.7 we have (F, A , Y )n((F, A , Y)U(G, B , Z )) = 
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(H , A n (A U B ), Y n (YU Z)) = (H , A, Y) such that fo r any e E A and p E Y we have 

( ) { 
F (e ,p) n (F (e, p) U G(e ,p)) if (e, p) E (A n B , Y n Z) 

H e p = 
, F (e ,p) n (F(e, p) if (e, p) E (A , Y ) \ (B , Z ) 

In the first case when (e, p) E (A n B , Y n Z) , F(e, p) = {(Ui, Oi) : i E I} and 

G(e, p) = {(Ui ' O~): i E I}, using Definitions 3.2.5 , 3.2.7 and 3.2.9 we get 

F(e, p) n (F( e,p) U G(e, p)) = {(Ui ,Oi) : i E I} n ({(Ui ,Oi) : i E I} U {(Ui , O~) : i E I}) 

= {(Ui , Oi ) : i E I} n {(Ui , max{Oi , a:}) : i E I} 
= {(ui, min{oi , max{oi,o:}}): i E I} 
s;;: {( 1Li, Oi ) : i E I} = F ( e, p) 

s;;: {(ui , max{oi, min{oi , o:}}): i E I} 

= {(1Li , min{oi , max{oi , o:}}) : i E I} 
= F(e,p) n (F(e,p) U G(e ,p)). 

The above arguments gives us our required result for the first case . 

In the second case when (e, p) E (A , Y) \ (B , Z) , using Definition 3.2.5 , we have 

(F, A , Y) n ((F, A , Y) U (G , B , Z)) = (F, A , Y) n (F, A , Y) = (F, A , Y) 

which is our required resul t for t his case as well. Thus, in both the cases we have 

(F, A , Y ) n (( F, A , Y ) U (G, B , Z)) = (F, A , Y) . 

2) This can be proved in a similar way. _ 

3.3 Decision Making with the Aid of eBE Sets 

Decision making problems have extensively been studied using hesitant fuzzy sets in 

which there are several experts who have to decide among various alternatives. For 

that purpose, t he most common approach is to aggregate the opinions first for each 

criteria and alternative. Then, alternatives are ranked by aggregating the average 

criteria. 

As already mentioned, the experts' individual opinions have been ignored while 

modelling decisions by hesitant fuzzy sets . Experts may have different expertise re­

garding different criteria. To overcome this shortcoming, GSE sets can be used to 

give due weightage to the opinions of experts individually. 

In this section, we develop an algorithm with the aid of GSE sets for decision 

analysis in which experts will be given weightage according to their area of expertise. 

Let {1Ll , 1L2 , ... , un} be a finite set of n alternatives and E = { el , e2, ... , em} be a set of 
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rn criteria. Further, we take X as set of experts and 0 as set of possible opinions. Our 

goal is to decide among the various alternatives subject to expert's opinion regarding 

given criteria. This is a decision making problem. To handle such type of problems 

by using eBE sets, we propose following algorithmic steps: 

S t e p 1: Utilize the evaluations of experts in the form of eBE sets to determine 

the opinions regarding given alternatives and criteria. 

S t e p 2: F ind weighted average of opinions for each pair (Ui, ej) (i = 1,2, ... , n , 

j = 1, 2, ... , rn) by assigning suitable weights to the experts according to their area of 

expertise . 

Step 3 : Using Definition 3.2. 15, calculate the scores S(Ui) of 1Li (i = 1,2, .. . , n) 

considering the aggregate values of experts in step 2. 

Ste p 4: Rank all the alternatives accord ing to s( Ui) in descending order. 

Step 5: End . 

E xample 3.3.1 A person wants to start a small business with low capital. He is 

considering fi ve d~fferent business; uI 'is computer and m obile repair business, 1i2 is 

baby sitting and child care business, U3 is dairy products business, 1L4 is real estate 

agency business and U5 is artist freelance business. Let us denote the set of these 

business types (alternatives) by U . 

Let Q = {el =High profit, e2 =Market area, e3 =Revenue and profitability, e4 

=ownership and taxes} be the set of criteria. Let Y = {a , b, c} be the set of experts. 

Expert a is selected for acknowledged expertise in evaluating el and e4, expert b in 

evaluating el , e2 and e3, and expert c in evaluating e2, e3 and e4. Also we take 

o = {O.O, 0. 1, 0.2 , 0.3, 0.4, 0.5, 0.6 , 0.7, 0.8 , 0.9 , l.0} as the set of possible opinions 

of experts regarding risk factor. 

Step 1: Utilize the eval-Liations of experts in the f orm of eBE sets for the given 

problem. For ease of calculation, these can also be written in tabular form as in Tables 

3.3. 1, 3.3.2 and 3.3.3. 

F (el,a) = {(uI , 0.3) , (U2 , 0.4) , (u3, 0.2) , (u4, 0.5), (u5 , 0.8)} , F(e l , b) = {(uI,O.2) , 

(u2 ,O.5), (U3, 0.4), (u4 , 0.5), (u5, 0.6)} , F(el ,c) = {(uI, 0.4), (u2, 0.5) , (u3, 0.3), (u4, 0. 6) , 

(u5, 0.7)} , F(e2, a) = {(uI , 0.9), (U2, 0.0), (u3, 0.2) , (u4 , 0.3), (u5, 0.6)} , F (e2, b) = 

{(UI ' 0.8) , (U2 ' 0.1) , (U3, 0.4) , (U4 , 0.1) , (li5 , 0.4) }, F (e2 , c) = {(UI ' 0.7), (U2 , 0.3) , (U3 , 0.3) , 

(U4 ' 0.3), (U5, 0.5)} , F( e3, a) = { ( 1il , 0. 5), (U2, 0.3), (U3, 0. 9), (U4, 0.7), (U5, 0.2)} , F( e3, b) = 

{(1LI ' 0. 4) , (U2 , 0.4), (U3, 0.7), (U4, 0. 5) , (1L5 , 0.3)} , F (e3 , c) = {(UI ' 0.5), (U2, 0.3), (U3, 0.9 ), 

(U4 , 0.7) , (U5, 0.2)} , F( e4, a) = { ( UI , 0. 6) , (U2, 0.8), (U3, 0.5) , (U4 , 0.7) , (U5 , 0.6)} , F( e4, b) = 

{(UI , 0.5) , (U2, 0.6), (U3 , 0.4) , (U4, 0.6) , (1i5, 0. 3)} , F (e4 , c) = {(UI ' 0.3), (U2, 0.8) , (U3, 0.5), 
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(el, a) (e2, a) (e3, a) (e4, a) 

Ul 0.3 0.9 0.5 0.6 

U2 0.4 0.0 0.3 0.8 

U3 0.2 0.2 0.9 0.5 

U4 0. 5 0.3 0.7 0.7 

U5 0.8 0.6 0.2 0.6 

Table 3.3.1 . Opinions of exp ert a 

(e l , b) (e2 , b) (e3, b) (e4, b) 

Ul 0.2 0.8 0.4 0.5 

U2 0.5 0.1 0.4 0.6 

U3 0.4 0.4 0.7 0.4 

U4 0.5 0. 1 0.5 0.6 

U5 0.6 0.4 0.3 0.3 

Table 3.3.2. Opinions of expert b 

(el, c) (e2, c) (e3, c) (e4,c) 

Ul 0.4 0.7 0.5 0.3 

U2 0.5 0.3 0.3 0.8 

U3 0.3 0.3 0.9 0.5 

U4 0.6 0.3 0.7 0.5 

U5 0.7 0.5 0.2 0.6 

Table 3.3.3. Opinions of expert c 

Step 2: Find weighted average of opinions for each pair ('l.Li,ej) (i = 1, 2,3 ,4,5, 
j = 1, 2,3,4) by assigning weight 2 to expert a for el and e4 and 1 for e2 and e3· 

Similarly, assign weight 2 to expert b each for e l , e2 and e3 and 1 for e4 and assign 

weight 2 to expert c each f or e2, e3 and e4 and 1 for e l. T hus, opinions of experts 

have been aggregated in this step and results have been disp layed in Table {3.3.4}. 

el e2 e3 e4 

Ul 0.28 0.78 0.46 0.46 

U2 0.46 0.16 0.34 0.76 

U3 0.30 0.32 0.82 0.48 

U4 0.52 0.22 0.62 0.60 

U5 0.70 0.48 0.24 0.54 

Table 3.3.4. 
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For U , for the pair (UI' e l) weighted average has been calculated as: 

[2(0 .3) + 2(0.2) + 1(0.4)] / (2 + 2 + 1) = 0.28. 

Rest of the entries can be calculated in a similar way. 
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Step 3: Using Definition 3.2.15, for aggregated experts' opinions instead of indi­

vidual values, calculate scores s(ud (i = 1, 2, 3, 4, 5) to get: 

S(Ul) = 0.495, S(U2) = 0.43, S(U3) = 0.48, S(U4) = 0.49, S(U5) = 0.49 . 

Step 4: Rank all the business types Ui (i = 1, 2,3 , 4,5) in accordance with their 

scores s( l/'i) to get the preference relation U2 >- U3 >- U4 ~ U5 >- UI (alternative with 

lowest overall risk factor is the most preferred one while the one with highest overall 

risk fa ctor is least preferred) . Thus, the most appropriate busin ess is U2. 

3.4 Conclusion and Future Work 

In this chapter , GSE set has been discussed which can be treated as a generalization 

of hesitant fuzzy set. Some basic operations associated with the structure have been 

defined and analyzed . For comparison purpose, notions of 'subset ' and 'score' have 

also been defined. Some important results have been proved which fail to hold in 

case of hesitant fuzzy sets . For U, the notion of containment in hesitant fuzzy sets 

is an open problem . One of the m.ost widely used measure of containment was given 

by Xia and Xu [70]. But in that case inclusion of two hesitant fuzzy elements in 

each other does not imply their equality. This issue can be resolved by using t he 

proposed structure. In addition, a decision making algorithm with the aid of GSE set 

is developed. There are so many techniques to solve decision making problems through 

hesitant fuzzy sets. But the suggested technique has an advantage over the existing 

methods that it considers relative importance of t he experts according to their area 

of expertise. A practical risk decision making U is presented to reveal significance of 

the algorithm. As future work we aim to study and define appropriate aggregation 

operators, distance and similarity measures for GSE sets . 



Chapter 4 

Cubic Soft Expert Sets and their 

Applications in Decision Making 

4.1 Introduction 

In this chapter we define cubic soft expert sets (CSESs) by using fuzzy sets and 

interval valued fuzzy sets as opinion of experts. Corresponding to each attribute 

every expert gives his expertise in the relevant field through fuzzy sets and interval 

valued fuzzy sets. There are so many methods to solve decision making problems in 

various fields but this technique has the advantage over the existing ones in that the 

decision makers may take decision on the basis of different conditions such as climate 

condition , t ime period condit ion and geographical conditions. We define internal, 

external CSESs, P - order, P - union, P - intersection, P - AND, P - OR and 

R -order, R - union , R-intersection , R-AND and R - OR. We also investigate the 

properties of t hese operations on CSESs. CSESs satisfy commutative, associative, 

De Morgan 's, distributive, idempotent and absorption laws. vVe derive the conditions 

for P - 0 R, P - AN D of two internal cubic soft expert (l C S E) sets to be internal cubic 

soft expert set . We also give the conditions for the P - OR, R - OR and R - AND 

of two external cubic soft expert (ECSE) sets to be an external cubic soft expert set. 

We provide conditions for the R ...,.. AN D and P - AN D of two cubic soft expert sets to 

be an internal cubic soft expert (lCSE) set and an external cubic soft expert (ECSE) 

set . At the end, an algorithm has been presented to support our structure in decision 

analysis. 

33 



4. Cubic Soft Expert Sets and their Applications in Decision Making 34 

4.2 Cubic Soft Expert Sets 

In this section we define the concept of cubic soft expert sets, give their types and 

definitions of their basic operations namely, P -order, R-order, P- containment, R­

containment, P - union, P - intersection, R - union, R - intersection , complement , 

PAN D, P - 0 R, R - AND and R - 0 R, Several laws and related results have also 

been investigated, 

Definition 4.2.1 Let U be a finit e universe set containing n alternatives, E; a set 

of criteria and X; a set of experts (or decision makers), A pair ({3, E, X) is called a 

cubic soft expert set over U if and only if (3 : E x X ~ CP(U) is a mapping into the 

set of all cubic sets in U, Cubic soft expert set is denoted and defin ed as 

({3, E, X) = {(3(e , x) = {(u , A(e,x)(u), \ e,x) (u)) : u E U, (e, x) E E x X} , 

where A(e,x) (u) is an interval valued fll zzy set and '\ e,x) (u) is a fuzzy set, 

Example 4.2.2 Let U = {UI ,U2,U3 } be the set of countries, E = {el =Physiological 

natality, e2 = Potential mortality} be the set of factors affecting pOPltlation , X = 

{Xl , xd be the set of experts , Let E x X = {(el , Xl)' (el, X2), (e2 , Xl)' (e2, X2)}, Then 

the cubic soft expert set (,6, E, X) in U is given by 

(3(el, Xl) = {(UI , [0,07, 0,09]' 0,09) , (U2, [0,06,0,08]' 0,02) , (U3, [0,03, 0,06]' O,04)} , 

(3(e2, Xl) = {(UI ' [0,03, 0,05]' 0,06) , (U2 , [0,05,0,06]' 0,03) , (U3, [0,07, 0,08]' O,05)} , 

(3(el, X2) = {(UI , [0,05, 0,08], 0,08) , (U2 , [0,06 , 0,09]' 0,07), (U3, [0,05 ,0,08]' O,06)} , 

(3(e2, X2) = {(UI , [0,07, 0,09], 0,02) , (ll2, [0,05,0, 08], 0,08), (U3, [0,04,0,07]' O,04)}, 

In above example interval valued fuzzy set indicates the experts opinion for future 

time period and fuzzy set indicates the experts opinion for present time period under 

the different circumstances related to the given problem, 

Definition 4.2.3 A cubic soft expert set is said to be an internal cubic soft expert 

(lCSE) set if A0,x)(u) ::; \ e,x) (u) ::; At,x) (u) for all (e , x) E E x X and for all U E U, 

Example 4.2.4 Let U = {UI ,U2, U3} be the initial un'iverse, E = { el,e2 } be the set 

of attribllies, X = {Xl , xd be the set of experts, Then the cubic set ({3, E , X) = 

{,6(e, x) = {(u , A(e,x)(u) , \ e,x) (u)); U E U, (e , x) E (E x X)} in U is an internal cubic 

soft expert set, 

(3(el , xJ) = {(UI , [0,5 , 0,8]' 0,7), (U2 , [0,6, 0,9], 0,8), (U3, [0,4, 0,7]' O,5)}, 

{3(e2, xd = {(lll , [0.4, 0,7]' 0,6) , (U2 , [0,7, 0,9]' 0,8) , (U3, [0,3 , 0,5]' 0.4)} , 

(3(el , X2) = {(UI' [0,4, 0,8]' 0,5), (U2 , [0,6 , 0,9], 0,8), (U3 , [0,4, 0,6]' O,5)}, 

(3(e2, X2) = {(UI , [0,3,0,8]' 0,4) , (U2, [0,6 , 0,9]' 0,7) , (U3, [0,5 , 0,7]' O,6)}, 
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Definition 4.2.5 A cubic soft expert set is said to be an external cubic soft expert 

(ECSE) set, if '\ e,x) (u) rj:. ]A~,x)(u),At,x)(u)[ for all (e,x) E E x X and for all 

u E U. 

Example 4.2.6 Let U = {Ul ,U2 ,U3} be the initial universe, E = {el ,e2 } be the set 

of attributes and X = {Xl, X2} be the set of experts . Then the cubic set ((3, E, X) = 

(3(e, x) = {(u , A(e,x) (u) , \ e,x) (u)); u E U, (e, x) E E x X} in U is an external wbic 

soft expert set. 

(3(el , Xl) = {(Ul , [0.5,0.8]' 0.3) , (U2, [0.6 , 0.9]' 0.5), (U3 , [0.4, 0.7]' 0.2)} , 

(3(e2, Xl) = {(Ul , [0.4, 0.7]' 0.4) , (U2, [0.5, 0.9]' 0.9) , (U3 , [0.3 , 0.5]' 0.8)}, 

(3(el, X2) = {(Ul , [0.4, 0.8]' 0.9) , (U2 , [0.7, 0.9]' 0.6) , (U3 , [0.5 , 0.7]' 0.8)} , 

(3(e2, X2) = {(lil , [0.3 , 0.8]' 0.2) , (li2 , [0.6 , 0.9]' 0.4) , (U3, [0.4,0.6]' 0.7)}. 

4.3 Operations on Cubic Soft Expert Sets (CSESs ) 

Some operations on cubic soft expert sets have been discussed in below. 

Definition 4.3.1 Let ((3, E, X) be a CSES over U. For any el, e2 E E , Xl, x2 E X 

if(3(el ,xl) = {(u , A l(el ,xt}(u) , ).,l (e l ,x l) (u)) : U E U} and (3 (e2 , X2) = {(u , A 2 (e2,X2) (u), 

).,2(e2,x2) (u)) : u E U}. Then P - order, denoted by (3(el , Xl) c;;.p (3(e2, X2) , is defin ed as 

below: 
1) AI(el,xt}(u) ::S A2(e2,x2)(u), Vu E U, 

2) ).,l(el,xl)(u) :S ).,2(e2,x2) (u) , Vu E U. 

Example 4.3.2 In Example 4.2.6, (3 (e2, X2) = {(UI , [0.3,0.8]' 0.2) , (U2 , [0.6 , 0.9]' 0.4) , (li3, 

[0.4,0.6]' 0.7)} c;;.p (3 (el , X2) = {(Ul , [0.4, 0.8]' 0.9), (U2 , [0.7, 0.9]' 0.6) , (U3, [0.5 , 0.7]' 

0.8)} . 

Clearly conditions 1) and 2 ) of Definition 4.3.1 hold. 

Definition 4.3.3 A CSES ((31, E l , Xl) over U is said to be P - order contained in 

another CSES ((32 , E2 , X2) over U, denoted by ((31, E l , Xl) c;;.p ((32, E2 , X2), if the 

following conditions are satisfied: 

1) EI c;;. E2 , 

2) Xl c;;. X2, 

3) (3l(e, x) c;;.p (32(e , x) for all eEEI , XEXI . 

Example 4.3.4 Let (EI x Xl) = {(el, Xl) , (e2 , Xl) ' (el, X2), (e2 , X2)}, (E2 x X2) = 
{(el,Xl), (e2 , xl)}. Let ('sl , EI , X l ) and CB2,E2,X2) be two CSESs over U defined as 

below: 

(3l(el, Xl) = {(lil , [0.5, 0.8]' 0.7) , (U2, [0 .6 , 0.9]' 0.8), (U3 , [0.4, 0.7]' 0.5)}, 
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f3l(e2 , Xl) = {(Ul ' [0.4, 0.7]' 0.6), (U2 ' [0.7, 0.9]' 0.8) , (U3 , [0.3, 0.5]' 0.4)} , 

f3l (el , X2) = {(Ul, [0.4, 0. 8]' 0.5), (U2, [0.6, 0.9]' 0.8), (U3 , [0.4, 0.6]' 0.5)} , 

f3 l (e2, X2) = {(Ul ' [0.3, 0.8]' 0.4), (U2, [0.6 , 0.9]' 0.7), (U3, [0.5, 0.7]' 0.6)}. 

f32(e l , Xl) = {(Ul' [0.2, 0.5]' 0.6), (U2, [0.5, 0.7]' 0.3), (U3, [0.1 , 0.4]' 0.3)}, 

f32 (e2, Xl) = {(Ul ' [0.2 , 0.5]' 0.1) , (U2 , [0.5 , 0.9]' 0.6) , (U3, [0.2, 0.4]' 0.4)}. 

Clearly conddions 1), 2) and 3) of Definition 4.3.3 hold. So, (132, E 2, X 2) ~p 

(131, E l , Xl)' 

Definition 4.3.5 Let (13, E , X) be a eSES over U for any el , e2 E E , Xl , X2 E X. 

If f3 (el , Xl) = {(u , Al(e l ,xl)(u) , Al (e l ,xl ) (.1.£)) : U E U} and f3 (e2, X2) = {(u , A 2(e2,X2) (u) , 

A2(e2,x2) (u)) : U E U} then the R - order denoted by f3 (el , Xl) ~R f3 (e2, X2) , is defin ed 

as below: 

Example 4.3.6 In Example 4.2. 6, f3 (e2, xl) = {(Ul ' [0.4, 0.7]' 0.4) , (U2 ' [0.5 , 0.9]' 

0.9) , (U3 , [0 .3, 0.5]' 0.8)} ~R f3 (el , xl) = {(Ul ' [0.5 , 0.8]' 0.3) , (1£2, [0 .6, 0.9]' 0.5) , 

(U3, [0.4, 0.7]' 0.2)}. 

Clearly conditions 1) and 2) of Definition 4.3.5 hold. 

D efinition 4.3.7 A eSE S (131, E l , Xl ) over U is said to be R - order contained in 

another eSE S (f32, E2,X2) over U, denoted by (f3l ,El ,Xl ) ~R (f32,E2,X2), if the 

following conditions are satisfi ed: 

1) El ~ E 2 , 

2) Xl ~ X2 , 

3) 131 (e, X) ~ R f32(e, X) for all eEEl , XEX l · 

Example 4.3.8 Let (El x Xl) = {(el ' Xl) , (e2' Xl) ' (el ' X2) , (e2' X2)} , (E2 x X2) = 
{(el ' Xl) , (e2, Xl)} ' Let (131, E l , Xl) and (132, E2, X2) be two eSESs over U defin ed as 

below. 

f3l(el , Xl) = {(Ul ' [0.5 , 0.8]' 0.6) , (U2 , [0.6 , 0.9]' 0.3) , (U3 , [0.4, 0.7]' 0.3)} , 

f3 l(e2, Xl) = {(Ul , [0.4, 0.7]' 0.1) , (1£2 , [0.7, 0.9], 0.6) , (U3 , [0.3 , 0.5]' 0.4)} , 

f3l(el , X2) = {('Ul , [0 .4, 0.8]' 0.5) , (U2 , [0 .6, 0.9]' 0.8) , (U3 , [0.4, 0.6]' 0.5)} , 

f3 l(e2, X2) = {(Ul, [0.3 , 0.8]' 0.4) , (U2 , [0.6, 0.9], 0.7) , (U3 , [0.5 , 0.7]' 0.6)} . 

f32(el , Xl) = {(Ul, [0.2 , 0.5]' 0.7) , (U2 , [0.5 , 0.7], 0.8) , (1£3 , [0.1 , 0.4]' 0.5)}, 

f32(e2, Xl) = {(Ul , [0 .2, 0.5]' 0.6) , (U2 ' [0.5, 0.9], 0.8) , (U3 , [0.2 , 0.4]' 0.4)}. 

Clearly conditions 1), 2) and 3) of Definition 4. 3. 'l hold. So , (132, E2 , X2) ~R 

(Bl, E1 ,XJ). 
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Definition 4.3.9 Two CSESs (fh, El , X l) and (132 , E2, X2) over U, are equal, de­

noted by (131, El, Xl) = (.62, E2 , X2), if 

1) El = E2 , 

2) Xl = X 2, 

3) 13l(e, x) = 132(e, x) (that is Al(e,x )(u) = A2(e,x)(u) and 

Al(e,x) (u) = A2 (e ,x) (1£)) for all e EEl = E2, X E Xl = X 2· 

1) If (,6 l ,El ,Xl ) <;;'p (132, E2,X2) and (132, E2 , X2) <;;'p (131, El,Xl ), 

then (131, E l , Xl) = (132, E2, X 2), 

2) If (131, E1, Xl) <;;'R (132, E2, X2) and (13'2, E2, X2) <;;'R (131, E1 , Xl) , 

then (131,E1,Xd = (132, E2,X2). 

Definition 4.3.11 The p-1£nion of two CSESs (131, E1, Xl) and (132, E 2, X 2) over U 

is denoted by (133 , F, Y) = (131, E1, Xl) Up (132 , E2, X 2) where F = ElUE2 , Y = X l UX2 

and for all 9 E F and z E Y , it is defined as: 

{( 1£, Al(g,z)(1£), Al(g,z) (1£))} 

{(1£ , A2(g, z) (1£) , A2(g,z) (1£))} 

{(1£ , sup{Al(g ,z) (1£) , A2(g ,z) (1£)} 

, SUp{Al(g ,z) (1£), A2(g ,z) (1£)})} , 

if (g, z) E (El x Xl) \ (E2 x X 2) 

if (g, z) E (E2 x X 2) \ (El x Xl) 

if (g , z) E (El n E2 x Xl n X 2) 

whenever ,6l (g, z) = {(1£, Al(g,z)(1£), Al(g,z)(1£)) : 1£ E U} and 132(g, z) = {(1£ , A2(g,z)(1£), 

A2(g,z)(1£)) : 1£ E U}. 

Example 4.3.12 Consider Example 4.3.8. Let (131 , E l , Xl) and (132, E2, X 2) be two 

CSESs over U defined as below: 

131(el , Xl) = {(1£I ' [0.5,0.8]' 0.6) , (1£2 , [0.6,0.9]' 0.3) , (1£3, [0.4, 0.7]' 0.3)} , 

131(e2, xd = {(1£l' [0.4,0.7]' 0.1) , (1£2, [0 .7,0.9]' 0.6), (1£3 , [0.3 , 0.5], O.4)} , 

131(el , X2) = {(1£I ' [0.4, 0.8]' 0.5) , (1£2, [0.6 , 0.9]' 0.8), (1£3, [0.4, 0.6]' 0.5)} , 

131(e2, X2) = {(1£I ' [0.3 , 0.8]' 0.4) , (1£2, [0.6, 0.9]' 0.7) , (1£3 , [0.5,0.7]' 0.6) }. 

132(el , Xl) = {(1£I ' [0.2,0.5]' 0.7), (1£2 , [0.5 , 0.7]' 0.8), (1£3, [0.1,0 .4]' 0.5)} , 

132(e2, Xl) = {(1£I ' [0.2, 0.5]' 0.6), (1£2, [0.5,0.9]' 0.8) , (1£3 , [0.2, 0.4]' 0.4)} . 

Therefore, (133 , F, Y) = (131, El , Xl) Up (132 , E2, X 2) is given below: 

133(el ' Xl) = {(1£l, [0.5,0.8]' 0.7), (1£2, [0 .6, 0.9]' 0.8), (1£3, [0.4, 0.7]' 0.5))-, 
~ , 

133(e2' Xl) = {(1£l, [0.4, 0.7]' 0.6), (1£2, [0.7, 0.9]' 0.8), (1£3 , [0.3 i ·: l;.!l).>tn; ~---
133 (el ' X2) = {(1£I ' [0.4, 0.8]' 0.5) , (1£2 , [0.6 , 0.9]' 0.8), (1£3 , [0.4, 0.6]' 0.5)}, 

133(e2, X2) = {(1£I ' [0 .3, 0.8]' 0.4) , (1£2, [0.6 , 0.9], 0.7), (1£3 , [0.5,0 ,7]' b:§"l . .. ,7:<::"73 
" r. ,::lit- ~ "~} 
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Definition 4.3.13 The P -intersection of two CSESs (f3l , E l ,X1 ) and (f32 , E2 , X2) 

over U is denoted by (63, F, Y) = (f3l, E l , Xl) np (P2, E2 , X2) where F = El n E2 , 

Y = Xl n X2 and fo r all 9 E F and z E Y, it is defined as: 

f3 3(g , z) = {(u , inf{Al(g,z)(u) , A2(g, z)(u)} , inf{Al(g,z) (u) , A2(g, z) (U)})} , 

whenever f3 l(g , z) = {(u, Al(g,z )(u), Al (g ,z) (u)) : t£ E U} and f32(g ,Z) = {(u , A 2(g ,z)(u) , 

A2(g,z) (u)) : U E U}. 

Example 4 .3.14 Consider Example 4.3.8. Let (f3l, E l , Xl ) and (f32 , E2 , X2) be two 

CSE Ss over U defin ed as below: 

f3 l (e l , Xl) = {(Ul, [0.5, 0.8]' 0.6), (U2 ' [0.6, 0.9]' 0.3), (U3, [0.4, 0.7]' 0.3)} , 

f3 l (e2, Xl) = { ( Ul , [0.4, 0.7]' 0.1) , (U2, [0.7, 0.9]' 0.6) , (U3, [0.3, 0. 5]' O.4)} , 

f3 l (e l , X2) = {(Ul, [0.4, 0. 8]' 0.5), (U2' [0.6, 0.9]' 0.8) , (U3 , [0.4, 0.6]' 0.5) }, 

f3 l (e2 , X2) = { (Ul ' [0.3, 0. 8]' 0.4) , (U2, [0.6, 0.9]' 0.7) , (U3, [0.5, 0.7]' 0.6)}. 

f32(el, Xl) = { (Ul ' [0.2, 0.5]' 0.7), (U2 , [0.5 , 0.7]' 0.8) , (U3 , [0.1, 0. 4]' 0.5)} , 

f32(e2, Xl ) = {(Ul ' [0.2, 0.5], 0.6), (U2' [0.5, 0.9]' 0.8) , (U3, [0.2 , 0.4]' 0.4)}. 

Therefore, (f33 , F, Y) = (f3l, El , X l ) np (f32, E2 , X2) is given below: 

f33(e l' Xl) = {(Ul ' [0 .2, 0.5]' 0.6) , (tL2, [0 .5, 0.7]' 0.3) , (U3 , [0.1 , 0.4]' 0.3)}, 

f33(e2, Xl) = {(Ul ' [0.2 , 0.5]' 0.1) , (U2 ' [0.5, 0.9], 0.6) , (U3 , [0.2, 0.4]' 0.4)} . 

Definition 4.3.15 The R-union of two CSESs (f3l , El , Xl) and (f32, E2 , X2) over U 

is denoted by (f33, F , Y) = (f3l, E l , Xl) UR (,62, E 2, X 2) where F=El UE2 , Y = Xl UX2 

and for all 9 E F and z E Y, it is defin ed as: 

f3 3(g, z) = 

{ (U , Al(g,z)(u), Al(g ,z )(u))} 

{ (u , A 2(g, z) (u) , A2(g ,z)(tL))} 

{ (u , sup{ A l(g,z)(u ), A2(g ,z) (u) } 

, inf {A l(g,z) (u) , A2(g ,z) (u)} )} , 

if (g , z) E (El x Xl) \ (E2 x X2) 

if (g , z) E (E2 x X2) \ (El x Xl) 

if (g , z) E (El n E2 X XI n X 2) 

whenever f3 l (g, z) = { (u , A l(g ,z) (u ), Al (g ,z )(u )) : U E U} and f32( g, z) = { (u, A 2(g ,z) (u) , 

A2(g,z)(u)) : U E U}. 

Example 4.3 .16 Consider Example 4.3.4. Let (f3 l , E l , Xl ) and (f32, E 2, X 2) be two 

CSESs over U defined as below: 

f3l(e l , Xl) = {(Ul, [0. 5, 0. 8]' 0.7) , (t£2, [0.6 , 0.9]' 0.8), (U3 , [0.4, 0.7]' 0.5)}, 

f3 l (e2 , Xl) = {(Ul' [0.4, 0.7], 0.6), (U2, [0.7, 0.9]' 0.8) , (U3 , [0.3, 0.5], O.4)}, 

f3l(el, X2) = {(Ul , [0.4, 0. 8]' 0.5) , (U2 , [0.6, 0.9]' 0.8) , (U3 , [0.4, 0.6]' 0. 5)} , 

f3l(e2 , X2) = {(Ul ' [0. 3, 0.8]' 0.4) , (U2 , [0.6 , 0.9]' 0.7) , (U3 , [0.5 , 0.7]' 0.6)} . 

f32(e l , Xl ) = {(Ul , [0.2 , 0.5]' 0.6), (1L2. [0.5 , 0.7]' 0.3), (U3 , [0.1 , 0.4]' 0.3)} , 

f32(e2 , Xl) = {(Ul ' [0 .2, 0.5]' 0. 1) , (U2 ' [0.5 , 0.9]' 0.6) , (U3 , [0.2 , 0.4]' 0.4)} . 
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Therefore, (,63, F, Y) = (f3 I , E I , Xl) UR (f32, E2, X2) is given below: 

f33(e l ' Xl) = {(1/,I , [0.5, 0.8], 0.6), (1/,2 , [0.6, 0.9]' 0.3) , (1/,3 , [0.4, 0.7]' 0.3)} , 

f33(e2' Xl) = { (1~1 ' [0.4 , 0.7]' 0.1), (1/,2 , [0.7, 0.9]' 0.6), (1/,3 , [0.3 , 0.5]' 0.4)} , 

f33 (el ' X2) = {(1~1 ' [0.4 , 0.8]' 0.5), (1/,2, [0.6,0.9]' 0.8) , (1/,3, [0.4,0.6]' 0.5)} , 

f33(e2' X2) = {(1/,I , [0.3 , 0.8], 0.4), (1/,2 , [0.6, 0.9]' 0.7) , (1/,3 , [0.5, 0.7], 0.6)}. 

Definition 4.3.17 The R- intersection of two CSESs (f3 I , E I , Xl) and (f32, E2, X 2) 

over U is denoted by (f33, F , Y) = (f3I , E I , Xd nR (f32, E2, X2) where F =E1 n E2 , 

Y = Xl n X2 and for all 9 E F and z E Y, it is defin ed as: 

f3 3(g ,z) = {(1/" inf{AI(g,z)(1/,), A2(g, z) (1/,)} , SUp{ Al(g,z) (1/,) , A2(g ,z) (1/,)})} , 

whenever f3 1(g , z) = {(1/" AI(g ,z ) (1/,), Al(g ,z) (1/,)) : 1/, E U} and f32 (g, z ) = {(1/" A2(g ,z) (1/,), 

A2(g, z)(1/,)) : 1/, E U}. 

Example 4.3.18 Consider Example 4.3.4. Let (f3I , E I , Xl) and (f32, E2 , X 2) be two 

CSESs over U defin ed as below: 

f31(e l , Xl) = {(1/,I , [0.5 , 0.8]' 0.7), (1/,2 , [0.6, 0.9]' 0.8) , (1/,3 , [0.4, 0.7]' 0.5)} , 

f31(e2 , Xl) = {(1/,I , [0.4, 0.7]' 0.6), (1/,2 , [0.7,0.9], 0.8) , (1/,3 , [0.3,0.5]' 0.4)} , 

f3 1(el , X2) = {(1/,I , [0.4,0.8], 0.5) , (1/,2 , [0.6 , 0.9]' 0.8) , (1/,3 , [0.4,0.6]' 0.5)} , 

f31 (e2, X2) = {(1/,I , [0.3 , 0.8]' 0.4) , (1/,2 , [0 .6, 0.9], 0.7), (1/,3 , [0.5 , 0.7]' 0.6)} . 

f32(e l , Xl) = {(1/,I , [0.2 , 0.5]' 0.6) , (1/,2 , [0.5 , 0.7]' 0.3), (1/,3, [0.1 , 0.4]' 0.3)} , 

f32(e2, Xl) = {(1/,I , [0.2, 0.5]' 0.1), (1/,2, [0.5 , 0.9]' 0.6) , (1/,3, [0.2,0.4]' 0.4)}. 

Therefore , (f33, F , Y) = (f3 I , El, Xl) nR (f32, E2, X 2) is given below: 

f33(e l ' xd = {(1/,I , [0.2 , 0.5]' 0.7) , (1/,2, [0.5, 0.7]' 0.8) , (1/,3 , [0. 1, 0.4]' 0.5)} , 

f33 (e2 , Xl) = {(1/,I , [0.2 , 0.5]' 0.6) , (1/,2 , [0.5 , 0.9]' 0.8), (1~3 , [0.2 , 0.4]' 0.4)} . 

Definition 4.3.19 The complement of a CSES (f3, E, X) is denoted and defined as 

(f3, E, X)C = (f3 c, E C, X) where f3c : E C x X ~ CP(U) is a mapping given as 

f3C(e
C

, x) = {(1/" AC(ex) (1/,) , AC (1/,)): 1/, E U, (eC , x) E E C x X}, , (e ,x) 

where AC( )(1/,) = [1- A+( )(1/,), 1 - A-( )(1/,)] and AC (1/,) = 1 - A( )(1/,) whenever 
e ,x e,x e,x (e,x ) e,x 

f3(e, x) = {(1/" A(e,x) (1/,), \ e,x) (1/,)) : 1/, E U}. 

Example 4.3.20 Consider Example 4.2.6. The complement of CSES is given as 

follows: 

f3C(el, Xl) = {(1/,I , [0.2 , 0.5]' 0.7) , (1/,2 , [0.1,0.4]' 0.5) , (1/,3, [0.3 , 0.6]' 0.8)} , 

f3C (e2 ' Xl) = {(1/,I , [0.3 ,0.6], 0.6) , (1/,2 , [0.1 , 0.5]' 0.1) , (1/,3 , [0 .5, 0.7]' 0.2)} , 

f3C (el, X2) = {(1/,I , [0.2 , 0.6]' 0.1) , (1/,2 , [0.1 , 0.3]' 0.4), (1/,3, [0.3,0.5]' 0.2)} , 

f3C (e2 ' X2) = {(1/,I , [0.2 , 0.7]' 0.8), (1/,2 , [0.1 , 0.4]' 0.6) , (1/,3, [0.4, 0.6]' 0.3)}. 
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4.4 Properties of Cubic Soft Expert Sets (CSESs ) 

In below we discuss some properties of CSESs. 

Proposition 4.4.1 For any CSESs (f3l , E l , Xl), (f32, E2, X2), (f33, E3, X3) and (f34, E4, X 4) 

over U, we have 

1) If (f3l , El , Xl ) C;p (f32 , E2 , X 2) and (f32, E2, X2) C;p (f33 , E3 , X3), 

then (f3l, E l , X l ) C;p (f33, E3 , X3) . 

2) If (f3l , El , Xl) C;p (f32, E2 , X2) , then (f32, E2, X2) C C;p (f3l, El , Xl)c. 

3) If (f3l , El , Xl) C;p (f32 , E2, X 2)) and (f3l , El , Xl) C; p (f33, E3, X3) , 

then (f3l , El , Xl) C;p (f32, E2 , X2)) np (f33, E3 , X3). 

4) If (f3l , El , Xl) C;p (f32, E2, X 2) and (f33, E3, X 3) C;p (f32, E2, X 2), 

then (f3l , El , Xl) Up (f33, E3, X3) C;p (f32, E2 , X2). 

5) If (f3l , El , Xl) C;p (f32, E2, X 2) and (,B3, E3 , X3) C;p (f34, E4, X 4), 

then (f3l ,E l X l ) Up (f33,E3,X3) C;p (f32 , E2 , X 2) Up (f34, E4,X4) and 

(f3 l, E l , Xl) np (f33, E3 , X3) C;p (,B2, E2 , X2) np (f34, E4, X4) ' 

All the above results also holds for R - order. 

Proof. These can easily be proved by using Definitions 4.3 .11 , 4.3.13,4.3. 15, 4.3.17 

and 4.3 .19 .• 

Theorem 4.4.2 ForanyCSESs (,Bl ,El,Xl ),(f32,E2,X2),(f33,E3,X3) and (f34,E4,X4) 

over U the following properties hold. 

1) Idempotent (f3l, El , Xl) Up (f3l , El , Xl ) = (f3l, E l , Xl) = (f3l, El , Xl) np 

(f31, E l , Xl)' 

(f3l, El , Xd UR (f3l , El , Xl) = (f3l , El , Xl) = (f3l , El , Xl) nR (f3l , El , Xl)' 

2) Commutative (f3 l , El , Xl) Up (f32, (E2, X2) = (f32, E2, X 2) Up (f3 l , El , Xl) ' 

(f3l, E l , Xl) UR (f32, E2 , X2) = (f32, E2 , X 2) UR (f3l , El , Xl) ' 

3) Associative ((f31, E l , Xl) Up (f32, E2 , X2)) Up (f33 , E3 , X3) = (f3l, El , Xl) Up 

((,B2, E2, X2) Up (f33, E3 , X3)) , 

((f3l, El , Xl) UR (f32, E2, X 2)) UR (f33, E3, X 3) = (f3 l , E l , Xl) UR ((f32 , E2 , X2) UR 

(f33, E3 , X3)). 

4) Distributive (f3l, El , Xl) Up ((f32, E2 , X2) np (f33, E3, X3) ) = ((f3l , El , Xl ) Up 

(,B2, E2 , X2)) np ((f3l , El , Xl) Up (f33, E3, X3)) , 

(f3 l , El , Xl) np ((,B2, E2, X2) Up (f33, E3, X 3)) = ((f3l, E l , Xd np (f32 , E2 , X 2)) Up 

((f3l, El , Xl) np (f33, E3 , X3)) , 

(f31, El , Xl) UR ((f32, E2, X2) nR (f33 , E3, X3)) = ((f3l, El, Xl) UR (f32 , E2 , X 2)) nR 

((,Bl , El , Xl) UR (f33, E3, X3)), 
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(.61, E1,X1) nR ((.62,E2,X2) UR ((33,E3,X3)) = (((31,E1,X1) nR ((32,E2,X2)) UR 

((.61, E1, X 1) nR ((33 , E3 , X3)). 

5) De Morgan's laws (((31 , E1, X 1))Up((32, E2, X 2))C = ((31, E1, xI)cnp((32, E2, X2) C, 

(((31, E1, Xl) np ((32 " E2 , X2))C = (,61, E l , XI)c Up ((32, E2, X2) C, 

(((31, E l , Xl) UR ((32 , E2 , X2))C = (,61, E l , X 1)C nR ((32, E2 , X2) C, 

(((31, E l , Xl) nR ((32 , E2, X 2))C = ((31 , El , Xl) C UR ((32, E 2, X 2 )c. 

6) Involution law (((31, El , X1) C)C = ((31, El , Xl) ' 

Proof. These properties can be verified using Definitions 4.3.11, 4.3.13, 4.3.15, 

4.3.17 and 4.3.19 .• 

Proposition 4.4.3 For any two eSES ((31 , E l , Xl) and ((32, E2, X2) over U the fol­

lowing are equivalent. 

1) ((31 , E1, Xl) c;.p ((32, E 2, X2) , 

2)((31, E1, Xl) np ((32, E2, X2) = ((31, E1, Xl)' 

3)(.61, E1, X 1) Up ((32, E2 , X2) = (,62,E2,X2). 

Proof. 1) =::} 2) By Definition 4.3.13, we have ((31, El ,X1) np ((32,E2,X2) = 

((31 np (32, E1 n E2 , Xl n X2) = (,61 np (32, E1, Xl) as El c;. E2 and Xl c;. X2 by 

hypothesis. Now, for any (e, x) E E1 X Xl, since (31(e, x) c;.p (32(e, x), Definition 

4.3.1 implies that A1(e,x) (u) j A2(e,x) ('u) and Al(e,x) (u) ~ A2(e,x) (u) for any u E U, 

where (31(e, x) = {(u , A1(e ,x) (u) , A1(e,x)(u)) : u E U}. By Definition 2.1.5 , we have 

A~(e,x)(u) ~ A2(e ,x)(u) and Ate,x)(u) ~ A~e,x )(u). Thus inf{A1(e,x) (u), A2(e,x)(u)} = 

[inf{A~(e,x) (u) ~ A2(e,x) (u)} , inf{Ate,x)(u) ::; A~e,x)(u)}] = [A~(e ,x)(u) ::; Ate,x) (u) ] 
and inf{A 1(e,x)(1~) , A2(e,x)(u)} = A1(e,x)(u). By using Definition 4.3.13, (31(e, x) np 

(32(e,x) = { (u, inf {A1(e ,x) (u) , A2(e,x) (u)) } , inf {A1( e,x ) (u), A2(e,x)(u)}) : u E U} = 

{( u, A l(e,x) (u), A1(e,x) (u))} ) : u E U} = (31 (e, x). Hence (31 (e , x) np (32 (e , x) = (31 (e, x). 

2) =::} 3) By Definition 4.3.11 , we have ((31, E1, Xl) Up ((32, E2, X2) = ((31 Up (32, 

E1 U E2 , Xl U X2) = ((31 Up ,62, E2 , X2) as E1 n E2 = E1 and Xl n X2 = Xl by 

hypothesis. Now for any (e , x) E E1 X Xl , since (31(e, x) np (32 (e , x) = (31(e, x), by 

Definition 4.3.13 , we have inf{ A1(e,x) (u), A2(e,x)(u)} = A 1(e,x)(u) and inf{A1(e,x) (u) , 

A2(e,x) (u)} = A1(e ,x)(u). This implies that sup{Al(e,x) (u) , A2(e,x) (u)} = A 2(e,x) (u) and 

sup{A1(e,x) (u) , A2(e,x)(u)} = A2(e,x)(u). Thus , we have (31(e, x) Up(32(e , x) = {< (u , 

sup{A1(e,x)(u), A2(e,x) (u)} , sup{A1 (e,x)(u), A2(e,x)(u)}) : u E U} = {(u , A2(e, x) (u) , 

A2(e,x)(u) }) : u E U} = (32(e, x). Hence, (31(e, x) Up (32(e, x) = (32(e , x). 

3) =::} 1) By hypothesis, we have ((3l ,E1,X1) Up ((32,E2, X2) = ((31 Up (32,El U 

E2, Xl U X2) = ((31 Up 62, E2 , X2) as El U E2 = E2 and Xl U X2 = X2 =::} El c;. E2 

and Xl c;. X2 · 
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Also, ,6l(e, X)Up,62(e, x) = { Cu , sup{Al(e,x) (U), A2(e ,x)(u)}, sup {A l(e ,x)(u), A2(e,x)(u)}) 

U E U} = {( 'ti , A2(e,x) (u), A2(e,x)(u)) : U E U} = 62(e, x). This implies tha t 

A l(e,x)(u ) ~ A2(e,x)( u ) and Al(e,x)(u ) :S A2(e,x)(u ) for any U E U. Hence (,61, El ,Xl ) c;;, p 

(,62, E2, X2) . • 

Corollary 4.4.4 If we take Xl = X 2 = X in the above proposition, then the following 

are equivalent. 

1)(,61, E l , X) c;;,p (,62, E2 , X) , 

2)(,61, El , X) np (,62, E2 ' X) = (,6l , El ' X) , 

3)(,61, E l , X) Up (,62, E2 , X) = (,62, E2 , X) , 

4)(,62, E2 , X)C c;;,p (,61, El ' X) c, 

Definition 4.4.5 Let {LdiE8' = {(,6i ' Ei, Xi) }iE8' be a family of CSESs over U, where 

,6i (e , x) = {(u , Ai(e,x) (u) , Ai(e,x) (u)) : U E U,jor any e E Ei, x E Xd. Then P - union, 

P - intersection , R - union and R - intersection are defined as below: 

1) up{Ld = {(u , (supAi(e,x) )(u) , ( V Ai(e,x) )(u) ) : u E U}. 
tE8' tE8' iE8' 

2) np{Ld = {(u , (infAi(e,x ))(u) , ( 1\ Ai(e,x) )(u)) : U E U} . 
tE !E8' iE8' 

3) UR{Ld = {(u , (supAi(e,x) )(u ), ( 1\ Ai(e,x))(u )) : u E U}. 
tE8' iE8' iE8' 

4) nR {Li } = {(u, (infAi(e,x))(u ), (V Ai(e,x))(u)) : U E U}. 
tE8' tE8' iE8' 

Theorem 4.4.6 Let {Li } iE8' = {(,6i, Ei , X i )} iE8' be a family of ICS ESs over U, 

where ,6i (e, x) = {(u , Ai(e,x) (U) , Ai(e,x) (u)) : u E U,jor any e E Ei , x E Xd. Then 

the Up{Li} and np{Li} are ICSESs over U. 
iE8' i E8' 

Proof. As {LdiE8' be a family of ICSESs over U. Then, Ai(e,x)(u) :S Ai(e,x) (u) 

< Ai(e,x )('u) for each i E SS . This implies that (supAi(e,x) )- (u) :S ( V Ai(e,x) )(u) :S 
t E8' t E8' 

(SUPAi(e,x) )+(u) and (infAi(e,x ))-(u):s ( 1\ Ai(e,x) )(u) :S (infAi(e,x ))+(u). Hence up{Ld 
t E8' t E8' iE8' tE8' iE8' 

and np{Ld are I CSESs over U .• 
iE8' 

Theorem 4.4.7 Let (,6},El ,Xl ) and (,62, E2,X2) be two I CSESs over U, where 

,6l(e, x) = {(u , Al(e,x)(u) , Al(e,x )(u)) : U E U} for any (e, x) E El X Xl and ,62(1, y) = 

{(lb , A2(J,y) (u) , A2(J,y) (u)) : u E U} for any (1, y) E E2 X X 2 . Then the P - union of 

(,61 , El , Xl) and (,62, E2, X 2) is also an ICSES. 

Proof. Since (,61, El , Xl ) and (,62, E2, X2) are I CSESs over U so A~(g, z) (u) :S 

AI(g ,z)(U) :S At g,z)(u) for all u E U and A2(g ,z)(u ) :S A2(g ,z) (u ) :S Atg,z/u) for all U E U. 
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Then we have sup{A~(g,z)(u) , A2(g, z) (1O)} ::; ()' l(g ,z) V /\ 2(g, z) )(u) ::; sup{Airg,z) (u) , 

Atg,z) (1O)} for all 10 E U and (g, z ) E (El U E2 X Xl U X2). By Definition 4.3.11 , we 

have (133, F, Y) = (131, El , Xl) Up (132, E2, X2) where F =El U E2 and Y = Xl U X2 

and for any 9 E F and z E Y. 

{(u , Al(g,z) (10) , Al(g,z) (u))} 

{( 10 , A2(g ,z) (10) , A2(g ,z) (u))} 

{( u , sup{ Al(g,z) (u), A2(g, z) (u)} 

, suP{Al(g ,z) (10), A2(g ,z) (u)})} , 

if (g, z ) E (El x X l) \ (E2 x X2) 

if (g, z ) E (E2 x X2) \ (El x Xl) 

if (g, z ) E (El n E2 x Xl n X 2) 

if (g, z ) E (El n E2 x Xl n X 2), then 133(g ,Z) = {(u , sup{Al(g ,z) (10), A2(g ,z) (u)} , 

(Al(g ,z) V A2(g ,z))(1O)) : u E U}. Thus (13l ,El , X l ) Up (132, E2 , X 2)) is an ICSE set . If 

(g , z ) E (El x Xl) \ (E2 x X2) or if (g , z ) E (E2 x X2) \ (El x Xl) , then the result is 

trivial. Hence (131, E l , Xt) Up (132, E2 , X2) is an I C SES over U. • 

Theorem 4.4.8 Let (131 , El , Xd and (132 , E2 , X2) be two l CSESs over U, where 

13l(e, x) = {(u , Al(e,x)(1O) , A1(e,x) (u)) : 10 E U} for any (e, x) E El X Xl and 132(f, y) = 

{(1O , A2(J,y) (u) , A2(J,y) (10)) : u E U} for any (f , y) E E2 X X2. Then the P- intersection 

of (131, El , Xl) and (132 , E2, X2) is also an lCSES. 

Proof. Since (131 , El , Xl) and (.62 , E2 , X2) are l CSESs over U so A~(g ,z) (1O) ::; 

Al(g, z) (1O) ::; Airg,z) (u) for all 10 E U and A2(g ,z/1O) ::; A2(g,z)(1O) ::; Atg,z)('u) for all 

10 E U. Then we have inf{A~(g ,z) (u), A2(g ,z) (u)} ::; (Al(g ,z) !\ A2(g,z))(1O) ::; inf{Airg,z) (u), 

Atg,z) (u)} for all u E U and (g , z) E (El n E2 x Xl n X2). By Definition 4.3.13 we 

have (133, F, Y) = (131 , E l , Xl) np (132, E2, X2) where F =El n E2 and Y = Xl n X2 

and for any 9 E F and z E Y. 

13 (g z ) = { {( u , inf {A l(g ,z) (u) , A2(g ,z) (u)} if (g , z ) E (El n E2 X XI n X 2) 

3 , , inf{Al(g ,z) (u) , A2(g,z)(u)} )}. 

Thus (131, El , Xl) np (132 , E2, X 2)) is an l CSES over U. • 

Theorem 4.4.9 Let (131, El , Xl) and (132, E2 , X2) be two ECSESs over U, where 

13l (e, x) = {(1O , Al(e,x) (u) , Al(e,x)(u)) : u E U} for any (e, x) E El X Xl and 132 (f , y) = 
{(1O , A2(J,y)(1O) , A2(J,y)(U)): 10 E U} for any (f,y) E E2 X X such that 

{ 
inf{ sup{ Airg,z) (u), A2(g ,z) (u)} , sup{ A~(g,z ) (10), Atg,z) (1O)}} , 

(Al(g z) !\ A2(g z) )(1O) E + + 
' , sup{inf{Al(g, z) (1O), A2(g ,z )(u) }, inf{A~(g ,z)(u), A2(g, z)(u)}}, 

for all (g, z ) E (ElnE2 x XlnX2) and u E U. Then the P -intersection of (131, E l , Xl) 

and (132, E2 , X 2) is also an ECSES over U . 
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Proof. By Definition 4.3.13 , we have (63 , E3 , X3) = (fh,El,Xl ) np (f32,E2,X2) 

where 

f3 (g z) = {{(U,SUP{Al(g ,z)(U),A2(9'Z)(U)} if (g,z) E (El nE2 x Xl nX2) 
3 , , inf{Al(g ,z)(U), A2(g ,z)(U)} )}, 

if (g , z) E (ElnE2 XXlnX2) , take Ii = in f{ sup{ A~g,z ) (1£) , A2(g ,z) (u)} , sup{ A~(g ,z) (1£) , 

Atcg,z) (u)}} and ~ = sup {inf {A~g,z)(u) , A2(g ,z) (u)} , inf {A~(g ,z)(u), Atcg,z) (u)}}. 

T hen Ii is one of A~(g, z)(u), A2(g ,z/U) , A~g,z) (u) , Atcg,z) (1£) . We only consider Ii = 

A~(g, z) (1£) or A~g,z ) (1£) because remaining cases are similar to this one. If Ii = A~(g ,z) (1£) 

t hen A2(g ,z)(u) ~ Atcg,z)(u) ~ A~(g, z )(u) ~ A~g,z) (u) and so ~ = Atcg,z)(u).Thus 

A2(g ,z) (1£) = (in f ({A l (g ,z ), A2(g ,z)})-(u) ~ (inf{ A I(g ,z), A2(g ,z) })+(u) 

= Atcg,z) (1£) = ~ < (Al(g ,z) 1\ A2(g,z) )(u). Hence (AI(g ,z) 1\ A2(g,z)) (u) ~ (( in f{ AI(g,z), 

A2(g, z) }- (u) , in f{A I(g ,z), A2(g,z) }+(u)). if Ii = A~g,z)(u) then A2(g ,z) (u) ~ A~g,z)(u) 
~ Atcg,z) (1£) so ~ = sup{A~(g ,z)(u), A2(g,z) (u )} . Assume ~ = A~(g ,z) (u) , t hen we have 

A2(g ,yz) (1£) ~ A~(g,z)(u) < (AI(g ,z)I\A2(g, z)) (u) ~ A~g,z)(u) ~ Atcg,z) ('l.L). So we can write 

A2(g ,z)(u) ~ A~(g ,z)(u) < (AI(g ,z) 1\ A2(g ,z))(u) < A~g,z) (u) ~ Atcg,z) (1£) or A2(g ,z) (1£) ~ 
A~(g ,z)(u) < (AI(g, z) 1\ A2(g,z))(u) = A~g,z) (u) ~ Atcg,z) (1£). 

The case A2(g, z) (u) ~ A~(g ,z) (u) < (AI(g ,z) 1\ A2(g ,z))(u) < A~g,z) (u) ~ A tcg,z)(u) 
which contradicts the fact that (f3I, E I , Xl) and (f32 , E2 , X 2) are ECSESs. For the 

case A2(g ,z) (u) ~ A~(g ,z) (u) < (Al(g, z) 1\ A2(g ,z) )(u) = A~g,z)(u) ~ Atcg,z)(u) \ve have 

(Al(g ,z) 1\ /\ 2(g ,z))(u) ~ ((inf{Al (g ,z),A2(g ,z)})-(u), (inf{Al(g ,z), A 2(g ,z)})+(u)) because 

(Al(g ,z) 1\ A2(g ,z) )(u) = A~g,z) (u) = (inf{Al(g ,z) , A 2(g,z) } )+(1£). Again assume that 

~ = A2(g, z) (u) , then we have A~(g ,z) (u) ~ A2(g, z)(u ) < (Al(9 ,z)I\ A2(g ,z))(u) ~ A~g,z) (u) 
~ Atcg,z) (u). We can write A~(g ,z) (u) ~ A2(g ,z) (u) < (Al(g ,z) 1\ A2(g,z))(u) < A~g,z )(u) 
~ Atcg,z) (1£) or A~(g,z)(u) ~ A2(g ,z)(u ) < (AI(g ,z) 1\ A2(g,z) )(u) = A~g,z)(u) ~ Atcg ,z) (1£). 

For the case A~(g ,z) (u) ~ A2(g ,z)(u) < (Al(g ,z) 1\ A2(g ,z) )(u) < A~g,z)(u) ~ Atcg,z )(u) 
which contradict the fact that (f3 l , E l , Xl) and (,62 , E 2, X 2) are ECSESs . For the 

case A~(g,z)(u) ~ A2(g, z) (u) < (A l (g, z) 1\ A2(g,z))(u) = A~g,z)(u) ~ Atcg ,z )(u) we have 

(Al(g ,z) 1\ A2(g,z))(u) ~ (inf{ Al(g,z), A 2(g ,z) })-(u), (inf{Al(g ,z), A2(g,z) })+(u) because 

(Al(g ,z) 1\ A2(g ,z) )(u) = A~g,z)(u) = (inf{Al(g,z), A2(g ,z)})+(u). Hence (f3 l , E l , X I) np 

(f32 , E 2, X2) is an ECSES over U. • 

The following example yields that R - union of two JCSESs need not to be an 

JCSES . 

E xample 4.4.10 Let (,61, El , Xl) and (f32 , E2, X 2) are two JCSESs over U, where 

f31(e,x ) = {(u , A l(e ,x)(U) , Al(e,x) (u)): 1L E U} for any (e,x ) EEL x Xl and f32 (f , y ) = 

{ (u,A2(J ,y)(U), A2(J,y)(U)) : 1£ E U} for any (f , y) E E2 x X 2 in which Al(g,z) (u) = 

[0.5 , 0.8] Al(g,z) (1L) = 0.6 and A2(g, z)(u) = [0.2, 0.5] ,A2(g ,z) (u) = 0.3 . Now by Definition 
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4.3.15, we have A 3(g,z)(u) = [0.5 , 0.8]' A3(g,z)(u) = 0.3 Hence R - union is not an 

l CSES because A3 (g ,z ) (1£) rt. [A3(g,z) (u), A~g,z) (u )] . 

The following theorem gives the condition that R - union of two lCSESs is also 

an lCSES. 

Theorem 4.4.11 Let (/31, El , Xl) and (/32, E2 , X2) are two lCSESs over U, where 

/3l(e, x) = {(u , Al(e,x) (u), Al(e,x)(u)) : u E U} for any (e , x) E El X Xl and ,82(1, y) = 

{ (u, A2(f,y) (u), A2(f,y)(U)) : u E U} for any (1, y) E E2 X X2 such that sup{A~(g,z)(u) , 

A2(g ,z/u)} ~ (Al(g ,z) 1\ A2(g,z) )(u) for all u E U and (g , z) E (El n E2 x Xl n X2). 

Then the R - union of (/31 , El , X l ) and (/32, E2 , X2) is also an l CSES over U. 

Proof. By Definition 4.3.15 , we have (/33, F, Y) = (/3l,El , X l ) UR (/32 , E2 , X2) 

where F =El U E2 and Y = Xl U X2 and for any 9 E F and z E Y. 

{(u , Al(g,z) (1£) , Al(g ,z) (u))} 

{( u, A2(g, z) (u), A2(g ,z) (u))} 

{(u , SUp{Al(g ,z)(U), A2(g, z)(U)} 

, inf {A l(g,z) (U) , A2(g,z) (u)} )}. 

if (g , z) E (El x Xl) \ (E2 x X 2) 

if (g, z) E (E2 x X2) \ (El x Xl) 

if (g, z) E (El n E2 x Xl n X2) 

If (g, z) E (E1 x Xl) \ (E2 x X2) or (g, z) E (E2 x X2) \ (El x Xl)' then the result 

holds trivially. If (g, z) E (El n E2 x Xl n X 2), then 

/33(g,Z) = {(u ,SUp{Al(g ,z)(u) , A2(g ,z) (u)}, inf{Al(g,z) (u), A2(g,z) (u)})}. Since (/3l,El ,Xl ) 

and (/32, E2 , X2) are lCSESs over U. So we have A~(g,z)(u) ~ Al(g,z)(u) ~ tg ,z) (u) for 

all U E U and A2(g ,z) (u) ~ A2(g,z) (u) ~ A~g,z)(u) for all u E U. Also sup{A~(g,z)(u), 

A2(g ,z) (u)} ~ (Al(g ,z) 1\ A2(g,z))(u) ~ sup{Atg,z)(u), A~g,z) (u)} for all U E U and 

(g , z) E (El n E2, Xl n X2). Hence, (/31, E l , Xd UR (/32, E2, X 2) is an lCSES over U . 

• 
The following example yields that R - union of two l CSESs need not be an 

ECSES. 

Example 4.4.12 Let (/31 , E l , Xl) and (/32 , E2 , X2) be two lCSESs over U, where 

/3l(e , x) = {(u , Al(e,x) (u) , Al (e ,x)(u)) : u E U} for any (e , x) EEl X Xl and /32 (1, y) = 

{(U , A2(f,y) (U) , A2(f,y) (U)) : U E U} for any (1, y) E E2 X X2 in which Al(g ,z) (u) = 

[0.5 ,0.8] Al(g,z)(u) = 0.6 and A2(g ,z)(u) = [0.2,0.9] ,A2(g ,z)(u) = 0.8. Now by Definition 

4.3.15, we have A3(g,z)(u) = [0.5 , 0.9]' A3(g ,z) (u) = 0.6 Hence R - union is not an 

ECSES becal£se A3(9,Z) (u) E [A3(g ,z) (u), A~g ,z) (1£)]. 

The following theorem gives the condition that R - union of two lCSESs is also 

an ECSES. 
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Theorem 4.4.13 Let (f3l, E I , Xl) and (f32, E 2, X 2) be two lCSESs over U, where 

f3 l(e, x) = {(u , AI(e,x)(u) , Al(e,x)(u)) : U E U} for any (e, x) E El X Xl and f32 (f , y) = 
{(u , A 2(J,y) (u), A2(J,y)(U)) : U E U} for any (f , y) E E2 X X2 such that sup{A~(g,z)(u), 

A2(g,z)(u)} ~ (AI(g ,z)!\ A2(g,z»)(u) for all U E U and (g, z) E (El n E2 x Xl n X2)' 

Then the R - union of (f3l, E l , Xd and (f32, E 2, X2) is an ECSES. 

Proof. Straightforward by using Definition 4.3.15. • 

The followingt example yields that R - intersection of two l CSESs need not be 

an lCSES. 

Example 4.4.14 Let (,61 , E l , Xl) and (f32, E 2, X 2) be two l CSESs over U, where 

f3l(e, x) = {(u , Al(e,x) (u), Al(e,x) (u)) : U E U} for any (e, x) E El X Xl and f32(f, y) = 

{(u ,A2(J,y)(U), A2(J,y)(U)) : U E U} for any (f , y) E E2 X X2 in which Al(g,z)(u) = 

[0.2 , 0.5]' Al(9 ,Z )(u) = 0.4 andA2(g ,z)(u) = [0.5,0.8] ,A2(g,z)(u) = 0.7. Now by Definition 

4·3.11, we have A 3(g ,z)(u) = [0.2, 0.5]' A3(g,z)(u) = 0.7 Hence R - intersection is not 

an lCSES because A3(9 ,z )(1~) tI. [A3(g, z) (u), Aicg,z)(u))], 

The following theorem gives the condition that R - intersection of two lCSESs 

is also an lCSES. 

Theorem 4.4.15 Let (,61 , E l , Xl) and (f32, E2, X 2) be two lCSESs over U, where 

f3l(e, x) = {(u, Al(e,x) (u) , Al(e,x) (u)) : U E U} for any (e, x) E El X Xl and f32 (f , y) = 

{(u , A 2(J,y) (u), A2(J,y)(U)) : U E U} for any (f , y) E E2 X X2 s1~ch that inf{Atg,z) (u) , 

Atcg,z) (u)} ~ (Al(g ,z) V A2(g ,z» )(u) for all U E U and (g, z) E (El n E2 x Xl n X2)' 

Then the R - intersection of (f3l , E l , Xl) and (,62 , E 2, X 2) is also an l CSES over U. 

Proof. By definition 4.3.17, we have (f33, E3 , X3) = (,61 , E l , Xt) nR (f32, E2, X2) 

where E3 = El n E2 and X3 = Xl n X 2, 9 E E3 and z E X3. 

Since (f3l,EI ,Xt) and (f32, E 2,X2) are lCSESs over U. We have A~(g ,z) (u) ::; 

Al(g,z) (u)::; Atg,z) (u) for all u E U and A2(g, z) (u) ::; A2(g ,z)(u) ::; Atcg ,z)(u) for all u E 

U. Also inf{A~(g,z) (u), A~(g,z)(u)} ::; (AI(g,z) V A2(g,z»)(1~) ::; inf {Atg ,z) (u), Atcg,z) (u)} 

for all u E U and (g, z) E (El n E2 x Xl n X2)' Hence, (f3 l , E l , Xl) nR (f32 , E 2, X 2) is 

an lCSES over U. • 

The following example yields that R - intersection of two l CSESs need not be 

an ECSES. 

Example 4.4.16 Let (f31, E l , Xl) and (f32, E2 , X2) are two l CSESs over U, where 

f3l(e,x) = {(1~,Al(e,x)(U) , Al( e,x)(u)): U E U} for any (e , x) EEl x Xl and f32 (f , y) = 
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{(u , A2(J,y)(U), A2(J,y)(U)) : U E U} for any (f,y) E E2 X X 2 in which A1(g,z) (u) = 

[0.5 ,0.7]' Al(g,z)(u) = 0.6 and A 2(g, z)(u) = [0.2, 0.9] ,A2(g ,z) (u) = 0.8. Now by Definition 

4.3.11, we have A3(g, z) (u) = [0.2, 0.9]' A3(g,z)(u) = 0.8 Hence R-intersection is not an 

ECSES because A3 (g ,z) (u) E [A3(g ,z) (u) , A~g,z) (u))]. 

The following theorem gives t he condition that R - intersection of two ICSESs 

is a lso an ECSES. 

Theorem 4.4.17 Let (131, E l , Xl) and (132, E 2, X 2) be two ICSESs over U, where 

131(e , x) = {(u , Al(e,x) (u) , Al(e,x)(u)) : u E U} for any (e, x) E El X Xl and 132 (f, y) = 

{(u , A2(J ,y) (u) , A2(J,y)(U)) : u E U} for any (f , y) E E2 X X 2 such that inf{Atg ,z)(u) , 

Atcg,z) (u)} ::; (Al(g ,z) V A2(g ,z))(u) for all 'U E U and (g, z) E (El n E2 x Xl n X2). 

Then the R - intersection of (131, E l , Xl) and (132, E2, X 2) is an ECSES over U. 

Proof. By Definition 4.3 .17, we have (133, E3 , X3) = (,61 , El , Xl) nR (132, E2 , X2) 

where E3 = El n E2 and X3 = Xl n X2, g E E3 and Z E X3. 

Since (131 , El , X l ) and (132 , E2 , X2) are I CSESs over U. So we have A~(g ,z)('U) ::; 

Al(g ,z)(u) ::; Atg,z) ('U) for all 'U E U and A2(g ,z) (u) ::; A2(g,z)('U) ::; Atcg,z) ('U) for all 

U E U. Given condition is that inf{Atg,z)('U) , A tcg,z)('U)} ::; (Al(g ,z) V A2(g, z) )('U) for 

all 'U E U and (g , z) E (El n E2 x Xl n X2 )' This implies t hat (Al(g ,z) V A2(g,z))('U) rf:. 

(inf{ A~(g ,z) ('U) , A2(g, z) ('U) } , inf{ Atg,z) ('U), Atcg,z) (u)}). Hence (131, E l , X 1)nR(132, E2 , X2) 
is an ECSE in U. • 

The following example shows that R - 'Union of two ECSESs need not be an 

ECSES. 

Example 4.4.18 Let (131, E l , Xl) and (132, E2, X2) be two ECSESs over U, where 

131(e,x ) = {(u , Al(e,x) ('U) , Al(e,x)('U)): 'l.L E U} for any (e,x) EEl x Xl and 132(f, y) = 

{(u , A2(J ,y)(U) , A2(J,y)(U)) : U E U} for any (f,y) E E2 X X 2 in which Al(g,z)(u) = 

[0.4,0.5]' Al(g,z)(u) = 0.6 and A2(g ,z)(u) = [0 .3, 0.7]' A2(g ,z)(u) = 0.7. Now by Definition 

4·3.15, we have A3(g,z)('U) = [0.4, 0.7]' A3(g ,z) (u) = 0.6 . Hence R-union is not ECSES 

because A3 (g ,z) ('U) rf:. (A3(g ,z) (u) , Aicg ,z) (u)). 

In the next theorem, we derive a condition for R - union of two ECSESs to be 

an ECSES. 

Theorem 4.4.19 Let (,61 , E }, X l ) and (132, E2 , X2 ) be two ECSESs over U, where 

131(e, x) = {('U , Al(e,x)('U) , Al(e,x)(u)): u E U} for any (e ,x) EEl x Xl and ,62(f,y) = 
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{(u,A2(J,y) (U) , A2(J,y)(U)): U E U} for any (f , y) E E2 x X 2 such that 

(A 1\ A ) (u) E g, z g,z g,z g,z 
{ 

inf{sup{Ai( )(u ), A2( )(u)} , sup{A~( )(u) , A~( )(u) }} , 
l(g ,z) 2(g ,z) {' f{A+ () A - ()}' f{A - () A+ ()}} sup m l(g ,z) u , 2(g ,z) U , m l(g ,z ) u , 2(g ,z) U 

for all (g , z ) E (El n E2 x Xl n X 2) and U E U. Then (131, E l , Xl) UR (132, E2 , X 2) 

is also an ECSES over U. 

Proof. By Definition 4.3.15, we have (133 , E3, X 3) = (131, E l , Xl) UR (132 , E2, X2) 

where 

133(g, z ) = 

{(U, Al(g,z)(u) , Al(g,z) (u))} 

{( u , A2(g, z) (u) , A2(g ,z) (u))} 

{( U , sup{ A l(g ,z ) (u) , A 2(g ,z) (u)} 

, inf{Al(g ,z) (u), A2(g,z) (u)})} , 

if (g, z ) E (El x Xl) \ (E2 x X2) 

if (g ,z) E (E2 x X 2) \ (El x Xd 

if (g, z ) E (El n E2 X XI n X 2) 

if(g , z ) E (ElnE2 x X lnX2), take Ii = inf {sup{ Ai(g,z) (u) , A2(g ,z) (u)} , sup{ A~(g , z) (u) , 

Atcg,z) (u)}} and R = sup {inf {Ai(g ,z) (u) , A2(g ,z) (u)} , inf {A~(g,z)(u), Atcg,z/u)}}. 

Then Ii is one of Ai(g,z) (u) , A2(g, z) (u) , A~(g ,z) (u) , Atcg,z) (u) we only consider Ii = 
A2(g, z) (u) or Atcg,z) (u) because remaining cases are similar to this one. If Ii = A2(g ,z) (u) 

then A~(g,z) (u) :s: Ai(g,z) (u ) :s: A2(g,z)(u) :s: Atcg,z) (u) and so R = Ai(g,z) (u). Thus 

(sup{Al(g,z), A2(g, z) } )-(u) = A2(g, z) (u) = Ii > (Al(g, z) 1\ A2(g,z))(u). Hence (Al(g, z) 1\ 

A2(g ,z) )(u) tf. ((sup{Al(g,z), A2(g,z)}-(u),sup{Al(g,z), A2(g, z) }+(u)). If Ii = Atcg,z)(u) 

then A~(g ,z) (u) :s: Atcg,z) (u) :s: Ai(g,z) (u) so R = sup{A~(g,z)(u), A2(g, z) (u)}. As­

sume R = A~(g,z)(u) , then we have A2(g ,yz) (u) :s: A~(g ,z/u) :s: (Al(9,z) 1\ A2(g ,z) )(u) < 
Atcg,z) (u) :s: Ai(g,z) (u) . So we can write A2(g, z) (u) :s: A~(g ,z) (u) < (Al(g ,z) 1\ A2(g,z) )(u) 

< Atcg,z)(u) :s: Ai(g,z)(u) or A2(g ,z)(u) :s: A~(g, z) (u) = (Al(g ,z) 1\ A2(g,z))(u) :s: Atcg,z )(u) 

:s: Ai(g,z) (u) . 

The case A2(g ,z) (u) :s: A~(g,z) (u) < (Al(g ,z) 1\ A2(g,z)) (u) < Atcg,z) (u) :s: Ai(g,z) (u) 

which contradicts the fact that (131 , E l , Xl) and (132 , E2 , X2) are ECSESs. For the 

case A2(g, z)(u) < A~(g ,z)(u) = (Al(g ,z) 1\ A2(g,z))(u) :s: Atcg,z)(u) :s: Ai(g,z)(u) we have 

(Al(g, z) 1\ A2(g ,z))(u) tf. ((sup{Al(g,z), A2(g, z)} )-(u), (sup{Al(g, z), A2(g, z)} )+(u)) because 

(sup {Al(g ,z), A 2(g, z)})-(u) = A~(g ,z)(u) = (Al(g ,z) 1\ A2(g,z))(u). Again assume that 

R = A2(g ,z) (u), then we have A~(g , z) (u) :s: A2(g, z)(u) :s: (Al(g, z) I\ A2(g ,z))(u) :s: Atcg,z) (u) 

:s: Ai(g,z)(u). We can write A~g,z)(u) :s: A2(g, z/u) < (Al(9, z) 1\ A2(g,z))(u) < Atcg,z)(u) 

:s: Ai(g,z)(u) or A~(g,z) (u):S: A2(g, z) (u) = (Al(g, z)I\ A2(g,z))(u) < Atcg,z/u):s: Ai(g,z)(u). 

For the case A~(g,z)(u) :s: A2(g ,z) (u) < (Al(g ,z) 1\ A2(g,z))(u) < Atcg,z) (u) :s: Ai(g,z) (u) 

which contradict the fact that (131, E l , Xl) and (,82 , E2 , X2) are ECSESs. For the 

case A~(g ,z)(u) :s: A2(g ,z)(u ) = (Al(g,z) 1\ A2(g,z)) (u) :s: Atcg,z )(u ) :s: Ai(g,z/u) we have 
- + (Al(g ,z) 1\ A2(g,z))(u) tf. (sup{Al(g,z), A2(g,z)} )- (u) , (sup{Al(g ,z), A2(g, z)}) (u) because 
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(sup{Al(g,z), A 2(g,z)} )-(u) = A2(g,z)(u) = (/\l(g,z) 1\ A2(g,z))(u). if (g, z) E (El x Xl) \ 

(E2 x X2) or (g, z) E (E2 x X2) \ (El x Xl) ' Then the result holds trivially. Hence 

((31, E l , Xd UR ((32, E2, X2) is an ECSES over U .• 

The following example shows that R - intersection of two ECSESs need not be 

an ECSES. 

Example 4.4.20 Let ((31, E l , Xl) and (,62, E2, X 2) be two ECSESs over U, where 

(3l (e,x) = {(u , A l(e,x) (1/,),Al( e,x) (u)): u E U} for any (e,x) E El x X l and (32(f, y) = 

{(u , A2U,y)(U) , A2U,y)(U)) : U E U} for any (f,y) E E2 x X 2 in which Al(g,z) (u) = 

[0.5, 0.6]' Al (g ,z) (u) = 0.4 andA2(g, z)(u) = [0.3 , 0.7]' A2(g ,z) (u) = 0.3. Now by Definition 

4. 3. 17, we have A3(g ,z)(u) = [0.3 , 0.6]' A3(g ,z)(u) = 0.4. Hence R - intersection is not 

an ECSE S because A3 (g ,z) (u) tt (A3(g ,z) (u),Ai(g ,z) (u))). 

In t he next theorem , we derive a condi t ion for R - intersection of two ECSESs 

to be an ECSES. 

T heore m 4.4.21 Let ((31, E 1 , X l ) and ((32, E2, X2) be two ECSESs over U, where 

(3l(e, x) = {(u, Al(e,x) (u), Al(e,x)(u)) : u E U} for any (e, x) E El X Xl and (32 (f , y) = 

{(u, A2U,y) (u), A2U,y) (u)) : u E U} for any (f, y) E E2 X X 2 such that 

( 
{ 

inf{sup{Ai( )(u), A2( )(u)}, sup{A~( )(1/,) , At( )(u)}}, Al( )VA2( ))(u) E g,z g,z g,z g, z 
g,z g,z sup{inf {Ai(g,z) (u), A2(g,z) (u)}, inf{ A~(g,z) (u), Atg,z) (u)} } 

for all (g, z) E (El n E2 x Xl n X2) and u E U. Then ((31, E l , Xl) nR ((32 , E2, X 2) 

is also an ECSES over U. 

Proof. By Definition 4.3.17, we have ((33, E3, X 3) = ((31, E1 , Xt) nR ((32,E2,X2) 

where 

(3 (g z) = { {(1/', sup{Al(g ,z) (u) , A2(g ,z) (u)} if (g , z) E (El n E2 x Xl n X2) 

3 , , inf{A l(g,z)(1/,), A2(g ,z) (u)} )} , 

if (g, z) E (El nE2 XX lnX2), take Ii, = inf{ sup{ Ai(g,z) (u), A2(g ,z) (u)}, sup{ A~(g ,z ) (u) , 

Atg,z) (u )} } and ~ = sup {inf {Ai(g, z) (u) , A2(g ,z) (u) }, inf { A~(g ,z) (u), Atg,z) (u) }}. 

T hen Ii, is one of Ai(g,z)(u), A2(g ,z) (u) , A~(g ,z) (u) , Atg,z) (u). We only consider Ii, = 

A2(g ,z) (u) or Atg,z) (u) because remaining cases are similar to this one. If Ii, = A2(g,z) (u) 

t hen A~(g, z) (u) ~ Ai(g,z) (u) ~ A2(g, z)(u) ~ Atg,z) (u) and so ~ = Ai(g,z) (u). T hus 

(inf{ Al(g,z) , A 2(g ,z) } )+ (u) = Ai(g,z) (u) = ~ < (Al(g ,z) V A2(g,z) )(u) . Hence (Al(9 ,Z) V 

A2(g,z)) (u) tt (( inf{Al(g,z), A 2(g,z) }-(u) , inf{Al(g,z), A 2(g,z) }+(u)). If Ii, = A tg,z)(u) 

then A~(g,z)(u) ~ Atg,z)(u) ~ Ai(g,z)(u) so ~ = sup{A~(g,z)(u), A2(g, z)(u)}. As­

sume ~ = A~(g ,z) (u), then we have A2(g ,yz) (1/,) ~ A~(g ,z) (u) < (Al(g ,z) V A2(g ,z))(u) < 
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Atg,z)(u) :::; Ai(g,z) (u) . So we can write A2(g ,z) (u) :::; A~(g ,z) (u) < (Al(g ,z) V A2(g ,z) )(u) 

< Atg,z )(li ) :::; Ai(g ,z) (1~) or A2(g ,z)(li) :::; A~(g, z) (li) < (Al(g ,z) V A2(g ,z ))(li) = Atg,z) (u) 

:::; Atg,z/li) . 

The case A2(g ,z)(u) :::; A~(g ,z)(li) < (Al(g ,z) /\ A2(g,z))(u) < Atg,z)(li) :::; Ai(g,z) (u) 
contradicts the fact that ((31,E1 ,X1) and ((32 , E 2,X2) are ECSESs. For the case 

A2(g, z)(li) :::; A~(g,z)(u) < (Al(g,z) V A2(g ,z))(li) = Atg,z)(li) :::; Ai(g,z)(li) we have 

(Al (g, z) V A2(g,z))(li) ~ ((inf{Al(g ,z ) , A2(g,z)})-(1~), (inf{Al(g ,z), A2(g ,z)})+(u)) because 

(inf{Al(g,z), A2(g ,z) })+(li) = Atg ,z) (1~) = (Al(g, z) V A2(g,z))(u). Again assume that 

R = A2(g, z) (li), then we have A~(g ,z) (li) :::; A2(g ,z)(u) < (Al(g,z) V A2(g,z))(u) :::; Atg,z)(1~) 
:::; Ai(g,z) (li). We can write A~(g ,z)(u) :::; A2(g, z)(li) < (Al(g,z) V A2(g ,z))(li) < Atg,z) (li) 

:::; Ai(g,z)(li ) or A~(g,z)(u) :::; A2(g ,z)(li ) < (Al(g, z) V A2(g ,z))(li) = Atg,z)(li) :::; Ai(g,z) (li). 

The case A~(g , z) (li) :::; A2(g ,z)(li) < (Al(g ,z) V A2(g, z))(u) < Atg,z) (li) :::; Ai(g,z) (li) 

contradicts the fact that ((3l , E l , X l ) and ((32, E2 , X 2) are ECSESs. For the case 

A~(g ,z ) (u) :::; A2(g ,z)(li) < (Al(g ,z) V A2(g ,z))(li) = Atg ,z)(u) :::; Ai(g,z) (u) , we have 

(Al(g ,z) V A2(g,z))(u) ~ (inf{A1(g, z), A2(g ,z)} )-(u) , (inf{Al(g ,z) , A2(g ,z)} )+(li) because 

(inf{Al(g,z), A 2(g ,z)})+(u) = Atg,z) (li) = (Al(g ,z) V A2(g ,z))(li) . Hence ((31 , El , X l ) nR 
((32, E2 , X 2) is an ECSES over U. • 

The following example shows that the P - linion and P - inter section of two 

ECSESs need not to be an ECSES. 

Example 4.4.22 Let ((31, E l , Xl) and (62, E2, X2) be two ECSESs over U, where 

(3l(e, x) = {(u, Al(e,x)(li), Al(e,x) (li)) : li E U} for any (e, x) E El X Xl and (32(f, y) = 

{ (li , A 2(J,y)(li),A2(J,y)(li)) : u E U } for any (f,y) E E2 x X2 in which Al(g,z)(li) = 

[0.5 , 0.8], Al(g,z)(li) = 0.2 and A2(g ,z)(li) = [0.1,0.4]' A2(g,z)(u) = 0.7. Now by Definition 

4·3.11 , we have A3(g, z)(li) = [0.5 , 0.8]' A3(g,z)(li) = 0.7 and by Definition 4.3.13 we have 

A3(g, z)(u) = [0.1 , 0.4]' A3(e,x)(li) = 0.2. Hence P - linion and P - intersection both 

are not ECSESs because A3-( )(li):::; A3( )(u) :::; A3+( )(u). g,z g ,z g ,z 

In the next theorems , we derive conditions for P - linion of two ECSESs to be 

an ECSES. 

Theorem 4.4.23 Let ((31, E l , Xl) and ((32, E2, X 2) be two ECSESs over U, where 

(3l(e , x) = {(li ,Al(e,x)(li) , Al(e,x)(li)) : U E U} for any (e,x) EEl x Xl and (32(f , y) = 

{(li , A 2(J,y) (li), A2(J,y) (li)) : li E U} for any (f , y) E E2 x X2 such that 

( 
{ 

inf{sup{Ai( z)(li),A2( z)(u)} ,sup{A~( z)(li) , At( z)(li)}} , 
Al( ) V A2( ))(u) E g, g, g, g, 

g,z g, z {inf {Ai(g ,z) (li) , A2(g ,z) (u)} , inf {A~(g ,z ) (u), Atg ,z) (li)} } 

for all (g , z) E (El n E2 x Xl n X2) and li E U. Then ((31, E l , Xl) Up (62, E2 , X2) is 

an ECSES over U. 
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Proof. By Definition 4.3.11. we have (63,E3 ,X3) = (,61 , El,Xl ) Up (f32,E2,X2) 

where 

{(u , A1(g,z) (u) , Al(g,z) (u))} 

{(u,A2(g ,z) (U),A2(g ,z)(tL) > )} 
{( u , sup{ Al(g,z) (u) , A2(g,z) (u)} 

,suP{Al(g ,z) (u) , A2(g ,z) (u)})} , 

if (g , z) E (El x Xl) \ (E2 x X2) 

if (g, z) E (E2 x X 2) \ (El x Xl) 

if (g , z) E (El n E2 XXI n X 2) 

if (g , z) E (ElnE2 x XlnX2), take fi = inf{sup{Atg,z)(u), A2(g ,z) (u)} , sup{A~(g ,z) (u) , 

A~g,z) (u)}} and ~ = sup{inf{Atg,z)(u), A2(g ,z) (u)}, inf{A~(g ,z)(u), A~g,z)(u)}}. Then 

fi is one of Atg,z)(u), A2(g, z) (u) , A~(g,z) (u) , A~g,z)(u) . We only consider fi = A2(g ,z)(u) 

or A~g,z)(u) because the remaining cases are similar to this one. If fi = A~(g ,z )(u) 

then A2(g ,z) (u) :S A~g,z)(u) :S A~g,z) (u) :S Atg,z) (u) and so ~ = A~g,z) (u). Thus 

(sup{Al(g,z), A2(g,z)}) - (u) = A~(g ,z )(u) = fi > (Al(9,Z) V A2(g ,z) )(u). Hence (Al(g ,z) V 

A2(g,z))(u) ~ (sup{Al(g,z), A 2(g ,z)} )-(1£) , (sup{Al(g ,z), A 2(g ,z) } )+(u) . 

If fi = Atg,z)(u) then A2(g ,z/u) :S Atg,z) (u) :S A~g,z)(u) so ~ = sup{A~(g,z)(u), 
A2(g, z) (u)}. Assume ~ = A~(g ,z)(u), then we have A2(g ,yz) (u) :S A~(g ,z) (u) :S (Al(g ,z) V 

A2(g ,z))(u) < Atg,z) (1£) :S A~g,z) (u). So we can write A2(g ,z) (1£) :S A~(g ,z) (tL) < (Al(9 ,Z) V 

A2(g ,z))(u) < Atg,z) (1£) :S A~g,z) (u) or A2(g ,z) (1£) :S A~(g, z) (u) = (Al(9 ,Z) V A2(g,z))(u) 

:S Atg,z) (1£) :S A~g,z) (u). 
For the case A2(g ,z)(u) :S A~(g,z)(u) < (Al(g ,z) V A2(g,z))(u) < Atg,z)(u) :S A~g,z)(u) 

which contradict the fact that (f31, E l , Xl) and (f32, E2 , X2) are ECSESs. For the 

case A2(g ,z)(u) < A~(g,z)(u) = (Al(g,z) V A2(g,z))(u) :S Atg,z)(u) :S A~g,z) (u) we have 

(Al(g ,z) V A2(g ,z))(u) ~ ((sup{Al(g ,z), A2(g,z))-(u), (sup{ Al(g,z) , A2(g,z) })+(u)) because 

(sup{Al(g, z), A 2(g ,z) } )- (1£) = A~(g ,z) (u) = (Al(g, z) V A2(g,z) )(u) . Again assume that ~ = 

A2(g ,z )(u) , then we have A~(g,z) (u) :S A2(g ,z) (u) :S (Al(g ,z) V A2(g,z))(u) :S Atg,z) (u) :S 

A~g,z )(u). We can write A~(g ,z) (u) :S A2(g ,z) (u) < (Al(g ,z) V A2(g,z) )(u) < Atg,z) (u) :S 

A~g,z)(u) or A~(g ,z)(u) :S A2(g ,z) (u) = (Al(g ,z) V A2(g,z))(u) < Atg,z) (u) :S A~g,z)(u). 
For the case A~g,z)(u) :S A2(g ,z) (u) < (Al(g, z) V A2(g ,z) )(u) < Atg,z)(u) :S A~g,z/tL) 
which contradict the fact that (f3l , E l , Xl) and (f32, E2 , X2) are ECSESs. For the 

case A~(g ,z) (u) :S A2(g ,z)(u) = (Al(g, z) V A2(g,z))(u) :S Atg,z)(u) :S A~g,z) (u) we have 

(Al(g, z) V A2(g ,z))(u) ~ ((sup{Al(g ,z), A2(g, z)} )-(u) , (sup{Al(g,z), A2(g ,z) } )+(1£)) because 

(sup{Al(g, z), A2(g ,z) } )-(1£) = A2(g ,z)(u) = (Al(g ,z) V A2(g ,z))(u). if (g , z) E (El x Xl) \ 

(E2 x X2) or (g , z) E (E2 x X2) \ (El x Xl) then the result holds trivially. Hence 

(,61 , E l , Xl) Up (f32, E2 , X2) is an ECSES over U .• 

Theorem 4.4.24 Let (f3 l , E l , Xl) and (f32, E2 , X2) be two CSESs over U, where 

f3l(e, x) = {(u, Al(e,x)(u) , Al(e,x)(u)) : tL E U} for any (e, x) E El X Xl and f32 (f , y) = 
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{(U , A2(J,y) (u), A2(J,y) (U)) : U E U} for any (f, y) E E2 X X 2 such that 

{ 
inf{sup{A+l( )(u),A2-( )(u)} ,sup{Al-( )(u) ,A2+( )(u)}}, 

(A 1\ A ) (u) - g,z g, z g,z g,z 
l(g ,z) 2(g,z) - {' f{A+ () A- ()}' f{A- () A+ ()}} 

III l(g ,z) U, 2(g,z) U ,Ill l(g ,z) U , 2(g ,z) U , 

for all (g, z) E (El n E2 x Xl n X 2) and u E U. Then ((31 , E l , Xl) np ((32 , E2 , X 2)) is 

both an ECSES and lCSES over U. 

Proof. Consider ((31, E l , Xl) np ((32, E2 , X2) = ((33, E3, X3) where (E3 x X 3) = 

(El n E2 x Xl n X2)). Also (33 (g ,Z) = {(u , inf{Al(e,x)(u) , A2(J ,y) (u)}, (Al(e,x ) V 

A2(J,y))(u)) : u E U} for any (g , z) E (El nE2 x Xl nX2) . If (g , z) E (El nE2 x Xl nX2), 

take ti = inf{sup{Atg,z)(u), A2(g ,z)(u)} , sup{A~(g,z) (u) , Atg,z)(u)}} and 

R = sup{inf{Atg,z) (u) , A 2(g ,z) (u)} , inf{A~(g ,z) (u), Atg,z) (u)}}. Then ti is one 

of Atg,z) (u), A 2(g ,z)(u), A~(g ,z)(u) , Atg,z) (u), We only consider ti = A~(g,z) (u) or 

Atg,z )(u) because remaining cases are similar to this one. If ti = A~(g ,z) (u) then 

A2(g,z)(u) :s; Atg,z)(u) :s; A~(g ,z) (u) :s; Atg,z) (u) and so R = Atg,z) (u) . This im­

plies that A~(g ,z) (u) = ti = (Al(g ,z) 1\ A2(g ,z))(u) = R = Atg,z)(u) , Thus A2(g ,z) (u) :::; 

Atg,z)(u) = (Al(9 ,z) I\ A2(g,z) )(u) = A~(g ,z) (1£) :::; Atg,z)(u) , which implies that (Al(g ,z) 1\ 

A2(g ,z) )(u) = Atg,z) (1£) = (inf{Al(g,z), A(g,z) } )+(u). Hence (Al(g ,z) 1\ A2(g,z))(u) ~ 
(( inf{Al(g,z), A 2(g ,z) } )- (u) , (inf{Al(g ,z) , A 2(g ,z) } )+(u)) and (inf{A1(g ,z), A 2(g ,z) } )-(u) :s; 
(AI(g,z) 1\ A2(g,z))(u) :s; (inf{Al(g,z), A 2(g, z) })+(u). If ti = Atg,z)(u) then A2(g,z)(u) :s; 
Atg,z) (u) :::; Atg,z)(u) and (Al(g ,z)I\A2(g,z))(u) = Atg,z) (u) = (inf{AI(g ,z) , A 2(g ,z) })+(u). 

Hence (Al(g,z) 1\ A2(g,z))(u) ~ ((inf{AI(g,z), A2(g,z) } )-(u), (inf{Al(g,z), A 2(g ,z) } )+(u)) 

and (inf{AI(g ,z) , A2(g, z) })-(u) :s; (Al(g ,z) 1\ A2(g ,z) )(1£) :s; (inf{AI(g ,z), A 2(g, z) })+(u). 

Hence ((31, E l , Xl) nR ((32 , E2 , X2) is both an ECSE set and lCSES over U. • 

Theorem 4.4.25 Let ((31, E l , Xl) and ((32, E2, X 2) be two CSESs over U, where 

(3l(e, x) = {(u , AI(e,x)(u) , Al(e,x)(u)) : u E U} for any (e, x) EEl X Xl and (32(f, y) = 
{(u , A 2(J ,y)(U) , A2(J,y)(U)): u E U} for any (f , y) E E2 X X 2 such that 

(A V A )(u) - g, z g,z g, z g,z 
{ 

inf{sup{Ai( )(u) , A 2( )(u)} , sup{A~( )(u) , At( )(u)}}, 

l(g, z) 2(g,z) - sup{ inf{ Atg,z) (u), A2(g ,z) (1£)} , inf{ A~(g, z) (u) , Atg,z ) (u)} } 

for all (g, z) E (El n E2 x Xl n X 2) and u E U. Then ((31, E l , Xl) nR ((32 , E2 , X2) is 

both an ECSE set and lCSES over U. 

Proof. Consider ((31, (El x Xl)) nR ((32, (E2 x X2)) = ((33, (E3 x X3)) where 

(E3 x X3) = (El n E2 x Xl n X2)' Also (33( g,Z ) = {(u , inf{Al (e ,x) (u), A2(J ,y) (u)} , 

(AI(e,x) V A2(J,y))(u)) : u E U} for any (g, z) E (ElnE2, XlnX2). if (g, z) E (ElnE2, xln 

X2), take ti = inf{ sup{Atg,z) (u), A2(g, z)(u)},sup{A~(g ,z) (u), Atg,z)(u)}} and R = 
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sup{inf{Atg,z)(U), A2(g,z)(u)}, inf{A~(g,z)(lL), Atg,z)(u)}} , Then Ii is one of Atg,z)(u), 

A2(g,z)(u), A~(g,z)(u), Atg,z)(u), We only consider Ii = A~(g,z)(u) or Atg,z)(u) because 

the remaining cases are similar to t his one. If Ii = A~(g,z) (u) then A2(g,z) (u) ::; Atg,z) (u) 

::; A~(g ,z) (u) ::; Atg,z)(u) and so R = Atg,z)(u) , This implies that A~(g,z)(u) = Ii 

= (Al(g ,z) V A2(g ,z) )(u) = R = Atg,z/u), Thus A2(g,z) (u) ::; Atg,z) (u) = (Al(g ,z) V 

A2(g ,z) ) (u) = A~(g, z ) (u) ::; Atg,z) (u) , which implies that (>'l(g,z) V >'2(g ,z)) (u) = Atg,z) (u) 

= (inf{Al(g ,z) , A(g,z) })+(u). Hence (Al(g ,z) V A2(g,z))(u) ~ ((inf{Al(g,z), A2(g,z) }) -(u), 

(inf{Al(g ,z), A2(g ,z) } )+(u)) and (inf{Al(g ,z), A2(g ,z) }) - (u) ::; (Al(g,z) V A2(g,z))(u) ::; 

(inf{Al(g ,z) , A2(g ,z) })+(u) . If Ii = Atg,z)(u) then A2(g ,z)(u) ::; Atg,z) (u) ::; Atg,z)(u) 

and (>'l(g ,z) V >'2(g,z)) (u) = Atg,z )(u) = (inf{Al(g,z), A2(g, z) } )+(u). Hence (Al(g ,z) V 

A2(g,z))(u) ~ (( inf{Al (g ,z ), A2(g, z)} )-(u) , (inf{Al(g ,z), A2(g, z) } )+(lL)) and (inf{Al(g ,z), 

A2(g ,z) })-(u) ::; (>'1(9 ,z)V>'2(g ,z) )(u) ::; (inf{Al(g ,z), A2(g,z) })+(u), Hence (!h , El , Xl)nR 

((32, E2, X2) is both an ECSES and l CSES over U. • 

Theorem 4.4.26 For any two cubic soft expert sets ((31, E l , Xl ) and ((32, E 2 , X2 ), the 

following absorption laws hold 

1) ((31, E l , Xl) Up ((,81, E l , Xl) np ((32, E2 , X 2 )) = ((31, E l , Xd , 

2) ((31, E l , Xl) np (((31, E l , X l ) Up ((32, E2 , X2)) = ((31, El , Xl)' 

3) (,81, El , X l ) UR (((3l , E l , X l ) nR ((32,E2,X2)) = ((3l,El ,Xl ), 

4) (,8l , E l ,Xl ) nR ((,8l ,El ,Xl ) UR (,82, E2,X2)) = ((3l,El ,Xl )· 

Proof. 1) By Definitions 4.3.11 and 4.3.13 we have ((31, E l , X l ) Up (((31, E l , Xl) np 

(,82, E2, X2)) = (,83, El Up (El np E2), Xl Up (Xl np X2)) = ((33, E l , Xl) 

such that for any 9 E El and z E Xl , we have 

(33 (g , z) = (31 (g , z) Up (((31 (g, z) n p (32 (g, z)) if (g , z) E El X XI . 

(3l(g ,Z ) Up (((3l(g ,Z)np(32(g ,Z)) = {(u , Al(e,x)(U) , Al(e,x)(U) ) : U E U, (e , x) E El X 

XI}up {{(u , Al(e,x) (u) , Al(e,x)(U)) : U E U, (e, x) E El X XI} np{(u, A2(J,y) (u) , 

>'2(J,y) (u)) : lL E U, (f, y) E E2 X X2}} = {(u , Al(e,x )(U), >'l(e,x)(u)) : U E U, 

(e ,x) E El X XI} Up{(u , inf{Al(e,x)(U), A2(J,y) (lL)} , inf{>.l(e,x) (u), A2(J,y)(U)})} = 

{( u, sup{ A l(e,x) (u) , inf {A l(e,x) (u), A2(J,y) (u)} } , SUP{>.l (e,x) (u), inf {>.l(e,x) (u) , A2(J,y) (u)} })} S;; 

{(u , Al(e,x) (u) , Al(e,x) (u)): U E U, (e,x) E El x XI} = (3l(e ,x) S;; {(u , inf{Al(e ,x) (u) , 

rsup{Al(e ,x) (u), A2(J,y) (u)}}, inf{>.l(e,x) (u) , SUP{>.l(e,x) (u) , A2(J,y) (u)}}) = {(lL , sup{A(e,x)(u) , 

inf{A(e,x) (u) , A(J,y) (lL)} }, sup{A(e,x) (u) , inf{>.(e,x) (u) , >'(J,y) (u)} })} = (3l(e, x)Up(((3l(e, x)np 

(32(f, y)). 

In the second case when (g , z) E (El x Xl) \ (E2 x X2) , using Definitions 4.3.11 

and 4.3.13 , we have (3l(e, x)Up (((3l(e , x) np (32 (f, y)) = (3l(e, x)Up (3l(e, x) = (3l( e, x) 

which is t he required result for both the cases . Similarly, we can prove 2), 3) and 4) . 

• 
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Definition 4.4.27 For two CSESs ((31. El . Xl) and (,B2. E 2, X 2) over U , P - AND 

is denoted and defined as 

CBl, E l , X l )I\CB2, E2, X 2) = ((33, (El X E2), (Xl x X2)), 
p 

where (33((e, j), (x, y)) = (3l(e, x) np (32(f, y) for all ((e , j), (x, y)) E ((El x E2)x 

(Xl x X2)), 

whenever (31(e, x) = { (1£ , Al(e,x)(1£) , Al(e,x)(1£)) : 1£ E U} and (32 (f , y) = {(1£ , 

A 2(J,y)(1O) , A2(J,y)(1£)) : 1£ E U}. 

Example 4.4.28 Let U = {1£l' 1£2, 1£3 } be the initial universe, E = {el,e2} be the set 

of attributes, X = {xl ,xd be the set of experts. Then the cubic set ((31 , E , X) overU 

is given below: 

(31(el , Xl ) = { (1£1' [0.5, 0.8]' 0.7), (1£2, [0.6, 0.7]' 0.8), (1£3, [O.4bb , 0.8]' 0.5)} , 

(3l (e2, Xl ) = { (1£1' [0.2 , 0. 7]' 0.6), (102, [0.7, 0.8]' 0.5), (103, [0.2, 0.5]' 0.4)}, 

(31(el , X2) = { (1£ l ' [0.4, 0.8]' 0. 5), (102, [0.4, 0.9]' 0.8), (103, [0.4, 0.7]' 0.5)}, 

(3l(e2, X2) = {(1£l ' [0.3,0.8]' 0.4), (1£2 , [0.2,0 .9]' 0.7), (1£3, [0.3,0.7]' 0.6)}. 

Let U = {1Ol' 102, 1£3} be the init'ial zmiverse, F = {II , h } be the set of attributes 

and Y = {Yl , Y2} be the set of experts. Then the cubic set ((32, F, Y) over U is given 

below: 

(32 (II , Yl) = {(1Ol ' [0.5, 0.8]' 0.4), (1£2, [0.6,0.9]' 0.9) , (1£3, [0.4,0.7]' 0.8)}, 

(32(12, Yl) = {(1£l' [0.4 , 0.7]' 0.3) , (1£2 , [0 .7, 0.9]' 0.8), (103 , [0.3 , 0.5]' 0.6)} , 

(32 (II , Y2) = {(1Ol' [0.5, 0.8]' 0.9), (1£2 , [0.7,0.9]' 0.6), (1£3, [0.5,0.6], 0.7)}, 

(32(12, Y2) = {(1Ol' [0.3 , 0.8]' 0.2) , (1£2, [0.6 , 0.9]' 0.4) , (1£3, [0.2, 0.7]' 0.8)}. 

Ey using Definition 4.4. 21 we have ((31 , E , X) I\ ((32, F, Y) = ((33, (E x F) , (X x Y) , 
p 

where (33((e, j) , (x, y)) = (31 (e, x) np (32 (f, y) for all ((e, j) , (x, y)) E ((El x E2) X 

(Xl x X2))' 

(33((el, II), (Xl, Yl)) = {(1£l' [0.5 , 0.8]' 0.4), (1£2, [0.6,0.7]' 0.8), (1£3, [0.4,0.7]' 0.5)} , 

(33((e2, h), (X l , Yl )) = { (1£l' [0.2, 0.7]' 0.3) , (102 , [0.7, 0.8]' 0. 5), (1£3, [0.2, 0. 5]' 0.4)}, 

(33((el , II), (X2, Y2)) = {(1£l ' [0.4,0.8]' 0.5) , (1£2, [0.4, 0.9]' 0.6) , (1£3 , [0 .4,0.6]' 0.5)}, 

(33((e2, h), (X2 , Y2)) = { ('I.Ll' [0.3,0 .8]' 0.2), ('I.L2, [0.2, 0.9]' 0.4) , (1£3, [0.2, 0.7]' 0.6)}. 

Definition 4.4.29 For two CSE Ss ((31 , E l , X l ) and ((32, E 2, X 2) over U, R - AND 

is denoted and defined as 

((31, E l , X l )I\ ((32, E2 , X2) = ((33, (El x E2), (Xl x X 2)), 
R 

where (33((e, j), (x, y)) = (31(e, x) nR (32(f, y) for all ((e , j) , (x, y)) E ((El x E2) X 

(Xl x X2)) , 

whenever ,Bl(e , x) = {(1£ , Al(e,x) (1£) , Al(e,x)(1£)) : 10 E U} and (32 (f , y) = {(1O , 

A 2(J,y) (10), A2(J,y)(1O)) : 10 E U}. 
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Example 4.4.30 Consider Example 4.4.28, by using Definition 4.4.29, we have (81, 

E, X) 1\ (132, F, Y) = (133, (E X F), (X x Y)), 
R 

where 133 (( e, f) , (x , y)) = 131 (e, x) nR 132 (f , y) for all ((e, f) , (x, y)) E ((El x E2) X 

(Xl x X 2)). 

133((el , II) , (Xl , Yl) ) = {(Ul, [0.5 , 0.8]' 0.7), (U2 , [0.6 , 0.7]' 0.9) , ('U3 , [0.4, 0.7]' 0.8)} , 

133((e2, h) , (Xl, Yl)) = {(Ul , [0.2 , 0.7]' 0.6) , (U2 , [0.7,0.8]' 0.8) , (U3, [0 .2,0.5]' 0.6)} , 

133( (el , II) , (X2, Y2)) = {(Ul , [0.4, 0.8]' 0.9) , (U2 , [0.4,0.9]' 0.8), (U3, [0.4, 0.6]' 0.7)} , 

133 ((e2 , h), (X2, Y2)) = { (Ul , [0.3 , 0.8], 0. 4) , (U2 , [0. 2, 0.9]' 0.7) , (U3 , [0.2, 0.7]' 0.8)}. 

D efinition 4.4 .31 For two CSESs (131, El , X l ) and (132, E2 , X2) over U, P - OR 

is denoted and defined as 

(,81, El , X l )V(132, E2, X 2) = (133, (El X E2) ' (Xl x X2)) , 
p 

where 133((e, f), (x , y)) = 13l(e, x) Up 132(f, y) for all ((e , f) , (x , y)) E ((El x E2) X 

(Xl x X 2)) , 

whenever 13l(e ,x) = {(u , Al(e,x)(u) , Al(e,x)(u)) : U E U} and 132(f, y) = {(u, 

A2(J,y) (u), A2(J,y)('U)) : U E U}. 

Example 4.4.32 Consider Example 4.4 .28, by using Definition 4.4. 31, we have (131, 

E , X) V (132 , F, Y) = (133 , (E x F), (X x Y)) , 
p 

where 133 ((e, f) , (x, y)) = 13l(e, x) Up 132 (f , y) for all ((e, f) , (x, y)) E ((El x E2) X 

(Xl x X2))' 

133((el, II) , (Xl, Yl)) = {(Ul , [0.5,0.8], 0.7) , (U2, [0.6,0.9]' 0.9) , (U3, [0.4, 0.8]' 0.8)} , 

133((e2, h), (Xl, Yl)) = {(Ul , [0.4,0.7]' 0.6), (U2, [0.7, 0.9]' 0.8), (U3 , [0.3 , 0.5], 0.6)} , 

133((el , II) , (X2 , Y2)) = {(Ul , [0.5 , 0.8]' 0.9) , (U2, [0.7, 0.9]' 0.8) , (U3 , [0.5 , 0.7]' 0.7)} , 

133((e2, h), (X2, Y2)) = {(Ul, [0.3 , 0.8]' 0.4) , (U2, [0.6 , 0.9]' 0.7) , (U3, [0.3, 0.7]' 0.8)} . 

Definit ion 4 .4.33 For two CSESs (131, El , Xl) and (132, E2, X2) over U, R - OR is 

denoted and defined as 

(131, El , Xl )V(132, E2, X2) = (133, (El X E2), (Xl x X 2)) 
R 

where 133((e, f) , (x , y)) = 13l(e , x) UR 132(f, y) for all ((e, f) , (x, y)) E ((El x E2) X 

(Xl x X2)), 

whenever 13l(e,x) = {(u , Al(e,x)(u), Al(e,x)(u)) : U E U} and 132 (f , y) = {(u, 

A2(J,y) (u) , A2(J,y)(U)) : U E U}. 

Example 4.4.34 Consider Example 4.4.28 by using Definition 4.4 .33 we have (131, 

E , X) V (132, F, Y) = (133, (E x F), (X x Y)) , 
R 

where 133((e, f), (x, y)) = ,8l (e, x) UR 132 (f , y) for all ((e, f) , (x, y)) E ((El x E2) X 

(Xl x X2)). 
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fh((el, h ), (X l , Yl )) = {(Ul . [0.5, 0.8]' 0.4), (U2, [0.6, 0.9], 0. 8), (U3. [0.4, 0.8], 0.5) }, 

J33((e2, h ), (X l , Yl )) = { (U l , [0.4, 0. 7], 0. 3), (U2, [0.7, 0.9]' 0.5), (U3, [0.3 , 0. 5]' 0.4)} , 

J33((el, h ), (X2, Y2)) = { (Ul , [0.5, 0.8]' 0.5), (U2, [0.7, 0.9]' 0.6), (U3, [0. 5, 0.7]' 0.5)} , 

J33((e2, h ), (X2, Y2)) = {(Ul , [0.3, 0. 8]' 0.2), (U2 , [0.6, 0.9]' 0.4), (U3, [0.3 , 0.7]' 0.6)}. 

Theore m 4.4.35 Let (131, E l , X l ) be a CSES over U. If (131, E l , X l ) is an I CSES 

(ECSES) then (131, E l , Xl) C I CSE S (ECSES) respectively. 

Proof. Since (131, E l , Xl ) is an I CSE S (E CSE S) over U , so for any (e, x) E 

(El x Xl ) we have J3l(e, x) = {(u , Al(e,x)(u ), Al(e,x) (u )) : U E U} . By Definition 4.2.3 , 

we have A~(e,x )(u) ~ Al(e,x)('u) ~ A i(e,x) (u ). This implies that 1 - Ai(e,x)(u ) ~ 1 -

Al( e,x)(u ) ~ 1 - A~( e,x ) (1~). Hence (,61, E l , Xl)C is an I CSE set. Also by U 4.2.5 , we 

have (Al (e,x) (u ) tf. (A~(e,x) (u) , Ai(e,x) (u))) for all U E U. This gives 1 - Al(e,x) (u ) tf. 
(1 - Ai(e,x) (u ), 1 - A~(e ,x)(u) ) , Hence (131, El , Xd c is an E CSES . • 

Definition 4.4.36 Let A (e, Xi )' A(e, Xi) E CSES over U, 1 ~ i ~ n . The cubic soft 

expert weighted average quotient operator (CSEW AQO ) is denoted and defined as 

n n 
II (1 + A+ (u ))W' - II (1- A+ (u)) W, 

i=l (e,x;) i=l (e,xi) ] IT {A . (u )}W, ) 
n n ' ._ (e,x,) 

i!!l(l + A t,Xi)(U))W, + i!!l (l - At,Xi)(U))Wi t- l 

where {Wi}iE{1 ,2, ... ,n } are t he weights of experts' opinions, where Wi E [0, 1] and 
n 
L: W i = 1. 

i=l 

Definition 4.4.37 Let 13 = ([A(- )' A +( )J, A(e x)) be a CSE value. A score f1tnction e ,x e,x I 

8 of C S E S value is defined as 

A - + A+ -A 8(13 ) = (e,x) (e,x) (e,x) 
3 

where 8(13) E [- 1, 1]. 

4.5 Decision Making P roblem Based on Multicriteria Cu­

bic Soft Expert Sets 

Decision making problems have been studied using fuzzy soft sets. Now we are going 

to present the mult icriteria cubic soft expert sets in decision making along with their 

weights and score funct ion. 
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Step 1: Input the cubic soft expert set (f3I, E, X). 

Step 2: Utilize the opinions of experts in the form of eSESs to determine the 

opinions regarding the given criteria. Make a separate table for the opinions of each 

expert. 

Step 3: Assign weights to the experts according to their expertise. 

Step 4: Apply cubic soft expert weighted average quotient operator to each of the 

above tables and find the cubic soft expert weighted average corresponding to each 

attribu te. 

Step 5: Calculate VUj . 
p 

Step 6: Calculate the scores of each Uj . 

Step 7: Generate the non-increasing order of all the alternatives according to t heir 

scores. 

Fuzzy soft set t heoretic approach has been used in decision making problems by 

Roy et al. [58]. In this section, we give an application of eSES theory in a decision 

making problem. 

Example 4.5.1 Let U = {'l.Ll =Guinea ,U2 =Liberia,'l.L3 =Sierra leone,u4 =Nigeria} 

be the set of c01mtries, E = {el = Diarrhea, e2 = Severe H eadache, e3 = Explained 

bleeding , e4 = Fever and Vomiting} be the set af symptoms af Ebala patients, X = 
{XI,X2,X3} be the set af Physicians. 

Step 1: 

(31(el, Xl) = {(UI ' [0.4,0.6]' 0.8), (U2' [0.1, 0.5]' 0.3) , (U3, [0.6, 0.7]' 0.5) , (U4' [0.1, 

0.9]' 0.8)} 

(31(e2 , Xl) = {(UI ' [0.3 , 0.7]' 0.4) , (U2, [0.7,0.9]' 0.8) , (U3, [0.3,0.9]' 0.5) , (U4' [0.4, 

0.6]' 0.5)} , 

(31(e3, Xl) = {(UI ' [0.5,0.6]' 0.6), (U2, [0 .5,0.7]' 0.6), (U3, [0 .2,0.6], 0.4) , (U4 ' [0.3, 

0.5]' 0.4)} , 

(31(e4, Xl) = {(UI' [0.3, 0.9], 0.5) , (U2, [0.2,0.8]' 0.6) , (U3, [0.5,0.7]' 0.9), (U4' [0.4 , 

0.8]' 0.7)}, 

(31(el , X2) = { (UI' [0.3 , 0.6], 0.4), (U2, [0.6, 0.9]' 0.3), (U5, [0.4, 0.7]' 0.3), ('l.L5, [0.4, 

0.6]' 0.4)} , 

(31(e2 , X2) = {('l.Ll ' [0.7, 0.9]' 0.2), (U2, [0.5 , 0.8]' 0.8) , (U3, [0.4, 0.7], 0.4) , (U4 ' [0.6, 

0.9]' O. 7)} , 

(31(e3 , X2) = {(Ul' [0.6 , 0.8]' 0.4) , (U2, [0.3, 0.7]' 0.5) , (U3 , [0.5 , 0.9]' 0.7), ('l.L4, [0.4, 

0.8]' 0.8)} , 

(31(e4, X2) = {(UI' [0.5 , 0.8], 0.8), (U2, [0.8,0.9]' 0.4), (U3, [0.7,0.9]' 0.8), (U4' [0.5, 

0.6]' 0.6)}, 



4. Cubic Soft Expert Sets and their Applications in Decision Making 58 

.BI( el , X3) = {(UI , [0.6 , 0.8]' 0.5) , (U2, [0.5, 0.7]' 0.5) . (U3 , [0.7, 0.8]' 0.6) , (U4 , [0 .6, 

0.9]' 0.6)} , 

.BI(e2,x3) = {(UI , [0.2,0.7]' 0.5) , (U2 , [0.3 , 0.7]' 0.5) , (U3 , [0.7,0.8]' 0.9) , (U4 , [0.2, 

0.5], 0.3)}, 

.BI( e3,x3) = { (UI ' [0.8,0 .9]' 0.9) , (U2, [0.6 , 0.7]' 0.6) , (U3, [0 .4, 0.8]' 0.5) , (U4 , [0 .1 , 

0.6]' 0.4)} , 

.BI(e4, X3) = { (UI, [0 .1 , 0.9]' 0.4) , (U2 , [0.2, 0.9], 0.8), (U3, [0.5, 0.9]' 0.6), (U4, [004 , 

0.8]' 0.5)}. 

Step 2: 

UI U2 U3 U4 

(el, Xl) ([0.4, 0.6], 0.8) ([0 .1, 0.5]' 0.3) ([0.6 , 0.7]' 0.5) ([0.1 , 0.9], 0.8) 

(e2, Xl) ([0.3, 0.7]' 0.4) ([0.7, 0.9]' 0.8) ([0.3,0.9]' 0.5) ([004,0.6]' 0.5) 

(e3, Xl) ([0 .5, 0.6]' 0.6) ([0 .5, 0.7]' 0.6) ([0 .2, 0.6]' 004) ([0.3 , 0.5]' 0.4) 

(e4, Xl ) ([0.3,0.9]' 0.5) ([0.5, 0.7]' 0.6) ([0.5, 0.7]' 0.9) ([004,0.8]' 0.7) 

Table 4.5.1. Opinion of expert Xl 

UI U2 U3 U4 

(el, X2) ([0.3,0.6],004) ([0.6 , 0.9]' 0.3) ([004 , 0.7]' 0.3) ([004,0 .6]' 0.4) 

(e2, X2) ([0.7,0.9]' 0.2) ([0.5,0.8]' 0.8) ([004,0.7]' 004) ([0 .6, 0.9]' 0.7) 

(e3, X2) ([0.6,0.8] , 0.4) ([0.3 , 0.7]' 0.5) ([0 .5,0 .9]' 0.7) ([0.4,0.8]' 0.8) 

(e4, X2) ([0.5,0.8],0.8) ([0.8,0.9],0.4) ([0.7, 0.9]' 0.8) ([0.5,0.6]' 0.6) 

Table 4.5.2. Opinion of expert X2 

UI U2 U3 U4 

(el, X3) ([0.6 , 0.8], 0.5) ([0.5 , 0.7]' 0.5) ([0.7, 0.8], 0.6) ([0.6 , 0.9]' 0.6) 

(e2 , X3) ([0.2 , 0.7]' 0.5) ([0.3,0 .7], 0.5) ([0.7,0.8]' 0.9) ([0 .2, 0.5]' 0.3) 

(e3 , X3) ([0. 8, 0.9] , 0.9) ([0.6 , 0.7]' 0.6) ([004 , 0.8]' 0.5) ([0 .1, 0.6]' 004) 

(e4, X3) ([0.1,0.9],0.4) ([0.2,0.9],0.8) ([0.5,0.9]' 0.6) ([004, 0.8]' 0.5) 

Table 4.5.3. Opinion of expert X3 

Step 3: W = (0.36,0.21, 0.43)t where weight 0.36 is assigned to the expert Xl , weight 

0.21 is assigned to the expert X2 and weight 0.43 is assigned to the expert X3. 

Step 4: The cubic soft expert weighted average for each attribute have been cal-
. r 

culated in Table 4.504. 

I 
( 
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U1 U2 1/'3 U4 

e 1 ([0.47,0.70]' 0.56) ([0.39,0 .70]' 0.37) ([0.61 , 0.74]' 0.48) ([0.40 , 0.86]' 0.61) 

e2 ([0.36,0.75]' 0.38) ([0.50 , 0.81]' 0.65) ([0.51 , 0.83]' 0.61) ([0.36 , 0.66]' 0.43) 

e3 ([0.67,0 .80], 0.65) ([0.50, 0. 70], 0.57) ([0.35,0.77]' 0.49) ([0.23,0.62]' 0.46) 

e4 ([0.26 , 0.88], 0.50) ([0.47, 0.85]' 0.62) ([0. 55,0.85]' 0.73) ([0.42 , 0.76]' 0.58) 

Table 4.5.4. CSE weighted averages 

Step 5: Calculate the P - union of 1st, 2nd, 3rd and 4th columns of the above 

Table by using Definition 4.4.3l. So we have 
~ 4 

U1 = V {(ej, 1/'1)} = ([0.67 , 0.88], 0.65) 
J=l 

~ 4 
U2 = V {( ej, U2)} = ([0 .50,0.85]' 0.65) 

J=l 
~ 4 

U3 = V { (ej,u3)} = ([0.61 , 0.85]' 0.73) 
J=l 

~ 4 
U4 = V {( ej ,u4)} = ([0.42 , 0.86]' 0.61). 

J=l 
Step 6: Now calculate t he score of the above CSES elements by using Definit ion 

4.4.37. 

8eth) = 0.30 

8((;2) = 0.23 

8("(;3) = 0.24 

8((;4) = 0.22 

Step 7: Generate the non-decreasing order of the score of CSES set values. 

Corresponding to P - union we have the following order: 

U1 > U3 > U2 > U4· 

In the above U, we want to check which country is more affected by Ebola. Hence 

Guinea is more effected by Ebola. 

4.6 Conclusion and Future work 

In this chapter, CSES has been discussed which can be used in decision analysis. 

Some basic operations have been defined for CSES. Several properties have been 

investigated. We derive different conditions for different operations of two ICSESs 

(ECSESs) to be an I CSESs (ECSESs). There are so many methods to solve 

decision making problems in various fields but this technique is more sui table because 

in decision analysis there are some problems in which decision makers take decision 

on the basis of different conditions such as climate condition, time period condition 

and geographical conditions. If a decision maker wants to take a decision in some 
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problems on the basis of such conditions then this structure is very useful. At the 

end, an algorithm has been presented along wit h an illustrative U . In future we aim 

to study TOPS] S for group decision making with CSES also we want to define 

different aggregation operators similarity and distance measures and distances and 

similarity degrees between CSESs. 



Chapter 5 

Some New Operations on Cubic 

Soft Expert Sets (CSESs) 

5.1 Introduction 

Cubic sets are basically a combination of fuzzy sets and interval valued fuzzy sets. 

Cubic sets was defined by J un et al. [34]. J un et al. defined basic operations of 

inclusion, union and intersection. There are certain operat ions which were not defined 

in this paper for U, addit ion, multiplication of two cubic sets, power and scalar product 

of cubic sets etc. In this chapter we have introduced some new operations such as 

addition and multiplication of two CSESs, product of a CSESs with real number 

k > 0 , power of CSESs, score and accuracy function of CSESs. The purpose of 

defining score function and accuracy function is that we can determine the ranking of 

CSESs which helps us in some aggregation operators. Some aggregation operators 

on CSESs have been introduced. Fuzzy sets and interval value fuzzy sets playa 

fundamental role in decision analysis. Similarly, C SES s also gives fruitful results in 

decision making. Therefore, t he aim of this chapter is to determine t he most preferable 

choice among all possible choices , when data is in cubic set form. At the end , an 

algorithm has been presented. Finally, an U has been presented to highlight the 

applicability of the proposed algorithm. 

5.2 Preliminaries 

Definition 5.2.1 (11] The simplest and most common way to aggregate is to llse a 

simple arithmetic m ean (also know as the average) . Mathematically we have : 

61 
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The average is often used since it is simple and satisfies the properties of monotonic­

ity, continuity, symmetry, associativity, idempotence and stability for linear transfor­

mations. 

But it has neither absorbent nor neutral element and has no behavioral properties. 

Definition 5.2.2 [11] The weighted m ean is a classical extension which allows placing 

weights on the arguments. But we loose the property of symmetry. It is expressed 

mathematically by : 
n 

MW1 ..... wn(Xl,X2, ... 'Xn) = .~ (WiXi), 
t=l 

n 
where Wi 2: 0 and ~ wi· 

i= l 

Definit ion 5 .2.3 [21, 22] A very notable particular case, studied in detail by Duj­

movic and by Dyckhoff corresponds to the function f is defined by f : x --+ xa. We 

obtain then a quasi arithmetic m ean of the form : 

(5. 1) 

It generalizes a group of common m eans, only by changing the value of a. When 

a = 1 we obtain the arithmetic m ean, when a --+ 0, equation 5.1 tends to the geometric 

m ean , when a = 2 we obtain the quadratic mean or the Euclidean mean and for 

a = - 1 we obtain the harmonic mean. 

Definition 5.2.4 [19] The ordered weighted averaging operators (OW A) were orzgz­

nally introduced by Yager in [55] to provide a m eans for aggregating scores associated 

with the satisfaction of mult'iple criteria, which unifies in one operator the conjunctive 

and disjunctive behavior: 

where cr is a permutation that orders the elements 

Xa(l) :::; Xa(2) :::; ... :::; xa(n) 

n 
The weights are all non negative and their S1Lm equals 1, that is, Wi 2: 0 and . ~ Wi. 

t=l 
The OW A operators provide a parameterized family of aggregation operators, which 

include many of the well-known operators such as the maximum, the minim1Lm, the 

k-order statistics, the m edian and the arithmetic m ean. In order to obtain these par­

tic1Llar operators we should simply choose particular weights (see Table 5.2.1). 
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OWA 

Minimum 
WI = 1 

Wi = 0 if i =J 1 

Maximum < 
Wn = 1 

Wi = 0 if i =J n 

w.!!.±.! = 1 
2 

if n is odd 

Median - I d _ I 
w~ - '2 an w~+l - '2 if n is even 

Wi = 0 else 

A rithmetic mean Wi = 1 f or all i n 

Table 5.2.1 

The ordered weighted averaging operators are commutative, monotone, idempotent, 

they are stable for positive linear transformations and they have a compensatory be­

havior. 

Definition 5.2.5 [82} A mapping M : I n ~ I is called a generalized ordered weighted 

aggregation (COW A) operator of dimension n if 

n 
where, {Wj} jE{I,2, ... ,n} is a collection of weights satisfying Wj E [0, 1] and jEI Wj = l. 

A is a parameter such that A E [-(X), 00] ; bj is the jth largest among the ai. 

The important special case is when Wj = ~. In this case 

n 1 A 1. 
M(XI, .. . ,Xn ) = ( .~ - b

J
) . 

J=ln 

This is the generalized mean operator disctlssed by Dyckhoff and P edrycz (1984). 

vVe note these are also mean operators: they are symmetric, monotonic and bounded. 

5.3 Some New Operations on CSESs 

Definit ion 5.3.1 Let U be a finite universe set containing n alternatives, E be a set 

of criteria and X be. a set of experts (or decision makers). A pair (fJ , E, X) is called 

a ctlbic soft expert set over U if and only if fJ : E x X ---7 CP(U) is a mapping into 

the set of all ctlbic sets in U. Cubic soft expert set is denoted and defined as 

(fJ, E, X) = {fJ(e, x) = {(u , A(e,x)(u), A(e,x) ('u)) : u E U, (e, x) E E x X}. 
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where A(e,x)(u) is an interval valuedf1lzzy set and \ e,x)(u) is a fuzzy set. H ere decision 

makers give their opinions 'in the form of ettbic set. 

The collection of all cubic soft expert sets C S E S s is denoted as (3. 

Definition 5.3.2 Let ((3l,El ,Xl ) = {(3(e,x) = ((u , Al(e,x)(U) , Al(e,x) (u)): u E U, (e,x) E 

El x Xd and ((32,E2,X2) = {(3 (j , y) = {(u , A 2(J,y) (u) , A2(f,y) (u)) : u E U, (j , y) E 

E2 x X 2} be two CSESs over U. Addition of two CSESs ((31, E l , Xl) and ((32, E2 , X 2) 

is denoted and defin ed as follows 

Example 5.3.3 Consider two CSESs ((31 , E l , Xl) and ((32, E 2, X2) over U. 

(3l(el, Xl) = {(Ul , [0.5 , 0. 8]' 0.7) , (U2 , [0.6 , 0.9]' 0.8), (U3 , [0.4,0.7]' 0.5)}, 

(32(h, Yl) = {(Ul ' [0 .2,0.7]' 0.3) , (U2 ' [0.3 , 0.5]' 0.5) , (U3 , [0.5 , 0.9]' 0.2)}. 

Therefore ((31, E l , X l )EB ((32, E 2, X 2) = {(Ul, [0.60 , 0.94]' 0.79) , (U2, [0.72 , 0.95]' 0.90) , 

(U3 , [0.70,0.97]' 0.60)}. 

Definition 5.3.4 Let ((31, E l , Xl) and (,62, E2 , X2) be two CSESs over U. Product 

of two CSESs ((3l ,El ,Xd and ((32,E2,X2) is denoted and defin ed as follows 

((31, E l , Xl) (,62, E2 , X2) = { (u, [A 1(e,x) A 2(J ,y) ' Ate,x)Atf,Y)]' Al(e,x) A2(J,y))} ' 

Example 5.3.5 Consider Example 5.3.3 ((31, E l , X l )((32, E 2, X2) = {(Ul ' [0.10 , 0.56]' 

0.21) , 

(U2 , [0.18 , 0.45]' 0.40) , (U3, [0.20 , 0.63]' 0.10)}. 

Definition 5.3.6 Let ((3, E , X) be a CSES over U. Product of CSES ((3, E , X) with 

real number k > 0 is denoted and defin ed as follows 

k((3 , E , X) = {(u , [1 - (1 - A(- ))k, 1- (1 - A+( ))k], 1- (1 - A(e x))k )} . 
e~ e~ , 

Example 5.3.7 Consider ,6( h , Yl) = {(Ul ' [0.2 , 0.7]' 0.3) , (U2, [0.3 , 0.5]' 0.5) , (U3, [0.5, 0.9]' 0.2)} , 

k = 5. Product of CSES with scalar is given by 

5((3 , E , X) = {(Ul , [0.672, 0.997]' 0.831) , (U2 , [0.831 , 0.968]' 0.968) , (1l3 , [0.968 , 0.999]' 0.672)}. 

Definition 5.3.8 Let ((3, E , X) be a CSES over U. Power of CSES ((3, E , X) with 

real n1lmber k > 0 is denoted and defined as follows 
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Example 5.3.9 Consider Example 5.3.1. Power of CSES with scalar is given by 

(f3, E, X)5 = {(U1' [0.0003,0. 1680]' 0.0024) , (U2, [0.0024, 0.0312]' 0.0312) , 

(U3, [0.0312, 0.5904]' 0.0003)}. 
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Definition 5.3.10 Let f3 = ([A~,x)' At,x)]' A(e,x)) be a CSE value. A score fun ction 

5 of CSE value is defin ed as 

A -( )+ A+( )-A(ex) 5( f3) = e,x e,x , 
3 

where 5( f3 ) E [-1 , 1]. 

Definition 5.3.11 Letf3 = ([A-( ), A+( )], A(ex) ) be aCSE value. ACC1lracyfunction e ,x e,x , 

A of CSE value is defin ed as 

A - +A+ +A 
A(.6) = (e,x ) ~,X) (e,x) 

where A(f3) E [0, 1] . 

Definition 5.3.12 Let f31 = ([A~(e,x) ' A~e,x)], A1(e,x)) and f32 = ([A2(e ,x) , A~e,x)], 
A2(e,x)) are two CSE values. S'(f31) and 5(f32) are scores of f31 and f32 respectively, let 

A(,'31) and A((32) are accuracies of f31 and f32 respectively. 

If 5(f31) < S(f32) then f3 1 < f32 

If 5(f31) > 5(f32) then f3 1 > f32 

If 5(f31) = 5((32) then f31 = (32 

If A(f31) < A((32) then f31 < f32 

If A(f31) > A((32) then f3I > (32 

If A(f3 I) = A((32) then f31 = f32. 

5.4 Some Aggregation Operators on Cubic Soft Expert 

Sets 

Definition 5.4.1 Let f3i = ([Ai , At] ,Ai) (i = 1, 2, ... n) be CSES sets. A mapping 

T,[lEO : 1f:: ---) 1fi is called c1lbic soft expert weighted geometric operator if its satisfies 

where Wi = (WI , W2 , ... , wn)t is a weight vector of f3i satisfying the conditions Wi E [0,1] 
n 

and ~ Wi = 1. 
i=1 
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Theorem 5.4.2 Sllppose that f3i = ([Ai , At] , Ad (i = 1, 2, ... n) are CSES sets. By 

llsing cllb'ic soft expert weighted geometric operator (CSEvVGO) aggregation res'lllt is 

also CSES. 

where Wi = (WI , W2 , ... , wn)t 'is a weight vector of f3i satisfying the conditions Wi E 
n 

[0,1] and . ~ Wi = 1. 
t=1 

Proof. It can be easily proved by using Defini t ions 5.3.4, 5.3.8 , and 5.4. 1. • 

D e finition 5 .4 .3 Let ,6i = ([Ai , At] , Ai) (i = 1, 2, ... n) be CSES sets . A mapping 

rei : 7Ji ~ 7Ji is called cllbic soft expert weighted average operator if its satisfies 

rei (131 , 132, ... , f3n) = £ Wif3i, 
i=1 

where Wi = (W I , W2, .. . , wn)t is a weight vector of f3i satisfying t he condi t ions Wi E 
n 

[0,1] and ,~ Wi = 1. 
t=1 

Theorem 5.4.4 Sllppose that f3i = ([Ai, A t] , Ai) (i = 1,2, , .. n) are CSES sets. By 

llsing cllbic soft expert weighted average operator (CSEvV AO) aggregation result is 

also CSES. 

where Wi = (W I , W2 , ... , wn)t is a weight vector of f3'i satisfying the condit ions Wi E 
n 

[0, 1] and ,~ Wi = 1. 
t= l 

Proof. By using Definition 5.4.3 we have rei (f31' 132, ... ,f3n) ® wif3i. Now we 
i=1 

using mathematical induction, for n = I , we have Tei (f31) = wlf31 = ([1 - (1- A1)Wl, 

1 - (1 - At)Wl], 1 - (1 - Al )Wl) by using Definition 5.3.6 . For n = 2, we have rei (131, 
2 

(32) = ,E9 Wif3i = W1,61 E9 w2,62 = ([1 - (1 - Al )Wl, 1 - (1 - At)Wl], 1 - (1 - Al )Wl) E9 
t=1 

([1 - (1 - A2)W2, 1 - (1 - At)W2], 1 - (1 - '\ 2)W2) = ([1 - (1 - Al)Wl(l - A2)W2, 
2 2 

1 - (1 - At)Wl (1 - At)W2], 1 - (1 - A1 )Wl (1 - A2)W2) = ([1 - i!!l (1 - Ai)Wi, 1 - i!:l (1 -

2 
A{)Wi], 1 - II (1 - Ai)Wi). 

t= l 

By using Definitions 5.3.6 and 5.3.2. Suppose it is true for n = k, rei (131 ,132, ... , f3JJ = 
k k k k 

E9 w 'f3 = ([1 - II (1 - A~)Wi 1 - II (1 - A+)Wi] 1 - II (1 - A)Wi) 
i=l t t i=1 t' i=1 t , i=1 t· 
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• B k+l 
Now we prove It for n = k + 1, Tw'(t31' (32, · .. ,13k, 13k+l) = EB wi13i = wlt31 EB 

i=1 
k k k 

w2132EB, ... , EBwk13k EB wk+113k+l = EB wi13i EB Wk+l13k+1 = ([1 - II (1- Ai)Wi, 1- II (1-
i=l .=1 .=1 

k 
AnWi ], 1-i!!I (1- Ai)Wi) EB ([ l -( l -AI;+I )Wk+l, l -(l -At+l)Wk+l], l -( l - Ak+l )Wk+l) = 

k+l k+l k+l 
([1- II (l - A i)Wi , 1- II (l -Anwi ], 1- II (l - Ai)Wi), by using Definit ion 5.3 .2. Hence 

.=1 .=1 .=1 

it is true for n = k + 1. So Te i (,61, 132, .. . , ,6n) = ([I - IT (1- Ai)Wi, I-IT (1- AnWi], 
.=1 .=1 

n 
1 - II (1 - Ai )Wi ) . • 

• =1 

Example 5.4.5 Let there are five experts who give their opinions corresponding to 

different attributes in the form of cubic set 131 = ([0 .5, 0.8]' 0.7) , 132 = ([0.2 , 0.6]' 0.7) , 

133 = ([0. 1, 0.5]' 0.8) ,134 = ([0 .3, 0.9], 0.6) ,135 = ([0.1 , 0.6]' 0.5). The weight vector corre­

sponding to experts is w = (0.32 , 0.14 , 0.20 , 0.16, 0.18)t . The aggregated result of these 

experts can be computed by using Theorem 5.4.4 as follows: 

5 5 5 
Tei(131' 132, ·· ·,135) = ([1- i!!l (l - Ai) Wi , 1 - i!!l( l - AnWi], 1 - i!!l( l - Ai)Wi) 

= ([1 - (1 - 0.5)0.32(1 - 0. 2)0.14(1 - 0.1)0.20(1 - 0.3)0.16(1 - 0.1)0.18, 

1 - (1 - 0.8)°·32(1 - 0.6)0.14(1 - 0.5)0.20(1 - 0.9)0.16(1 - 0.6)°·18], 

1 - (1 - 0.7)0.32(1 - 0.7) 0.14(1 - 0.8)020(1 - 0.6)0.16(1 - 0.5)0.18) 

= ([0.29542, 0.73160]' 0.68244) . 

D efinit ion 5.4.6 Let 13i = ([Ai , At] ,Ai), (i = 1, 2, ... n) be CSES sets. A mapping 

T£ : 13i -+ A is called w bic soft expert OW A operator if its satisfi es the following: 

where W = ('WI , W2, .. . wn )t is a position weight vector associat ed with the mapping n _ _ _ _ 

T£ satisfying Wk E [0, 1] and L: Wk = 1. 13k = ([A I;, A t] , Ak) is the k- th largest cubic 
k=1 

soft expert set which can be determined by using score function or accuracy function. 

Theorem 5.4.7 Suppose that 13i = ([Ai, At ] , Ai ), (i = 1, 2, ... n) are CSES sets. By 

1tsing cubic soft expert OvV A operator- aggTegation result is also CSES. 

where W = (WI, W2, ... wn)t is a position weight vector associated with the mapping 
o n - - -

Tr;:; satisfying Wk E [0, 1] and L:WI,; = 1. 13k = ([AI;, At] , Ak) is the k-th largest 
k=1 
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cubic soft expert sets Bi which can be determined by using score function or accuracy 

funct ion. 

Proof. It can be proved by using mathematical induction and by using Defini tions 

5.3 .2, 5.3.6, and 5.4.6. • 

Example 5.4.8 Let there are five experts who give their opinions corresponding to 

different attributes in the form of a cubic set /31 = ([0.5,0.8], 0.7) , /32 = ([0.2 , 0.6], 0.7) , 

/33 = ([0.1 , 0.5]' 0.8) ,(34 = ([0.3 , 0.9]' 0.6) , (35 = ([0.1 , 0.6]' 0.5). Assume that the asso­

ciated weight vector of /3i is'W = (0.28, 0.16 , 0.12,0.24, 0.20)t. The aggregated reszdt of 

these expert can be computed by zlsing Theorem 5.4.1 a follows: 

By using Defintion 5.3.11 , scores of the CSESs are 3(/31) = 0.2 3(/32) = 0.034 

3((33) = -0.067, 3(/34) = 0.2, 3((35) = 0.067. It is clear that 3(/31) = 3(/34) > 3(/35) > 
3 (,B2) > 3 (/33). Since t he score of /31 = /34, now we calculate accuracies of (31 and 

(34. A(/31) = 0.67, A(/34) = 0.6. So we can establish the ranking order of CSES /3i 

(i = 1, 2, ... , 5) as follows 

Then, we have 

/31 = /31 = ([0.5, 0.8]' 0.7) 

(32 = ,B4 = ([0.3 , 0.9]' 0.6) 

/33 = /35 = ([0.1 , 0.6]' 0.5) 

/34 = /32 = ([0.2, 0.6]' 0.7) 

/35 = ,B3 = ([0. 1, 0.5]' 0.8) 

By using Theorem 5.4.7, we have 
n _ n _ n_ 

= ([1- i!:l(l- A;)Wi, 1 - i!:l (l - At)wi], 1- i!:l(l- Ai)Wi) 

= ([1 - (1 - 0.5)0.28(1 _ 0.3)0.16(1 - 0.1)0.12(1 - 0.2)0.24(1 - 0.1)°·20, 

1 - (1 - 0.8)0.28(1 - 0.9)0.16(1 - 0.6)0.12(1 - 0.6)0.24(1 - 0.5)0.20], 

1 - (1 - 0.7)0.28(1 - 0.6)0.16(1 - 0.5)0.12(1 - 0.7)0.24(1 - 0.8)0.20) 

= ([0.2871 , 0.7240], 0.6920). 

Definition 5.4.9 Let /3i = ([Ai, At] ,/\), (i = 1, 2, ... n) be CSES sets. A mapping 

T~O : ~n ---+ Pi is called cubic soft expert GOW A operator if its satisfies the following: 

GO(/3 /3 /3 ) - r;;:; /3-7' Tw 1 , 2 , .. . , n - IJ7 'Wk k' 
k=l 

where 'W = ('WI, 'W2, ... 'Wn )t is a position weight vector associated with the mapping 

T~O satisfying 'Wk E [0,1] and E 'Wk = l. 13k = ([Ak' , At] , >:k) is the k-th largest cubic 
k=l 

soft expert set which can be determined by using score function or accuracy function. 
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Remark 5.4.10 If r = 1 in Definition 5.4 .9 then clibic soft expert COW A opemtor 

T;J° degenerates to cubic soft expert OW A operator T£. 

Theorem 5.4.11 Suppose that f3i = ([Ai , At] , Ai), (i = 1,2, ... n) are CSES sets. 

By using cubic soft expert COW A operator aggregation result is also CSES. 

where W = (WI, W2, ... wnY is a position weight vector associated with the mapping 
GO n - - - -

Tw satisfying Wk E [0, 1] and 2: Wk = 1, r > O. 13k = ([Aj;, At] , Ak ) is the k-
k=l 

th largest cubic soft expert set which can be determined by using score function or 

accuracy function. 

Proof. It can be proved by using mathematical induction and by using Defini t ions 

[5.3.2, 5.3.6, 5.3.8 and 5.4.9]. • 

5.5 Multicriteria Decision Making of Cubic Soft Expert 

Sets with Cubic Soft Expert GOvVA Operator 

In this section, we develop an algorithm with the aid of CSE sets for decision analysis 

in which experts will be given weightage to attributes according to their area of ex­

pertise. Let U = {UI' U2 , ... un } be the set of alternatives, E = {el ' e2, . . . , ed be the set 

of attributes and X = {Xl , X2, ... , xm } be the set of experts. Further, we take opinion 

of experts in the form of CSE elements. 

Step 1: Utilize the evaluations of experts in the form of CSE sets . 

Step 2: Separate the opinion of each expert. 

Step 3: Calculate the score of each entry corresponding to (el' lin) . Arrange these 

attributes according to their scores. 

Step 4: Assign weights to each att ribute. 

Step 5: Aggregate the attributes by using cubic soft expert COTIV A operator. 

Step 6: Calculate accuracies of all alternatives corresponding to different experts. 

Step 7: Find the average of these alternatives. 

Step 8: Arrange these alternatives in ascending order. 

Step 9: Choose the best alternative. 
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Example 5.5. 1 let U = {UI,U2 ,U3 ,U4 } be the set oj caTS, E = {el = cheap, e2 = 
exp ensive, e3 = mod el 2010 and above, e4 = Made in j apan, e5 = white color} be the 

set of attributes, and X = {Xl , X2, X3 } be the set of experts. Evaluation of these experts 

is represented in the form of CSE set. Mr. A want to choose best car with respect to 

the given set of the attributes. 

Step 1: Utilize the evaluations of exp erts in t he fo rm of CSE sets . 

{3 (el ' Xl) = {(1LI ' [0.0025 , 0.0876]' 0.0034) , (U2 ' [0.0225 , 0.0446]' 0.0369) , 

(U3 , [0.0245, 0.0546]' 0.0345) , (U4, [0.0525, 0.0646]' 0.0387)} , 

{3 (e2, xI) = {(UI, [0.0225, 0.0984]' 0.0139), (U2, [0.0289, 0.0646]' 0.0276), 

(U3 , [0.0287, 0.0486]' 0.0765) , (U4, [0.0238, 0.0446]' 0.0987)} , 

{3 (e3, Xl) = {(UI , [0.0350, 0.0498]' 0.0265) , (U2, [0.0478, 0.0946]' 0.0876), 

(U3 , [0.0476, 0.0876]' 0.0876) , (U4, [0.0275, 0.0546]' 0.0028)} , 

{3 (e4' Xl) = {(UI , [0.0122, 0.0646]' 0.0975) , (U2 , [0 .0376 , 0.0846]' 0.0987) , 

(U3 , [0.0277, 0.0765]' 0.0298) , (U4 ' [0.0229, 0.0346]' 0.0834) }, 

{3 (e5, Xl ) = { (UI ' [0.0765, 0.0946], 0.0256), (U 2' [0.0027, 0.0046]' 0.0187) , 

(U3, [0.0377, 0.0974]' 0.0098) , (U4 ' [0.0453, 0.0496]' 0.0287)} , 

{3 (el ' X2) = {(UI , [0.0176, 0.0246]' 0.0876) , (U2, [0 .0176 , 0.0746]' 0. 0027) , 

(-LL3, [0.0276 , 0.0843]' 0.0234), (U4' [0.0035, 0.0046]' 0.0209)} , 

{3(e2, X2) = {(UI, [0.0987, 0.0994]' 0.0267), (U2, [0.0987, 0.0996]' 0.0376), 

(U3 , [0.0228, 0.0777]' 0.0072) , (U4' [0.0533, 0.0876]' 0.0002)} , 

{3 ( e3, X2 ) = { ( UI , [0.0346, 0.0446]' 0.0275), (U2' [0.0176 , 0.0246]' 0.0987), 

(U3, [0.0425, 0.0678]' 0.0088) , (U4 ' [0.0345, 0.0987]' 0.0134)}, 

{3 (e4' X2) = {(1LI ' [0.0543, 0.0746]' 0.0987) , (U2 ' [0.0198, 0.0346]' 0. 0376) , 

(U3, [0.0345 , 0.0698], 0.0376) , (U4, [0.0654, 0.0877]' 0.0087)}, 

{3 (e5, X2) = {(1LI ' [0.0123, 0.0946]' 0.0256), (U2 , [0.0196 , 0.0646]' 0.0986) , 

(U3 , [0.0445, 0.0868]' 0.0098) , (U4 ' [0.0234, 0.0843]' 0.0018)} , 

{3 (el ' X3) = {(UI ' [0.0543, 0.0846]' 0.0097) , (U2 , [0.0472, 0.0546]' 0.0287) , 

(U3, [0.0222 , 0.0446]' 0.0287), (U4' [0.0432, 0.0876]' 0.0007)} , 

{3 (e2' X3) = { (UI ' [0.0098, 0.0146]' 0.0189), (U2, [0.0675 , 0.0746]' 0.0376), 

(U3, [0.0356, 0.0946], 0.0765) , (U4, [0.0156 , 0.0276]' 0.0087)} , 

{3 (e3, X3) = { (UI , [0.0090, 0.0346]' 0.0109), (U2 ' [0.0354, 0.0446]' 0.0098) , 

(U3 , [0.0234, 0.0746]' 0.0970), (U4 , [0.0321, 0.0762]' 0.0034)} , 

{3 (e4, X3) = {(UI , [0.0037, 0.0046]' 0.0018) , (U2 , [0.0375 , 0.0846]' 0.0187) , 

(U3, [0.0543 , 0.0646]' 0.0365) , (U4' [0.0254, 0.0876]' 0.0098)} , 

{3 (e5, X3) = {(UI ' [0.0656, 0.0696]' 0.0186), (U2 , [0.0316 , 0.0546]' 0.0465) , 

(1L3, [0.0541 , 0.0648]' 0.0876), (U4' [0.0765 , 0.0954]' 0.0365)} . 

Ste p 2: 
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Xl UI U2 

el ([0.0025,0.0876]' 0.0034) ([0.0225 , 0.0446]' 0.0369) 

e2 ([0.0225,0.0984], 0.0139) ([0. 0289, 0.0646]' 0.0276) 

e3 ([0.0350 , 0.0498]' 0.0265) ([0.0478, 0.0946]' 0.0876) 

e4 ([0.0122 , 0.0646]' 0.0975) ([0.0376, 0.0846]' 0.0987) 

e5 ([0.0765 , 0.0946]' 0.0256) ([0.0027, 0.0046]' 0.0187) 

Xl U3 U4 

e l ([0.0245 , 0.0546]' 0.0345) ([0.0525,0.0646]' 0.0387) 

e2 ([0 .0287, 0.0486]' 0.0765) ([0.0238 , 0.0446]' 0.0987) 

e3 ([0.0476 , 0.0876]' 0.0876) ([0.0275 , 0.0546]' 0.0028) 

e4 ([0. 0277, 0.0765]' 0.0298) ([0 .0229 , 0.0346]' 0.0834) 

e5 ([0.0377, 0.0974]' 0.0098) ([0.0453,0. 0496]' 0.0287) 

Table 5.5.1 Opinion of expert Xl 

X2 UI U2 

el ([0.0176,0. 0246]' 0.0876) ([0.0176,0.0746]' 0.0027) 

e2 ([0.0987,0.0994]' 0.0267) ([0.0987, 0.0996]' 0.0376) 

e3 ([0.0346,0.0446]' 0.0275) ([0.0176,0 .0246]' 0.0987) 

e4 ([0.0543,0.0746]' 0.0987) ([0.0198,0.0346]' 0.0376) 

e5 ([0.0123 , 0.0946]' 0.0256) ([0.0196 , 0.0646]' 0.0986) 

X2 U3 U4 

e l ([0.0276,0.0843]' 0.0234) ([0.0035,0.0046]' 0.0209) 

e2 ([0.0228,0.0777]' 0.0072) ([0.0533 , 0.0876]' 0.0002) 

e3 ([0.0425 , 0.0678], 0.0088) ([0.0345 , 0.0987]' 0.0134) 

e4 ([0.0345, 0.0698]' 0.0376) ([0.0654,0.0877]' 0.0087) 

e5 ([0.0445 , 0.0868], 0.0098) ([0.0234,0 .0843]' 0.0018) 

Table 5.5.2 Opinion of expert X2 
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X3 Ul u2 

e l ([0.0543, 0.0846]' 0.0097) ([0.0472, 0.0546]' 0.0287) 

e2 ([0.0098,0.0146]' 0.0189) ([0.0675, 0.0746]' 0. 0376) 

e3 ([0.0090 , 0.0346]' 0.0109) ([0.0354, 0.0446]' 0.0098) 

e4 ([0.0037, 0.0046]' 0.0018) ([0.0375, 0.0846]' 0.0187) 

e5 ([0.0656 , 0.0696], 0.0186) ([0 .0316, 0. 0546]' 0.0465) 

X3 U3 U4 

e l ([0.0222 , 0.0446]' 0.0287) ([0.0432 , 0.0876]' 0.0007) 

e2 ([0.0356 , 0.0946]' 0.0765) ([0.0156 , 0.0276]' 0.0087) 

e 3 ([0.0234, 0.0746]' 0.0970) ([0.0321, 0.0762]' 0. 0034) 

e 4 ([0.0543 , 0.0646]' 0.0365) ([0.0254, 0.0876]' 0.0098) 

e 5 ([0.0541, 0.0648] , 0.0876) ([0.0765, 0.0954]' 0.0365) 

Table 5.5.3 Opinion of expert X3 

S t e p 3 : Calculate the scores of above att ributes corresponding to different experts. 

Xl Ul U2 U3 U4 

el 0.0289 0.0101 0.0149 0.0261 

e2 0.0357 0.0220 0.0003 -0.0101 

e3 0.0194 0.0183 0.0159 0.0264 

e4 - 0.0069 0.0078 0.0248 - 0.0086 

e5 0.0485 -0.0038 0.0418 0.0221 

Table 5.5 .4 Scores of expert Xl 

e4 = es < e3 = €4 < e l = e3 < e2 = e2 < e5 = eJ. for Ul , 

e 5 = es < e 4 = €4 < e l = e3 < e 3 = e2 < e 2 = eJ. for U2 , 

e2 = es < e l = €4 < e 3 = e3 < e 1 = e2 < e5 = eJ. for U3, 

e2 = es < e4 = €4 < e5 = e3 < e l = e2 < e3 = eJ. for U4 · 

Table 5.5.5 Arrange attributes according to their scores 
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Xl Ul U2 

e l ([0 .0765, 0.0946]' 0.0256) ([0 .0289 , 0.0646]' 0.0276) 

e2 ([0.0225,0.0984]' 0.0139) ([0 .0478,0.0946]' 0.0876) 

e3 ([0.0025 , 0.0876]' 0.0034) ([0.0225 , 0.0446], 0.0369) 

e4 ([0 .0350, 0.0498]' 0.0265) ([0.0376,0.0846], 0.0987) 

e5 ([0.0122, 0.0646]' 0.0975) ([0.0027,0.0046]' 0.0187) 

Xl U3 U4 

el ([0 .0377, 0.0974]' 0.0098) ([0.0275,0.0546]' 0.0028) 

e2 ([0 .0277, 0.0765]' 0.0298) ([0.0525 , 0.0646]' 0.0387) 

e3 ([0.0476,0.0876]' 0.0876) ([0 .0453 , 0.0496]' 0.0287) 

e4 ([0.0245, 0.0546]' 0.0345) ([0.0229,0.0346]' 0.0834) 

e5 ([0.0287, 0.0486]' 0.0765) ([0 .0238, 0.0446]' 0.0987) 

Table 5.5.6 Arranged attributes 

X2 Ul U2 U3 '1.14 

e l -0.0151 0.0298 0.0295 - 0.0043 

e2 0.0571 0.0536 0.0311 0.0469 

e3 0.0172 -0.0188 0.0338 0.0399 

e 4 0.0101 0.0056 0.0222 0.0481 

e5 0.0271 - 0.0048 0.0405 0.0353 

Table 5.5.7 Scores of expert X2 

el = €5 < e4 = e4 < e3 = es < e5 = e2 < e2 = e l for 'l.ll, 

e3 = €5 < e5 = e4 < e4 = es < e l = e2 < e2 = eI for '1.12, 

e4 = €5 < e l = e4 < e2 = es < e3 = e2 < e5 = eI for U3 , 

e l = €5 < e5 = e4 < e3 = es < e2 = e2 < e4 = eI for '1.14 · 

Table 5.5.8 Arrange attributes according to their scores 
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X2 Ul U2 

e l ([0.0987,0.0994]' 0.0267) ([0.0987, 0.0996]' 0.0376) 

e2 ([0.0123,0.0946]' 0.0256) ([0.0176 , 0.0746]' 0.0027) 

e3 ([0 .0346 , 0.0446]' 0.0275) ([0.0198,0.0346]' 0.0376) 

e4 ([0.0543,0. 0746]' 0.0987) ([0.0196,0.0646]' 0. 0986) 

e5 ([0.0176, 0.0246]' 0.0876) ([0.0176, 0.0246]' 0.0987) 

X2 U3 U4 

e l ([0.0445, 0.0868]' 0.0098) ([0.0654, 0.0877]' 0.0087) 

e 2 ([0.0425, 0.0678]' 0.0088) ([0.0533 , 0.0876]' 0.0002) 

e3 ([0.0228, 0.0777]' 0.0072) ([0.0345 , 0.0987]' 0.0134) 

e 4 ([0.0276 , 0.0843]' 0.0234) ([0.0234,0.0843]' 0.0018) 

e5 ([0.0345, 0.0698]' 0.0376) ([0.0035, 0.0046]' 0.0209) 

Table 5.5.9 Arranged attributes 

X3 Ul U2 U3 U4 

e l 0.0431 0.0244 0.0127 0.0434 

e2 0.0018 0.0348 0.0179 0.0115 

e3 0.0109 0.0234 0.0003 0.0350 

e4 0.0022 0.0345 0.0275 0.0344 

e5 0.0389 0.0132 0.0104 0.0451 

Table 5.5.10 Scores of expert X3 

e2 = e5 < e4 = e:t < e3 = e3 < e5 = i2 < e l = eJ. for Ul , 

e5 = e5 < e3 = e 4 < el = e3 < e 4 = i2 < e 2 = eJ. for U2 , 

e3 = e5 < e5 = e:t < el = e3 < e2 = i2 < e 4 = eJ. for U3 , 

e2 = e5 < e4 = e:t < e3 = e3 < e l = i2 < e5 = eJ. for 1~4' 

Table 5.5.11 Arrange attributes according to their scores 
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X3 Ul U2 

e l ([0 .0543 , 0.0846]' 0.0097) ([0 .0675, 0.0746]' 0.0376) 

e2 ([0 .0656 , 0.0696]' 0.0186) ([0.0375, 0.0846]' 0.0187) 

e3 ([0 .0090, 0.0346]' 0.0109) ([0 .0472 , 0.0546]' 0.0287) 

e 4 ([0.0037, 0.0046], 0.0018) ([0.0354, 0.0446], 0.0098) 

e5 ([0.0098, 0.0146]' 0.0189) ([0.0316 , 0.0546]' 0.0465) 

X3 U3 U4 

e l ([0.0543 , 0.0646]' 0.0365) ([0.0765 , 0.0954]' 0.0365) 

e2 ([0.0356, 0.0946]' 0.0765) ([0.0432 , 0.0876]' 0.0007) 

e3 ([0.0222, 0.0446]' 0.0287) ([0.0321 , 0.0762]' 0.0034) 

e4 ([0.0541, 0.0648]' 0.0876) ([0.0254, 0.0876]' 0.0098) 

e5 ([0 .0234, 0.0746]' 0.0970) ([0.0156 , 0.0276]' 0.0087) 

Table 5.5.12 Arranged attributes 

Step 4: Assign weights to each attributes w = (0 .28, 0.25 , 0.19, 0.16, 0.12)t 

Step 5: Aggregate the attributes by using cubic soft expert GOW A operator. By 

taking r = 2 we have 

Ul U2 

([0 .0445 , 0.0853], 0.0386) ([0.0335 , 0.0702]' 0.0632) 

U3 U4 

([0.0348, 0.0796]' 0.0510) ([0.0379 , 0.0526]' 0.0531) 

Table 5.5 .13 Aggregated values corresponding to expert Xl 

Ul U2 

([0.0592, 0.0796]' 0.0547) ([0.0546,0.0717]' 0.0582) 

U3 U4 

([0.0370 , 0.0782]' 0.0177) ([0.0471 , 0.0840]' 0.0104) 

Table 5.5. 14 Aggregated values corresponding to expert X2 



5. Some New Operations on Cubic Soft Expert Sets (CSESs) 76 

U1 U2 

([0.0439, 0.0589]' 0.0133) ([0.0487,0 .0677]' 0.0302) 

U3 U4 

([0.0308, 0.0715]' 0.0659) ([0 .0493 , 0.0830]' 0.0199) 

Table 5.5.15 Aggregated values corresponding to expert X3 

The GOW A operator has been applied to the CSE element corresponding to the 

pair (Xl, U1) as below: 

([ \11 - (1 - 0.07652)°.28(1 - 0.02252)0.25(1 - 0.00252)0.19(1 - 0.03502)°.16(1 - 0.01222)°.12 

, {/l- (1 - 0.09462)0.28(1 - 0.09842)0.25(1 - 0.08762)0.19(1 - 0.04982)0.16(1 - 0.06462)0.12], 

{./1 - (1 - 0.02562)0.28 (1 - 0.01392)0.25(1 - 0.00342)0.19(1 - 0.02652)0.16(1 - 0.09752)0.12) 

= ([0.0445,0.0853]' 0.0386) 

Similarly rest of the entries can be calculated. 

Step 6: Now we calculate scores of all alternatives corresponding to different 

experts. 

U1 U2 U3 U4 
Xl = 

0.0304 0.0135 0.0211 0.0124 

Table 5.5.16 Scores corresponding to expert Xl 

U1 U2 U3 U4 
X2 = 

0.0280 0.0227 0.0325 0.0402 

Table 5.5.17 Scores corresponding to expert X2 

U1 U2 U3 U4 
X3 = 

0.0298 0.0287 0.0121 0.0374 

Table 5.5.18 Scores corresponding to expert X3 

Step 7: 

U1 U2 U3 U4 

0.0294 0.0216 0.0219 0.0300 

Table 5.5.19 Average of alternatives 

Step 8: Arrange these alternatives in ascending order. 

Step 9: Hence U4 is the best. Mr. A chooses U4. 
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5.6 Multicriteria Decision Making of Cubic Soft Expert 

Sets with Cubic Soft Expert OW A Operator 

Consider Example 5.5.1. Proceed to step 4 as in the above example. 

Step 5: Aggregate the attributes by using cubic soft expert OW A operator. 

'Ul 'U2 

([0.0349, 0.0836]' 0.0276) ([0.0307, 0.0647]' 0.0552) 

'U3 'U4 

([0.0339 , 0.0777]' 0.0420) ([0.0360 , 0.0518]' 0.0416) 

Table 5.6.1 Aggregated values corresponding to expert Xl 

1Ll 'U2 

([0.0487,0.0752],0.0459) ([0.0417,0.0667]' 0.0466) 

1L3 'U4 

([0.0360,0.0779]' 0.0146) ([0.0425,0.0796], 0.0078) 

Table 5.6.2 Aggregated values corresponding to expert X2 

'Ul 'U2 

([0.0354, 0.0506]' 0.0120) ([0.0467, 0.0662]' 0.0278) 

'U3 'U4 

([0.0398, 0.0696]' 0.0608) ([0.0445, 0.0806], 0.0137) 

Table 5.6.3 Aggregated values corresponding to expert X3 

Step 6: Now we calculate scores of all alternatives corresponding to different 

experts. 

'Ul 'U2 'U3 'U4 
Xl = 

0.0487 0.0502 0.0512 0.0431 

Table 5.6.4 Scores corresponding to expert Xl 
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UI u2 U3 U4 
X2 = 

0.0566 0.0516 0.0428 0.0433 

Table 5.6.5 Scores corresponding to expert X2 

UI U2 u3 U4 
Xl = 

0.0326 0.0469 0.0567 0.0462 

Table 5.6.6 Scores corresponding to expert X3 

Step 7: 

UI U2 U3 U4 

0.0459 0.0495 0.0502 0.0442 

Table 5.6.7 Average of alternatives 

Step 8: Arrange these alternatives in ascending order. 

Step 9: Hence U3 is the best. 

5.7 Multicriteria Decision Making of Cubic Soft Expert 

Sets with Cubic Soft Expert Weighted Average Op­

erator 

Let U = {UI ,U2, .. . Un } be the set of alternatives, E = { e l ,e2, ... ,el} be the set of 

attributes and X = {Xl, X2, .. . , xm} be the set of experts. 

Further, we take opinion of experts in the form of CSE elements. Algorithm for 

cubic soft expert weighted average operator is given below: 

Step 1: Utilize the evaluations of experts in the form of CSE sets. 

Step 2: Separate the opinion of each expert. 

Step 3: Assign weights to each attribute. 

Step 4: Aggregate the attributes by using cubic soft expert weighted average 

operator. 

Step 5: Calculate accuracies of all alternatives corresponding to different experts. 

Step 6: Find the average of these alternatives. 
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Step 7: Arrange these alternatives in ascending order. 

Step 8: Choose best alternative . 

Consider Example 5.5.1 proceed to step 2 as in above example. 

Step 3: Assign weights to each attributes 'W = (0.28, 0.25 , 0.19, 0.16, 0.12)t 
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Step 4: Aggregate t he attributes by using cubic soft expert weighted average 

operator 

1t l U2 

([0.0138, 0.0778], 0.0155) ([0.0232, 0.0476]' 0.0436) 

U3 U4 

([0.0310 , 0.0656]' 0.0422) ([0.0327, 0.0500], 0.0323) 

Table 5.7.1 Aggregated values corresponding to expert X l 

Ul U2 

([0.0353, 0.0548]' 0.0459) ([0.0279, 0.0564]' 0.0242) 

U3 U4 

([0.0313 , 0.0771]' 0.0140) ([0.0214, 0.0390], 0.0038) 

Table 5.7.2 Aggregated values corresponding to expert X2 

Ul U2 

([0.0167, 0.0282] , 0.0096) ([0.0448, 0.0609]' 0.0247) 

U3 U4 

([0.0324, 0.0658] , 0.0549) ([0.0311 , 0.0645]' 0.0043) 

Table 5.7.3 Aggregated values of alternatives corresponding to expert X3 

Step 5: Accuracies of all alternatives corresponding to different experts. 

Ul U2 U3 U4 
X l = 

0.0357 0.0381 0.0462 0.0383 

Table 5.7.4 Accuracies corresponding to expert Xl 
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UI U2 U3 U4 
X2 = 

0.0453 0.0361 0.0408 0.0214 

Table 5.7.5 Accuracies corresponding to expert X2 

UI U2 U3 U4 
Xl = 

0.0181 0.0434 0.0510 0.333 

Table 5.7.6 Accuracies corresponding to expert X3 

Step 6: 

UI U2 U3 lL4 

0.0330 0.0392 0.046 0.031 

Table 5.7.7 Average of alternatives 

Step 7: Arrange these alternatives in ascending order. 

Step 8: Hence U3 is the best. 

5.8 Multicriteria decision Making of Cubic Soft Expert 

Sets with Cubic Soft Expert Weighted Geometric Op­

erator 

Let U = {UI , U2, ... u n } be the set of alternat ives, E = {el, e2, ... , e l} be the set of 

attributes and X = { Xl, X2, ... , xm } be the set of experts. 

Further, we take opinion of experts in the form of CSE elements . Algorithm for 

cubic soft expert weighted average operator is given below: 

Step 1: Utilize the evaluations of experts in the form of CSE sets. 

Step 2: Separate the opinion of each expert. 

Step 3: Assign weights to each attribute. 

Step 4: Aggregate the attributes by using cubic soft expert weighted geometric 

operator. 

Step 5: Calculate accuracies of all alternatives corresponding to different experts. 

Step 6: Find the average of these alternatives . 
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St ep 7: Arrange these alternatives in ascending order. 

Ste p 8: Choose the best alternative. 

Consider Example 5.5.1 proceed to ste p 2 as in above example. 

Step 3: Assign weights to each attributes 'W = (0.28, 0.25 , 0.19, 0.16 , 0.12)t 
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Step 4: Aggregate the attributes by using cubic soft expert weighted geometric 

operator. 

UI U2 

([0.0138, 0.0778]' 0.0155) ([0.0232,0.0476]' 0.0436) 

U3 U4 

([0.0310, 0.0656]' 0.0422) ([0 .0327, 0.0500]' 0.0323) 

Table 5.8.1 Aggregated values corresponding to expert Xl 

UI U2 

([0.0353 , 0.0548]' 0.0459) ([0 .0279 , 0.0564]' 0.0242) 

U3 U4 

([0.0313 , 0.0771]' 0.0140) ([0.0214, 0.0390]' 0.0038) 

Table 5.8.2 Aggregated values corresponding to expert X2 

UI U2 

([0 .0167, 0.0282]' 0.0096) ([0.0448 , 0.0609]' 0.0247) 

'l.L3 U4 

([0.0324, 0.0658]' 0.0549) ([0 .0311 , 0.0645]' 0.0043) 

Table 5.8.3 Aggregated values corresponding to expert X3 

Step 5: Accuracies of all alternatives corresponding to different experts. 

UI U2 U3 U4 
Xl = 

0.0357 0.0381 0.0462 0.0465 

Table 5.8.4 Accuracies corresponding to expert X l 

UI U2 U3 U4 
X2 = 

0.0453 0.0361 0.0408 0.0214 

Table 5.8.5 Accuracies corresponding to expert X2 
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'Ul 'U2 'U3 'U4 
x3 = 

0.0181 0.0434 0.0510 0.0333 

Table 5.8.6 Accuracies corresponding to expert X3 

Step 6: 

'Ul 'U2 'U3 'U4 

0.0330 0.0392 0.046 0.0337 

Table 5.8.7 Average of alternatives 

Step 7: Choose the best alternative. 

Step 8: Hence 'U3 is the best. 

5.9 Conclusion and Future Work 

Cubic sets are defined by J un et al. [34]. J un et al. defined basic operations of 

inclusion, union and intersection. There are certain operations which were not defined 

in the said paper. In this chapter we have introduced some new operations such as 

addition and multiplication of two CSESs, product of a CSESs with real number 

k > 0 , power of CSESs, score and accuracy function of CSES. The purpose of 

defining score function and accuracy function is that we can determine the ranking of 

CSESs which helps us in aggregation. Some aggregation operators on CSESs have 

introduced. Therefore, the aim of t his chapter is to determine the most preferable 

choice among all possible choices, when data is presented in cubic set form. At the end, 

an algorithm has been presented along with an illustrative example. In this example 

we have used U of GOW A operator for CSESs. In future we aim to study TOPSI S, 

AHP and ANP for group decision making with CSESs. We also aim at defining 

similarity and distance measures and distances and similarity degrees between CSESs. 



Chapter 6 

Aggregation Operators of 

Interval Valued Intuitionistic 

Fuzzy Soft Expert Sets (IV I F S E 

sets) 

6.1 Introduction 

The ordered weighted geometric averaging operator was introduced by Xu [73] . Yager 

introduced the ordered weighted averaging operator [81] . Yager provides a parame­

terized family of aggregation operators which have been used in many applications 

in [79] . Yager provides a generalization of OW A operator by combining it with t he 

generalized mean operator [22, 80]. This combination leads to a class of operators 

which is reffered to as the generalized ordered weighted averaging (COW A) operators 

[82] . Li developed a new methodology for solving multiple attribute group decision 

making problems using intuitionistic fuzzy sets in which mUltiple attributes are ex­

plicitly considered [42] . Xu introduced different approaches to group decision making 

[74, 75, 76]. Szmidt proposed some solut ion concepts in group decision making with 

intuitionistic fuzzy preference relations, such as int uitionistic fuzzy core and consensus 

winner and also investigated the consensus-reaching process in group decision making 

based on individual int uitionistic fuzzy preference relations in [62, 63]. 

This chapter consists of definition of IV I F BE sets , null IV I F BE set , absolute 

I V I F BEset and some of the operations such as containment of two elements of 

IVIFBE sets , equality of two elements of I V IFBE sets, subsets, equali ty of two 

IV I F BE sets, complement of IV I F BE set , addit ion, product , union and intersection 
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of two IVIFSE sets, product of scalar with IVIFSE set, power of IVIFSE set , 

score and accuracy function of IV 1 F SE sets. Also some of the aggregation operators 

are presented. Further we introduce the multiple attribute decision making problem 

with IVIFSE sets by using IVIFSE ordered weighted arithmetic operator. An 

illustrative example is also presented. 

6.2 Interval Valued Intuitionistic Fuzzy Soft Expert Sets 

(IVIFSE sets) 

Definition 6.2.1 Let U be the initial 1lniverse, A be the set of attrib1ltes and 9 be 

the set of experts . Interval val1led int1litionistic f1lzzy soft expert set (IV 1 F SE set) 

is a triplet (~,A, 9) which is characterized by a mapping ~ : A x 9~ ~(I (U) where the 

set of the interval-val1led int1litionistic f1lzzy sets on the 1lniverse set U is denoted by 

IfI(U). For b E A and p E 9 we define 

~(b,p) = {< u, b(i;,p)(u)'')'(b,p)(u)], [((b,p) (1/'), ((b,p) (1l)] >: U E U} . 

Example 6.2.2 S1lppose that there are f01lr cars in the 1lniverse set U = {1lI' 1l2, U3, U4}. 

A= {bl = cheap, b2 = model, b3 = exp ensive } be the set of attribldes and 9= {p 1 , P2} 

be the set of experts. Then we can view the IV 1 F SE Set (~,A, 9) as consisting of 

opinions of experts on the cars s1lbject to the given attrib1ltes following collection of 

approximations: 

~(bl,PI) = {< 1lI , [0.4,0.5]' [0.2,0.4] > , < 
[0.3 , 0.4]' [0.4, 0.5] > , < U4 , [0.2, 0.4]' [0.5 , 0.6] >}, 

~(b2,PI) = {< Ul , [0.2 , 0.4]' [0.5, 0.6] > , < 
[0. 1,0.3], [0.3 , 0.5] > , < 1/'4 , [0.3, 0.4]' [0.2,0.5] >}, 

~(b3,PI) = {< 1l1, [0.1 , 0.2]' [0.3 , 0.5] > , < 
[0.3 , 0.4]' [0.2 , 0.4] > , < U4 , [0.0, 0.2]' [0.3 , 0.5] >} , 

~(bl' P2) = {< UI, [0.4, 0.7]' [0.2 , 0.3] > , < 
[0.3, 0.5]' [0.4, 0.5] > , < U4, [0.1 , 0.3]' [0.2,0.5] >} , 

~(b2,p2) = {< Ul , [0.3, 0.5]' [0.0 ,0.3] > , < 
[0.2,0.5]' [0.3 , 0.4] > , < 1/'4, [0.2, 0.3]' [0.3 , 0.5] >} , 

~(b3,p2) = {< UI , [0.2, 0.5]'[0.0 , 0.3] > , < 
[0.2, 0.4]' [0.1, 0.4] > , < U4 , [0.2, 0.4]' [0.2 , 0.5] >}. 

U2, 

U2 , 

U2, 

1/'2 , 

U2 , 

U2 , 

[0.1 , 0.5]' [0.4, 0.5] 

[0.2 , 0.4]' [0.4,0.5] 

[0.3 , 0.5]' [0 .1,0.5] 

[0.2,0.5]' [0.2, 0.3] 

[0.1 , 0.4]' [0.3 , 0.6] 

[0. 1, 0.3]' [0.5,0.6] 

> < 1l3, 

>, < 1l3 , 

> < U3, 

>, < U3, 

> , < U3, 

> < 1l3 , 

Definition 6.2.3 The n1llliVI FSE set over U is denoted by P and defined as 

[')'(i;,p) (u), ')'(b,p) (1l)] = [1, 1]' [((i;,p) (u) , ((b,p) (u)] = [0, 0], 

for all b E A, p E 9 and 1l E U. 
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Definition 6.2.4 The absolute IV I F SE set over U is denoted by A and defined as 

b(b,p) (u) , I'(b,p) (u)] = [0,0], [((b,p) (u), ((~,p)(u)] = [1,1], 

for all b E A , P E 0 and u E U. 

Definition 6.2.5 For an IVIFSE set (~,A,O) overU andforanyb1 ,b2 EA,Pl,P2 EO, 

an element ~(bl , Pl) is said to be contained in ~(b2,p2) ' denoted by ~(bl , Pl) ~ ~(b2 , p2) 

if the following conditions are satisfied: 

1) I'(b1 ,pt} (u) :S I'(b2,P2/ u), I' (b1,Pl) (u) :S I'(b2,P2) (u) , 

2) ((b1,P 1) (u) ~ ((b2,P2/ u) , ((bl ,Pl) (u) ~ ((b2,P2) (u), 

where ~(b1 , P1) = { < u , b(b )(u), I'(~ ) (u)], [((b )(u) , ((~ )(u)] > : u E U} 1,Pl l ,Pl l ,Pl 1,Pl 

and ~(b2,p2) = {< u , b(-b )(u), I'(+b ) (u)], [((-b )(u), ((+b )(u)] >: u E U}. 2,P2 2,P2 2,P2 2,P2 

Example 6.2.6 Consider ~(b1,P1) = {< Ul , [0.2,0.4]' [0.2,0.4] > , < U2, [0.1,0.3]' 

[0.4,0.5] > , < U3 , [0 .1,0.3]' [0.3,0.5] > I ~(b2,P2) = {< U1, [0.4,0.5]' [0.3,0.5] > , 
< U2, [0.2 , 0.4]' [0.4,0.5] > , < U3 , [0.2,0.4]' [0.4,0.5] > . Clearly ~(b1 , Pl) ~ ~(b2 , p2) . 

Definition 6.2.7 For an IVIFSE set (~,A , O) over U, for any bl ,b2 EA, Pl ,P2 EO, 

an element ~(bl , Pl) is said to be equal to ~(b2,p2)' denoted by ~(b1 , Pl) = ~(b2,p2) if 

following conditions are satisfied: 

1) I' (bl ,Pl) (U) = I' (b2 ,P2) (U) , I'(bl ,Pl) (U) = I' (b2 ,P2) (u) , 

2) ((b1 ,Pl) (u) = ((b2,P2) (u), ((bl ,Pt) (u) = ((b2,P2) (u). 

Definition 6.2.8 For two IVIFSE sets (6,A l , Gl ) and(6 , A 2,G2) overU, (6,A l , G1) 

is a subset of (6, A2, G2) if following conditions are satisfied: 

1) Al ~A2 , 

2) 01 ~02, 

3) 6(b,p) ~ 6(b,p) for all b EAl and P E 01, 

where 6(b ,p) = {< u , b~b,p)(u)'I'~b,p)(u)], [(~b,p)(u)'(~b,p)(u)] >: u E U} 

and 6(b,p) = {< u , [I'2(b,p) (u) , I'2(b,p) (u)], [(2"(b,p )(u), (2(b,p) (u)] >: u E U}. 

Example 6.2.9 Let U = {Ul ,U2 ,U3} . Al = {b1 1 b2} 01 = {pd then IVIFSE Set 

(6 , AI , (1) is given by 

6(b1 , PI) = {< Ul , [0.1 , 0.4]' [0.2 , 0.4] > , < U2 , [0.1 , 0.3]' [0.4, 0.5] > , < U3 , 

[0.1, 0.3]' [0.3,0.5] >}, 
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6(b2, PI) = {< Ul , [0.2,0.3]' [0.4, 0.5] > , < U2 , [0.1, 0.2]' [0.2, 0.4] > , < U2 , 

[0.2,0.5]' [0.1,0.3] > }. 

Also 1\2 = {bl , b2 , b3} 02 = {Pl·pd then IVIFSE Set (6,1\2,02) is given by 

6(bl , PI) = {< Ul, [0.2 , 0.5]' [0 .3 , 0.5] > , < U2, [0.2,0.4]' [0.4,0.5] > , < U3 , 

[0.2,0.5]' [0.4, 0.5] > } , 

6(b2, PI) = {< Ul, [0.2,0.4]' [0.5,0.6] > , < U2 , [0.3 , 0.5]' [0.4, 0.5] > , < U2 , 

[0.4,0.5]' [0.4,0.5] > } , 

6(b3, PI) = {< Ul , [0.1,0.3]' [0.2,0.4] > , < U2 , [0.4,0.5]' [0.3,0.4] > , < U3 , 

[0.2,0.3]' [0 .3,0.5] > } , 

6(bl , P2) = {< Ul, [0.8,0.9]' [0.0,0. 1] > , < U2, [0.5 , 0.7]' [0.2,0.3] > , < U2 , 

[0.1,0 .3], [0.4,0.5] > } , 

6(b2, P2) = {< Ul , [0.1, 0.4]' [0.2, 0.4] > , < 1/'2 , [0.1, 0.3]' [0.4, 0.5] > , < U3 , 

[0.1,0.2]' [0 .4, 0.6] > }, 

6(b3, P2) = {< Ul , [0.2,0.4]' [0.3,0.5] > , < U2 , [0.5 , 0.7]' [0.2 , 0.3] > , < U2, 

[0.2 , 0.5]' [0 .1 , 0.3] > }. 

Clearly 1\1 ~1\2, 01 ~02 and 6(b,p) ~ 6(b,p) for all b E1\l and p E01' Hence 

(6, AI, G1) is a subset of (6, A2, G2). 

Definition 6.2.10 FortwoIVIFSE sets (6,A1,Gd and(6 , A2 , G2) overU, (el , A1 , G1) 

is equal to (6, A2, G2) if following conditions are satisfied: 

1) 1\1 =1\2, 
2) 91 =92 , 
3) 6(b,p) = 6(b,p) for all b E1\l and P E 91' 

Definition 6.2.11 The complement of IVIFSE set (eA,9) is denoted by (C1\,9)C, 
and is defined for all b E1\ and P E 9 as follows: 

(e, 1\, 9)C = { < u, [((bc,p) (u), ((bc,p) (u)], [l'(bc,p) (u), l'(bc,p) (u)] > : U E U}, 

where e(b,p) = {< u, [l'(b,p) (u), l'(b,p) (u)], [((b,p) (u), ((b,p) (u) ] >: u E U} . 

Example 6.2.12 Consider Example 6.2.9, (6,1\1 , 91)C is given by 

6(b1, PI) = {< U1 , [0.2,0 .4]' [0.1 , 0.4] > , < U2 , [0.4, 0.5]' [0.1,0.3] > , < U3, 

[0.3 , 0.5]' [0.1 , 0.3] > } , 

6WL PI) = {< U1 , [0.4, 0. 5]' [0.2, 0.3] > , < U2 , [0.2 , 0.4]' [0.1, 0.2] > , < U2, 

[0.1,0.3], [0.2 , 0.5] > }. 
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Definition 6.2.13 For two IVIFSE sets (6 ,Al ,Gl ) and (6,A2,G2) overU, union 

of two IV I FSE sets is denoted as (6Ail,93) = (6, AI, G l ) U (6, A2, G2) where 

lb = lhulb and 93 =9lU92 and for all e Elb and m E93 it is defined as follows: 

6(e,m) = 

6(e,m) 

6(f,m) 

{< u, ['l(e,m)(u) V'0e ,m)(u), 

'~e,m)(u) V '~e,m)(u)], 
[(l( e,m) (u) !\ (0e,m) (u) , 

(~e,m)(u)!\ (~e,m)(u)] > } , 

if (e,m) E (Alx (1) \ (A2 x (2) 

if ee, m) E (A2 x (2) \ (AI x (1) 

where 6(e,m) = {< u , bl(e,m)(tL) "~e,m)(tL)], [(l(e,m)( 'u) '(~e,m) (tL) ] >: tL E U} 

and 6(e, m) = {< tL , b0e,m) (tL) , '~e,m) (tL)], [(0e,m) (tL), (~e,m) (tL)] >: tL E U}. 

Example 6.2.14 Let U = {tLl , tL2, tL3}, Al = {bl , b2} and 91 = {PI , P2} then 

IVIFSE set (6 , AI , (1 ) is given by 

6(bl , PI) = {< tLl , [0.1 , 0.4]' [0. 2,0.4] > , < tL2 , [0.1, 0.3]' [0.4, 0.5] > , < tL3, 

[0. 1, 0.3]' [0.3,0.5] > }, 

6(b2, PI) = {< tLl, [0.2, 0.3], [0. 4,0.5] > , < tL2, [0.1, 0.2]' [0.2,0.4] > , < tL2 , 

[0.2, 0.5]' [0. 1, 0.3] > }, 

6(bl , P2) = {< tLl, [0.6,0.9]' [0.0,0.1] > , < tL2, [0.4,0.6]' [0.2,0.3] > , < tL2 , 

[0.3,0.5]' [0.2,0.5] > }, 

6(b2, P2) = {< tL l , [0.3, 0.4]' [0.4,0 .5] > , < tL2, [0 .2, 0.5]' [0. 1,0 .5] > , < tL3 , 

[0.3 , 0.7]' [0. 2, 0.3] > }, 

Also if 1\2 = {bl , b2, b3}, 02 = {Pl,P2 } then IVIFSE set (6,1\2,02) is given by 

6(bl , PI) = {< tLl , [0.2 , 0.5]' [0 .3,0 .5] > , < tL2 , [0.2 , 0.4]' [0.4, 0.5] > , < tL3, 

[0 .2, 0.5]' [0.4,0.5] > }, 

6(b2, PI) = {< tLI , [0.2 , 0.4]' [0.5, 0.6] > , < tL2, [0.3 , 0.5]' [0.4, 0.5] > , < tL2 , 

[0.4,0.5]' [0.4, 0.5] > } , 

6(b3, PI) = {< tLl, [0.1 , 0.3]' [0.2,0.4] > , < tL2, [0.4, 0.5]' [0.3, 0.4] > , < tL3 , 

[0.2 , 0.3]' [0.3 , 0.5] > } , 

6(b l , P2) = {< tLl , [0.8, 0.9], [0.0 , 0.1] > , < tL2 , [0.5 , 0.7]' [0.2, 0.3] > , < U2, 

[0.1 , 0.3]' [0.4,0.5] > }, 

6(b2 , P2) = {< tLl , [0.1 , 0.4]' [0. 2, 0.4] > , < tL2 , [0.1 , 0.3]' [0.4, 0.5] > , < U3, 

[0 .1, 0.2]' [0.4, 0.6] > } , 

6(b3, P2) = {< tLI , [0.2 , 0.4]' [0.3 , 0.5] > , < tL2 , [0.5 , 0.7]' [0.2 , 0.3] > , < tL2, 

[0.2, 0.5]' [0.1 , 0.3] > }. 

Now, (6,1\3,03) = (6, AI, G l ) U (6 , A2, G2) is given by 
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6(bl , PI) = {< Ul, [0.2,0.5]' [0.2,0.4] > , < U2 , [0.2,0.4]' [0.4,0.5] > , < U3, 

[0.2,0.5]' [0 .3,0.5] >}, 

6(b2, PI) = {< Ul, [0.2,0.4]' [0.4,0.5] > , < U2, [0.3,0.5]' [0 .2,0.4] > , < U2, 

[0.4, 0. 5]' [0.1, 0.3] > } , 

6(b3, pd = {< Ul , [0.1 , 0.3]' [0. 2, 0.4] > , < U2, [0.4, 0.5]' [0.3, 0.4] > , < U3, 

[0.2, 0.3]' [0.3, 0.5] > } , 

6(bl , P2) = {< Ul , [0.8, 0.9]' [0.0, 0.1] > , < U2, [0.5, 0. 7]' [0.2, 0.3] > , < U2, 

[0.3 , 0.5]' [0.2, 0.5] > } , 

6(b2, P2) = {< Ul , [0.3, 0.4]' [0.2, 0.4] > , < U2, [0 .2, 0.5]' [0 .1, 0.5] > , < U3, 

[0.3, 0.7]' [0.2, 0.3] > } , 

6 (b3, P2) = {< Ul , [0.2 , 0.4]' [0.3, 0.5] > , < U2, [0.5, 0.7]' [0 .2, 0.3] > , < U2, 

[0.2 , 0.5]' [0.1 , 0.3] > }. 

Definition 6.2.15 For two IVIFSE set s (6 ,Jh ,9l) and (6 ,lb ,9 2) over U, inter­

section of two IVIFSE set s is denoted as (6,Jb,93 ) = (6 ,Jh ,9l)n(6 ,J'b,(h) where 

Jb =JhUlb and 9 3 =9lU92 and for all f! Elb and m E93 , it is defin ed as below: 

6(e,m) = 

r 
6 (f!, m ) 

6(e, m ) 

{ < u, ['Y~e,m)(u) 1\ 'Y;(e,m) (u), 

'Y~e,m/u) 1\ 'Y~e,m)(u)], 
[(~e,m)(u) V (;(e,m) (u), 

(~e,m)(u) V (~e,m)(u)] >}, 

if (e, m ) E (Jh x 9l) \ (J\2 x 9 2) 

if (e, m) E (J\2 X (2) \ (ih X (1) 

where 6(e, m ) = {< u, ['Y~e,m) (u), 'Y~e,m)(u)], [(~e,m) (u), (~e,m)(u) ] >: U E U} 

and 6ce, m) = {< u, b;(e,m) (u), 'Y~e,m) (u)], [(;(l,m) (u), (~e,m) (u)] > : U E U}. 

Example 6.2.16 Consider (6 ,lh , (1) and (6,J\2 , ( 2) of Example 6.2.14· Now (6,Jb ,93 ) 

= (6 , AI , G l ) n (6, A2, G2 ) is given by 

6(bl , PI) = {< Ul , [0.1, 0.4]' [0.3 , 0.5] > , < U2, [0 .1, 0.3]' [0.4, 0.5] > , < U3, 

[0.1 , 0.3], [0.4, 0.5] > } , 

6(b2 , PI) = {< Ul , [0.2 , 0.3]' [0.5, 0.6] > , < 1i2, [0. 1, 0.2]' [0.4, 0.5] > , < U2, 

[0.2 , 0.5]' [0.4, 0.5] > } , 

6(b3, PI) = {< UI , [0.1 , 0.3]' [0.2, 0.4] > , < U2, [0.4, 0.5], [0 .3, 0.4] > , < U3 , 

[0.2 , 0.3]' [0.3, 0.5] > }, 

6(bl , P2) = {< UI , [0 .6, 0.9]' [0.0 , 0.1] > , < U2, [0.4, 0.6]' [0.2 , 0.3] > , < U2, 

[0.1 , 0.3]' [0.4, 0.5] > } , 

6(b2, P2) = {< 1il , [0.3,0.4]' [0.2, 0. 4] > , < U2 , [0.1,0.3]' [0.4,0.5] > , < U3 , 

[0.1, 0. 2]' [0.4, 0.6] >}, 
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6(b3, P2) = {< 'UI, [0.1,0.4]' [0.4,0.5] > . < U2, [0.5,0.7]' [0.2 ,0.3] > , < U2, 

[0.2,0 .5]' [0.1,0.3] > }. 

Definition 6.2.17 The Sltm of two IVIFSE sets (6 ,Jh ,<?I) and (6,Jb,<?2) over U 

is denoted as (6,Jh,<?I) + (6 ,Jb,<?2) and defined as: 

{ 

{< u, h'l(e,m)(u) + 'Y;(e,m)(u) - 'Yl(e,m) (uh;(e,m) (u) , 

6(£, m) + 6(£, m) = 'Yl(e,m)(u) + 'Y~e,m)(u) - 'Yl(e,m) (uh~e,m) (tt)], 

[(l(e,m) (u)(;(e,m) (u), (l(e ,m) ( u)(~e,m) (u)] > } , 

where 6(e, m ) = {< u , ['Yl(e,m) (u), 'Yl(e,m) (u)], [(l(e,m) (u ), (l(e,m) (u )] >: U E U} 

and 6(£, m) = {< u, ['Y;(e,m) (u ), 'Y~e,m) (u )], [(;(e,m) (u), (~e,m)(u)] >: u E U}. 

Example 6.2.18 Consider 6(bl , PI ) = {< UI , [0.1, 0.4]' [0. 2, 0.4] > , < U2, [0.1, 0.3]' 

[0.4, 0.5] > , < U3, [0.1, 0.3]' [0.3, 0.5] > }, 6(bl , pd = {< UI , [0.2, 0. 5]' [0.3 , 0. 5] > , 

< U2, [0.2,0.4]' [0.4, 0.5] > , < U3 , [0.2, 0.5]' [0.4, 0.5] >}. Now, (6,Jh,<?I)+(6,Jb<?2) 

is given by 

6(b l , PI)+6(bI, PI) = {< UI, [0.28,0.7]' [0.06,0.2] > , < U2, [0.28, 0.58]' [0. 16, 0.25] > 
, < U3, [0.28, 0.65]' [0. 12, 0.25] > } . 

Definition 6.2.19 The product of two IVIFSE sets (6,Jh,<?I) and (6,42,<?2) over 

U is denoted as (6, Jh ,<?I)(6, J!2,<?2) and defined as: 

{ 

{< u, l'Yl(e,m) (uh;(e ,m) (u), 'Yl(e,m)(uh~e,m)(u)], 
6ce, m)6(e,m) = [(l(e ,m) (u) + (;(e,m)(u) - (l(e,m) (u)(;(e,m) (u), 

(l(e,m)(u) + (~e,m)(u) - (l(e,m)(u)(~e,m)(u)] >}, 

where 6(e, m) = {< u, bl(e,m) (u), 'Yl(e,m) (u)], [(l(e,m) (u), (l(e,m) (u)] >: u E U} 

and 6(e, m) = {< u , ['Y;(e,m) (u), 'Y~e,m) (u)], [(;(e,m) (u), (~e,m)(u)] >: u E U}. 

Example 6.2.20 Consider 6(bl , PI) = {< UI, [0.1 , 0.4]' [0.2, 0. 4] > , < U2, [0.1, 0.3]' 

[0.4, 0.5] > , < U3, [0.1, 0.3]' [0.3, 0.5] >}, 6 (b l , PI ) = {< U I , [0.2, 0.5]' [0.3, 0.5] > , 

< U2, [0.2, 0.4]' [0.4, 0.5] > , < U3, [0.2, 0.5]' [0.4, 0. 5] >}. Now (6,Jh , <?1)(6,Jb<?2) 

is given by 6(bI, PI )6(bl , PI) = {< UI , [0.02, 0.2]' [0.44, 0. 7] > , < U2, [0.02, 0.12]' 

[0.64, 0.75] > , < U3, [0.02, 0.15]' [0. 58, 0.75] >}. 

Definition 6.2.21 The product of IV I F S E set (~,4, <?) with an arbitrary real number 

'" > 0 is denoted by K,(~,4 , <?) and defined for all as follows: 
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Example 6.2.22 Consider 6(b1, PI) = {< U1 , [0 .1, 0.4]' [0.2, 0.4] > , < U2 , [0 .1, 0.3], 

[0.4,0 .5] > , < U3 , [0. 1,0 .3]' [0.3 , 0.5] >} , k = 6. 

The product of I V IFSE set (eA, Q) with 6 is denoted by 6(e,A ,Q) and given as 

66 (b1, PI) = {< U1 , [0.468559 , 0.953344]' [0.000064, 0.004096] > , < U2, [0.468559, 0.3]' 

[0.004096 , 0.015625] > , < U3, [0.486559 , 0.882351]' [0.000729, 0.015625] > }. 

Definition 6.2.23 The power of IVIFSE set (e A ,Q) with an arbitrary real number 

K, > 0 is denoted by (e ,il ,Q) K and defined as follows: 

(Ub,p)t = { < u , [h (b ,p) (u)t , h~,p) (U))K], [l - (l-((b,p )(u)t , l- (l-(~,p)(u)t] >: u E U}. 

Example 6.2.24 Consider 6(b1, PI) = {< U1 , [0 .1 , 0.4]' [0.2 , 0.4] > , < 1£2 , [0.1 , 0.3]' 

[0.4, 0.5] > , < 1~3, [0.1 , 0.3]' [0.3, 0.5] >} , k = 0.5. 

The power of IVIFSE set (eA,Q) with 0. 5 is denoted by (eA ,Q)O.5 and given as 

6(b1, P1)O.5 = {< 1£1 , [0.3162, 0.6324]' [0.1055, 0.2254] > , < 1£2 , [0.3162, 0.5477], 

[0.2254, 0.2928] > , < 1£3 , [0 .3162,0.5477]' [0.1633, 0.2928] >} . 

Definition 6.2.25 The score and accuracy fun ction of an interval-valued intuitionis­

tic fuzzy soft expert set 

e(b,p) = {< u , ['(b,p) (u ), '~,p)(u)], [((b,p) (u) , (~,p)(u)] >: U E U}, 

are defined respectively as follows 

and 

l,L(e(b ,p)) = ' (b ,p/u) + '~,p)(u) ; ((b ,p)(u) +(~,p)(u) 

where $(e(b ,p)) E [- 1, 1] and l,L(e(b ,p)) E [0 , 1]. 

vVe can build up ranking method of IV I F SE sets by using score funct ion and 

accuracy function. The larger score and larger accuracy indicate the greater IV I F S E 

element. 

Example 6.2.26 Consider e(b1, PI) = < 1£1 , [0.4, 0.5]' [0.2 , 0.4] >, e(b2 , PI) = < 
U1 , [0.2 , 0.4]' [0.5 ,0.6] >, e(b3 , PI) = < U1 , [0.1 , 0.2]' [0.3 , 0.5] >, e(b1, P2) = < U1 , 

[0.4, 0.7]' [0.2 , 0.3] >, e(b2, P2) = < U1 , [0.3 , 0.5]' [0.0, 0.3] >, e(b3, P2) = < U1 , [0 .2, 0.5]' 

[0.0 , 0.3] >. 
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Now calculating scores of the above IV I F SE elements, we have 

$((b1 ,Pl)) = 0.15 , 

$(~(b2 , Pl)) = -0.25 , 

$(~(b3 , Pl)) = -0.25 , 

$(~(bl ' P2)) = 0.3 , 

$(~(b2 ' P2)) = 0.25, 

$(~(b3 , p2)) = 0.2. 

Now arranging the scores in ascending order we have 

Since scores of~(b2 , pl) and~(b3 , Pl) are equal, we calculate their accuracies 

S(~(b2, PI)) = 0.85, 

S(~(b3 , pl)) = 0.55. 

Hence elements are ranked as 

6.3 Aggregation Operators on IVIFSE Sets 

In this section, we develop new operators with interval-valued intuitionistic fuzzy soft 

expert sets (IV I F S E sets). 

Definition 6.3.1 Let (~k ,Jh,(;k) 'Yk ' (k = {< b k(b,p) , 'Yicb,p)]' [(kcb,p), (tcb,p)] >; k = 1, 2, ... m} 

be IVIFSE sets. A mapping pb :Jf'F(U) --tlfJ(U) is called an I VIFSE weighted 

average operator if it satisfies 

m 

Pb((6, 1\1 , (1) , (6 , 1\2 , (2) , ... , (~m , I\m , 9m)) = 2: Wk(~k , I\k , 9k) -Yk'(k ' 
k=l 

where Jf'F(U) denotes m copies of I V I FSE sets, W = (W I , W2 , ... , wm)t is a weight 
rn 

vector of I\k, k = 1,2, ... , m satisfying the n ormalized conditions 2: Wk = 1 ; Wk E 
k=1 

[0 , 1] . 

If W = (11m, 11m, ... , 1/m)t then the I V I FSE weighted average operator can be 

written as 

In this cas e pb reduces to IV I F SE arithmetic mean operator. 
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Theorem 6.3.2 Suppose that (~k,jh,9k)'ik (k = {< h'k(b ), "ft(b )], [Ck(b )' Ct(b )] >: , ,p ,p ,p ,p 

k = 1,2, ... m} aTe IVIFSE sets. Then, by using the IVIFSE weighted average op-

erator aggregation is also an IV I F SE set and 

Tn 

< [1 - kI]l (1 - "fk(b,p))Wk, 
m 

P~((6, Ji1, 91)' (6, Ji2, 92)' ... , (~m , Jim, 9m)) = 1- TI (1 - "f:Cb,p))Wk], 
k=l 

m m 

[TI (Ck(b,p))Wk , TI (C:Cb,p))Wk] >, 
k=l k=l 

Proof. vVe prove this result by using mathematical induction. The result holds 

for k = 1, by using Definition 6.2.21 , .Now we have to show that it is true for k = 2. 

By using Definitions 6.3.1 and 6.2.21, we have, p~((6 , AI , 01) , (6 , A2 , 02)) = 
2 
L Wk(~k, Ak , Ok) = w1(6 , AI , 01) + w2 (6 , A2, 02) = < [1 - (1- "f;(b,p)(U))Wl , 
k=l 
1 - (1 - "f~b,p)(U))Wl], [(C;(b,p)(U))Wl , (C~b,p)(U))Wl] > + < [1 - (1 - "f2(b,p)(U))W2, 

1-(1 -"f~b,p)(u)) W2], [(C2(b,p)(U))W2 , (C~b,p)(U))W2] > = < [1-(1-"f;(b,p)(u))Wl+ 1-(1-

"f2(b,p) (u) )W2 - (1- (l- "f;(b,p) (lL) )Wl ) (1- (l -"f2(b,p) (u) )W2), 1- (l-"f~b,p) (u) )Wl + 1- (1-

"f~b,p) (u) )W2 - (1- ( l- "f~b,p) (u) )Wl) (1- (l- "f~b,p) (u) )W2)], [( C;(b,p) (u) )Wl (C2(b,p) (u) )W2, 

(C~b,p)(U))Wl (C~b,p) (U))W2] >=< [1 - (1- "f;(b,p)W"1(1-"f2(b,p))W2, 1- (l-"f~b,p))Wl (1-

"f~b,p) )W2], [( C;(b,p)) Wl (C2(b,p)) W2, (C~b,p) )Wl (C~b,p)) W2] > 

2 

< [1 - TI (1 - "fk(b,p))Wk, 
k=l 

2 

1 - kI]/l - "f:Cb,p))Wk], 
2 2 

[TI (Ck(b,p))Wk, TI (C:Cb,p))Wk] > . 
k= l k=l 

Suppose this result holds for k = n , that is p~((6, AI , 01) ' (6, A2 , 02) , ... , (en , An , On)) = 
n 

L Wk(ek, Ak , Ok) = WI (6, AI , 01) + w2(6, A2 , 02) +. . .+ wn(~n, An , On) 
k=l 

(6.1) 

n 

L Wk(~k, Ak, Ok) + Wn+l(~n+1 ' An+l, On+1) 
k=l 
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Again using Definitions 6.2.17 and 6.2.21 and Equation 6.1 we have , p~((6 , AI , 

Gd, (6, A2, G2)' .. . , (~n+1' An+1, Gn+l)) 

n+l 
< [1 - IT (1 - 'Yk(b,p))Wk, 

k=l 
n+l 

1 - JI (1 - 'Y~b, p)) Wk], 
n+l n+l 
[}]l ((k"{b ,p))Wk, }]l ((~b,p))Wk] > . 

Hence proved. _ 

Definition 6.3.3 Let (~k ,Jh,Ok) ')'k'(k (k = 1,2, ... ,m) be IVIFSE sets. A mapping 

p~ : If! (U) ~ If! (U) is called an IV I F S E ordered weighted average operator if it 

satisfies 

where 'W = ('WI, 'W2, .. . , 'Wm)t is a weight vector of Ak, k = 1,2, ... , m satisfying the 
m ___ --... ........... 

normalized conditions 2: 'Wi = 1 ; 'Wi E [0, 1]. (~i' Ai, Oit - =< [;:y:-(/ )';:Y+(b )], [(:-(b )'(+(bp)] > i=l I'i,(i 'I, ),P 7"p 1, ,p ~ ) 

is the i - th largest of the m IVIFSE sets (~k,Ak,Ok)')'k'(k which can be determined 

by using ranking method of IV I F SE sets such as score and accuracy function. 

Remark 6.3.4 If 'W = (1/m,1/m, ... , 1/m)t then the IVIFSE ordered weighted av­

erage operator p~ degenerates to the IV I F SE arithmetic mean operator. 

Theorem 6.3.5 Suppose that (~k,Ak,Ok)')'k.(k (k = 1,2, ... ,m) are IVIFSE sets. 

Then by using the IV I F SE ordered weighted arithmetic operator aggregation is also 

an IVI FSE set and 

m 

< [1 - III (1 - ;:Yi(b,p))Wi, 
rn 

p~((6, AI , (1)' (6, A2, (2) , ... , (~m, Am , Om)) = 1 - II (1 - ;:Yi(b,p))Wi], 
m ........ m __ 

[III ((i(b,p))Wi , III ((i(b ,p) )Wi] >, 
(6.2) -- ~ ~ 

where (~i, Ai, Oi) - 7. =< [;:Y:-(b ), ;:Y+(b )], [(:-(b ), (+(b )] > is the i - th largest of the m .... h l ~ t 1, ,p t,p 'l. ,p 1. ,p 

IV I F SE sets (~k,Ak' Ok)')'k ,(k which can be determined by using ranking method of 

IV I F S E sets such as score and accuracy function. 

Proof. It is straightforward by using mathematical induction and Definitions 

6.3.3, 6.2.21 and 6.2.23. _ 
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The IV I F S E weighted average operator Pb considers importance of the aggre­

gated IV I F SE sets themselves. The IV I F SE ordered weighted arithmetic operator 

pg concerns with position importance of the ranking order of the aggregated IV I F SE 

sets. The underlying aspects of the two aggregated operators have been combined in 

next U. 

Definition 6.3.6 Let (~kAk, Vk)'Yk,(k (k = 1,2, ... , m) be IV I F SE sets. A mapping 

p~ ,w : If'F (U) ~ Iff (U) is called an IV I F S E fusion weighted average operator if it 

satisfies 
m ____ 

p':z" w((6, iiI , VI) , (6, ii2, (2) , ... , (~m, iim, Vm)) = i~Wi(~i' iii, Vi) )'i,(> 

where W = (Wl,W2' ... ,wm)t is a position weight vector. The IVIFSE set of 

(~kAk, Vk)'Yk,(k weighted with m'Wk is denoted by 

,-_-,A,-__ 

'(~k ' A k, Gk)'Yk,(k' = m'Wk(~k ' A k , Gk)-Yk ,(k' 

----where'W = ('WI, 'W2, . .. , 'Wm)t is a weight vector of iiI. , (k = 1,2, ... , m) and (~i' iii, Vi);:;; (-. 
/t, t 

,-_-,A,-_-., 

is the i - th largest of the Tn IV I F S E seLs '( ~k, Ak, G k )'Yk ,(k' which can be determined 

by using ranking method of IV I F SE sets such as score and accuracy function. 

Remark 6.3.7 Ifw = (l/m,l/m, ... , 1/m)t then IVIFSE fusion weighted aver­

age operator p';;,w degenerates to IV I F SE weighted average operator lb. If 'W = 

(11m, 11m, ... , 1/m)t then IV I F SE fusion weighted average operator p';;,w degenerates 

to the IV I F SE ordered weighted arithmetic operator pg. So p';; ,w is a generalization 

of pb and pg. p';; ,w concerns with both the characteristics of pb and pg. 

Theorem 6.3.8 Suppose that (~k , iik ' Vk) 'Yk,(k (k = 1,2, ... , m) are IV I F SE sets. 

Then, by using the IV I F S E fusion weighted average operator p';; ,w aggregation is 

also an IV I F SE set and 

m 

< [1 - iDI (1 - ;;( b,p»)Wi , 
m 

1 - iDI (1 - ;Yi(b,p»)Wi
], 

m _ m _ 

[iDI (((b,p)Wi, iDI ((i(b,p»)WiJ >, 

where (~i, Y.)- - =< [;Y:-(b )' ;Y+(b )J, [(:-(b )' (+(b )J > is the i - th largest of the 
111( t 1. lP 1. ,p t ,p 1.,p 

,-_...rA'-__ 

m IV I FSE sets (~k' Ak , Gd'Yk ,(k' = m'Wk(~kAk' Vk)rk ,(k which can be determined by 

1lsing ranking method of IV I F SE sets such as score and accuracy function. 
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Proof. It is straightforward by using mathematical induction and Definitions 

6.3.6, 6.2.21 and 6.2.23. • 

Definition 6.3.9 Let (~k,jh,9k)')'k '(k (k = 1,2, ... ,m) be IVIFSE sets. A mapping 

pgo :Jf[(U) ~IfI(U) is called an IVIFSE generalized ordered weighted average 

operator if it satisfies 

m 

pgo((6 , 1\1 , (1) , (6,1\2, (2), .. . , (~m, I\m , 971J) = r i~Wi(~i' I\i, 9i)~,<i' 

where W = (Wl,W2, ... ,wm)t is a position weight vector of I\k ; r > 0 is a control 

parameter which can be chosen according to the given condition and (~i,l\i, 9i) - ~ = < 
"Yt ,...,,, 

[::Yi(b,p)' ::Y«b,p)], [~(b,p)' ~(b,P)] > is the i - th largest of the m IV I F SE sets (~k , l\k' 9k)')'k,(k 
which can be determined by using ranking method of IV I F SE sets such as score and 

accllracy function. 

Theorem 6.3.10 Suppose that (~k,l\k,9k) ')'k'(k (k = 1, 2, ... ,m) are IVIFSE sets. 

Then, by using the IV I F S E generalized ordered weighted average operator pg~ ag­

gregation is also an IV I F S E set and 

711 
r 1 - IT (1 - (::y+ )r)wi] 

. t(b,p)' 
t=1 

where (~'iAi,9i)- ~ =< [;Y:-(b )'::Y+(b )], [[-(b )'(+(b )] > is the i - th largest of the 1't, """ ~ ,p 2 ,p '1. ,p 1. ,p 

m IVIFSE sets (~kAk,9k)')'k'(k which can be determined by using ranking method of 

IV I F S E sets such as score and accuracy function. 

Proof. It is straightforward by using mathematical induction and Definitions 

6.3.9, 6.2.21 and 6.2.23. • 

Corollary 6.3.11 If r = 1 then the IVIFSE generalized ordered weighted average 

operator pgo degenerate to the IV I F SE ordered weighted average operator p~. 
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Definition 6 .3.12 Let (~kAk,<:h)"Ik'(k (k= 1,2, ... ,m) be IVIFSE sets. A mapping 

pg,,~ : If'F (U) --t If! (U) is called an IV I F S E generalized fusion weighted averaging 

operator if it satisfies 

m ______ r 

p~',~( (6, lh , (1) , (6, il2 , (2), ... , (~m , ilm , 9m)) = i~ r Wi(~i' ili, 9iLi; ,~ , 

where W = (WI, W2, ... , wm)t is a position weight vector. r > 0 is a control parameter. 

The IV I F SE set of (~kAk' 9k)1'k>(k weighted with mWk is denoted by 

where W = (WI , W2, .. . , wm)t is a weight vector for ilk IV I F SE sets (~kAk , 9k)"Ik,(k 
---'''' .... _--., 

and (~i, ili , 9i\;'(i is the 'i - th largest of the m IV I FSE Sets "'(~k ' A k, Gk)"Ik>(k' which 

can be determined by 1lsing ranking method of IV I F SE Sets such as score and accu­

racy function, 

Remark 6.3.13 If W = (11m, 11m, ... , 1/m)t then IV I F SE generalized fusion weighted 

average operator pg,,~ degenerates to IV I F S E generalized ordered weighted average 

operator pgo. 

Theorem 6.3.14 Suppose that (~kAk , 9k) 1'k'(1c where k = 1, 2, ... m are IVIFSE 

sets . Then, by using the IV I F S E generalized fusion weighted average operator pg,,~ 
aggregation is also an IV I F S E set and 

m 

r 1 - IT (1 - (::y+ )r)wi] 
. t(b,p)' 
t=1 

where (~i ,ili, 9i)- 7 =< W-(b )'::Y+(b )J, [(~(b )'(+(b )] > is the i - th largest of the 1', ,." t,p t,p t ,p t,p 
...----"''''---. 

m IVIFSE Sets "'(~k ,Ak, Gk)1'k'(k ~nwk(~kAk,9khlc ' (1c which can be determined by 

using ranking method of IV I F SE sets such as score and accuracy function. 

Proof. It is straightforward by using mathematical induction and Definitions 

6.3.12, 6.2.21 and 6.2.23. • 

Corollary 6.3.15 If r = 1, then the IV I F S E gen eralized fusion weighted average 

operator pg,,~ degenerates to the IV I F S E fusion weighted average operator P':v,w. 
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6.4 Multicriteria Decision Making Of IV I F S E Sets with 

The IV I F S E Fusion Weighted Average Operator 

Suppose U = {Uj ;j = l ,2, ... , l} be the initial universe, G= {Pi; i = l ,2, ... ,n} be the 

set of experts, A= {b k ; k = 1,2, ... , m} be the set of attributes. Opinion of the experts 

corresponding to each attribute is represented in the form of an IV I F SE set. The 

algori thm and process of the IV I F S E fusion weighted average operator method for 

multi attribute decision-making with IV I F SE sets can be summarized as follows. 

Step 1: Utilize the evaluations of experts in the form of IV I F SE sets to determine 

the opinions regarding the given alternatives and criteria. 

Step 2: Separate the opinions of each expert. 

Pi UI Ul 

bl < b(b ,p;) ' I'~ ,p;)]b(b .P;)' I'~l ,pil] > < [I'Cbl,P;)' I'~l,p;) ] b(b .p;)' I'~ ,Pi)] > 
b2 < b(b2,Pi)' I'~'J'Pi)][I'(b2'P;)' I'~2'P) > < [I'(b2,Pi) , I'~2 'Pi)]b(b2 ' Pi)' I'~2'P) > 

bm < [I'(bm ,P,) ' I'~m 'Pi) ] b(bm,P,)' I'~m 'P;)] > < [I'(bm,Pi)' I'~m,p;)][I'(bTn'p;)' I'~m,P) > 

Step 3: Assign weights to each criteria. 

Step 4: Assign position weights vector. The purpose of this weight vector is to 

eliminate the effect of individual preconception on comprehensive assessment. 

Step5 : Aggregate attributes by using IV I F SE fusion weighted average operator. 

Step 6: Find the accuracy of each member of U corresponding to each expert. 

Step 7: Calculate the average accuracy of each member of U. 

Step 8: Generate the non decreasing chain of these averages. 

Step9: Conclusion. 

Example 6.4.1 Let U = {UI =Dairy farming, U2 = Fish farming , U3 =Poultry 

farming, U4 = Goat fattening farm} be the set of small and medium enterprises; 9= 

{PI ,P2,P3 } be the set of experts; 4= {bl =project cost, b2 =space reqllirem ent, b3 = human 

resource requirem ent} be the set of attributes . Three experts evaltwte some enterprise 

and their evaluations are expressed in the form of interval valued intuitionistic fuzzy 

soft expert sets IV I F SE sets . Compute the comprehensive evaluation of the experts 

on the enterprise by using the interval valued intuitionistic fuzzy soft expert fusion 

weighted average operator. 

Step 1: Utilize the evaluations of experts in the form of IV I F SE sets to determine 

the opinions regarding the given alternatives and criteria. 
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~(bl' PI) = {< U I , [0.4, 0.5]' [0.2, 0.3] >, < U2, [0.1, 0.2]' [0.6, 0. 7] >, < U3, [0. 2, 0.4]' 

[0.5, 0.6] > , < U4, [0.3, 0.5]' [0.1, 0.5] >} , ~(bl ' P2) = {< UI , [0.2, 0.4]' [0.4, 0.5] >, 
< U2 , [0.4, 0.6]' [0.1, 0.3] > , < U3, [0.1, 0. 2]' [0.3 , 0.5] >, < U4, [0.3, 0.5]' [0.4, 0.5] >} , 

~ (bl ' P3) = {< UI , [0.4, 0. 5]' [0.3 , 0.4] > , < U 2, [0.4, 0.5]' [0.2, 0.4] >, < U3, [0.4, 0.7]' 

[0.2, 0.3] >, < U4 , [0. 1, 0.3]' [0.5, 0.6] >} , ~(b2 ' PI) = {< UI , [0.2 , 0.3]' [0 .5, 0.6] > , 
< U2 , [0.6 , 0.7]' [0.1 , 0.2] > , < U3 , [0.2 , 0.4]' [0.4, 0.5] > , < U4 , [0.3 , 0.4]' [0.2 , 0.4] >} 
, ~(b2 , P2) = { < UI , [0.4,0.6], [0.1, 0.2] > , < U2 , [0.3 , 0.5]' [0.3 , 0.4] > , < U3 , [0.3 , 0.5]' 

[0.1, 0.5] > , < U4, [0.2 , 0.5]' [0.3 , 0. 4] >} , ~(b2' P3) = {< UI , [0.2, 0.4]' [0.3, 0.5] > , 
< U2 , [0.1, 0.5]' [0.4, 0.5] > , < U3 , [0. 3, 0. 5]' [0.0 , 0.3] > , < U4 , [0.4 , 0. 5]' [0 .2, 0.4] >} , 
~(b3, PI) = {< UI , [0.4, 0.5]' [0.1, 0.3] > , < U2 , [0.3,0 .4]' [0.3 , 0. 5] > , < U3, [0.1 , 0.3]' 

[0.3 , 0.5] > , < U4 , [0.2 , 0.3], [0.2, 0. 4] > } ,~(b3 , P2) = {< UI , [0.3, 0.4]' [0.4, 0.5] > , 
< U2 , [0.4, 0.5]' [0.2 , 0.3] > , < U3 , [0.3, 0.4]' [0.2, 0.4] > , < (U4 , [0.2, 0.4]' [0.1, 0.4] >} 
, ~(b3 , P3) = {< UI , [0.4, 0.5]' [0.2, 0.3] > , < U2, [0.3, 0.4]' [0. 4, 0. 5] > , < U3 , [0. 2, 0.5]' 

[0.0, 0.3] > , < U4, [0.2 , 0.3]' [0.2, 0.5] >}. 
Step2: 

PI UI U2 

bl < [0.4, 0.5]' [0.2 , 0.3] > < [0.1 , 0.2]' [0.6 , 0.7] > 

b2 < [0.2, 0.3]' [0.5, 0.6] > < [0.6 , 0.7]' [0.1, 0.2] > 

b3 < [0.4, 0.5]' [0.1 , 0.3] > < [0.3 , 0.4]' [0.3, 0.5] > 

PI U3 U4 

bl < [0.2, 0.4]' [0.5, 0.6] > < [0.3, 0.5]' [0.1 , 0.5] > 
b2 < [0.2, 0.4]' [0.4 , 0.5] > < [0.3 , 0.4]' [0. 2, 0.4] > 
b3 < [0.1 , 0.3], [0.3 , 0.5] > < [0.2 , 0.3]' [0.2 , 0.4] > 

Table 6.4.1. Opinion of expert PI 

P2 UI U2 

bl < [0. 2, 0.4]' [0.4, 0.5] > < [0.4, 0.6], [0.1 , 0.3] > 

b2 < [0.4, 0.6]' [0.1 , 0.2] > < [0.3 , 0.5]' [0.3 , 0.4] > 

b3 < [0.3, 0.4]' [0.4, 0.5] > < [0.4, 0.5]' [0.2, 0.3] > 

P 2 U3 U4 

bl < [0. 1, 0.2], [0 .3, 0.5] > < [0.3 , 0. 5]' [0 .4,0.5] > 

b2 < [0.3 , 0.5]' [0.1 , 0.5] > < [0.2, 0.5], [0.3 , 0.4] > 

b3 < [0.3 , 0.4] , [0.2 , 0.4] > < [0. 2, 0.4]' [0.1, 0.4] > 

Table 6.4.2. Opinion of expert P 2 
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P3 Ul U2 

b1 < [0.4, 0.5]' [0.3,0.4] > < [0.4, 0.5]' [0.2,0.4] > 

b2 < [0.2,0.4]' [0.3,0.5] > < [0.1,0.5]' [0.4,0 .5] > 
b3 < [0.4, 0.5]' [0.2,0.3] > < [0.3,0.4]' [0.4,0.5] > 

P3 U3 U4 

b1 < [0.4, 0.7]' [0.2 , 0.3] > < [0 .1, 0.3]' [0 .5,0.6] > 
b2 < [0.3 , 0.5], [0.0,0.3] > < [0.4, 0.5]' [0.2, 0.4] > 

b3 < [0 .2,0.5]' [0.0,0.3] > < [0.2 , 0.3]' [0.2,0.5] > 

Table 6.4.3. Opinion of expert P3 

Step3: 'Wk = (0.34,0.28, 0.38Y be a normalized weight vector of criteria. 

Step4: w = (0.25,0 .50, 0.25)t be a position weight vector. The purpose of this 

weight vector is to eliminate the effect of individual preconception on comprehensive 

assessment. 

Step5: Aggregate criteria by using the IV I F S E fusion weighted average operator 

where (~i ' ~)- 7 =< [;Y:-(b l';Y+(b l]'[(':-(b l'('+(b l] > is the i- th largest of the 
1~, ~t 'l.. ,p 'l..,p 1. ,p 1. ,p 

,..-___ A'__-. 

m IV I FSE sets "'(~k' Ak, Gk)'Yk,(k' = m'Wd~k,l\k,Gk)'Yk '(k which can be determined by 

using the ranking method of IV I F S E sets such as score and accuracy function. __ -,A ___ -., 

First, we calculate "'(~k ' Ak, Gk)'Yk,(k' = m'Wk(~k,l\k,Gk)-yk,(k by using normalized 
,-"--.. 

weight vector of criteria. In this example, m = 3, b1 = 3(0.34) < [0.4,0 .5]' [0.2,0.3] >= 
1.02 < [0.4,0.5]' [0.2,0.3] >= < [1- (1- 0.4)102 , 1_ (1- 0.5)102], [0.2102,0.3102] >=< 
[0.4061 , 0.5069], [0.1937, 0.2929] > . 
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PI UI U2 
~ 

< [0.1019,0.2036]' [0.5939,0.6950] > bl < [0.4061 , 0.5069]' [0.1937,0.2929] > 
~ 

b2 < [0.1709 , 0.2589]' [0.5586,0.6511] > < [0.5368, 0.6363]' [0.1445,0.2587] > 
~ 

b3 < [0.4414, 0.5462]' [0.0724, 0.2535] > < [0.3341,0.4414]' [0.2535,0.4538] > 

PI U3 U4 
~ 

bl < [0.2036,0.4061]' [0.4931,0.5939] > < [0.3050,0.5069]' [0.0955,0.4931] > 
~ 

b2 < [0.1709,0.3489]' [0.4632, 0.5586] > < [0 .2589,0.3489]' [0.2587,0.4632] > 
~ 

b3 < [0.1132, 0.3341]' [0.2535, 0.4538] > < [0.2246,0.3341]' [0.1597,0.3518] > 

Table 6.4.4. 

P2 UI U2 
~ 

bl < [0.2036,0.4061]' [0.3927,0.4931] > < [0.4061 , 0.6073], [0.0955, 0.2929] > 
~ 

b2 < [0 .3489,0.5368]' [0 .1445, 0.2587] > < [0.2589, 0.4414]' [0.3637, 0.4632] > 
~ 

< [0.4414,0.5462]' [0.1597, 0.2535] > b3 < [0.3341,0.4414]' [0.3518, 0.4538] > 

P2 U3 U4 
~ 

< [0.1019, 0.2036]' [0.2929,0.4931] > < [0.3050,0.5069]' [0.3927, 0.4931] > bl 
~ 

b2 < [0.2589,0.4414]' [0.1445, 0.5586] > < [0. 1709,0.4414]' [0.3637,0.4632] > 
~ 

b3 < [0.3341,0.4414]' [0.1597,0.3518] > < [0.2246, 0.4414]' [0.0724, 0.3518] > 

Table 6.4.5. 

P3 UI U2 
~ 

bl < [0.4061,0.5069]' [0.2929,0.3927] > < [0.4061,0 .5069]' [0.1937,0.3927] > 
~ 

b2 < [0.1709,0.3489]' [0.3637,0.5586] > < [0 .0847,0.4414]' [0 .4632,0.5586] > 
~ 

< [0.4414, 0.5462]' [0.1597, 0.2535] > < [0.3341,0.4414]' [0 .3518, 0.4538] > b3 

P3 U3 U4 
~ 

< [0.4061 , 0.7071]' [0.1937, 0.2929] > < [0. 1019, 0.3050]' [0.4931,0.5939] > bl 
~ 

b2 < [0.2589, 0.4414]' [0.0000,0.3637] > < [0.3489, 0.4414]' [0.2587, 0.4632] > 
~ 

b3 < [0.2246 , 0.5462]' [0.0000, 0.2535] > < [0.2246, 0.3341]' [0.1597, 0.4538] > 

Table 6.4.6. 
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Find scores of each of the above elements by using Definition 6.2.25 as below: 

PI UI U2 U3 U4 

bl 0.2132 -0.4917 - 0.2387 0.1117 

b2 -0.3900 0.3850 -0.2510 - 0.0571 

b3 0.3309 0.0341 -0.1300 0.0236 

Table 6.4.7. 

P2 UI U2 U3 U4 

bl - 0.1381 0.3107 -0.2403 - 0.0370 

b2 0.2413 - 0.0633 - 0.0014 -0.1073 

b3 - 0.0151 0.2872 0.1320 0.1209 

Table 6.4.8. 

P3 UI U2 U3 U4 

bl 0.1137 0.1633 0.3133 -0.3401 

b2 - 0.2013 -0.2479 0.1683 0.0342 

b3 0.2872 -0.0151 0.2587 -0.0274 

Table 6.4.9. 

Now find the i - th largest of the m IVIFSESs. 

PI UI U2 

bl < [0.4414,0.5462], [0.0724,0.2535] > < [0.5368,0 .6363]' [0.1445 , 0.2587] > 

b2 < [0.4061, 0.5069], [0.1937, 0.2929] > < [0.3341, 0.4414]' [0 .2535, 0.4538] > 

b3 < [0.1709,0 .2589]' [0.5586,0.6511] > < [0. 1019,0.2036]' [0.5939,0.6950] > 

PI U3 U4 

bl < [0 .1132,0.3341]' [0.2535,0.4538] > < [0.3050,0.5069], [0.0955, 0.4931] > 
b2 < [0.2036, 0.4061]' [0 .4931, 0. 5939] > < [0.2246,0.3341]' [0.1597, 0.3518] > 

b3 < [0. 1709, 0.3489]' [0 .4632, 0.5586] > < [0.2589,0.3489]' [0.2587, 0.4632] > 

Table 6.4.10. 
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P2 UI U2 

bl < [0.3489,0.5368]' [0.1445 , 0.2587] > < [0.4061 , 0.6073]' [0.0955,0.2929] > 

b2 < [0.3341,0.4414]' [0.3518,0.4538] > < [0.4414,0.5462]' [0 .1597, 0.2535] > 

b3 < [0.2036, 0.4061]' [0.3927, 0.4931] > < [0 .2589,0 .4414]' [0.3637,0.4632] > 

P2 U3 U4 

bl < [0.3341,0.4414]' [0.1597,0.3518] > < [0.2246 , 0.4414]' [0.0724, 0.3518] > 

b2 < [0 .2589,0.4414]' [0.1445, 0.5586] > < [0 .3050, 0.5069]' [0 .3927,0.4931] > 

b3 < [0.1019,0.2036]' [0.2929,0.4931] > < [0.1709, 0.4414]' [0.3637,0.4632] > 

Table 6.4.11. 

P3 UI U2 

bl < [0.4414,0.5462]' [0.1597,0.2535] > < [0.4061 , 0.5069]' [0.1937,0.3927] > 

b2 < [0.4061,0.5069]' [0.2929, 0.3927] > < [0.3341 ,0.4414]' [0.3518, 0.4538] > 

b3 < [0.1709,0.3489]' [0.3637, 0.5586] > < [0.0847,0.4414]' [0.4632,0.5586] > 

P3 U3 U4 

bl < [0.4061 , 0.7071]' [0.1937,0.2929] > < [0.3489, 0.4414]' [0.2587,0.4632] > 

b2 < [0.2246,0.5462]' [0.0000,0.2535] > < [0.2246 , 0.3341]' [0 .1597, 0.4538] > 

b3 < [0.2589,0.4414]' [0.0000,0.3637] > <[0.1019,0.3050]' [0 .4931 , 0.5939] > 

Table 6.4.12. 

Further, aggregate criteria by using the IV I F BE fusion weighted average operator. 

For example for UI corresponding to expert PI, < [1- (1-0.4414)°·25(1-0 .4061)°·5°(1-

0.1709)0.25, 1-(1-0.5462)0.25 (1-0.5069)0.50(1-0.2589)0.25], [0.0724°.250.1937°.5°0.5586°.25 , 

0.2535°.25 0.2929°.5°0.6511 0.25] >=< [0 .3643,0.4652]' [0.1974,0.3450] > . 

UI U2 

PI < [0.3643,0.4652]' [0.1974,0.3450] > < [0.3446, 0.4517]' [0.2725,0.4387] > 

P2 < [0.3075,0.4587]' [0.2895,0.4026] > < [0.3912, 0.5390]' [0.1725,0.3056] > 

P3 < [0.3643,0.4823]' [0.2657,0.3844] > < [0 .2993, 0.4585]' [0.3246,0.4610] > 

U3 U4 

PI < [0.1736 , 0.3747]' [0.4111 , 0.5468] > < [0.2540,0.3857]' [0 .2256,0.4100] > 

P2 < [0.2430,0.3896]' [0.0000,0.4823] > < [0.2535, 0.4752]' [0.2524, 0.4462] > 

P3 < [0 .2828, 0.5716]' [0.0000,0.2876] > < [0.2300, 0.3559]' [0.2388, 0.4879] > 

Table 6.4.13. Aggregated criteria 
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Step6: Calculate accuracy of each member of U corresponding to each expert, 

UI U2 U3 U4 

PI 0.6860 0.7538 0.7531 0.6377 

P2 0.7292 0.7042 0.5575 0.7137 

P3 0.7484 0.7717 0.5710 0.6563 

Table 6.4.14. Accuracies 

Step7: Calculate average UI = 0.7212, U2 = 0.7432, U3 = 0.6272, U4 = 0.6692. 

Step8: Generate the non decreasing chain of these averages, we get 

Step9: Hence U2 is the best one. 

6.5 Conclusion and Future Work 

In this chapter, I V I F SE set has been defined. In this structure at the same time 

we consider three features of the membership degree, nonmembership degree, and 

hesitancy degree. In decision analysis this structure is more flexible and realistic 

for dealing with ambiguity and uncertainty than the fuzzy sets. Some operations of 

IV I F SE Set have been defined. vVe have introduced some operators for IV I F SE 

sets. Through t hese operators we can make a good decision in multi criteria decision 

making. An algorithm has been developed for multi criteria decision making problems 

with the aid of IV I F SE sets. The suggested technique is better than the existing 

techniques on the basis of experts opinion. We aim to construct decision making 

techniques parallel to AH P and TOPS I S using this structure. We also aim to study 

distance, entropy measures and similarity measures for this structure. 



Chapter 7 

Matrix Algebra of GSESs, 

CSESs and IVIFSESs 

7.1 Introduction 

Cagman et al. presented the concept of soft matrices and fuzzy soft matrices in [11] and 

[14]. Chetia et al. also commented on some results of intuitionistic soft matrix theory 

in [16]. There are certain multicriteria decision making problems in which ordinary 

matrix algebra work to fail due to its own operations. But by using soft matrices 

structure we can easily tackle these types of problems. Ordinary matrix algebra have 

some limitations in their laws. In order to get rid of these problems we may use soft 

matrices operations. 

In this chapter, we first define graded soft expert matrices , cubic soft expert matri­

ces and interval-valued intuitionistic fuzzy soft expert matrices which are representa­

tions of graded soft expert sets , cubic soft expert sets and interval-valued intuitionistic 

fuzzy soft expert sets. Using matrix representation the information can be stored and 

manipulated easily. This representation also makes the multicriteria decision making 

problems easy to handle. Using this representation, we can easily compare the opinion 

of experts in meaningful way. There are some interesting results which do not hold in 

ordinary matrix algebra but these results holds in graded soft expert matrices, cubic 

soft expert matrices and interval-valued intuit ionistic fuzzy soft expert matrices , for 

example, commutative law with respect to product holds . 

7.2 Matrix Algebra of Graded Soft Expert Sets (GSESs) 

In this section, we define matrices algebra for graded soft expert sets. Further we 

discuss some operations on it and investigate several propert ies with respect to their 

104 
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operations. 

Definition 7.2.1 Let U be a finite universe set containing n alternatives, E; a set of 

criteria and X; a set of experts {or decision makers}. Let 0 be a set of opinions with a 

given preference re lation ;::5 among the opinions. A graded soft expert set {abbreviated 

as GSE set} (F, A, Y) is characterized by a mapping F : A x Y -t P (U X 0) defined 

for every e E A and p E Y by F ( e, p) = {( 1Li, Oi) : i E I} , where I = {1 , 2, 3, ... , n}, 

A ~ E, Y ~ X and P(U x 0) denotes the power set of U x O. Here the set of opinions 

o contains graded values of the given parameters i. e. the values 01 , 02 , . .. , On can be 

graded as 01 ;::5 02 ;::5 .. . ;::5 On which m eans that On is the most preferred value while 01 

is the least preferred one and so forth . 

Definition 7.2.2 Let U be the initial universe, E ; a set of criteria and X; a set of 

experts {or decision makers}. and 0 be a set of opinions. F(a , y) = { (up,op) : p E I}, 
where 1= {1 , 2, 3, ... , q} is a graded soft expert set 

Y 1£1 1£2 1£3 ... um 

al (aI, 1£1) (aI, 1£2) (al,U3) ... (al,Um) 

a2 (a2,Ul) (a2 ,U2) (a2,U3) ... (a2,Um) 

a3 (a3,Ul) (a3 , U2) (a3,U3) ... (a3,Um ) 

... . .. ... . .. ... . .. 

al (ai, 1£1) (ai, 1£2) (ai, 1£3) ... (al,Um) 

Table 7.2.1 

opmwn of expert y corresponding to pair (ai, Uj) OJ, we can define 

an a12 aIm 

all al2 aim 
it is called Graded soft expert matrix (GSEM) of the Graded soft expert set (GSES) 

of order l x mover U. 

Example 7.2.3 Let U = {Ul , 1£2 , 1£3 , 1£4 , U5} be a set of alternatives, E = {aI , a2} be 

a set of criteria, X = {Yl , Y2} be a set of experts and 0 = {O.O , 0.1 , 0.2 , 0.3 , 0.4, 0.5 , 

0.6 , 0.7, 0.8, 0.9 , l.0} be the set of possible grades fo r the given parameters. Let GSE 

set is given as follows F(al , Yl) = {(Ul ' 0.5) , (1£2,0 .1), (1£3,0.7) , (1£4 ,0.9) , (1£5,O.2)}, 

F (al, Y2) = {(1£l ,0.5), (1£2 ,0.2) , (1£3 , 0.7) , (1L4' 0.3), (1£5 , O.4)} , F(a2, Yl ) = {(1Ll , 0.9) , 

(1£2, 0.3), (1£3,0.2) , (1£4 , 0.3), (1£5 , 0.6)} , F(a2, Y2) = {(1£l ' 0.8) , (1£2 , 0.9) , (1£3 , 0.4) , (1£4 , 0.1) , 

(1£5,O.4)}. 
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Graded soft expert matrix (GSEN!) of the Graded soft expert set (GSES) corre-

.. [0.5 0.1 0.7 0.9 0.2] 
sponding to expert Yl is given as AYl = 

0.9 0.3 0.2 0.3 0.6 2x5 

Graded soft expert matrix (GSEM) of the Graded soft expert set (GSES) corre-

.. [0.5 0.2 0.7 0.3 0.4 ] 
sponding to expert Y2 is given as AY2 = 

0.8 0.9 0.4 0.1 0.4 2 
x5 

Collection of all GSE matrices is denoted by GSEM Slxm' 

7.2.1 Operations on GSE Matrices 

Now we define some operations on GSE matrices. 

Definition 7.2.4 Let Ao = [aij]lxm E GSEM Sl xm' Ao is called zero GSE matrix if 

for all i and j aij = O. 

0 0 0 0 

Example 7.2.5 Ao = 
0 0 0 0 

0 0 0 0 

0 0 0 0 
4x4 

Definition 7.2.6 Let Au = [aij]lxm E GSEM Slxm' Au is called universe GSE ma-

trix if for all i and j aij = 1. 

1 1 1 1 

Example 7.2.7 Au = 
1 1 1 1 

1 1 1 1 

1 1 1 1 
4x 4 

Definition 7.2.8 Let Ay = [aij]l xm where aij = OJ, A z = [bij]l xm where bij = o~ E 

GSEMs1xm· 

Product of two GSE matrices is denoted and defined as Ay 0 A z = [aij 0 bij]l xm 

where aij 0 bij = (OJ)(o~). 

0.3 0.3 0.4 0.3 0.1 0.2 0.7 0.2 

Example 7.2.9 Let Ay = 
0.2 0.1 0.9 0.5 

andAz = 
0.4 0.4 0.3 0.5 

0.9 0.4 0.6 0.7 0.5 0.6 0.5 0.6 

0.5 0.7 0.8 0.2 
4x4 

0.7 0.8 0.2 0.2 

0.03 0.06 0.28 0.06 

then Ay 0 li z = 
0.08 0.04 0.27 0.25 

0.45 0.24 0.30 0.42 I' 
:.~ 

0.35 0.56 0.16 0.04 
,,, 

4x4 t .' - , ,. '_. 

4x 4 
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Definition 7.2.10 Let Ay = [ai j]l xm where aij = OJ, A z = [bij]lxm where bij = o~ E 

GSEMslxm . 

Min-Product of two GSE matrices is denoted and defined as A y6 A z = [aij6bij ]l xm 

where aij6bij = (OJ 1\ 0) 

0.1 0.2 0.4 

Consider A y ) A z of Example 7.2.9, then A y6Az = 
0.2 0.1 0.3 

Example 7.2.11 
0.5 0.4 0.5 
0.5 0.7 0.2 

Definition 7.2.12 Let Ay = [aij] lxm where aij = OJ , A z = [bij]lxm where bij = o~ E 

GSEMslxm . 

Max-Product of two GSE matrices is denoted and defin ed as Ay'ii' A z = [aij'ii'bij]l xm 

where aij 'ii' bij = (OJ V O~). 

0.3 0.3 0.7 

Consider A y ) A z of Example 7.2.9, then Ay 'ii' A z = 
0.4 0.4 0.9 

Example 7.2.13 
0.9 0.6 0.6 
0.7 0.8 0.8 

Definition 7.2.14 Let Ay = [aij]lxm where aij = OJ) A z = [bij]lxm where bij = o~ E 

GSEMslxm · 

Addition of two GSE matrices is denoted and defined as Ay E9 A z = [aij E9 bij]l xm 

where aij E9 bij = OJ + O~ - OjO~. 

0.1 0.2 0. 7 0.2 

Consider A y ) A z of Example 7.2.9, and A z = 
0.4 0.4 0.3 0.5 

Example 7.2.15 
0.5 0.6 0.5 0.6 
0.7 0.8 0.2 0.2 

0.37 0.44 0.82 0.44 

then Ay E9 A z = 
0.52 0.46 0.93 0.75 
0.95 0.76 0.8 0.88 
0.85 0.94 0.84 0.36 

4x4 

Definition 7.2.16 Let Ay = [aiJl lxm where aij = OJ E GSEM Slxm' Scalar prod1lct 

of GSE matrix with real number k > 0 is denoted by kAy = [kaij] where kaij = 

1 - (1 - OJ)k. 

Example 7.2.17 Consider Ay of Example 7.2. 9, let k = 0.9 then 

0.2 
0.5 
0.6 
0.2 

4x 4 

0.3 
0.5 
0.7 
0.2 

4x 4 

4x 4 
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0.2745 0.2745 0.3685 0.2745 

0.9Ay = 
0.1819 0.0904 0.8741 0.4641 

0.8741 0.3685 0.5616 0.6616 

0.4641 0.6616 0.7650 0.1819 
4x 4 

Definition 7.2.18 Let Ay = [aij] lxm where aij = OJ E GSEM S/xm. Power of GSE 

matrix is denoted by (Ay)k = [(aij)k] for k > 0 where (aij)k = (OJ)k. 

Example 7.2.19 Consider Ay E GSEM Sl xm of Example 1.2.9, let k = 0.34 then 

0.6640 0.6640 0.7323 0.6640 

0.5785 0.4570 0.9648 0.7900 

0.9648 0.7323 0.8405 0.8858 

0.7900 0.8858 0.9269 0.5785 
4x 4 

Definition 7.2.20 Let Ay = [aij ]l xm where aij = OJ E GSEM Sl xm. Complement of 

GSE matrix is denoted by (Ay) C = [( aij)C] where (aij)C = 1 - OJ. 

r 0.7 0.7 0.6 0.7 

Example 7.2.21 Consider Ay of Example 1.2.9, then (Ay) C = 
0.8 0.9 0.1 0.5 l 01 

0.6 0.4 0.3 

0.5 0.3 0.2 0.8 

Definition 7.2.22 Let Ay = [aij]l xm where aij = OJ ,, A z = [biJll xm where bij = o~ E 

GSEM Sl xm. Then Ay = [aij]l xm is a GSE sub matrix of A z = [bij]l xm if aij :S bij 

for all i and j. It is denoted by Ay ~ A z . 

7.2.2 Properties of GSE Matrices 

In below we discuss some properties of GSE matrices. 

Proposition 7.2.23 Let Ay = [aiJllxm , Az = [bij] lxm E GSEM Slxm. Then commu­

tative, De .Morgan's, involution laws with respect to Min-Product and Max-product and 

double negation law also hold: 

1) Ay \7 A z = A z \7 Ay 

2) Ay 6. A z = A z 6. Ay 

3) (Ay \7 A z)C = (Az) C 6. (Ay) C 

4) (Ay 6. A z)C = (A z)C \7 (Ay) C 

5) it \7 A z = A z 

6) A z 6. Az = A z 

7) (A z)C)C = A z. 

4x4 
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Proof. St raightforward. _ 

Proposition 7.2.24 Let A y = [aij ]lxm, A z = [bij] lxm, At = [Ci j ]lxm E GSElVI Slxm' 

Then associative and distributive laws also hold with respect to Min-Product and Max­

Product: 
1) Ay \7 (Az \7 At) = (Ay \7 Az) \7 At 

2) Ay,6. (Az ,6. At) = (Ay ,6. A z) ,6. At 

3) Ay,6. (Az \7 At) = (Ay ,6. A z) \7 (Ay ,6. At) 

4) Ay \7 (Az ,6. At) = (Ay \7 A z) ,6. (Ay \7 At). 

Proposition 7.2.25 Let Ay = [aij]l xm, A z = [bij]l xm E GSElVI Sl xm. Then Commu­

tative and De Morgan's laws with respect to Addition and product also hold: 

1) A y E9Az = A zE9 Ay 

2) Ay 0 .Az = .Az 0 .Ay 

3) (.Ay E9 .Az)C = (.Az)C 0 (.Ay)C 

4) (.Ay 0 .Az)C = (.Az)C E9 (Ay) c. 

Proof. Straightforward. _ 

Proposition 7.2.26 Let.Ay = [aij]l xm, .Az = [bij ]lxm, At = [Cij]l xm E GSElVI Sl xm' 

Then associative law also hold with respect to addition and product: 

1) .Ay E9 (.Az E9 .At) = (.A y E9 .Az) E9 .At 

2) .Ay 0 (.Az 0 .At) = (.Ay 0 .Az) 0 .At . 

Proof. Consider.Ay = [aij]l xm, where aij = OJ , .Az = [biil lxm , where bij = o~ , 
.At = [Cij]l xm, where Cij = 0; . 

.. .. .. I /I I /I ," '" 

1) Ay E9 (A zE9 At) = aij E9 (bij E9 Cij) = Oj E9 (Oj+Oj -OjOj) = OJ+(Oj+Oj -OjOj)-
I 1/ '" I" I II I " I " I ,I/If 

OJ(Oj+Oj -OjOj) = OJ+Oj+Oj -OjOj -OjOj-OjOj +OjOjOj = OJ+Oj -OjOj +Oj -OjOj 
I " , " I I /I .. •• • • 

-OjOj + OjOjOj = (OJ + OJ - OjOj) E9 OJ = (Ay E9 A z) E9 At. 
.. . , .. , II "'.... .. 

2) Ay 0 (Az 0 At) = aij 0 (bij 0 Cij) = OJ (OJ OJ ) = (OjOj)Oj = (Ay 0 A z) 0 At· -

Proposition 7.2.27 Let .Ay = [aij] lxm, .Ao = [bij]l xm, .Au = [Cij]l xm E GSElVI Sl xm' 

Then 

13) .Au EB .Ao = .Au 

14) .Au 0 .Ao = ~ 

15) Au \7 

16) .Au 
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Proof. Straightforward. • 

Remark 7.2.28 Distributive law with respect to addition over product do not hold in 

GSEMs. 

Example 7.2.29 Let.Ax = [0 .5bx l , .Ay = [0.3bxl and.Az = [0.9] l Xl . 

.Ax EB (.A y 18> .Az ) = [0. 5] EB ([ 0.3]18> [0.9]) = [ 0. 5] EB [0.27] = [0.635]. 

(.Ax EB .Ay ) 18> (.Ax EB .Az ) = ([0.5] EB [0.3]) 18> ([0.5] EB [0.9]) = [0.65]18> [0.95] = [0.6175]. 

Hence .Ax EB (.A y 18> .Az ) i= (.Ax EB .Ay ) 18> (.Ax EB .Az ). 

7.3 Matrix Algebra of Cubic Soft Expert Sets (CSESs) 

In t his section, we define matrices algebra for cubic soft expert sets . Further we 

discuss some operations on it and invest igate several properties with respect to their 

operations. 

Definition 7.3.1 Let U be a finit e universe set containing n alternatives, E; a set 

of criteria and X; a set of experts {or decision makers}. A pair ((3, E, X) is called a 

cubic soft expert set over U if and only if (3 : E x X ~ CP(U) is a mapping into the 

set of all cubic sets in U. Cubic soft expert set is denoted and defined as 

((3, E, X) = {(3(e, x) = {< u, A(e,x) (u), A (e,x) (u) > : u E U, (e, x) E E x X}. 

where A(e,x) (ou) is an interval valued fuzzy set and A (e,x) (u) is a fuzzy set. Here decision 

makers give their opinions in the form of w bic set. 

The collection of all c'l.lbic soft expert sets CSESs is denoted as (3. 

Definition 7.3.2 Let U be the initial universe, Ej a set of criteria and X j a set of 

experts {or decision makers}. (3(e, x) = {< u , A(e,x) ('u) , \ e,x) (u) >: u E U, (e, x) E 

E x X be the cubic soft expert set. 

X Ul U2 U3 .. . Urn 

el (el , ul) (el , u2) (el ,u3) ... (el , Urn) 

e2 (e2,Ul) (e2,U2) (e2, U3) ... (e2' Urn) 

e3 (e3, Ul) (e3, U2) (e3 ,U3) .. . (e3, Urn) 

... ... ... .. . .. . .. . 

el (el ,Ul) (el,U2) (el ,U3) ... (el, Urn) 

Table 1.3.1 
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If aij = opinion of expert x corresponding to pair (ei, Uj) = < A = [A - , A +], A >, we 

an al2 aIm 

•• [ ] a21 a22 ... a21 
can define Bx = aij lxm = . 

all al2 ... alm 
it is called cubic soft expert matrix (CSEM) of the cubic soft expert set (CSES) 

of order l x mover U. 

Collection of all cubic soft expert matrices (CSE matrices) is denoted by CSEM Sl xm ' 

Example 7.3.3 Let U = {UI ,U2,U3 } be the initial universe, E = {el,e2 } be the set 

of attributes, X = { XI ,X2} be the set of experts. Then the cubic set ((3,E ,X) = 

{(3 (e, x ) = {< u, A(e,x) (u) , >-Ce,x) (u) >j u E U, (e, x ) E (E x X)} in U is an internal 

cubic soft expert set . 

(3(el , Xl) = {(UI , [0.5 , 0.8]' 0.7), (U2, [0.6, 0.9]' 0. 8), (U3 , [0.4, 0.7]' 0.5)} , 

(3(e2, Xl) = {(UI , [0.4, 0.7]' 0.6) , (U2 , [0.7, 0.9], 0. 8), (U3 , [0.3 , 0.5]' 0.4)} , 

(3(el , X2) = {(UI , [0.4, 0.8]' 0.5) , (U2 , [0.6 , 0.9]' 0. 8), (U3 , [0.4,0.6]' 0.5)} , 

(3(e2, X2) = {(Ul, [0.3,0 .8]' 0.4), (U2 , [0.6 , 0.9]' 0.7), (U3 , [0.5, 0. 7]' 0.6)}. 

Cubic soft expert matrix (CSEM) of the Cubic soft expert set (CSES) correspond­

ing to expert Xl is given as 

13 - [ < [0.5, 0.8]' 0.7> < [0.6, 0.9], 0.8> < [0.4, 0.7]' 0.5 > 1 
Xl - < [0.4, 0.7], 0.6 > < [0.7, 0.9]' 0.8> < [0.3,0.5]' 0.4> 2X3' 

Cubic soft expert matrix (CSEM) of the Cubic soft expert set (CSES) correspond­

ing to expert X2 is given as 

13X2 = [ < [0.4, 0.8], 0.5 > < [0.6 , 0.9], 0.8 > < [0.4, 0.6], 0.5 > 1 
< [0.3 , 0.8]' 0.4 > < [0.6, 0.9], 0.7> < [0.5, 0.7]' 0.6 > 2X3 ' 

7.3.1 Operations on CSE Matrices 

This subsection gives various operations defined on CSE matrices: 

•• •• 
Definition 7.3.4 Let Bo = [aij]l xm E CSEM Sl xm' Bo is called zero CSE matrix if 

for all i and j aij =< [0 , 0], 0 > . 

< [0, 0], 0 > < [0 , 0], 0 > < [0, 0], 0 > < [0,0], 0 > 

•• < [0, 0], 0 > < [0, 0], 0 > < [0, 0], 0 > < [0 , 0], 0 > 
Example 7.3.5 Bo = 

< [0, 0], 0 > < [0,0], 0 > < [0, 0], 0 > < [0 , 0], 0 > 

< [0 , 0], 0 > < [0 , 0], 0 > < [0, 0], 0 > < [0 , 0], 0 > 
4x 4 

•• •• 
Definition 7.3.6 Let B u = [aij]l xm E CSEM Slxm. B u is called universe CSE ma-

trix if for all i and j aij =< [1 , 1]' 1 >. v\,...A.J 
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<[1, 1]'1> <[1, 1]' 1 > < [1, 1], 1 > < [1, 1]' 1 > 
•• < [1, 1], 1 > < [1, 1]' 1 > < [1, 1]' 1 > < [1, 1]' 1 > 

Example 7.3 .7 B u = 
<[1, 1]' 1 > <[1, 1], 1 > <[1, 1], 1 > < [1, 1]' 1 > 

<[1, 1]' 1 > < [1, 1], 1 > < [1, 1], 1 > < [1, 1], 1 > 
4x4 

•• •• 
D efinition 7.3.8 Let n N = [aij]l xm E eSENIsl xm' BN is called null eSE matrix if 

f or all i and j aij = < [1, 1], 0 > . 

< [1, 1]' 0 > < [1, 1], 0 > < [1, 1], 0 > < [1, 1]' 0 > 
•• < [1, 1]' 0 > < [1, 1]' 0 > < [1, 1], 0 > < [1, 1]' 0 > 

Example 7.3.9 B N = 
< [1, 1]' 0 > < [1, 1]' 0 > < [1, 1], 0 > < [1, 1]' 0 > 

< [1, 1]' 0 > < [1, 1], 0 > < [1, 1], 0 > < [1, 1]' 0 > 
4x 4 

•• •• 
Definition 7.3.10 Let B A = [aij ]lxm E eSEMs1xm . B A is called absolute eSE 

matrix if f or all i and j aij = < [0, 0], 1 >. 

1 <[0, 0],1 > < [0, 0], 1 > < [0 , 0], 1 > < [0, 0], 1 > 
•• < [0, 0], 1 > < [0, 0], 1 > < [0 , 0], 1 > < [0, 0], 1 > 

Example 7.3.11 B A = l < [0, 0], 1 > < [0, 0], 1 > < [0, 0], 1 > < [0, 0],1 > 

< [0, 0], 1 > < [0, 0], 1 > < [0, 0], 1 > < [0, 0], 1 > 
4x4 

•• •• 
Definition 7.3.12 Let B Xl = [aij] lxm where aij =< [AI' At], Al >, B X2 = [bij]lxm 

where bij = < [A2", At], A2 > E e SENIs1xm . 
•• •• 

Addition of two eSE matrices is denoted and defin ed as B Xl EB B x2 = [aij EB bij]l xm. 

where aij EB bij = < [AI + A2" - Al A2" , At + At - At At], Al + A2 - AI A2 > . 

[ 

< [0.6, 0.9]' 0.2 > < [0.2, 0.3]' 0.1 > 1 
Exa mple 7.3 .13 Let B Xl = < [0.3, 0.5]' 0.1 > < [0.4, 0. 5]' 0.3 > , and 

< [0.6, 0.7]' 0.6 > < [0.6 , 0.7]' 0.5 > 3x 2 

[ 

< [0.7, 0.9], 0.5 > < [0.1 , 0.7]' 0.3 > 1 
B X2 = < [0.8, 0.9]' 0.7 > < [0 .2, 0.5]' 0.7 > 

< [0.2, 0.7]' 0.6 > < [0.3, 0.8]' 0. 5 > 3x 2 

[ 

< [0.88, 0.99]' 0.6 > < [0.28 , 0.79]' 0.37 > 1 •• •• 
then B Xl EB B X2 = < [0.86, 0.95]' 0.73 > < [0.52, 0.75]' 0.79 > 

< [0.68, 0.91]' 0.84 > < [0.72 , 0.94]' 0.75 > 3x 2 

•• •• 
D efinition 7.3.14 Let B Xl = [aij]lxm where aij =< [AI' At], Al >, B X2 = [bij]lxm 

where bij =< [A2", At], A2 > E eSE M Slxm' 
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•• •• 
P-Min Product of two eSE matTices is denoted and defined as B xt I\p B X2 

[aij I\p bij] lxm. 

wheTe aij I\p bij =< [AI 1\ A2, Ai 1\ At], Al 1\ A2 > . 

•• •• 
Example 7.3.15 ConsideT B xP B X2 of Example 1.3.13, 

[ 

< [0.6,0.9]' 0.2 > < [0.1,0.3]' 0.1 > ] 
•• •• 

then B Xl I\ p B X2 = < [0.3,0.5]' 0.1 > < [0.2,0.5]' 0.3 > 

< [0.2 , 0.7]' 0.6 > < [0.3, 0.7]' 0.5 > 3x2 

•• •• 
Definition 7.3.16 Let B Xl = [aij]l xm wheTe aij =< [AI ' Ai]' Al >, B X2 = [bij ]lxm 

wheTe bij =< [A2, At], A2 > E eSEM Sl xm ' 
•• •• 

P -Max Product of two eSE matTices is denoted and defined as BXl Vp B X2 

[aij V P bij]l xm' 

wheTe aij V p bij =< [AI V A2, Ai V At], Al V A2 > . 

•• •• 
Example 7.3.17 ConsideT B Xll B X2 of Example 1.3.13, 

[ 

< [0.7, 0.9]' 0.5 > < [0.2,0.7]' 0.3 > 1 •• •• 
then B Xl Vp B X2 = < [0.8, 0.9]' 0.7 > < [0.4, 0.5]' 0.7 > 

< [0.6 , 0.7]' 0.6 > < [0.6, 0.8]' 0.5 > 3x 2 

•• •• 
Definition 7.3.18 Let B Xl = [aij]l xm wheTe aij =< [AI' Ai]' Al >, B X2 = [bij] lxm 

wheTe bij =< [A2, At], A2 > E eSEM Sl xm' 
•• •• 

R-Min Product of two eSE matT'ices is denoted and defin ed as B Xl I\ R B X2 

[aij I\R bij]l xm' 

wheTe aij I\ R bij =< [AI 1\ A2, Ai 1\ At], Al V A2 > . 

•• •• 
Example 7.3.19 ConsideT B xp B X2 of Example 1.3.13, 

[ 

< [0.6,0.9]' 0.5 > < [0.1 , 0.3]' 0.3 > 1 
•• •• 

then B Xl I\R B X2 = < [0.3 , 0.5]' 0.7 > < [0.2 , 0.5]' 0.7 > 

< [0.2 , 0.7]' 0.6 > < [0.3, 0.7]' 0.5 > 3x2 

•• •• 
Definition 7.3.20 Let BXl = [aiil lxm wheTe aij =< [AI ' Ai]' Al >, B X2 = [bij]lxm 

wheTe bij =< [A2, At], A2 > E eSEM Sl xm ' 
•• •• 

R-Max Prod1tct of two CSE matTices is denoted and defined as B Xl V R B X2 

[aij V R bij]l xm-

wheTe aij V R bij =< [AI V A2, Ai V At], Al 1\ A2 > . 
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•• •• 
Example 7 .3.21 Consider E xl , EX2 of Example 7.3.13, 

[ 

< [0.7,0.9]' 0.2 > < [0.2,0.7]' 0.1 > 1 
•• •• 

then EXl Vp EX2 = < [0.8, 0.9]' 0.1 > < [0.4,0.5]' 0.3 > 

< [0.6, 0.7]' 0.6 > < [0.6,0.8]' 0.5 > 3x2 

•• •• 
Definition 7 .3.22 Let E Xl = [aij]lxm where aij =< [AI' Ai]' Al >, E X2 = [bij]lxm 

where bij =< [A2", At], A2 > E eSEM Slxm· 
•• •• 

Product of two eSE matrices is denoted and defined as E Xl 0 E x2 = [aij 0 bij] lxm ' 

where aij 0 bij =< [AI A2", Ai At], AIA2 > . 

•• •• 
Example 7.3.23 Consider E Xl ' E X2 of Example 7.3.13, 

•• •• 

[ 

< [0.42, 0.81]' 0.10 > < [0.02 , 0.21]' 0.03 > 1 
then E Xl 0 E X2 = < [0.24, 0.45]' 0.07 > < [0.08, 0.25]' 0.21 > 

< [0.12, 0.49]' 0. 36 > < [0.18, 0.56]' 0.25 > 3x2 

•• 
D efinition 7.3.24 Let E Xl = [aij] lxm where aij =< [AI' Ai]' Al > E eSEM Slxm· 

Scalar Product of eSE matrices with arbitrary real number k > 0 is denoted and 
•• 

defin ed as kE xl = [kaiJllxm. 

where kaij =< [1 - (1 - AI)k, 1 - (1 - Ai)k], 1 - (1 - Adk > . 

Example 7.3.25 

•• 
then 0.4Exl = 

•• 
Consider EXl of Example 7.3.13, let k = 0.4 

[ 

< [0.3068 0.6018]' 0.0853 > < [0.0853,0.1329]' 0.0412 > 1 
< [0.1329,0.2421]' 0.0412 > < [0.1848,0.2421]' 0.1329 > 

< [0.3068, 0.3822]' 0.3068 > < [0.3068,0 .3822]' 0.2421 > 3x2 

•• 
Definition 7.3.26 Let E Xl = [aij]lxm where aij =< [AI' Ai]' Al > E eSEN! Slxm· 

Power of eSE matrices with arbitrary real number k > 0 is denoted and defined 
•• 

as (ExJ = [(ai j) k] lxm' 

where (aij)k = < [(AI)k, (Ai)k], (AI )k > . 

•• 
Example 7.3.27 Consider E Xl of Example 7. 3.1 3, let k = 0.10 

[ 

< [0.9502, 0.9895]' 0.8513 > < [0.8513,0.8865], 0.7943 > 1 
then (BXl)O .IO = < [0.8865, 0.9330]' 0.7943 > < [0.9124, 0.9330]' 0.8865 > 

< [0.9502,0.9649], 0.9502 > < [0.9502 , 0.9649]' 0.9330 > 3x2 

•• 
Definition 7.3.28 Let E Xl = [aij] lxm where aij =< [AI' A i]' Al > E eSEM Slxm' 

•• 
Complement of eSE matrices is denoted and defined as (Exl)C = [(aij)C]lxm' 

where (aij)C =< [1- Ai, 1- AI], 1 - Al > . 
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•• 
Example 7.3.29 Consider BXl of Example 1.3.13, then 

•• [ < [0.1,0.4], 0.8 > < [0.7, 0.8]' 0.9 > ] 
(BXl)C = < [0.5,0.7]' 0.9 > < [0.5,0.6]' 0.7 > 

< [0.3,0.4]' 0.4 > < [0.3,0.4]' 0.5 > 3x2 

•••• •• 
Definition 7.3.30 Let BXl = [aij]lxm , B X2 = [bij]lxm E CSENIslxm· Then BXl 

•• 
[aij]lxm is an CSE P-sub matrix of B X2 = [bij]l xm if aij S:p bij , that is, Al S: A2 and 

>'1 S: A2 where 

aij =< Al = [AI' Ai]' Al >, bij =< A2 = [A2, At], A2 > for all i and j. It is 
•• •• 

denoted by BXl rsp B X2 · 

•••• •• 
Definition 7 .3.31 Let BXl = [aiJllxm BX2 = [bij]lxm E CSEN! Slxm · Then BXl 

•• 
[aij]lxm is an CSE R-sub matrix of BX2 = [bij]lxm if aij S:R bij , that is, Al S: A2 and 

Al 2:: A2 where aij =< Al = [AI' Ai]' Al >, bij =< A2 = [A2, At], A~ > for all i and 
•• •• 

j. It is denoted by BXl rsR B X2 . 

7.3.2 Properties of CSE Matrices 

In this subsection we check the properties and associative, commutative, distributive, 

De Morgans , double negation and involution laws of CSE matrices with respect to 

their operations. 

•• •• 
Proposition 7.3.32 Let BXl = [aij]lxm , Bo = [bij]lxm E CSEN! Slxm. Then 

•• •• •• 
1) B Xl EB Bo = B Xl 

•• •• •• 
2) BXl ® Bo = Bo 

•• •• 
3) Bo rsp B Xl 

•• •• 
4) (Bo)C = Bu. 

Proof. Straightforward. • 

•• •• 
Proposition 7.3.33 Let BXl = [aij]l xm , Bu = [bij]lxm E CSEN! Slxm. Then 

•• •• •• 
1) BXl EB B u = Bu 

•• •• •• 
2) BXl ® Bu = B Xl 

•• •• 
3) BXl rsp Bu 

•• •• 
4) (Bu)C = Bo . 



7. Matrix Algebra of GSESs, eSESs and IVIFSESs 116 

Proof. Straightforward. • 

The following proposition shows some of the properties of absolute eSEN!, zero 

eSEN!, universe eSEN! and null eSEN! with respect to the operation of P-Min 

Product , P-Max Product , R-Min Product, R-Max Product and complement. 

•• •• •• •• 
Proposition 7.3.34 Let BN = [aij ]lxm , BA = [bij] lxm ,B u = [Cij]l xm, Bo 

[dij ]lxm E eSEN!sl xm' Then 

•• •••• •• •• 
3) (BN) C Vp B N = B u = (BA) C Vp BA 

•• •••••• •• 
4) (BN) C!\ p BN = Bo = (BA) C!\ P BA 

•• •••• •• •• 
5) (BN) C VR B N = BN = (BA)C VR BA 

•• •••• •• •• 
6) (BN) C!\R BN = BA = (BA)C VR BA 

•• •••• •• •• 
7) (B u ) C V p B u = B u = (B 0) C V p B 0 

•• •••• •• •• 
8) (Bu)C!\p B u = Bo = (Bo)C !\p Bo 

•• •••• •• •• 
0) (BU)CVRBU = B N = (BO)CVRBO 

•• •••• •• •• 
10) (BU)C !\R B u = B A = (Bo )C VR Bo · 

Proof. Straightforward. • 

•• •• 
Proposition 7.3.35 Let B N [aij] lxm , B A 

[dij] lxm E eSEN! Sl xm' Then 

•• •• 
1) BN ~p Bu 

•• •• 
2)Bu ~RBN 

•• •• 
3) Bo ~p B N 

•• •• 
4) Bo ~R B N 

•• •• 
5) BA ~p B u 

•• •• 
6) B A ~R B u 

•• •• 
8) Bo ~p BA 

•• •• 
9)BA~RBN 

•• •• 
10) Bo ~p B u · 

Proof. Straightforward . • 
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•• •• •• •• 
Proposition 7.3.36 Let BN [aij]l xm , BA [bij ]lxm ,Bu [Cij]l xm, Bo 

[dij]l xm E CSEMsl xm- Then 

•• •• •• • • 
1) If BA <Sp B u and B N <Sp B u then 

•• •• •• 
a) BA Vp BN <SR Bu 

•• •• • • 
b) BA ApBN <SR B u 

•• •• •• 
c) BA VR BN <SR Bu 

•• •• •• 
d) BA AR BN <SR Bu 

•• •• •• •• 
2) If BA <SR Bu and BA <SR BN then 

•• •• • • 
a) BA <SR Bu ApBN 

•• •• •• 
b) BA <SR Bu VpBN 

•• •• • • 
c) BA <SR Bu ARBN 

•• •• • • 
d) BA <SR Bu vRB N 

•• •• •• • • 
3) If Bo <Sp BN and Bo <Sp Bu then 

•• •• • • 
a) Bo <Sp BN ApBu 

•• •• • • 
b) Bo <Sp B N Vp B u 

•• •• • • 
c) Bo <Sp BN ARB U 

•• •• • • 
d) Bo <Sp B N VRBU 

•• •• •• • • 
4) If B u <SR B N and B A <SR BN then 

•• •• • • 
a) B u Vp BA <SR BN 

•• •• •• 
b) B uAp BA <SR BN 

•• •• •• 
c) BUVRBA <SR B N 

•• •• •• 
d) Bu AR BA <SR B N-

Proof. Straightforward_ • 
•• •• • • •• 

Proposition 7.3.37 Let B N = [aij]l xm , BA [bij]l xm ,B u [cij]l xm, Bo 
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•• 
[ddlxm, BXl = [eij]lxm E eSEMslxm . Then 

•• •• •• 
1) B Xl V p B u = Bu 

•• •• •• 
2) B Xl I\p B u = BXl 

•• •• •• 
3) B Xl Vp Bo = B Xl 

•• •• •• 
4) B Xl I\p Bo = Bo 

•• •• •• 
5) B X1VR B N= B N 

•• •• •• 
6) B Xl I\R E N = B Xl 

•• •• •• 
7) B Xl VR BA = EXl 

•• •• •• 
8) B Xl I\R BA = BA· 

Proof. Straightforward. • 

Next proposition shows some of the properties of absolute eSENI, zero eSEM, 

universe eSENI and null eSENI with respect to the operation of P-Min Product, 

P-Max Product, R-Min Product and R-Max Product. 

•• •• •• 
Proposition 7.3.38 Let E N = [aij] lxm , BA = [bij]lxm ,Bu 

[dij]lxm E eSEMslxm . Then 

•• •••• •••••• 
1)EN Vp BA=Bu 13)BA VpEu= B u 

•• •••• •••••• 
2) EN I\p BA = Bo 14) BA I\p Bu = BA 

•• •••• •••••• 
3) B NVRBA=BN 15)BAVR BU=Bu 

•• •••• •••••• 
4) E N I\R B A = B A 16) B A I\R B u = B A 

•• •• • • •• •• • • 
5) B NVp B u= B u 17) BA Vp Bo = Bo 

•• •• •• •• •• •• 
6) BN I\p B u = B N 18) BA I\p Bo = Bo 

•• •• •• •• •• •• 
7) B N V R B u = B N 19 ) B AVR E O=BA 

•• •• •• •• •• • • 
8)BNI\R BU=Bu 20) BA I\ R Eo = BA 

•• •• •• •• •• •• 
9) B N Vp Eo = B N 21) B u V p Bo = B u 

•• •••• •• •• •• 
10) B N I\ p Bo = Bo 22) B u I\p Bo = Bo 

•• •••• •• •• •• 
11) B N VR Bo = B N 23) B u VR Bo = B N 

•• •••• •• •• •• 
12) B N I\R Bo = Bo 24) B u I\ p Bo = BA 

Proof. Straightforward. • 

•• •• 
Proposition 7.3.39 Let B Xl = [aij]l xm , B X2 = [bij]l xm E eSENI Sl xm' Then com-

m1dative, involution with respect to P-Max Product, R -Max Product, R -lvlin Product 
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P-Min Product and double negation laws hold: 

•• •• •• •• •• •• •• •• 
1) BXl V P BX2 = BX2 V P B Xl 6) BXl V R B X2 = B X2 V R B x! 

•• •• •• •• •• •• •• •• 
2) BXl I\p BX2 = BX2 I\p B Xl 7) BXl I\R B X2 = B X2 I\R B Xl 

•• •••• •••••• 
3) B Xl V pBx! = B x! 8) B x! V R B x! = B x! 

•• •••• •••••• 
4) B x! I\p B x! = B x! 9) B x! I\R B x! = B x!. 

•• •• 
5) ((Bx!)C)C = B x! 

Proof. Straightforward. • 

The following result is very significant result. In ordinary matrices algebra product 

of two matrices is not commutative but in eSEN! s commutativity holds. 

•• •• 
Proposition 7.3.40 Let BXl = [aiJllxm , BX2 = [bij]l xm E eSEN! Slxm' Then com-

mutative law holds in e S EMs with respect to the product operation. 

•• •• •• •• 
Bx! ® BX2 = B X2 ® Bx! 

•• •• 
Proof. Consider B x! [aij]lxm where aij = < [Ai", Ai]' A1 >, B X2 = [bij]l xm 

where bij = < [A2 , At], A2 > . 
•• •• 
B Xl ® B X2 =< [Ai", Ai]' A1 > EEl < [A2 , At], A2 >=< [Ai" A2 , Ai At], A1A2 >= < 

•• •• 
[A2 Ai" , At Ai]' A2A1 >= < [A2 , At], A2 > EEl < [Ai", Ai]' A1 >= B X2 ® B x! .• 

The given below proposition shows that De Morgan 's laws holds in eSEN!s under 

the operation of addition and product. 

•• •• 
Proposition 7.3.41 Let B x! = [aijlLxm , B X2 = [bijlLxm E eSEM Sl xm ' 

•••• •• •• 
1) (Bx! EEl B X2 )C = (BXl)C ® (B X2)C 

•••• •• •• 
2) (BXl ® B x2 Y = (BxJc EEl (B X2 )c . 

•• •• 
Proof. Consider B x! = [aijlLxm where aij =< [Ai", Ai]' A1 >, BX2 = [bijlLxm 

where bij =< [A2 , At], A2 > . 
•• •• 

1) (B x! EEl B X2 )C = « [Ai", Ai]' A1 > EEl < [A2 , At], A2 »C = « [Ai" + A2 - Ai" A2 , 

Ai + At - Ai At], A1 + A2 - A1A2 »C = < [1- (Ai + At - Ai An , 1- (Ai" + A2 -

Ai" A2 )], 1 - (A1 + A2 - A1 A2) > = < [1- Ai - At + Ai At, 1- Ai" - A2 + Ai" A2], 

l - A1- A2+ A1A2 > = < [( I-Ai)(I -At), (I-Ai")(I-A2)], (I- A1)(I- A2) >=< 
[I-Ai, I -Ai"], (I - A1 ) > ® < [I-At, l -A2], (I -A2) > = « [Ai" , Ai]' A1 »C 

•• •• 
® < ([A2 , At], A2 »C = (BXl)C ® (B X2 )c. 
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•• •• 
2) (Exl (2) B X2 )C = « [AI' Ai]' Al > ® < [A2 , At], A2 »C = « [AI A2 , Ai At], 

AIA2 »C = < [1 - Ai At, 1 - Al A2 ], 1- AIA2 > = < [1 + 1- 1 + Ai - Ai + At­

At - AiAt, 

1 + 1 - 1 + Al - Al + A2 - A2 - Al A2 ], 1 + 1 - 1 + Al - Al + A2 - A2 - AIA2 > 
= < [2 - Ai - At - 1 + Ai + At - Ai At, 2 - Al - A2 - 1 + Al + A2 - Al A2 ], 

2 - Al - A2 - 1 + Al + A2 - AIA2 > = < [1 - Ai + 1 - At - (1 - Ai)(1 - At) , 

1 - Al + 1 - A2 - (1 - A I )(1 - A2 )], 1 - Al + 1 - A2 - (1 - Al )(1 - A2) > = 

< [1 - Ai, 1 - AI], 1 - Al > EJj < [1 - At, 1 - A2], 1 - A2 > = « [AI ' Ai]' Al »C 
•• •• 

EJj « [A2 ,At], A2 »C = (BXl)C EJj (B X2 )c .• 

Remark 7.3.42 Distributive law with respect to addition over product do not hold in 

CSEMs . 

•• •• 
Example 7.3.43 Let B Xl = [< [0.2, 0.6]' 0.5 >b Xl , B X2 = [< [0.1, 0.4]' 0.3 >] IXl 

•• 
and B X3 = [< [0.4, 0.7]' 0.9 >bX l . 

•• •• •• 
B Xl EJj (B X2 ® B X3 ) = [< [0.2, 0.6]' 0.5 >] EJj ([< [0.1, 0.4], 0.3 >] ® [< [0.4, 0.7]' 

0.9 >]) = [< [0. 2, 0.6]' 0.5 >] EJj [< [0.04, 0.28], 0.27 >] = [< [0.232, 0.712]' 0.635 >]. 
•• •• •• •• 

(BXl ED B X2 ) ® (BXl EJj B X3 ) = ([ < [0.2, 0.6]' 0.5 >] EJj [< [0. 1, 0.4], 0.3 >]) ® ([ < [0.2, 

0.6]' 0.5 >] EJj [< [0.4,0.7]' 0.9 >]) = [< [0.28, 0.76]' 0.65 >] ® [< [0.52, 0.88]' 0.95 >] = 
•• •• •• •• •• •• •• 

[< [0.1456, 0.6688]' 0.6175 >]. Hence B Xl EJj (BX2 ® B X3 ) i- (BXl EJj B X2 ) ® (BXl EJj B X3)' 

•• •• 
Proposition 7.3.44 Let EXl = [aijhm , B X2 = [biJllxm E CSEM Slxm· 

•• •• 
1) if B Xl IEp B X2 then 

•• •• •• 
a) B Xl Vp B X2 = B X2 

•• •• •• 
b) B Xl /\p B X2 = B Xl 

•• •• 
2) if B Xl IER B X2 then 

•• •• •• 
a) B x 1 V R B X2 = B X2 

•• •• •• 
b) B Xl /\R B X2 = B Xl 

•• •• 
Proof. Consider B Xl = [aij]l xm whore aij =< [AI ' Ai]' Al >, B X2 = [biJl l xm 

where bij =< [A2 , At], A2 > . 
•• •• •• •• 

l a) Since B Xl IEP B X2 ~ Al :S A2 , Ai:s At , Al :S A2. Now B Xl V p E x2 =< [AI ' 

Ai]' Al > V p < [A2 , At], A2 >= < [AI V A2 , Ai V At], Al V A2 >=< [A2 , At], 
•• 

A2 >= B X2 ' 
•• •• 

Ib) Now B Xl /\p B X2 =< [AI' Ai]' Al > /\p < [A2 , At], A2 >=< [AI/\ A2 , 
•• 

Ai /\ At], A1 /\ A2 >= < [AI' Ai]' Al >= B Xl ' 
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•• •• •• •• 
2a) Since B Xl (S R B X2 :::::} Al ~ A2 , At ~ At, A1 ~ A2. Now BXl VRBx2 = < [Al ' 

At], A1 > V R < [A2' At], A2 >= < [Al V A2 , At V At], A1 1\ A2 >=< [A2' At], 
•• 

A2 >= B X2 ' 
•• •• 

2b) Now B Xl I\ R B X2 = < [Al ' At], A1 > I\ R < [A2' At], A2 >= < [Al l\ A2 , 
•• 

At 1\ At], A1 V A2 >= < [Al ' At], A1 >= B Xl ' • 

•• •• •• 
Proposition 7.3.45 Let B Xl = [aij]l xm , BX2 = [bij]l xm and BX3 = [Cij]l xm E 

CSEM Sl xm' Then Associative, De Morgan's and distributive laws also hold with re­

spect to P-Max Product, R-Max Product, R-Min Product and P-Min Product: 

•• •• •• •• •• •• 
1) (Bl Vp B X2 ) Vp BX3 = B Xl Vp (BX2 Vp B X3 ) 

•• •• • •• •• •• •• 
2) (BXl I\p B p2 ) I\p B X3 = B Xl I\p (B X2 I\p B X3) 

•• •• •• •• •• •• 
3) (Bl VR B X2 ) VR B X3 = B Xl VR (BX2 VR B X3) 

•• •• •• •• •• •• 
4) (B Xl I\ R B p2) I\ R B X3 = B Xl I\ R (BX2 I\R B X3) 

•• •• •• •• 
5) (BXl V p B X2)C = (BXl)C I\p (B X2)C 

•• •• •• •• 
6) (B Xl V R B X2 )C = (B Xl)C I\ R (B X2 )C 

•• •• •• •• 
7) (B Xl I\ p B X2 )C = (BxJ c V p (B X2 )C 

•• •• •• •• 
8) (B Xl I\ R B X2 )C = (BXl)C V R (B X2 )C 

•• •• •• •• •• •• •• 
9) B Xl I\p (B X2 V p B X3 ) = (B Xl I\ p B X2 ) V p (BXl I\p B X3 ) 

•• •• •• •• •• •• •• 
10) B Xl I\R (B X2 VR B X3 ) = (B xll\R B X2 ) VR (B Xl I\R B X3 ) 

•• •• •• •• •• •• •• 
11) B Xl V P (B X2 I\ p B X3 ) = (B Xl V p B X2) I\ p (BXl V P B X3) 

•• •• •• •• •• •• •• 
12) B Xl V R (B X2 I\ R B X3) = (B Xl V R B X2 ) I\R (B Xl V R B X3)' 

Proof. Straightforward. • 

7.4 Matrix Algebra of Interval Valued Intuitionistic Fuzzy 

Soft Expert Sets (IV I FSESs) 

In this section, we define matrices algebra for interval valued intuitionistic fuzzy soft 

expert sets. Further we discuss some operations on it and investigate several properties 

with respect to their operations. 

Definition 7.4.1 Let U be the initial universe, A be the set of attributes and (} be 

the set of experts . Interval valued intuitionistic fuzzy soft expert set (IV I F SE set) is 

a triplet (C A, (}) which is characteriz d by mapping ~ :Ax (}---+IfI (U) where the set of 
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the interval-valued intuitionistic fuzzy sets on the universe set U is denoted by Iff (U). 

For b E A and p E 9 we define 

Definition 7.4.2 Let U be the initial universe, E; a set of criteria and X; a set of 

experts (or decision makers). ~(b,p) = {< u , ["(b,p) (u) , "~,p) (u) ], [((b,p) (u) , (~,p)(u)] >: 
u E U, (b, p) E E x X be the interval-valued intuitionistic fuzzy soft expert set. 

P U1 U2 U3 .. . Um 

b1 (b1, U1) (b1, U2) (b1, U3) ... (b1, um) 

b2 (b2,1£1) (b2, U2) (b2 , U3) ... (b2, um) 

b3 (b3, U1) (b3, U2) (b3, U3) ... (b3 , um) 

... ... ... ... .. . .. . 

bl (bl , U1) (bl , U2) (bl , U3) ... (bl , um) 

Table 7.4.1 

If aij = opinion of expert p corresponding to pair (bi , Uj) = < [,,-, ,,+], [(-, (+] >,we 

an a12 a1m 

•• a21 a22 a21 
can define C x = [aij]lxm = 

all al2 alm 
it is called interval-valued intuitionistic fuzzy soft expert matrix (IV I F SEM) of 

the interval-valued intuitionistic fuzzy soft expert set (IV I F SES) of order l x mover 

U. 

Collection of all interval-valued intuitionistic fuzzy soft expert matrices (IV I F S E 

matrices ) is denoted by IVIFSEMslxm . 

Example 7.4.3 Let U = {U1 , U2 , U3} be the initial universe . A= {b1, b2} be the set of 

attributes and 9= {P1 ,P2} be the set of experts. Then we can view the IVIFSE Set 

(CA,9) as consisting of opinions of experts subject to the given attributes following 

collection of approximations: 

~(b1 , P1) = {< U1 , [0.4, 0.5]' [0 .2, 0.4] > < U2 , [0 .1, 0.5]' [0.4 , 0.5] > < U3 , 

[0.3 ,0.4]' [0.4, 0.5] > , 
~(b2 , P1) = {< U1, [0. 2, 0.4]' [0.5, 0.6] > , < U2 , [0.2, 0.4]' [0 .4,0.5] > < U3 , 

[0.1 , 0.3], [0.3 , 0.5] > , 
~(b1 , p2) = {< U1 , [0.4,0.7]' [0.2 , 0.3] > < U2 , [0.2 , 0.5]' [0.2,0.3] > < U3, 

[0.3 , 0.5]' [0. 4,0.5] > , 
~(b2,p2) = {< U1, [0.3 , 0.5]' [0. 0, 0.3] > , < U2, [0.1 , 0.4]' [0.3,0.6] > , < U3, [0.2, 

0.5], [0.3, 0.4] > }. 
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Interval-valued intuitionistic fuzzy soft expert matrix (IV I F SEN!) of the interval­

valued intuitionistic fttzzy soft expert set (IV IF SES) corresponding to expert PI is 

gwen as 

C - [ < [0.4,0.5]' [0.2 , 0.4] > < [0.1,0 .5]' [0.4,0.5] > < [0.3,0.4]' [0.4,0.5] > 1 
Pl - < [0.2,0.4]' [0.5,0.6] > < [0.2,0 .4]' [0.4,0 .5] > < [0.1, 0.3]' [0.3,0.5] > 2X3' 

Interval-valued intuitionistic fuzzy soft expert matrix (I V I F SEM) of the interval­

valued intuitionistic fuzzy soft expert set (IV IF SES) corresponding to expert P2 is 

given as 

C - [ < [0.4, 0.7]' [0 .2, 0.3] > < [0.2, 0.5]' [0.2, 0. 3] > < [0.3, 0.5]' [0.4, 0.5] > 1 
P2 - < [0.3 , 0. 5]' [0.0 , 0.3] > < [0.1 , 0.4]' [0.3, 0.6] > < [0.2, 0.5]' [0.3, 0.4] > 2X3' 

7.4.1 Operations on IV I F S E Matrices 

In this section , we define operations of addition, product , Min-Product , Max-Product , 

complement , power and scalar product of I V I F S E matrices. 

•• •• 
Definition 7.4.4 Let C N = [aij] lxm E IVIFS E NIs1xm . CN is called null IVIFS E 

matrix if for all i and j aij =< [1, 1]' [0,0] >. 

l < [1, 1]' [0, 0] > < [1, 1]' [0, 0] > 
Example 7.4.5 eN = < [1,1]' [0,0] > < [1,1]' [0,0] > 

< [1,1]' [0,0] > < [1,1]' [0,0] > 

•• •• 

< [1, 1]' [0, 0] > ] 
< [1,1]' [0, 0] > 
< [1,1], [0,0] > 3x3 

Definition 7.4.6 Let CA = [aij]lxm E CSEMslxm' CA is called absolute IVIFSE 

matrix if for all i and j aij =< [0, 0], [1, 1] >. 

l < [0, 0], [1, 1] > < [0, 0], [1, 1] > 
Example 7.4.7 C A = < [0, 0], [1, 1] > < [0, 0], [1, 1] > 

< [0, 0], [1, 1] > < [0,0], [1, 1] > 

< [0, 0], [1, 1] > 1 
< [0, 0], [1, 1] > 
< [0, 0], [1, 1] > 3x3 

•• •• 
Definition 7.4.8 Let CP1 = [aiiJ lxm where aij = < [1'1' 1't], [(1' (t] >, C P2 

[bij ]lxm where bij < [1'i, ,yt], [(i, (t] > E I V IFS E Nl s1xm · 
•• •• 

Addition of two I V IFS E matrices is denoted and defined as CP1 EB CP2 = [aij EB 

bij]lxm . 

where aij EB bij =< [')'1 + 1'i - 1'l1'i, 1't + 1't - 1't1't], [(l(i , (t(t] > . 

l < [0.6, 0.9]' [0.0 , 0.1] > 
•• 

Example 7 .4 .9 Let CP1 = < [0.3, 0.5]' [0.1, 0.4] > 
< [0.6,0.7]' [0.2,0 .3] > 

< [0. 2, 0.3]' [0.1, 0.6] > 1 
< [0.4, 0.5]' [0.3,0.5] > , 
< [0.6, 0.7]' [0.1 , 0.2] > 3x 2 

and 
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l 
< [0.7, 0.9]' [0.0,0.1] > < [0.1, 0.7], [0.2,0.3] > 1 

CP2 = < [0.8, 0.9]' [0.0, 0.1] > < [0.2, 0.5]' [0. 3, 0. 4] > 
< [0.2, 0.7]' [0. 2, 0.3] > < [0.3, 0.4]' [0.2, 0.5] > 3x2 
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l 
< [0.88, 0.99]' [0.0 , 0.01] > < [0. 28, 0.79]' [0.02, 0.18] > 1 

then CP1 E9 ·CP2 = < [0.86, 0.95]' [0.0 , 0.04] > < [0.52, 0.75]' [0 .09 , .20] > 
< [0 .68 , 0.91]' [0.04, 0.09] > < [0 .72 , 0.82]' [0.02 , 0.10] > 3x2 

•• •• 
Definition 7.4.10 Let CP1 = [aiJll xm where aij =< h'1 ' 'Yi]' [(1 ' (i] >, CP2 = 

[bij ]lxm where bij < b 2 ' 'Yi ]' [(2 ' (i] > E I VIFSENIs1xm · 
•• •• 

Product of two IVIFSE matrices is denoted and defined as CP1 0 CP2 = [aij 0 

bij]l xm. 

where aij 0 bij =< b 1 'Y2 ' 'Yi 'Yi ]' [(;- + (2 - (1 (2 ' (i + (i - (i (i ] > . 

•• •• 
Example 7.4.11 Consider CPll C P2 of Example 1.4.9 then 

l 
< [0.42 , 0.81]' [0.0, 0.19] > < [0.02 , 0.21]' [0 .28 , 0.72] > 1 

CP1 0 ·CP2 = < [0.24 , 0.45]' [0.0, 0.46] > < [0.08 , 0.25]' [0.51 , 0.70] > 
< [0.12, 0.49]' [0.36, 0.51] > < [0 .18, 0.28]' [0.28 , 0.60] > 3x2 

•• •• 
Definition 7.4.12 Let CP1 = [aij]l xm where aij =< ['Y1 ' 'Yi]' [(1 ' (i] >, CP2 

[bij ]lxm where bij =< ['Y2' 'Yi]' [(2' (i] > E IVIFS E NIslxm . 
•• •• 

Min-Product of two IV I F S E matrices is denoted and defined as CP1 A CP2 
[aij A bij ]lxm' 

where aij A bij =< ['Y;- !\ 'Y2 ' 'Yi !\ 'Yi ]' [(;- V (2' ( i V ( i ] > . 
•• •• 

Example 7.4.13 Consider CPll CP2 of Example 1.4.9 then 

l 
< [0.6,0.9]' [0.0 , 0.1] > < [0.1 , 0.3], [0.2,0.6] > 1 

•• •• 
C P1 A CP2 = < [0.3 , 0.5]' [0.1 , 0.4] > < [0.2 , 0.5]' [0.3 , 0.5] > 

< [0.2 , 0.7]' [0.2, 0.3] > < [0.3 , 0.4]' [0.2, 0.5] > 3x 2 

•• •• 
Definition 7.4.14 Let CP1 = [aiJll xm where aij =< ['Y1 ' 'Yi]' [(;-, (i] >, CP2 
[bij]l xm where bij < b 2 ' 'Yi]' [(2' (i] > E IVIFSEMs1xm. 

•• •• 
Max-Product of two IV I F SE matrices is denoted and defined as CPl ':i. CP2 

[aij ':i. bij]l xm. 

where aij ':i. bij =< b 1 V 'Y2' 'Yi V 'Yi]' [(1 !\ G, ( i !\ (i] > . 

•• •• 
Example 7.4.15 Consider C pl , CP2 of Example '1.4.9 then 

l 
< [0.7, 0.9]' [0.0, 0.1] > < [0 .2, 0.7]' [0.1 , 0.3] > 1 

•• •• 
Cpt':i. CP2 = < [0.8, 0.9]' [0.0, 0.1] > < [0.4, 0. 5]' [0.3, 0.4] > 

< [0.6 , 0.7]' [0.2 , 0.3] > < [0 .6, 0.7]' [0.1 , 0.2] > 3x2 
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•• 
Definition 7.4.16 LetCpl = [aiiJl xm whereaij = < b1' 1't], [(1' (t] > E IVIFSEMsl xm' 

Product of IV I F S E matrices with an arbitrary real number k > 0 is denoted and 
•• 

defined as kCPl = [kaij]lxm. 

where kaij =< [1 - (l-1'l)k, 1 - (1 -1'i)k], [((ll , ((t)k] > . 

•• 
Example 7.4.17 Consider CPl of Example 1.4.9 then let k = 0.7 and then 

r 
< [0.4734, 0.8004]' [0.0,0. 1995] > < [0.1446, 0.2209]' [0. 1995,0.6993] > 1 

•• 
kCPl = < [0.2209,0.3844]' [0.0, 0.1995] > < [0.3006, 0.3844]' [0.4305,0.5265] > 

< [0.4734, 0.5694]' [0.3241,0.4305] > < [0.4734,0.5694]' [0.1995,0.3241] > 3x 2 

•• 
Definition 7.4.18 Let CPl = [aiiJl xm where aij =< b1' 1't], [(1 ' (t] > E IV I FSEM Slxm' 

•• 
Complement of IVIFSE matrices is denoted and defin ed as (Cpl) C = [(aij)c]Lxm. 

where (aij) C =< [((l)k, ((i)k, [(1)k, hi)k]] > . 

•• 
Example 7.4.19 Consider CPl of Example 1.4.9 then 

[ 

< [0.0, 0.1]' [0.6, 0.9] > < [0.1 , 0.6], [0.2, 0.3] > 1 
(C\l)C = < [0.1 , 0.4]' [0.3, 0.5] > < [0.3, 0.5]' [0.4, 0.5] > 

< [0.2,0.3].[0.6 , 0.7] > < [0.1,0.2]' [0.6, 0.7] > 3x2 

•• 
Definition 7.4.20 Let CPl = [aij]l xm where aij =< [1'1' 1't], [(1' (t] > E IV I F SEM Sl xm' 

Power of IV I F SE matrices with an arbitrary real number k > ° is denoted and defined 
•• 

as (CPl)k = [(aij)k ]l xm ' 

where (aij)k =< [hl)k , hi)k], [1 - (1 - (l)k, 1 - (1 - (i)k] > . 
•• 

Example 7.4.21 Consider CPl of Example 1.4.9 let k = 0.37 and then 

[ 

< [0.8277, 0.9617]' [0.0 , 0.0382] > < [0.5512, 0.6405]' [0.0382 , 0.2875] > 1 
(CPl )O.37 = < [0 .6405, 0.7737]'[0.0382, 0.1722] > < [0.7124,0.7737],[0.1236,0.2262] > 

< [0 .8277,0.8763]' [0.0792, 0.1236] > < [0.8277, 0.8763]' [0.0382 , 0.0792] > 3x2 

•• •• 
Definition 7.4.22 Let CPl = [aiiJl xm where aij =< [1'1' 1't], [(1 ' (t] >, C P2 

[bij]Lxm where bij = < [1'i, 1'i]' [(i, (t] >E IVIFSEMs1xm . 
•• •• 

Then CPl = [aij ]Lxm is an IVIFSE sub matrix of C P2 = [bij]Lx m if aij ~ bij for 
•• 

all i and j, that is, 1'1 ~ 1'i, 1't ~ 1't and (1 ~ (i , (t ~ (i- It is denoted by CPl CS 
•• 

7.4.2 Properties of IV I F BE Matrices 

In this section we check the properties and associative, commutative, distributive, De 

Morgans , double negation and involution laws of CSE matrices with respect to-:-th.ei . -

operations. 
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•• •• 
Proposition 7.4.23 Let C Pl = [aij]l xm , C N = [bij ]lxm E IVIFSEMs1xm' Then 

•• •• •• 
1)Cp1 EB CN = CN 

•• •• •• 
2) C Pl 0 C N = CPl' 

Proof. Straightforward. • 

•• •• 
Proposition 7.4.24 Let CPl = [aij]l xm , CA = [bij]l xm E IVIFSElvIsl xm' Then 

•• •• •• 
1) CPl EB CA = CPl 

•• •• •• 
2)Cpl 0 CA=Ck 

Proof. Straightforward. • 

•• •• 
Proposition 7.4.25 Let BXl = [aij]l xm , BX2 = [bij]l xm E CSEM Sl xm' Then com-

mutative law holds in IV I F SEM s with respect to the product operation. 

•• •• •• •• 
CPl 0 C P2 = C P2 0 CPl 

•• •• 
Proof. Consider CPl = [aij]l xm where aij = < ["Y1 ' "Yi ]' [(1 ' (i] >, C P2 = [bij]l xm 

where bij = < ["(i , "Yt ], [(i , (t] > . 
•• •• 
CPl 0 CP2 = < ["(1 ' "Yi]' [(1 ' (i] > 0 < ["Yi , "Yt], [(i, (t] >= < ["(i"Y1 , "Yt"Yi ]' 

[(i + (1 - (i(l ' (t + ( i - (t(i] >= < ["(i, "Yt], [(i, (t ] > 0 < ["Y1 ' "Yi]' [(1 ' 
•• •• 

(i] >= CP2 0 CPl ' • 

•• •• 
Proposition 7.4.26 Let CPl = [aij]l xm , C P2 = [bij]l xm E IVIFSEMsl xm' Then 

De Morgan's laws with respect to addition and product holds: 

•• •• •• •• 
1) (Cpl EB C p2 )C = (Cpl)C 0 (Cp2 )C 

•• •• •• •• 
2) (Cpl 0 C p2 )C = (Cpl) C E9 (Cp2 )C 

•• •• 
Proof. Consider CPl = [aij]lxm where aij = < ["Y1' "Yi]' [(1' (i] >, C P2 = [bij]l xm 

where bij =< ["(i) "Yt], [(i) (t] > . 
•• •• 

1) (Cpl EB Cp2 )C = « ["(I) "Yi]' [(I) (i] > E9 < ["Yi) "Yt], [(i) (t] »C = « 

["(1+"Yi-"Y1"Yi) "Yi+"Yt-"Yi"Yt], [(l(i,(i(t] »C =< [(l(i,(i(t], ["(1+"Yi-"Y1"Yi ) 
•• 

"Yi + "Yt - "Yi"Yt] >=< [(1) (i]' ["(1) "Yi] > 0 < [(i) (t], ["(i) "Yt] >= (CpJ c 0 
•• 

(Cp2 )c. 
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Remark 7.4.27 Distributive law with respect to addition over product do not hold in 

IVIFSENIs. 

•• •• 
Example 7.4.28 Let CPl = [< [0.2, 0.6]' [0.2, 0.4] >] l Xl' CP2 = [< [0.1, 0.4]' [0.3, 0.5] >h Xl 

•• 
and C P3 = [< [0.4, 0.7], [0.1 , 0.3] >hXl' 

•• •• •• 
CPl EB(Cp2 0Cp3 ) = [< [0.2, 0.6]' [0.2, 0.4] >]EB([< [0.1, 0.4], [0.3 , 0.5J >J0[< [0.4, 

0.7]' [0.1, 0.3J >]) = [< [0 .2, 0.6]' [0 .2, 0.4] >] EB [< [0.04, 0.28]' [0.37, 0.65J >] = [< 

[0.232, 0.712]' [0.074, 0.26] >]. 
•• •• •• •• 

(Cpl EB Cp2 ) 0 (Cpl ffi Cp3 ) = ([< [0.2, 0.6]' [0.2 , 0.4] >] ffi [< [0. 1, 0.4], [0.3, 

0.5] > ]) 0 ([< [0.2, 0.6]' [0.2 , O.4J >J ffi [< [0.4, 0.7]' [0.1, 0.3] >]) = [< [0.28, 0.76], 

[0.06 , 0.20] >]0[< [0.52, 0.88], [0.02, 0.1 2] >] = [< [0.1456, 0.6688]' [0.0788, 0.296] > ]. 
•• •• •• •• •• •• •• 

Hence CPl ffi (Cp2 0 C p3 ) i- (Cpl ffi C p2 ) 0 (Cpl ffi Cp3 )· 

Next proposition shows some of the properties of absolute IV I F SENI and null 

I V IF SENI with respect to t he operation of addition, product, Min- Product and 

Max-Product. 

•• •• 
Proposition 7.4.29 Let CN = [bijbm, C A = [CiiJlxm E IVIFSEMsl xm . Then 

•• •• •• 
l)CA ffi C N =CN 

•• •• •• 
2) C A 0 CN = CA 

•• •• •• 
3) C A Y.. C N = C N 

•• •• •• 
4) CA 7\ C N = CA. 

Proof. Straightforward. • 

•• •• 
Proposition 7.4.30 Let CPl = [aijJLxm , CP2 = [bij]l xm E I VIFSEMslxm. Then 

commutative, involution and double negation laws hold: 

•• •• •• •• 
1) CPl Y.. CP2 = CP2 Y.. CPl 

•• •• •• •• 
2) C Pl 7\ C P2 = CP2 7\ CPl 

•• •• •• •• 
3) CPl ffi CP2 = CP2 ffi CPt 

•• •• •• •• 
4) CPl 0 CP2 = CP2 0 CPl 

•• •• •• 
5) CPl Y.. CPl = CPl 

•• •• •• 
6) CPl 7\ CPl = CPl 

•• •• 
7) ((Cp1)C)C = CPl' 
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•• •• 
Proof. Consider CPI = [aij]lxm where aij =< bl' I'i]' [(1' (i] >, C P2 = [bij]lxm 

where bij =< [1'2' I'i], [(2' (i] > . 
•• •• 

1) CPI ':l. CP2 = « [1'1' I'i]' [(1' (i] > ':l. < b2' I'i]' [(2' (i] » = < bl V 1'2' 
I'i V I'i]' [(1 A (2' (i A (i] > = < [1'2 V 1'1' I'i V I'i]' [(2 A (1' (i A (i] > = « [1'2' 

•• •• 
I'i ]' [(2' (i] > ':l. < [1'1' I'i]' [(1' (i] » = Cp2 ':l. CPl' 

•• •• 
2) CPI 7\ CP2 = « bl' I'i]' [(1 ' (i] > 7\ < b2' I'i]' [(2' (i] » = < bl A 1'2' 

I'i A I'i]' [(1 V (2' (i V (i] > = < [1'2 A 1'1' I'i A I'i]' [(2 V (1' (i V (i] > = « [1'2' 
•• •• 

I'i]' [(2' (i] > 7\ < bl' I'i]' [(1' (i] » = CP2 ':l. CPl' 

In a similar manner we can prove the rest of the result by using U of addit ion, 

product, Min-Product, Max-P roduct and complement of matrices .• 

•• •• •• 
Proposition 7.4.31 Let CPI = [aij] lxm , CP2 = [biJl lxm and CP3 = [Cij] lxm E 

IV I F S E NI Slxm. Then A ssociative, De Morgan's and distribtdive laws also hold with 

respect to Max-Product and Min-Product: 

•• •• •• •• •• •• 
1) (CpI ':l. C p2 ) ':l. CP3 = CPI ':l. (Cp2 ':l. C p3 ) 

•• •• •• •• •• •• 
2) (Cp1 7\ C p2 ) 7\ CP3 = C P1 7\ (Cp2 7\ C p3 ) 

•••• •• •• 
3) (Cp1 ':l. C p2 )C = (CpJc 7\ (Cp2 )C 

•••• •• •• 
4) (CpI 7\ C p2 )C = (Cp1)C ':l. (Cp2 )C 

•• •• •• •••• •• •• 
5) CP1 ':l. (Cp2 7\ C p3 ) = (Cp1 ':l. Cp2 ) 7\ (Cp1 ':l. C p3 ) 

•• •• •• •••• •• •• 
6) C P1 7\ (Cp2 ':l. C p3 ) = (Cp1 7\ C p2 ) ':l. (Cp1 7\ C p3 ) 

•• •• 
Proof. Consider CP1 = [aij]l xm where aij =< bl' I'i]' [(1' (i] >, C P2 = [b·iJllxm 

•• 
where bij =< b2' I'i]' [(2' (i] >, CP3 = [Cij]lxm where Cij =< [1'3' I't], [(3' (t] > . 

•• •• •• 
1) (CpI ':l. Cp2 ) ':l. CP3 = « [1'1' I'i]' [(I' (i] > ':l. < [1'2' I'i]' [(2' (i] » ':l. < b3' 

I't], [(3' (t] > = < bl V 1'2' I'i V I'i]' [(1 A (2' (i A (i] > ':l. < [1'3' I't], [(3' (t] > 

< [hI V 1'2) V 1'3' hi V I'i) V I't], [((1 A (2) A (3' ((i A (i) A (t] > = < 
b l V h2 V 1'3)' I'i V hi V I't )], [(1 A ((2 A (3)' (i A ((i A (t)] > = < bl' I'i]' 
[(1, (i] > ':l. < [1'2 V 1'3' I'i V I't], [(2 A (3' (i /\ (t] > = < bl' I'i]' [(1' (i] > ':l. 

•• •• •• 
« [1'2' I'i]' [(2' (i] > ':l. < [')'3' I't], [(3, (t] » = CPI ':l. (Cp2 ':l. C p3 )· 

2) Similar as above. 
•• •• 

3) (Cp1 ':l. Cp2 )C = « [1'1' I'i]' [(1' (il > ':l. < [1'2' I'i]' [(2' (i] »C = « bl V 1'2 ' 
I'i V I'i], [(1/\ (2, (i /\ (i] »C = < [(1/\ (2' (i /\ (i], bl V 1'2' I't V I'i] > = 

•• •• 
« [(I' (i]' hI' I'i] > 7\ < [(2' (i]· b2' 'Ti] » = (Cp1)C 7\ (Cp2 )c. 
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•• •• 
4) (Cpl A Cp2 )C = « bl' I'i]' [(1' (i] > A < b2, I'i]' [(2' (i] »C = « bl /\1'2' 

I'i /\ I'i]' [(1 V (2' (i V (i] »C = < [(1 V (2' (i V (i]' [1'1 /\ 1'2' I'i /\ I'i] > = 
•• •• 

« [(I' (i]' [1'1' I'i] > Y.. < [(2' (i]' b2' I'i] » = (Cpl)C y.. (Cp2 )c. 
•• •• •• 

5) CPl y.. (Cp2 A Cp3 ) = < [1'1' I'i]' [(1' (i] > y.. « [1'2' I'i]' [(2' (i] > A < b3' 
I't ], [(;3' (t] » = < [1'1' I'i], [(1, (i] > y.. < [1'2 /\ 1'3' I'i /\ I't], [(2 V (3' (i V (t] > 

< [1'1 V h2 /\ 1'3)' I'i V hi /\ I't)], [(1 /\ ((2 V (3)' (i /\ ((i V (t)] > = < 
[h1 vI'2)/\hl VI'3)' hivl'i)/\hivl'n]' [((1 /\(2)V((1 /\(3)' ((i /\(i)v((i /\(t)] > 

< [hI V 1'2)' hi V I'i)]' [((1 /\ (2)' ((i /\ (i)] > A < [hI V 1'3), hi V I't)], 
[((1/\(3)' ((i /\(t)] > = « bl,l'i]' [(l,(i] > y.. < [1'2' I'i]' [(2' (i] » A « bl' 

•• •• •• •• 
I'i]' [(I, (i] > y.. < b3' I't], [(3' (t] » = (Cpl Y.. Cp2 ) A (Cpl Y.. Cp3 )· 

6) Similar as above. _ 

The following proposition states some properties of null IV I F SEM with IV I F SEM 

under the operation of Min-Product, Max-Product and complement. 

•• •• 
Proposition 7.4.32 Let CPl = [aij]lxm , CN = [bij]lxm E IVIFSEMslxm · Then 

•• •• •• 
1) CPl Y.. CN = CN 

•• •• •• 
2) C Pl A CN = C Pl 

•• •• 
3) (CN)C = Ck 

Proof. Straightforward. _ 

The following proposition states some properties of absolute IV I F SEM with 

IVIFSENI under the operation of Min-Product, Max-Product and complement. 

•• •• 
Proposition 7.4.33 Let CPl = [aiJl lxm , CA = [bij] lxm E IVIFSENIsl xm. Then 

•• •• •• 
1) C Pl Y.. C A = C Pl 

•• •• •• 
2)Cp1 ACA=CA 

•• •• 
3) (CA)C = CN. 

Proof. Straightforward. _ 

The next proposition states the inclusion relation between absolute IV I F SENI, 

null IVIFSElliI and IVIFSEM. 
•• •• •• 

Proposition 7.4.34 Let CP1 = [aij]l xm , C A = [bij]lxm, CN = [Cij]lxm E IV I F SEM Sl xm' 

Then 
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Proof. Straightforward. • 

7.5 Conclusion and Future Work 

In t his chapter , matrix algebra has been defined for generalizations of soft expert 

sets. In previous chapters we have been defined the modified and the generalized 

form of soft expert sets. In this concept we have been given expert opinions in the 

form of aSE sets CSE sets and I VIFSE sets. All of these structures have some 

specifications. we can easily represent past or future opinions of experts in one type of 

structure. By using these structures we have been developed matrix algebra. This type 

of representation is very useful in multicriteria decision making analysis. So for that 

purpose we have been defined aSE matrices , CSE matrices and IVIFSE matrices. 

Also we have been defined some operations on these matrices. These matrices a lso 

satisfied some of the properties which were not hold in ordinary matrix algebra, for 

example, commutativity of matrices with respect to product operation. There are also 

a very fruitful results which hold in all type of matrices which were discussed in this 

chapter, that is , De Morgan's laws holds with respect to addition over product , product 

over addition, Min Product over Max Product, Max Product over Min Product, P-Min 

Product over P-Max Product. P-Max Product over P -Min Product , R-Min Product 

over R-Max Product. and R-Max Product over R-Min Product. Distributive law with 

respect to addition over product do not holds in GSEMs, CSEMs and IVIFSEMs. 

But holds with respect to Min Product over Max Product, Max Product over Min 

Product, P-Min Product over P-Max Product. P-Max Product over P-Min Product, 

R-Min Product over R-Max Product. and R-Max Product over R-Min Product. In 

future we aim to develop some algorithms on these matrices for multicriteria decision 

making problems. Also we will develop some programming on it . We will also use this 

representation in AH P, AN P and TOPS I S . 



Bibliography 

[1] U. Acar, F . Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl. , 

59 (2010) 3458-3463. 

[2] H. Aktas , N. Cagman, Soft sets and soft groups, Inform ScL , 177 (2007) 2726-

2735. 

[3] H. Akta§, Some algebraic applications of soft sets, Appl. Soft Comput. , 28 ( 2015) 

327-331. 

[4] M. I. Ali , F . Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft 

set theory, Comput. Math. Appl. , 57 (2009) 1547-1553. 

[5] M. I. Ali, M.,Shabir , M. Naz, Algebraic structures of soft sets associated with 

new operations, Comput . Math. Appl. , 61 (2011) 2647-2654. 

[6] M. I. Ali, Another view on reduction of parameters in soft sets, Appl. Soft Com­

put., 12 (2012) 1814-1821. 

[7] S. Alkhazaleh , A. R. Salleh, Soft expert sets, Adv. Decis. Sci. , (Article ID 757868) 

2011 . 

[8] K. T. Atanassov, Intuitionistic fuzzy sets , Fuzzy Sets and Systems, 20 (1986) 

87-96. 

[9] K. T . Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets 

and Systems, 31 (1989) 343- 349. 

[10] P. Burillo, H. Bustince, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and 

Systems, 79 (1996) 403- 405. 

[11] N. Cagman, S. Enginoglu, Soft matrix theory and its decision making, Comput. 

Math. Appl. 59 (2010) 3308 3314. 

[12] N. Cagman, S. Enginoglu, Soft set theory uni-int decision making, European J. 

Opel' . Res., 207 (2010) 845- 855. 

131 



BIBLIOGRAPHY 132 

[13] N. Cagman, S. Enginoglu, F . Citak, Fuzzy soft set theory and its application, 

Iran. J. Fuzzy Syst., 8 (2011) 137- 147. 

[14] N. Cagman, S. Enginoglu, Fuzzy soft matrix theory and its application in decision 

making, Iran. J . Fuzzy Syst., 9 (2012) 109-119. 

[15] D. Chen, E. C. C. T sang, D. S. Yeung, X. Wang, The parametrization reduction 

of soft sets and its application, Comput. Math. Appl. 49 (5-6) (2005) 757-763. 

[16] B. Chetia, P. K. Das, Some results of Intuitionistic fuzzy soft matrix theory, Adv. 

Appl. Sci. Res., 3 (2012) 412- 423. 

[17] M. Detyniecki, Mathematical aggregation operators and their application to video 

querying, Doctoral thesis - research report 2001-002, Laboratoire d 'Informatique 

de Paris. 

[18] J . Dombi, Basic concepts for the theory of evaluation: The aggregative operator, 

European J . Opel'. Res., 10 (1982) 282-293. 

[19] D. Dubois, H. Prade, Default reasoning and possibility theory, Artificial Intelli­

gence 35 (1988) 243-257. 

[20] D. Dubois, H. Prade, On the combination of uncertain or imprecise pieces of 

information in ruled based systems, Internat . J. Approx. Reason. , 2 (1988) 65-87. 

[21) J. J . Dujmovic, Evaluation, Comparison and Optimization of hybrid computers 

using the theory of complex criteria, Simulation of Systems, Dekker, L. (Eds.), 

North Holland: Amsterdam, (1976) 553-566. 

[22) H. Dyckhoff, W. Pedrycz, Generalized means as model of compensative connec­

tivities, Fuzzy Sets and Systems 14 (1984) 143-154. 

[23) F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based 

decision making, J . Comput . Appl. Math., 234 (2010) 10-20. 

[24] F . Feng, Y. B. Jun, X. Zhao, Soft semi rings , Comput. Math. Appl., 56 (2008) 

2621-2628. 

[25) F . Feng, X. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, 

Inform. Sei., 181 (2011) 1125- 1137. 

[26) Q. Feng, Y. Zhou, Soft diseernibility matrix and its applications in decision mak­

ing, Appl. Soft Comput ., 24 ( 2014) 749-756. 

... ... ' 

/ 



BIBLIOGRAPHY 133 

[27] W . L. Gau, D. J. Buehrer, Vague sets. IEEE Trans . Syst. , Man Cybern. 23 (1993) 

610-614. 

[28] M. B. Gorzalczany, A method of inference in approximate reasoning based on 

interval valued fuzzy sets, Fuzzy Sets and Systems 21 (1987) 1-17. 

[29] M. Grabisch, Fuzzy integral in multicriteria decision making, Fuzzy Sets and 

Systems, 69 (1995) 279-298. 

[30] Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy 

soft sets and their properties, Comput. Math. Appl. , 60 (2010) 906-918. 

[31] Y. B. Jun , Soft BCKjBCI-algebras, Comput. Math. Appl. , 56 (2008) 1408-1413. 

[32] Y. B. Jun, C. H. Park, Applications of soft sets in ideal theory of BCKjBCI­

algebras, Inform. Sci , 178 (2008) 2466-2475. 

[33] Y. B. Jun, K. J. Lee and J . Zhan, Soft p-ideals of soft BCI-algebras, Comput. 

Math. Appl. , 58 (2009) 2060-2068. 

[34] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform. , 4 (2012) 

83-98. 

[35] J . Kacprzyk, Group decision making with a fuzzy linguistic majority, Fuzzy Sets 

and Systems, 18 (1986) 105-118. 

[36] M. Khan, Y. B. Jun, M. Gulistan, N. Yaqoob, The generalized version of Jun 's 

cubic sets in semigroups, J. Intell. Fuzzy Syst. , 28 (2015) 947-960. 

[37] L. J. Kohout, W. Bandler, Fuzzy interval inference utilizing the checklist para­

digm and BK relational products, in: R. B. Kearfort et al. (Eds.), Appl. Interval 

Comput., Kluwer , Dordrecht, (1996) 291- 335. 

[38] Z. Kong, L. Gao, L. Wang, A fuzzy soft set theoretic approach to decision making 

problems, J. Comput. Appl. Math., 223 (2009) 540- 542. 

[39] G. J . Klir, T. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice-Hall 

: Englewood Cliffs, N.J., 1988. 

[40] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proceedings of In­

ternational Conference on Intelligent Technologies, Bangkok, Thailand, (2000) 

307-312. 



BIBLIOGRAPHY 134 

[41] K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and 

bipolar-valued fuzzy sets, Journal of Fuzzy Logic and Intelligent Systems, 14 

(2004), 125-129. 

[42] D. F . Li, Y. C. Wang, S. Liu, F. Shan, Fractional programming methodology for 

multi-attribute group decision making using IFS, Appl. Soft Comput . 8 (2009) 

219-225. 

[43] D. Liang, D. Liu, A novel risk decision-making based on decision-theoretic rough 

sets under hesitant fuzzy information, IEEE Trans. Fuzzy Syst., 23 (2015) 237-247 

[44] M. K. Luhandjula, Compensatory operators in fuzzy linear programming with 

multiple objectives, Fuzzy Sets and Systems 8 (1982) 245-252. 

[45] P. K. Maji , R. Biswas, A. R. Roy, Fuzzy soft sets, J . Fuzzy Math., 9 (2001) 

589-602. 

[46] P. K. Maji, R. Biswas, A. R. Roy, An application of soft sets in a decision making 

problems, Comput. Math. Appl., 44 (2002) 1077- 1083. 

[47] P. K. Maji , R. Biswas, A. R. Roy, Soft set theory, Comput . Math. Appl., 45 (2003) 

555-562. 

[48] P. K. Maji , A. R. Roy, A fuzzy soft set theoretic approach to decision making 

problems, Comput . Math. Appl., 203 (2007) 412- 418. 

[49] P. Majumdar, S. K. Samanta, Generalized fuzzy soft sets, Comput. Math Appl., 

59 (2010) 1425- 1432. 

[50] P. Majumdar, S. K. Samanta, On soft mappings, Comput. Math. Appl., 60 (2010) 

2666-2672. 

[51] F . Meng, X. Chen, Q. Zhang, Induced generalized hesitant fuzzy Shapley hybrid 

operators and their application in multi-attribute decision making, Appl. Soft 

Comput., 28 (2015) 599-607. 

[52] D. A. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999) 

19-31. 

[53] D. A. Molodtsov, The description of a dependence with the help of soft sets, J. 

Comput. Syst. Sci. Int., 40 (2001) 977-984. 



BIBLIOGRAPHY 135 

[54] D. A. Molodtsov, V. Yu. Leonov and D. V. Kovkov, Soft sets technique and its 

application, Nechetkie Sistemi I Myakie Vychisleniya, 1 (2006) 8-3 . 

[55] G. Muhiuddin , A. M. Al-roqi, Cubic soft sets with applications in BCK/BCI­

algebras, Ann. Fuzzy Math. Inform. , 8 (2014) 29-304. 

[56] D. Pei, D. Miao, From soft sets to information systems, in Proceedings of the 

IEEE International Conference on Granular Computing, 2 (2005) 617-621. 

[57] R. A. Ribeiro , Fuzzy multiple attribute decision making:A review and new pref­

erence elicitation techniques, F\lZZY Sets Systems, 78 (1996) 155- 181. 

[58] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making 

problems, J. Comput. Appl. Math., 203 (2007) 412-418. 

[59] A. Sezgin, A. O. Atagun, On operations of soft sets, Comput . Math. Appl., 61 

(2011) 1457-1467. 

[60] A. Sezgin, A. O. Atagun, Soft groups and normalistic soft groups. Comput . Math. 

Appl. , 62 (2011) 685-698. 

[61] M. Shabir, M. I. Ali, T . Shaheen, Another approach to soft rough sets, Knowledge­

Based Systems 40 ( 2013) 72-80. 

[62] E. Szmidt, J. Kacprzyk, Using intuitionistic fuzzy sets in group decision making, 

Control and Cybernet., 31 (2002) 1037-1053. 

[63] E. Szmidt, J. Kacprzyk, A consensus-reaching process under intuitionistic fuzzy 

preference relations. Intenat. J. Intell . Syst., 18 (2003) 837-852. 

[64] C. Tan, W. Yi, X. Chen, "Hesitant fuzzy hamacher aggregation operators for 

multicriteria decision making", Appl. Soft Comput., 26 (2015) 325-349. 

[65] V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, in Proc. 18th IEEE 

Int. Conf. Fuzzy Syst., Jeju Island, Korea, (2009) 1378- 1382. 

[66] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010) 529-539. 

[67] I. B. Turksen, Interval-valued fuzzy sets and 'compensatory AND', Fuzzy Sets 

and Systems 51 (1992) 295-307. 

[68] I. B. Turksen, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and 

Systems 20 (1986) 191- 210. 



BIBLIOGRAPHY 136 

[69] I. B. Turksen, Interval-valued strict preference with Zadeh triples , Fuzzy Sets and 

Systems 78 (1996) 183- 195. 

[70] M. M. Xi a, Z. S. Xu , Hesitant fuzzy information aggregation in decision making, 

Internat. J. Approx. Reason., 52 (2011) 395- 407. 

[71] W. Xu, J. Ma, S. Wang, Gang Hao, Vague soft sets and their properties, Compllt. 

Math. Appl., 59 (2010) 787-794. 

[72] Z. Xu, M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. 

Sci. 181 (2011) 2128- 2138. 

[73] Z. S. Xu, Q. L. Da, The ordered weighted geometric averaging operator, Internat. 

J . Intell . Syst. , 17 (2002) 709-716. 

[74] Z. S. Xu, J. Chen, An approach to group decision making based on interval valued 

intuitionistic judgment matrices , System Engineer-Theory & Practice 27 (2007) 

126-133. 

[75] Z. S. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information 

and their application to decision making, Control and Decis., 22 (2007) 215-219. 

[76] Z. S. Xu , Dynamic intuitionistic fuzzy multi-attribute decision making, Int. J . 

Approximate Reasoning 48 (2008) 246-262. 

[77] X. Yang, T. Y. Lin, J . Yang, Y. Li, D. Yua, Combination of interval-valued fuzzy 

set and soft set , Comput. Math. Appl., 58 (2009) 521-527. 

[78] X. Yang, X. Song, Y. Qi, J. Yang, Constructive and axiomatic approaches to 

hesitant fuzzy rough set, Soft Comput., 18 (2014) 1067-1077. 

[79] R. R. Yager, On ordered weighted averaging aggregation operators in multi­

criteria decision making, IEEE Trans. Syst., Man Cybern 18 (1988) 183-190. 

[80] R. R. Yager , Families of OWA operators, Fuzzy Sets and Systems, 59 (1993) 

125- 148. 

[81] R. R. Yager , J. Kacprzyk, The ordered weighted averaging operators, Theory and 

Applications, Kluwer Academic Publisher: Boston, Dordrecht , London, 1997. 

[82] R. R. Yager , Generalized OWA aggregation operators, Fuzzy Optim. Decis. Male , 

3 (2004) 93- 107. 

[83] L. A. Zadeh, Fuzzy sets, Inform. Control. , 8 (1965) 338- 353. 



BIBLIOGRAPHY 137 

[84] L. A. Zadeh, The concept of a linguistic variable and its application to approxi­

mate reasoning-I, Inform. Sci., 8 (1975) 199- 249. 

[85] Z. Zhang, C. Wu, Deriving the priority weights from hesitant multiplicative pref­

erence relations in group decision making, Appl. Soft Comput. , 25 (2014) 107-117. 


