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ABSTRACT 

 

In this thesis, we consider type-I mixtures of the members of a subclass of one parameter 

exponential family. This subclass includes Exponential, Rayleigh, Pareto, a Burr type XII and 

Power function distributions. Except the Exponential, mixtures of distributions of this 

subclass get either no or least attention in literature so far.   

The elegant closed form expressions for the Bayes estimators of the parameters of 

each of these mixtures are presented along with their variances assuming uninformative and 

informative priors. The proposed informative Bayes estimators emerge advantageous in terms 

of their least standard errors. An extensive simulation study is conducted for each of these 

mixtures to highlight the properties and comparison of the proposed Bayes estimators in terms 

of sample sizes, censoring rates, mixing proportions and different combinations of the 

parameters of the component densities. A type-IV sample consisting of ordinary type-I, right 

censored observations is considered. Bayesian analysis of the real life mixture data sets is 

conducted as an application of each mixture and some interesting observations and 

comparisons have been observed.  

The systems of non-linear equations to evaluate the classical maximum likelihood 

estimates, the components of the information matrices, complete sample expressions, the 

posterior predictive distributions and the equations for the evaluation of the Bayesian 

predictive intervals are derived for each of these mixtures as relevant algebra. The predictive 

intervals are evaluated in case of the Rayleigh mixture only for a number of combinations of 

the hyperparameters to look for a trend among the hyperparameters that may lead towards an 

efficient estimation. 
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CHAPTER 1 
 
INTRODUCTION AND REVIEW OF LITERATURE 

 

There are many practical situations where an underlying population is believed to consist of a 

finite number of categories such that the individual object, on which the observation X  is 

made, belongs to one of these categories. In many practical situations, the use of the finite 

mixture model becomes inevitable when data are not available for each component or 

conditional distribution separately rather for the overall mixture distribution. The use of 

mixture models in such situations is called the direct application of the mixture models. On 

the other hand, the indirect applications include, for instance, the kernel based density 

estimation, the identification of contaminants in a data, cluster analysis, modeling prior 

densities and random variable generation. In this thesis we have considered the direct 

application of mixture models. 

A random variable ( X ) is said to follow a finite mixture distribution if it has a 

probability density function of the form  

1
( )  ( ) 

k

j j j
j

p x f x 

 ; 

1
0,  1, 2,..., ,  1,  (.) 0,  ( ) 1

k

j j j j
j

j k f f x dx 

       

The parameters,  j ’s, are mixing weights, ( )j jf x   is the jth component density of the 

mixture and  j is the parameter of the jth component density. The conditional probability of 

X given that the observation actually belongs to the category j is summarized by ( )j jf x   

and  j  is the probability that the observation belongs to the category j . 
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The history of methodology for the finite mixture models dates back to 19th century 

when Pearson (1894) made use of method of moments to estimate the five parameters of a 

two-component normal mixture. The literature of finite mixture models has grown rapidly 

since the advent of computers and the recent powerful computational techniques. Finite 

mixtures have applications in a large number of areas e.g., econometrics, sociology, 

engineering, reliability estimation, quality control, electrophoresis, switching regression, 

medical diagnosis and prognosis, multi target signal environment, remote sensing, clustering 

and discriminant analysis.  

The first comprehensive monographs on finite mixtures include Everitt and Hand 

(1981) and Titterington (1985) and McLachlan and Basford (1988). There is an extensive 

bibliography in Titterington (1985). The Theory, geometry and applications of mixture 

models are presented by Lindsay (1995). Mi (1999) underlined the age-smooth properties of 

mixture models. Böhning (2000) presents computer assisted analysis of mixtures and 

applications. Finite mixture models are focused by Geoffrey (2000) while a nice account of 

finite mixtures is given by Schnatter (2006) with a touch of Markov switching models. 

Böhning et al. (1998), Böhning and Seidel (2003) and Böhning et al. (2007) highlights the 

advances in Mixture Models. A detailed discussion of medical applications of finite mixture 

models can be seen in Schlattmann (2009).  

Deciding on the number of categories (components of the mixture), if it is not known, 

is a difficult problem and relatively a little work has been done to this effect so far. The work 

done so far can be divided into the informal graphical methods and the formal hypothesis 

testing. The informal graphical methods include the study of the sample histogram. There are 

two limitations of graphical methods. First, unimodality of the underlying data does not imply 
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that it is not a mixture. Secondly, bimodality of the sample histogram is not necessarily an 

indication of a mixture data having two components. Titterington (1985) has given an account 

of bitangentiality which is a less dramatic departure from unimodality. Bimodality implies 

bitangentiality but bitangentiality does not imply bimodality. He has declared bimodality an 

extra hump and bitangentiality an extra bump. The formal hypothesis testing includes the 

generalized likelihood ratio test but, unfortunately, is not that straightforward. Solow (1994) 

analyze the Bayesian estimation of the number of species in a community. Dietz and Böhning 

(1997) analyze two-component mixture models with one completely or partly known 

component. Zheng and Frey (2004) discuss evaluation of sample size, mixing weights, and 

separation between components.  

The identifiability problem for finite mixtures is extensively studied by a number of 

authors. Teicher (1960, 1961, 1963 and 1967) emphasizes that before attempting the 

parameter estimation in finite mixture distributions, one must make sure that the class of 

distributions considered is identifiable. He reviews the conditions of identifiability in several 

senses i.e., T-identifiability, P-identifiability and B-identifiability. Yakowitz and Spragins 

(1968) discuss that the mixtures of the members of the exponential family of distributions are 

identifiable. In this thesis, the mixtures of a subclass of the distributions of the exponential 

family are considered. Chandra (1977) is among the others who contributed to the problem of 

identifiability of mixture density functions. 

As quoted by Soegiarso (1992), four types of mixture samples are confronted with in 

real life applications. Type-I sample consists of observations which are not labeled. In Type-II 

samples, the observations are completely labeled and no censoring. The Type-III samples 

comprise unlabeled observations which are completely labeled subsequently. The Type-IV 
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samples consist of unlabeled observations, of which some are labeled afterwards but rest of 

them are labeled due to censoring. The real life illustration, we are dealing with in our thesis, 

considers a Type-IV sample. The Type-IV samples are most frequently encountered in real 

life applications. 

Li (1983) and Li and Sedransk (1982 and 1988) focus various aspects of mixture 

distributions and quote two types of mixture models. A type-I mixture is defined as the 

mixture of probability density functions from the same family. While a mixture of density 

functions from several families is called a type-II mixture. Rachev and SenGupta (1993) and 

Scallan, A.J. (1992) are two examples of type-II mixtures. In some practical situations, a 

mixture population may have the known component densities and we need to infer about only 

the mixing weights. On the other hand in many real life applications, there are known 

functional form of the component densities with unknown parameters but the mixing weights 

may be considered known. But in most of the applications the functional form and the number 

of the component densities are known but with unknown parameters of the component 

densities as well as unknown mixing weights. However, the component densities may or may 

not belong to the same parametric family. In this thesis, type-I mixture models with unknown 

parameters of the known number of component densities belonging to the same parametric 

family and with unknown mixing weights are considered. Some practical applications are 

discussed and analyzed with a touch of novelty.  

Censoring is an unavoidable feature of the most of the lifetime applications and is a 

form of missing data problem. An account of censoring can be seen in Sinha (1986), Leemis 

(1995), Dietz et al. (1996), Klein and Moeschberger (1997) and Kalbfleisch and Prentice 

(2002) and Smith (2002) which are valuable contributions on survival analysis techniques for 
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censored and truncated data. Raqab (1992) discussed predictors of future order statistics from 

type-II censored samples. Jiang and Kececioglu (1992) deals with maximum likelihood 

estimates using censored data for mixed Weibull distributions while Wang and Li (2005) 

considers the estimators for survival function when censoring times are known. Saleem and 

Aslam (2009) has considers a Rayleigh distributed random censoring time. Censoring is 

divided into three kinds, i.e., left, right and interval censoring. Right censoring may be of 

type-I, type-II or random right censoring. Type-I censoring is further divided into ordinary 

type-I, progressive type-I and generalized type-I censoring while the type-II sampling is 

categorized as ordinary type-II and progressive type-II censoring. An observation on lifetime 

of an object is said to be censored one if the exact life length of that object is unknown. 

Censoring is called right (left) if the unknown life length lies on the right (left) of the end 

(start) of study. The random right censoring is said to be employed if lifetime of an object is 

greater than an independent random number. In type-I (type-II) right censoring the life-test 

termination time (the number of dead objects) is pre-specified. In ordinary (progressive) type-

I right censoring the life-test termination time is the same (different) for all the objects. 

However, in generalized type-I right censoring objects enter a life test at different time points 

while the life-test termination time is fixed. The lifetime of an object is called interval 

censored if it is known to fall between a known time-interval. Interval censoring has 

applications in industrial life-time experiments where objects are inspected periodically. In 

ordinary (progressive) type-II right censoring the life-test terminates after a (series of) fixed 

number of deaths occurs in a single phase (a series of phases). In this thesis, an ordinary type-

I, right censoring is considered with a fixed life-test termination time. 
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Posterior distribution is the basis of Bayesian Inference. Posterior distribution is 

obtained when prior information is combined with the likelihood. Therefore, the prior 

information is a necessary part of Bayesian inference. Prior information often represents 

purely the subjective assessment of an expert before any data have been observed. In 

Bayesian analysis, specification, elicitation and formulation of a prior distribution is often 

difficult, so the use of conventional priors reflecting little or no information is recommended. 

These priors are called uninformative, indifference, ignorance, vague or reference priors. The 

uninformative priors are supposed to yield the Bayes estimates that are approximately as 

precise as maximum likelihood estimates. An uninformative prior is usually improper i.e. it 

does not have a proper density function but the resulting posterior distribution is a proper 

density function. Uninformative priors are often formal and impersonal simply to enable the 

theory to begin with. Burger (1985) declares the Bayesian analysis assuming the 

uninformative prior is likely to yield a sensible answer for a given investment of effort. 

Uniform and Jeffreys are the most commonly used uninformative priors. A nice discussion on 

Uniform prior can be seen in Jeffreys (1961). Kass (1989) declares the Jeffreys prior a 

uniform measure in information metric. Bernado (1979) states that when there is no nuisance 

parameter then the Jeffreys prior is an appropriate reference prior.  

An informative prior carry fairly precise, specific, definite and scientific information 

about the unknown parameter of interest. The conjugate priors being compatible with the 

likelihood are often used as informative priors. Ghosh et al. (2006) states an advantage of the 

conjugate prior in terms of the calculation of posterior quantities in closed form. Parameters 

of the informative prior distributions are called hyperparameters, to distinguish them from the 

parameters of the data generating model. As the formal elicitation of the hyperparameters, is 
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not a focus of this thesis, so appropriate values of the hyperparameters are assumed to 

accomplish computations wherever required. 

Titterington et al. (1985) compile the scope and frequency of applications compiled from a 

wide variety of fields and point out the overwhelming preponderance of normal mixtures. 

However, binomial, poisson, gamma, exponential, lognormal and von-mises mixtures are also 

encountered. Al-Hussaini et al. (1997) makes parametric and nonparametric estimation for 

finite mixtures of lognormal components. Wiper et al. (2001) work with mixture of Gamma 

distributions and its applications. Sultan et al. (2006) discusses the mixture of two inverse 

Weibull distributions in terms properties and estimation. They also indicate                         

that many of these applications concern univariate mixtures and very often only two 

components are involved.  

The maximum likelihood and moments methods are the mostly used estimation 

methods in the mixture distributions. Redner and Walker (1984) have given a note on 

maximum likelihood estimation and the EM Algorithm while Arcidiacono and Jones (2003) 

estimated finite mixture distributions using Sequential Likelihood and the EM Algorithm.  

However, the Bayesian estimation in connection with the finite mixture models is paid 

relatively little attention in literature so far. History of Bayesian analysis of mixture 

distributions is not that old. Sinha (1998) and Nobile (1998) are among the first who went for 

the Bayesian estimation of the finite mixture models.  

The focus of this thesis is the mixtures of distributions of a subclass of one parameter 

exponential family. This subclass includes Exponential, Rayleigh, Pareto, Burr type-XII, and 

Power Function distributions. Except the Exponential, Bayesian analysis of type-I mixtures of 

distributions of this subclass get either no or least attention in literature so far. The 
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contribution in this thesis to the Bayesian analysis of the Power function mixture is published 

in the Journal of applied statistics. The work on Rayleigh mixture is already published in the 

Journal of Applied Statistical Science and Pakistan Journal of Statistics. While the works on 

the Burr and Pareto mixture are under review by the International Statistical Review and 

Metrika respectively.  

The elegant closed form Bayes estimators are derived for each of these mixtures 

assuming informative and uninformative priors. Also an extensive simulation study is 

conducted to highlight some interesting properties and comparison of the Bayes estimates 

using type-I, right censored mixture data. Also, some real life examples are presented in a 

novel way. Although the presentation of the maximum likelihood estimates of the mixture 

parameters is not a focus of this thesis, yet the systems of non linear equations which are 

required for the evaluation of maximum likelihood estimates and the elements of the negative 

Hessian matrix are derived as a related algebra.  

Chapter 2 consists mainly of the comprehensive simulation study of the Exponential 

mixture to highlight properties and comparison of Bayes estimates, derived parallel to Sinha 

(1998) assuming uninformative and informative priors. A real life application is presented as 

well. Chapter 3 presents Bayes estimators assuming uninformative and informative priors for 

a two component mixture of the Rayleigh distribution. A simulation study is conducted to 

highlight the properties of the said Bayes estimates along with a real life application. The 

work done in this chapter partially appears in Saleem and Aslam (2008a) and Saleem and 

Aslam (2008b).  

Chapter 4 deals with a comparison among a number of available conjugate priors 

based on predictive intervals. The contents of Chapter 4 are published in Saleem and Aslam 
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(2008b). Another important member of the Exponential family is one parameter Pareto 

distribution. The predictive intervals are derived and are evaluated extensively in Chapter 4. 

Chapter 5 includes an account of Pareto mixture in terms of derivations of Bayes estimators 

and their properties based on a comprehensive simulation study along with a real life 

application. The work done in this chapter is under review of Metrika.  

A study has been conducted in Chapter 6 of a Burr Type-XII mixture and has been 

submitted for possible publication in the International Statistical Review. We are the first to 

contribute to the area of mixture of Power Function distribution. The contents of Chapter 7 

include details and some nice features of Power Function mixtures are published in Saleem 

and Aslam (2010). Overall conclusion is summarized in Chapter 8 along with some 

recommendations for the possible future extensions of this work.         
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CHAPTER 2                                                                                                                               
 

PROPERTIES AND COMPARISON OF THE BAYES ESTIMATES OF 
THE EXPONENTIAL FINITE MIXTURE PAREMETERS 
 

2.1  Introduction  

Exponential distribution has applications in life testing of the objects which do not age with 

time and have constant hazard rate. If a population of certain objects is assumed to be 

composed of two subgroups mixed together in an unknown proportion and the observations 

taken from this population are supposed to be characterized by one of the two distinct 

unknown members of an Exponential distribution, then the two component mixture of the 

Exponential mixture is recommended to model such a population provided the data is not 

available on the individual components rather on the mixture only. Ahsanullah (1988) worked 

on record values of exponentially distributed random variables. McCullagh and Peter (1994) 

combine Exponential mixtures and quadratic Exponential families. Sinha (1998) has 

compared the ML estimates and the Bayes estimates assuming the Jeffreys prior for the 

Mendenhall and Hader (1958) mixture model. Ebrahimi (2001) focused on the mixing 

fraction of the Exponential mixture. Raqab and Ahsanullah (2001) estimated location and 

scale parameters of generalized Exponential distribution based on order statistic. Hebert and 

Scariano (2004) compare the location estimators for Exponential mixtures under Pitman’s 

measure of closeness. Ali et al. (2005) discussed the Bayes estimators of the Exponential 

distribution. Gosh and Ahmed et al. (2005) have discussed robustness of the ML estimation of 

the Exponential parameters. Elsherpieny (2007) estimated parameters of mixed generalized 

exponentially distributions from censored type-I samples while Abu-Taleb et al. (2007) 

considered Bayesian estimation of exponential survival time using exponential censor time. 
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The Exponential distribution, because of its memory-less property, is used for the life-testing 

of the products that do not age with time. There are several electronic devices whose failure 

rate does not depend upon their age and, therefore, the Exponential distribution is considered. 

In this chapter, the said Exponential mixture is defined in Section 2.2. The likelihood specific 

expressions are developed in Section 2.3. The ML estimates and the components of the 

information matrix are derived in Section 2.3. In Section 2.4 and Section 2.5 the expressions 

for the Bayes estimators assuming uninformative (the Uniform and the Jeffreys) and the 

informative (Inverted Gamma) priors, are derived along with their variances. The complete 

sample expressions, as the test termination time tends to infinity, of the said estimators and 

variances are derived in Section 2.6. A comprehensive simulation study is conducted in 

Section 2.7 to compare and highlight the properties of the Bayes estimates in terms of sample 

sizes, censoring rates and parameter points. Type-IV samples are simulated with ordinary 

type-I, right censoring from a two component type-I, Exponential mixture.  A real life 

application is discussed in Section 2.8. Some concluding remarks are given in Section 2.9. 

 

2.2  The Exponential Finite Mixture Model 

A finite mixture density function with a known number ( 1k  ), of component densities of 

specified parametric form (exponential) but with k unknown parameters, 1 2 ... k      

depending upon their cause of death and k  unknown mixing weights, 0 1,  1, 2, ,i i k     

where 
1

1

1
k

k i
i

 




  is defined as follows. 

1

( )   ( )
k

i i
i

f x f x


         (2.1) 

The following exponential distribution is assumed for the k components of the mixture.  



 12 
 

1
( ) exp( / ), 1, 2,...,  ; 1, 2,3,..., ; 0  ;  0i i i i ij

i

f x x i k j r x 


              

The corresponding mixture survival function is given by /

1

( )  i

k
x

i
i

S x e  



 . 

 

2.3 The Maximum Likelihood Estimates for Censored Data  

The sampling scheme includes a Type-IV sample of size  n units from the mixture model 

described above under ordinary type-I, right censoring. Let a minor inspection of the dead 

objects shows that ,  1, 2, ,ir i k   of the r failed objects are failed because of the 1st, 2nd, , 

kth cause of death respectively such that 
1

k

i
i

r r

  and the remaining  n r objects are still 

alive and hence cannot be labeled because of censoring. We define, x
ij

 as the failure time of 

the jth unit belonging to the ith subpopulation, where 1,2,3, , ij r  ;  1, 2, ,i k   and 

1 20 , , ,j j kjx x x T  . So the likelihood function for this censored sample is as under. 

1 2
-

1 1 1 2 2 2 k
1 1 1

( , ) {  ( )} {  ( )} {  ( )} {( ( )) }
krr r

n r
j j k kj

j j j

L f x f x f x S T  
  

   α π x   (2.2) 

1 211 12 1 21 22 2 1 2( , , , ) ( , , , , , , , , , , , , )
kk r r k k krx x x x x x x x x 1 2x x x x     is data while the 2 1k   

parameters are 1 2( , , , )k  θ  and
1

1 2
1

 ( , , , ),   1
k

k k i
i

    




  π  . 

1 1

11 11 1

( , ) ( )( ){ (  )}exp[ { ( )}]i i i

k k k k rir r T
i i i i

jji ii i

L e x
i

   
  

  

   θ π x   (2.3) 

After some manipulation, the likelihood function in (2.3) takes the form as follows. 

1

1 2

1
1 1 1

1 2, , , 1 11 1

        ( , ) ( )( )exp { ( )}
  , , ,

k
n r

i i i

k

H rk k k
r k r
i i j

kk k k i ji i

n rL x k T
k k k

  


  

  

       
   

   θ π x



(2.4)    
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1k n r k
n r n r

H
        

 denotes the number of all -k ary  sequences 1 2( , , , )kk k k of non-negative 

integers with 
1

 
k

i
i

k n r


  and 
1 2 1 2

( )!        ( )
  , , , ! ! !k k

n rn r
k k k k k k

 
 

 in the expansion of the 

multinomial -

1

( )
k

n ri
i

i

T



   as discussed in Chuan-Chong and Mhee-Meng (1992). The ML 

estimates are obtained by simultaneously solving the k  equations obtained by setting the first 

order derivatives of the natural log of the likelihood (2.3) with respect to 

1 2 1 2 1,  , , ,  ,  , ,  k k         to zero.  

1

2
2

1

( ) exp( / )
, 1, 2, ,

exp( / )

ir

ij
ji i i

ik
i i

i i i
i

x
r n r T T

r i k

T

 
    





  
    

 
 

 




   (2.5)                                    

 
 

1

( ) exp( / ) exp( / )
,  1, 2, , 1

exp( / )

i ki k
kk

i k
i i

i

n r T Tr r
r i k

T

 
   



   
     

 
 

 


  (2.6)                                    

It is not possible to solve analytically the above system of 2 1k   non-linear equations. 

However, they can be solved by the numerical iterative procedure. Let 

1 2 1 2 1( ,  , ,  ,  ,  , ,  )k k      θ    and it is a well known result that  1ˆ ( ,  I ( ))N θ θ θ  

 asymptotically. Here ( )I θ is a symmetric matrix of order 2 1k   as given bellow. 

2

( ) ( )
 

l
E


 

 
I θ

θ θ
        (2.7)      

Matrix (2.7) is the information matrix of order 2 1k  , inverting it we can find the variances of  

ML estimates on the main diagonal. Following are the elements of the symmetric information 

matrix. 
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1

( / )
2 /2

2
1

2 2
1 1 4 / 2

1

( ) ( 2 ) 2
( ) , 1, 2, , .

( ) ( )

k

i
i i

k T
T

i i i i
i i

k
T ii i

i i
i

e T e
rl

E i k
T n r e






   

   








  




 


   

 




 (2.8)  

 
/ /2 2

2 2 2
/ 2

1

( )( )
( ) ,  1, 2, , 1.

( )

i kT T
i k

k
T ii i k

i
i

r rl n r e e
E i k

e

 

   

 





  
    

 
   (2.9)                                    

 

1

( / )
2

2 2
1

2 2 / 2

1

( ) ( ) 
( ) ( ) ,  1, 2, , .

  ( )

k

i
i

k T

i
i
k

T ii j j i
i j i

i

n r T e
l l

E E j i k
e







      












 

 
   

   




  (2.10)                                  

 
1

2 2 ( / )
2 / 2

1

( ) ( ) ( )   ( ) , 

                                                         1, 2, , ;   1, 2, , 1.

k

i
i

kT
T i

i i
ii j j i

l l
E E n r T e e

i k j k


 

   



  



 
   

   

   




  (2.11)  

 

/ /2 2

2
/ / 1 / 2

1

( ) ( )
( ) ( ) , 

( ) ( )

                                                1, 2, , 2,  1 2, , 1.

i k

j k

T T
k

k
T T T ii j j i k

i
i

rl l n r e e
E E

e e e

i k j i k

 

       

 

   



   
   

    

      




  (2.12) 

The computation of the above elements of Information matrix can be conducted using  

Mathematica  software after replacing the parameters by their estimates obtained by iterative 

numerical solution of equations (2.5)-(2.6) . 

 

2.4 The Posterior Distributions assuming the Conjugate Prior  

Having a look on the likelihood, Inverted Gamma prior is considered as an informative prior 

for the unknown component density parameters of the mixture. 
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2.4.1 The Posterior Distributions assuming the Inverted Gamma Prior 

For the parameters of the exponential component densities given in Section 2, the inverted 

gamma priors are assumed as follows.   1 /(1/ ) ,i i im s
i i ig e     0,  , 0,  1, 2, ,i i im s i k     ,   

and 1 2( , , , ) (1,1, ,1)k Dirichlet  π  �  . Assuming independence, the joint prior is 

incorporated with the likelihood (2.3) to have the following joint posterior.  

1 2

( 1)1 1

1 2, , , 1 11 1

      ( , ) ( ) { } { }exp { ( )
 , , ,

k
n r ir ki i

i i
IG i

k

H rn n k
r m

IG i i i ij i
kk k k i ji i

n rg s x k T
k k k

  
     

  

      
 

   θ π x




   

where 
1 2

1 2

        1
  , ,..., 1 1

, , ,

11

( )
( ) ( 1, , 1) 

k
n r

k i i
i

k

k

H i i
n r i

IG k k k k k r mrkk k k

i ij i
ji

r m
r k r k

s x k T


 





 
      

 
  

 







 .  

Marginal posterior distributions of ,  1, 2, ,i i k   are obtained by integrating out the 

nuisance parameters.  

1 2

1 2

1         
  , ,..., 1 1

, , ,

( 1) 1

( )  ( ) ( 1, , 1)

( )
exp{ ( )},  0< ,  1,2, , .

( )

k
n r

IGi k

k

i i

i i

H
n r

i IG k k k k k
k k k

k
r mi i

i i i i ir m
j i i i

g r k r k

r m
A s i k

A s



  


 

   




      

           





x






 

The marginal posterior distributions of ,  1, 2, , 1i i k   are obtained on the same lines. The 

expectations of ,  1, 2, ,i i k   and of ,  1, 2, , 1i i k   with respect to the respective 

marginal distributions give the Bayes estimators under the squared error loss function. The 

Bayes estimators assuming the inverted Gamma prior are derived as follows. 

1 2

1 2

        
  , ,..., 1 1 1

, , ,

( )( 1)ˆ ( ) ( 1, 1) ,  1, 2, ,
( ) ( )

k
n r

k j ji i

k

H
j jn r i i

i IG k k k k k r mr m
k k k j ii i j j

r mr m
r k r k i k

A s A s





 


   
       

 
 


   



 16 
 

1 2

1 2

        
  , ,..., 1 1

, , , 1

( )
ˆ ( ) ( 1, , 2,..., 1) ,  1, 2, , 1.

( )

k
n r

k j j

k

H k
j jn r

i IG k k k i i k k r m
k k k j j j

r m
r k r k r k i k

A s








 
          


 


   

 

2.4.2 Variances of  Bayes Estimators assuming Inverted Gamma Prior 

The expressions for the variances of the Bayes estimators are derived as follows. 

1 2

1 2

1 2

1 2

        
  , ,..., 1 1 2

, , ,

        
  , ,..., 1 1

, , ,

( )( 2)ˆ( ) ( ) ( 1, , 1)
( ) ( )

(
      ( ) ( 1, , 1)

k
n r

k i i j j

k

k
n r

k

k

H
j jn r i i

i IG k k k k k r m r m
k k k j ii i j j

H
n r i

IG k k k k k
k k k

r mr m
V r k r k

A s A s

r
r k r k







  





   
       

 

 
      

 











2

1

( )1)
,  1,2, .

( ) ( )i i j j

j ji
r m r m

j ii i j j

r mm
i k

A s A s  


     
   

 

 

           
1 2 1 1

1 2

1 2

1 2

        1 1
  , ,..., 1 1

, , , 1 1 1

        
  , ,..., 1 1

, , ,

( )
ˆ( ) ( ) ( 1, , 3, , 1)

( )

( )
      ( ) ( 1, , 2, , 1)

k
n r

k

k

k
n r

k

k

H k
n r

i IG k k k i i k k r m
k k k j

H
j jn r

IG k k k i i k k
k k k

r m
V r k r k r k

A s

r m
r k r k r k













 
         



 
        

 







 

 

2

1

,  1, 2, , 1.
( ) j j

k

r m
j j j

i k
A s 



     
  

 

 

where 
1

,  1, 2,
ri

i ij i
j

A x k T i k


    ; 
1

k

i
i

r r


  and 
1

k

i
i

k n r


  . 

 

2.5   Bayes Estimators assuming Uninformative Priors 

The Uniform and the Jeffreys priors are two common examples of uninformative priors which 

materialize the use of Bayesian estimation methods when no prior information is available. 

The uninformative priors are supposed to produce estimates that are approximately as precise 

as ML estimates if the mode of the posterior distribution is used as a Bayes estimate. 

 

2.5.1 Bayes Estimators assuming the Uniform Prior 

Let us assume a state of ignorance i.e., ,   1, 2, ,i i k   is distributed uniformly over (0, )  
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and 1 2( , , , ) (1,1, ,1)k Dirichlet  π  �  . Hence ( )i i if k  , 1, 2, ,i k  . Assuming 

independence we have an improper joint prior that is proportional to a constant and is 

incorporated with the likelihood (2.4) to yield a proper joint posterior distribution. The 

arithmetic means of the parameters with respect to the respective marginal distributions yield 

the Bayes estimators under the squared error loss function. These estimators can be had by 

replacing 1,  0i im s    in equations of Section 2.4. The expressions for the variances are 

obtained on the same lines.      

    

2.5.2 Bayes Estimators assuming the Jeffreys Prior 

Let  ( ) ( )i ig I  , 
2

2

( )
( ) [ ]i i

i
i

f x
I E







 


   ( )i if x  , 1, 2, ,i k  . For the parameters of 

the exponential component densities given in Section 2, the Jeffreys prior of i  is 

( ) 1/ ,  1, 2, ,i i ig i k     as used by Sinha (1998) while as in Section 2.5.1, we assume 

1 2( , , , ) (1,1, ,1)k Dirichlet  π  �  . Assuming independence, the joint prior is 

incorporated with the likelihood (2.4) to have the joint posterior. The expectations of the 

parameters with respect to the respective marginal distributions give the Bayes estimators 

under the squared error loss function. These Bayes estimators and their variances are obtained 

by replacing 0,  0i im s   in the expressions given in Section 2.4.  

 

2.6 The Complete Sample Expressions 

When the sample is uncensored, T  tends to  , r tends to n , ir  tends to  ,  1, 2, ,in i k  , 

and consequently all the observations are incorporated into our analysis. Therefore, the 

amount of information contained in the sample is increased. The expressions for the Bayes 
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estimators and their variances are simplified as given in Tables 2.1-2.2 for 2k   . It is 

immediate that the efficiency of the estimates is increased as well because of inclusion of all 

the observations in our sample. This is clear from the second order derivatives of the log 

likelihood given in Section 2.3 that the off diagonal terms of the information matrix vanish 

and ensure the linear independence of the ML estimates. The information matrix becomes a 

diagonal matrix which can be inverted very comfortably by simply inverting the terms on the 

main diagonal.  

 

Table 2.1 The complete sample expressions for the Bayes and ML estimators as T   

 

Table 2.2 The complete sample expressions for the variances of the Bayes and ML 
estimators as T   

Parameters Variances of  
Bayes Estimators 
(Uniform prior) 

Variances of  
Bayes Estimators 
(Jeffreys prior) 

Estimated Variances  
of ML Estimators 

 
 

1  
 2

1

2
1 1( 3)( 2)

jx

n n 
  

 2

1

2
1 1( 1) ( 2)

jx

n n 
  

2
1

2
1

( )jx

n
  

 

2  
 2

2

2
2 2( 3)( 2)

jx

n n 
  

 2

2

2
2 2( 1) ( 2)

jx

n n 
  

2
2

2
2

( )jx

n
  

 

1  
1 2

2

( 1)( 1)

( 2) ( 3)

n n

n n

 
 

 1 2
2

( 1)( 1)

( 2) ( 3)

n n

n n

 
 

 1 2

1 2 2 1( )( )

n n

n n n n 
 

 
Parameters 

 
Bayes Estimators 

(Uniform) 

 
Bayes Estimators 

(Jeffreys ) 

 
ML Estimators 

 

1  
1

1 2
jx

n 
  1

1 1
jx

n 
  1

1

jx

n
  

 

2  
2

2 2
jx

n 
  2

2 1
jx

n 
  2

2

jx

n
  

1  1 1

2

n

n




 1 1

2

n

n




 1

1 2

n

n n
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2.7  A Simulation Study 

A simulations study is carried out in order to investigate the performance of the Bayes 

estimators in terms of sample size, censoring rate and parameter size for 2k  . Samples of 

sizes  50,  100, 200,  300 n  were generated from the two component mixture of Exponential 

distribution with various combinations of the parameters 1 , 2   and 1  such that   

1 2( , )  { (15,20), (20,25), (24,30), (32,40) } and  1 0.40,0.60  . Probabilistic mixing was 

used to generate the mixture data. For each observation a random number  u was generated 

from the uniform distribution on [0, 1].  If 1 u  , the observation was taken randomly from 

the Exponential distribution with parameter 1  otherwise it is from the exponential 

distribution with parameter 2 . Ordinary, type-I, right-censoring is carried out using a fixed 

test termination time  T . The choice of the censoring time is made in such a way that the 

censoring rate in the resulting sample to be approximately 15% and 30%. For each of the 64 

combination of parameters, sample size, censoring rate, one thousand samples were generated 

using a routine in Minitab software. In each case failures are identified to be a member of 

either Subpopulation-1 or Subpopulation-2 of the mixture. For each of the 1000 samples, the 

Bayes estimates were computed using a routine in Mathematica software. The results are 

presented in Tables 2.3-2.7. Tables 2.3-2.6 display some interesting properties of the Bayes 

estimates in terms of sample sizes, censoring rates, size of life time parameters and mixing 

proportion parameters. Table 2.7 presents an interesting comparison between the three Bayes 

estimates. The properties and the comparison observed are summarized in Section 2.9. 
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2.8  A Real Life Example 

Davis (1952) mixture data denoted by 
1 211 12 1 21 22 2( , , , , , , , )r rx x x x x x  x consists of hours 

 to failure of an indicator valve and of a transmitter valve both used in the aircraft radar sets. 

Until failure occurs at or before the test termination time 800 T  hours is over, it is not 

known that which valve will fail and hence the category of failure is unknown. Inspection of 

the failed units allowed the engineers to allocate the failed units to two subpopulations. The 

test was conducted 1003 times till the test termination time was over. So this is a type-I, right 

censored sample censored at 800T   hours. 

The mixture failure data can be found on Page 76 of Everitt and Hand (1981). The 

mixture parameters 11 2,  ,  )(   can be evaluated using estimators derived in Sections 2.4-2.5. 

The data summary is, 1 21003,  891,  92,n r r   1 2 983r r r   , 
1

1
1

151130
r

j
j

x


 , 800T  ,  

2

2
1

22550
r

j
j

x


  and 20n r  . It is interesting to note that Bayes (Inverted Gamma) estimates 

have the least variances but are slightly under-estimated. Table 2.8 displays the Bayes 

estimates using the real life Davis mixture data.  
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Table 2.3 Bayes estimates (Jeffreys)* of Exponential mixture parameters and  
their standard errors (in parenthesis) with 1 215,  20,    

1 0.40,  0.60   and censoring rates, 15%,  30%C  . 

 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

(15, 20, 0.40) 

50 17.9572(5.73418) 20.3207(5.03935) 0.423806(0.0695231)

100 16.6404(3.99468) 19.9765(3.52293) 0.411601(0.0573622)

200 15.9022(2.80208) 19.9752(2.61393) 0.405829(0.0404456)

300 15.6225(2.3830) 19.8788(2.04341) 0.405732(0.0338122)

(15, 20, 0.60) 

50 16.2107(3.96154) 22.2075(7.09718) 0.601036(0.0744419)

100 15.5932(2.87992) 20.9877(4.93697) 0.600474(0.0555195)

200 15.3002(2.05167) 20.5198(3.49403) 0.599715(0.0396292)

300 15.1837(1.73016) 20.2205(2.88425) 0.600330(0.0337118)

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  1̂  1̂  

(15, 20, 0.40) 

50 19.5237(7.27322) 20.3257(6.21582) 0.43813(0.0830511) 

100 17.5926(5.0248) 19.5375(4.09142) 0.424621(0.0660233) 

200 16.608(3.88785) 19.5167(3.35918) 0.4182(0.0533334) 

300 16.3683(3.27019) 19.4262(2.68632) 0.416343(0.0466534) 

(15, 20, 0.60) 

50 16.1496(4.59663) 23.6305(9.25259) 0.590764(0.0846607) 

100 15.5278(3.49805) 21.5041(6.11363) 0.592843(0.071388) 

200 15.3379(2.71106) 20.3556(4.68857) 0.60185(0.057036) 

300 15.2473(2.29145) 20.2701(3.94430) 0.600198(0.0487674) 

*Bayes estimates (Jeffreys) means Bayes estimates assuming the Jeffreys prior 
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Table 2.4 Bayes estimates (Jeffreys) of Exponential mixture parameters and their 
standard errors (in parenthesis)  with 11 220,  25,  0.40,  0.60                                          

and censoring rates, 15%,  30%C  . 
 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

 

 

(20, 25, 0.40) 

 

50 23.5442(7.51464) 25.6308(5.95837) 0.417219(0.0763365)

100 21.917(5.04182) 24.912(4.28264) 0.410358(0.0558259)

200 21.0258(3.72203) 24.8975(3.16793) 0.408054(0.0409154)

300 20.8471(3.09791) 24.8001(2.67412) 0.406275(0.0339158)

(20, 25, 0.60) 

50 21.1924(5.08998) 28.0574(8.61439) 0.594901(0.0735825)

100 20.6477(4.00456) 26.4942(6.16346) 0.598145(0.0557135)

200 20.3572(2.76600) 25.6145(4.66263) 0.601029(0.0429821)

300 20.1368(2.29770) 25.2627(3.68680) 0.598905(0.0345350)

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  
2̂  1̂  

(20, 25, 0.40) 

 

50 25.6965(9.17545) 25.0019(7.20281) 0.433689(0.0825697) 

100 23.5141(6.80246) 24.492(5.20641) 0.425992(0.0691188) 

200 22.4065(5.10022) 24.2453(4.15857) 0.42048(0.0542228) 

300 21.6077(4.20428) 24.3823(3.52196) 0.412942(0.0470203) 

(20, 25, 0.60) 

50 21.1954(6.04377) 29.8813(11.2816) 0.585169(0.0851966) 

100 20.6525(4.55708) 26.7465(8.2803) 0.59932(0.0687103) 

200 20.4043(3.42707) 25.6673(5.82455) 0.598988(0.0556101) 

300 20.2769(2.92470) 25.6005(5.11278) 0.599101(0.0481021) 

*Bayes estimates (Jeffreys) means Bayes estimates assuming the Jeffreys prior 
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Table 2.5 Bayes estimates (Jeffreys) of Exponential mixture parameters and their  
standard errors (in parenthesis) with 11 224,  30,  0.40,  0.60      

and censoring rates, 15%,  30%C  . 
 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

 

 

(24, 30, 0.40) 

50 28.4525 (8.74296) 30.526 (7.33529) 0.41943 (0.0713214) 

100 26.429 (6.30768) 30.3471(5.26008) 0.408741 (0.0558356) 

200 25.3443 (4.63340) 29.9643 (3.91221) 0.407988 (0.0403168) 

300 25.1215 (3.67935) 29.8533 (3.15081) 0.406332 (0.0340150) 

(24, 30, 0.60) 

50 25.3886 (6.05612) 33.6163 (10.4633) 0.598055 (0.0750837) 

100 24.6994 (4.52877) 31.8179 (7.27465) 0.596326 (0.0558714) 

200 24.4408 (3.26834) 30.5856 (5.39760) 0.599955 (0.0394830) 

300 24.2564 (2.73516) 30.2074 (4.34678) 0.600264 (0.0349255) 

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  2̂  1̂  

 

 

(24, 30, 0.40) 

50 30.7791 (11.0733) 30.113 (8.67572) 0.43502 (0.0827341) 

100 28.0551 (8.05774) 29.5693 (6.74718) 0.42164 (0.0685295) 

200 26.6445 (5.9591) 29.013 (5.03314) 0.42097 (0.0550208) 

300 25.8135 (5.01346) 29.4243 (4.20910) 0.413082 (0.0464281) 

(24, 30, 0.60) 

50 25.8844 (7.478) 35.5836 (13.2931) 0.587896 (0.0833194) 

100 24.8118 (5.53324) 32.2868 (9.39505) 0.595039 (0.068322) 

200 24.3729 (4.09697) 30.8291 (7.14997) 0.595966 (0.0566869) 

300 24.2964 (3.55407) 30.5110 (5.95118) 0.601142 (0.0485244) 
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Table 2.6 Bayes estimates (Jeffreys) of Exponential mixture parameters and their 
standard errors (in parenthesis) with 11 232,  40,  0.40,  0.60     and 

censoring rates, 15%,  30%C   
 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

(32, 40, 0.40) 

 

50 37.8677 (12.2342) 41.486 (10.1606) 0.415329 (0.0740837) 

100 35.6497 (8.75582) 40.1724 (7.50539) 0.413157 (0.0546148) 

200 33.8065 (6.08417) 40.0185 (5.12281) 0.407268 (0.0405597) 

300 32.8936 (4.77743) 40.0535 (4.23213) 0.404206 (0.033730) 

(32, 40, 0.60) 

50 34.0149 (8.31294) 44.6464 (13.8107) 0.595337 (0.0725503) 

100 32.9748 (6.01155) 42.0038 (9.83337) 0.601799 (0.0570538) 

200 32.4800 (6.89396) 40.6446 (7.44020) 0.596124 (0.0573039) 

300 32.2165 (3.69155) 40.9386 (6.14946) 0.598584 (0.0335595) 

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  2̂  1̂  

 

 

(24, 30, 0.40) 

50 41.1463 (15.1363) 40.4395 (11.5441) 0.432 (0.08033) 

100 37.338 (10.4582) 38.9936 (8.27658) 0.426787 (0.0690458) 

200 35.1042 (7.87611) 39.2213 (6.61285) 0.419857 (0.0533039) 

300 34.5057 (6.46954) 39.1094 (5.60577) 0.412626 (0.0464537) 

(24, 30, 0.60) 

50 34.628 (9.74306) 46.6247 (18.2667) 0.591098 (0.0856927) 

100 32.829 (7.09451) 42.2487 (12.4881) 0.600617 (0.07125) 

200 32.3489 (5.60999) 41.6362 (9.78215) 0.596277 (0.0557039) 

300 32.3612 (4.64040) 40.8479 (7.88144) 0.598940(0.0477019) 
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Table 2.7 A comparison of the Bayes (Uniform), Bayes (Jeffreys) and Bayes  
(Inverted Gamma)* estimates of Exponential mixture parameters and  
their standard errors (in parenthesis) with 11 215,  20,  0.40      

and censoring rate, 15%C  . 

* Bayes (Inverted Gamma) means Bayes estimates with Inverted Gamma Prior. 

Prior 
1  n  

1̂  2̂  1̂  

U
ni

fo
rm

 

0.40 

 

50 19.4787(6.14801) 21.0817(5.22377) 0.426302(0.06735) 

100 17.3561(4.08402) 20.2799(3.563) 0.41343(0.05630) 

200 16.2309(2.80386) 20.1879(2.60380) 0.408579(0.04063) 

300 15.8535(2.39774) 19.9589(2.04979) 0.406552(0.03359) 

 

0.60 

50 16.736(4.04247) 24.3933(7.95425) 0.598514(0.07171) 

100 15.8177(2.87994) 21.8991(5.05488) 0.59903(0.05413) 

200 15.4015(2.04131) 20.9437(3.51146) 0.598937(0.03899) 

300 15.2484(1.71999) 20.4960(2.88400) 0.599790(0.03330) 

Je
ff

re
ys

 

 

 

0.40 

50 17.9572(5.73418) 20.3207(5.03935) 0.423806(0.069523) 

100 16.6404(3.99468) 19.9765(3.52293) 0.411601(0.05736) 

200 15.9022(2.80208) 19.9752(2.61393) 0.405829(0.04045) 

300 15.6225(2.3830) 19.8788(2.04341) 0.405732(0.033812) 

0.60 

50 16.2107(3.96154) 22.2075(7.09718) 0.601036(0.074442) 

100 15.5932(2.87992) 20.9877(4.93697) 0.600474(0.055520) 

200 15.3002(2.05167) 20.5198(3.49403) 0.599715(0.03963) 

300 15.1837(1.73016) 20.2205(2.88425) 0.600330(0.03372) 

In
ve

rt
ed

 G
am

m
a 

0.40 

 

50 17.9044(5.44333) 20.2078(4.87113) 0.423992(0.0693908) 

100 16.6479(3.88489) 19.9207(3.46098) 0.4179(0.0572292) 

200 15.9929(2.84958) 19.7225(2.52160) 0.409934(0.0404716) 

300 15.6360(2.35914) 19.8569(2.03032) 0.405855(0.0337667) 

 

0.60 

50 16.2564(3.83635) 21.8731(6.65261) 0.601799(0.0743165) 

100 15.6306(2.82744) 20.8434(4.7899) 0.601009(0.0553806) 

200 15.3253(2.03060) 20.4459(3.43912) 0.600064(0.0395534) 

300 15.2019(1.71700) 20.1716(2.85266) 0.600583(0.0336511) 
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Table 2.8 A comparison of Bayes (Uniform), Bayes (Jeffreys) and Bayes (Inverted 

Gamma) estimates of parameters of two component Exponential mixture using 

Davis mixture data. 

 
2.9 Conclusion 

The simulation study has displayed that the estimates of all the parameters are over-estimated 

but the extent of this over-estimation is reduced as the sample size increases. The effect of 

increase (decrease) in censoring on the estimates of the life time parameters is in the form of 

the reduction (increase) in the extent of the over-estimation. The same is true for the estimate 

of the mixing proportion but reduction in the extent of over-estimation is sometimes turns into 

the slight under-estimation. The extent of over-estimation is observed to be proportional to the 

size of the corresponding lifetime or mixing proportion parameter and is inversely 

proportional to the sample size. The estimate of the mixing proportion is over-estimated if 

true mixing proportion of the first component of the mixture is less than the one-half. 

However, when the true mixing proportion of the first component of the mixture is greater 

than one-half, the estimate of the mixing proportion is slightly under-estimated or very close 

to the true parameter value.  

Uniform 

1̂  2̂  1̂  

179.77 (6.610) 331.786 (44.223) 0.898 (0.010) 

Jeffreys 

2̂  2̂  1̂  

179.75 (6.606) 
 

326.399 (43.463) 0.899 (0.010) 

Inverted Gamma 

1̂  2̂  1̂  

172.189 (6.247) 320.840 (42.117) 0.898 (0.010) 
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The increase (decrease) in the proportion of some component of the mixture reduces 

(increases) the standard errors of the corresponding parameter estimate. The standard errors of 

all the life time and mixing proportion estimates are reduced (increased) as the sample size 

increases (decreases). The increase (decrease) in the censoring rate increases (decreases) the 

standard error of all the three estimates. 

The comparison among the three Bayes estimators is as follows. The Bayes (Inverted 

Gamma) estimates of the life time parameters display the least over-estimation while the 

extent of over-estimation is more in case of Bayes (Uniform) than that of Bayes (Jeffreys). 

The Bayes (Inverted Gamma) estimates of the life time parameters have the least standard 

errors as compared to the Bayes (Uniform) and the Bayes (Jeffreys). However, Bayes 

(Jeffreys) have lesser standard errors than the Bayes (Uniform) estimates. On the other hand, 

the estimates of the mixing proportion parameter   have almost the same standard errors for 

all the three Bayes estimates.  The informative Bayes (Inverted Gamma) estimates may be the 

most efficient ones subject to availability of useful prior information that results in 

appropriate hyper parameters. In the real life example, the proposed estimates are superior to 

ones presented in Everitt and Hand (1981) page 77 in terms of the use of Bayesian analysis, 

information on and size of the standard errors.  
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CHAPTER 3 
 
PROPERTIES AND COMPARISON OF THE BAYES ESTIMATES OF 
THE RAYLEIGH FINITE MIXTURE PARAMETERS 

 

3.1   Introduction 

The Exponential distribution, because of its memory-less property, is used for the life-testing 

of the products that do not age with time. But there are several radio-wave and electro-

vacuum devices whose failure rate depends upon their age and, therefore, the Rayleigh 

distribution is preferred. Rayleigh distribution has applications in communication engineering. 

It is used to model lifetimes of the objects which age with time and have increasing hazard 

rate. Mixture models received considerable attention in the area of survival analysis and 

reliability. The use of mixture model becomes inevitable when the data are not available for 

each component. Rather, in many real life situations the data are available only for the overall 

mixture distribution. A population of certain objects is assumed to be composed of two 

subgroups mixed together in an unknown proportion. The random observations taken from 

this population are supposed to be characterized by one of the two distinct unknown members 

of a Rayleigh distribution. So the two component mixture of the Rayleigh distribution is 

recommended to model this population.  

Hirai (1972) derives quadratic coefficients estimators for the two-parameter Rayleigh 

distribution. This is a highly efficient complete sample method, even for small samples. Hirai 

(1976) considers a Type-II censored sample to estimate scale-parameter of the Rayleigh 

distribution. Raqab (1992) also considered Type-II censored sample in prediction problems 

with Rayleigh distribution. Sinha and Howlader (1983) and Lalitha and Mishra (1996) have 

quoted useful references on the Rayleigh model. Fernandez (2000) made Bayesian inference 
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using Type-II doubly censored Rayleigh data. Mostert et al. (1998) conducted Bayesian 

analysis of survival data using the Rayleigh model and Linex Loss. Saleem and Aslam 

(2008a, 2008b and 2009) focused Bayesian estimation of the Rayleigh mixture with fixed and 

Rayleigh distributed censor times.  

In this chapter, the said Rayleigh mixture model is defined in Section 2. The 

likelihood specific expressions are developed in Section 3. In Sections 4-5 the expressions for 

the uninformative Bayes estimators are derived assuming the Uniform, the Jeffreys and the 

Square Root Inverted Gamma priors. The expressions for the variances of the said estimators 

are presented as well. The complete sample expressions of the said estimators and variances 

are derived in Section 6. To highlight and compare the properties of the said Bayes estimates, 

a comprehensive simulation study is conducted considering various sample sizes, different 

censoring rates and a number of combinations of the parameters of the mixture model. A 

comprehensive simulation study is conducted in Section 7. A real life example is discussed in 

Section 8 while the concluding remarks are given in Section 9. The squared error loss 

function is assumed, i.e., posterior means are used as the Bayes estimators. 

 

3.2   The Rayleigh Mixture Model 

Recall a k  component, type-I mixture model of Section 2.2  with finite mixture density 

function given by 
1

( )  ( ),  1, 2,...,  ;  0  ;  0
k

i i i ij
i

f t f t i k t

          . The k  component 

densities are Rayleigh ones given by  2 2 2  ( ) 2  expi i if t t t    , 0,  1, 2,...,i i k    

and  0t  . 
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3.3   The Maximum Likelihood Estimates for Censored Data 

The sampling scheme used in Section 2.3 is adopted here. We define, ijt
 
as the failure time of 

the jth unit belonging to the ith subpopulation, where 1, 2,3,..., ,  1, 2 ij r i  and 
1 2

0 , .
j j

t t T   

The likelihood function 1 2 1( , , )L    t  for the above conditions takes the form as in equation 

(2.2), where 
2

2 2

1

( ) exp( / )i i
i

S T T


   1 2[ ,  ]j jt t t  is data with 11 12 1[ , , , ],  1, 2
iij rt t t i t . 

For the functional forms defined in Section 3.2, the likelihood (2.2) takes the following form.  

 
2 22 2 ( )

1 2 1 2 2 2
1 11

 
( , , ) exp{ ( )} { exp( )}

i k n r
i i i
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i ii i i i

r
r t T
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  



 

       
   

 t  (3.1)    
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



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 





   
 

               
      

 



t

 (3.2) 

Here 
2

2

1

,  1, 2
ir

ij
i

j i

t
t i

r

  . The ML estimates are obtained by simultaneously solving the three 

equations obtained by setting the first order derivatives of the natural log of the likelihood 

(3.1) with respect to 1 2,     and 1  to zero. 

2 2 2 2

22
2 2 2

1

( ) exp( / )
,  1, 2

{ exp( / )}

i i i i
i

i
i i i

i

r t T n r T
r i

T

 
   



 
  


     (3.3)                      

2 2 2 2
2 2 1 2

1 22
2 21

1

1 ( )(exp( / ) exp( / ))
( )

exp( / )i i
i
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   (3.4)                                    

It is not possible to solve the above system of three non-linear equations analytically. 

However, they can be solved by any numerical iterative procedure. A well known asymptotic 
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property of maximum likelihood estimates is that 1ˆ ( ,  I ( ))N θ θ θ . The information 

matrix,  ( )I θ , is defined in equation (2.7) and 1I ( )  θ is a matrix of order  3 3  having the 

variances of ML estimates on the main diagonal and the covariance on the off diagonal 

positions. Following are the elements of the symmetric information matrix. 
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    (3.8)                                    

The approximate values of these components of information matrix can easily be obtained by 

replacing the parameters involved by their respective maximum likelihood estimates obtained 

by the iterative solution of equations (3.3)-(3.4).  

                                                        

3.4 The Posterior Distributions assuming the Conjugate Prior 

Square Root Inverted Gamma prior, being compatible with the likelihood, is considered  

as a conjugated prior for the evaluation of posterior distribution and hence Bayes estimators. 
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3.4.1 The Posterior Distributions assuming the Square Root Inverted Gamma Prior 

The Bayesian framework combines the prior information with the information contained in 

the sample data to formulate the posterior distribution. The posterior distribution is the basis 

for the Bayesian inference. Under the square error loss function, the mean of the posterior 

distribution is considered as the Bayes estimator.  

Let ~ ( , ),  1, 2i i iSRIG m s i   and 1 ~ (0,1)U . Assuming independence, we have a joint 

prior  
2 2

2 1 2
1 2 1

11

( , , ) exp{ ( / )},im
i i i

ii

g s     
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   0,  1,  2 i i  and 10 1  . 

Here  ,  ,  1, 2i im s i   are the hyperparameters to be elicited. This joint prior is incorporated 

with the likelihood (3.3) to yield a joint posterior distribution of ,  1, 2i i   and 1 . 
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3.4.1.1 Bayes Estimators assuming the Square Root Inverted Gamma Prior 

The Bayes estimators of ,  1,2i i   and 1   assuming the SRIG prior are obtained by taking 

expectations of ,  1, 2i i   and 1   with respect to their respective marginal posterior 

distributions.  
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3.4.1.2 Variances of Bayes Estimators assuming Square Root Inverted Gamma Prior 

The expressions for the variances of the Bayes estimators are as under. 
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3.5 The Posterior Distributions assuming the Uninformative Priors 

Uniform and the Jeffreys are the two most commonly used uninformative priors. 

 

3.5.1 The Posterior Distributions assuming the Uniform Prior 

Let i Uniform   (0, ),  1, 2i i    and 1 (0,1)U  . Assuming independence we have a 

joint prior that is proportional to a constant. This joint prior is incorporated with the likelihood 

(3.2) to yield the following joint posterior distribution of ,  1,2i i  and 1 .  
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distribution parameters, ,  1,2i i   and 1  is obtained by integrating out the nuisance 

parameters.  
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3.5.1.1 Bayes Estimators assuming Uniform Prior 

The Bayes estimators of ,  1,2i i   and 1  (under the squared error loss function) are the 
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expected values of ,  1,2i i   and 1  with respect to their respective posterior distributions. It 

is observed that the said estimators and their variances can be obtained by choosing 1/ 2im    

and 0is   in the expressions given in Section 3.4.1. 

 

3.5.2 The Posterior Distributions assuming the Jeffreys Prior 

Using definition of Section 2.5.2 and assuming independence, we obtain a joint prior  

1 2 1
1 2

1
( , , )g   

 
 , which is incorporated with the likelihood (3.2) to yield a joint posterior 

distribution of ,  1,2i i   and 1 .  
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distribution of each parameter is obtained by integrating out the nuisance parameters.  
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3.5.2.1 Bayes Estimators assuming the Jeffreys Prior 

Under the squared error loss function, the expectations of ,  1, 2i i   and 1  with respect to 

their respective posterior distributions are the Bayes estimators assuming the Jeffreys prior. 
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The said estimators and their variances are observed to be obtained by choosing  0im  and 

 0is   in the expressions given in Sections 3.4.1.    

 

3.6 The Complete Sample Expressions 

Under the conditions given in Section 2.6, the expressions for the Bayes estimators and their 

variances are simplified as given in Table 3.1 and Table 3.2. The comments regarding amount 

of information, computational ease and simplification quoted in Section 2.6 also applies here. 

 

3.7    A Simulation Study 

A simulations study is conducted in order to investigate the properties of the Bayes estimators 

in terms of sample sizes and censoring rates. Samples of size 50,  100,  200,  300n   are 

generated from the two component mixture of Rayleigh distribution with a number of 

combinations of parameters such that 1 2( , )     (3,5),  (8,12),  (16, 20),  (25,36)  and 

 1 0.40,  0.60  . Probabilistic mixing was used to generate the mixture data. For each 

observation a random number u  was generated from the uniform on [0, 1] distribution. 

If 1 u  , the observation is taken randomly from 1F  (the Rayleigh distribution with 

parameter 1  ), and the observation is taken randomly from 2F  (the Rayleigh distribution with 

parameter 2  ) otherwise. Remaining details of the simulation scheme are the same as 

mentioned in Section 2.7. The results of the simulation study are presented in Tables 3.3-3.7.  
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Table 3.1 The complete sample expressions for the Bayes and ML estimators  

as T   

Parameters Bayes Estimators  
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Table 3.2 The complete sample expressions for the variances of the Bayes 

 and ML estimators as T   
Parameters Variances of Bayes  
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Variances of ML Estimators 
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Table 3.3 Bayes estimates (Jeffreys)* of Rayleigh mixture parameters and their standard 
errors (in parenthesis) with 11 23,  5,  0.40,  0.60      and censoring 

rates, 15%,  30%C   
 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

(3,5, 0.40) 

50 3.23134(0.502282) 5.02938(0.625413) 0.417125(0.0698353)

100 3.09397(0.330599) 5.03397(0.416239) 0.409646(0.0508097)

200 3.046974(0.21901) 5.020636(0.282609) 0.402913(0.0367326)

300 3.0329198(0.1743307) 5.00748(0.220199) 0.402404(0.028347) 

(3, 5, 0.60) 

50 3.12489(0.392458) 5.11615(0.877498) 0.610581(0.0722052)

100 3.08993(0.290635) 5.03247(0.600118) 0.606719(0.0554734)

200 3.04246(0.187932) 5.00586(0.398795) 0.605195(0.0376934)

300 3.030238(0.160767) 5.01088(0.30495) 0.60319(0.030999) 

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  2̂  1̂  

 

 

(3,5, 0.40) 

50 3.41044(0.641822) 4.79069(0.784077) 0.450247(0.089137) 

100 3.27045(0.4744) 4.87132(0.581756) 0.433759(0.0692577)

200 3.15174(0.335481) 4.9296(0.38126) 0.418022(0.0481476)

300 3.108805(0.291567) 4.95816(0.318616) 0.4114630(0.03858) 

(3, 5, 0.60) 

50 3.20048(0.455437) 5.01647(1.17027) 0.630236(0.0870769)

100 3.11603(0.360813) 4.86894(0.83644) 0.622412(0.0699798)

200 3.0948(0.285844) 4.86557(0.611822) 0.616464(0.0589762)

300 3.069089(0.23587) 4.91305(0.490298) 0.613555(0.047567) 

*Bayes estimates (Jeffreys) means the Bayes estimates assuming the Jeffreys prior 
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Table 3.4 Bayes estimates (Jeffreys) of Rayleigh mixture parameters and their standard 
errors (in parenthesis) with 11 28,  12,  0.40,  0.60      and censoring 

rates, 15%,  30%C   
 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

(8,12, 0.40) 

50 8.57369(1.34349) 12.0273(1.43818) 0.421886(0.0721387) 

100 8.30014(0.96195) 11.9924(1.03634) 0.413154(0.0546364) 

200 8.134013(0.669734) 12.03165(0.70057) 0.4064439(0.037505) 

300 8.116058(0.493910) 12.015357(0.545469) 0.404751(0.030085) 

(8,12, 0.60) 

50 8.35362(1.06451) 12.0887(2.09924) 0.609797(0.0722502) 

100 8.18552(0.807363) 12.0015(1.45755) 0.608234(0.0562353) 

200 8.147259(0.562267) 11.916232(1.012702) 0.6086179(0.0396566)

300 8.1027563(0.440342) 11.942353(0.80511) 0.604298(0.0330128) 

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  2̂  1̂  

 

 

(8,12, 0.40) 

50 9.024(1.76041) 11.489(1.86603) 9.024(1.76041) 

100 8.62143(1.29162) 11.6813(1.35801) 8.62143(1.29162) 

200 8.454500(0.953146) 11.749945(0.986117) 8.454500(0.953146) 

300 8.33747(0.798912) 11.80245(0.795017) 8.33747(0.798912) 

(8,12, 0.60) 

50 8.35329(1.2233) 12.0088(2.64088) 8.35329(1.2233) 

100 8.33408(0.958812) 11.6562(1.91376) 8.33408(0.958812) 

200 8.23932(0.724008) 11.66111(1.356878) 8.23932(0.724008) 

300 8.1442254(0.6374216) 11.790946(1.224265) 8.1442254(0.6374216)
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Table 3.5 Bayes estimates (Jeffreys) of Rayleigh mixture parameters and their standard 
errors (in parenthesis) with 11 216,  20,  0.40,  0.60     and censoring 

rates, 15%,  30%C   
 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

(16, 20, 0.40) 

50 17.2856(2.77738) 19.7064(2.47503) 0.418106(0.0743458) 

100 16.7525(1.99085) 19.8082(1.74753) 0.413326(0.0533546) 

200 16.392669(1.443508) 19.91990(1.240641) 0.406413(0.03950327)

300 16.27085(1.185301) 19.88942(1.03848) 0.4050460(0.03288) 

(16, 20, 0.60) 

50 16.4437(2.05832) 20.2439(3.25763) 0.603891(0.0732955) 

100 16.2059(1.53027) 19.8916(2.40581) 0.605693(0.054399) 

200 16.1263(1.115813) 19.93559(1.70904) 0.603247(0.039846) 

300 16.117628(0.941156) 19.846232(1.4213144) 0.602854(0.0349025) 

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  2̂  1̂  

 

 

(16, 20, 0.40) 

50 17.6617(3.29426) 19.3868(2.96606) 0.437069(0.0867775) 

100 17.0776(2.50343) 19.4974(2.18107) 0.428409(0.0709385) 

200 16.8004(1.842101) 19.51368(1.66737) 0.421603(0.054826) 

300 16.547134(1.69240) 19.60145(1.40818) 0.4165624(0.0463104)

(16, 20, 0.60) 

50 16.3197(2.46724) 20.4771(4.06554) 0.597395(0.0859806) 

100 16.2811(1.75689) 19.9413(3.03369) 0.607658(0.0704141) 

200 16.132797(1.415933) 19.92792(2.350997) 0.605024(0.055708) 

300 16.1678494(1.23173) 19.66430(2.057206) 0.6077401(0.049660) 
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Table 3.6 Bayes estimates (Jeffreys) of Rayleigh mixture parameters and their 
standard errors (in parenthesis) with 11 225,  36,  0.40,  0.60       

and censoring rates, 15%,  30%C  . 
 

11 2,  ,  )(    

 

n  

15% Censoring 

1̂  2̂  1̂  

(25,36,0.40) 

50 27.091(4.42658) 35.8883(4.50264) 0.424279(0.0698265) 

100 26.2495(3.12986) 35.7654(3.13701) 0.414077(0.0561989) 

200 25.62280(2.157442) 35.93667(2.21848) 0.407359(0.038810) 

300 25.34289(1.681530) 35.876649(1.71885) 0.4035629(0.031579) 

(25,36,0.60) 

50 25.9119(3.22669) 36.4048(5.85731) 0.607454(0.0710905) 

100 25.7317(2.41903) 35.6736(4.11674) 0.607249(0.0557861) 

200 25.366839(1.726969) 35.849775(2.96943) 0.60542(0.040997) 

300 25.27275(1.394435) 35.79714(2.45937) 0.604629(0.032762) 

 

11 2,  ,  )(    

 

n  

30% Censoring 

1̂  2̂  1̂  

 

 

(25,36,0.40) 

50 28.4221(5.36772) 34.6144(5.70795) 0.451977(0.0879951) 

100 27.1634(4.05112) 34.849(4.12275) 0.436692(0.0693779) 

200 26.51757(3.04613) 35.0538(2.94486) 0.42363(0.05165) 

300 26.095194(2.552831) 35.1981398(2.454655) 0.418069(0.043926) 

(25,36,0.60) 

50 25.971(3.82141) 35.893(7.28253) 0.613014(0.0840109) 

100 25.7334(2.90073) 35.4097(5.45395) 0.614933(0.0691857) 

200 25.5885078(2.3552110) 35.0946921(4.293542) 0.6143718(0.057976) 

300 25.48305(2.01465) 35.18045(3.60990) 0.613207(0.0492847) 
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Table 3.7 A comparison of Bayes (Jeffreys), Bayes (Uniform) and Bayes (SRIG)* 
estimates and standard errors (in parenthesis) of Rayleigh mixture parameters 

11 23,  5,  0.40,  0.60     with censoring rate, 15%C  . 

*Bayes (SRIG) means the Bayes estimates assuming the Square Root Inverted Gamma prior. 
 

Prior 
1  n  

1̂  2̂  1̂  

U 

N 

I 

F 

O 

R 

M 

 

0.40 

 

50 3.23134(0.502282) 5.02938(0.625413) 0.417125(0.0698353) 

100 3.12326(0.33616) 5.0582(0.42017) 0.410248(0.050769) 

200 3.0607218(0.22106) 5.03261(0.28395) 0.4031739(0.03675) 

300 3.041816(0.17545) 5.015486(0.22094) 0.4025654(0.02836) 

 

0.60 

50 3.15025(0.39047) 5.24344(0.89774) 0.609891(0.07088) 

100 3.10297(0.28877) 5.08651(0.60070) 0.606502(0.054863) 

200 3.04946(0.18748) 5.02996(0.39936) 0.605204(0.037509) 

300 3.03510(0.16060) 5.02623(0.30547) 0.603234(0.030917) 

J 

E 

F 

F 

R 

E 

Y 

S 

 

 

0.40 

50 3.23134(0.50228) 5.02938(0.62541) 0.417125(0.0698353) 

100 3.09397(0.33059) 5.03397(0.41624) 0.409646(0.0508097) 

200 3.046974(0.21901) 5.020636(0.28261) 0.402913(0.0367326) 

300 3.0329198(0.17433) 5.00748(0.22019) 0.402404(0.028347) 

0.60 

50 3.12489(0.39246) 5.11615(0.87749) 0.610581(0.0722052) 

100 3.08993(0.29064) 5.03247(0.60012) 0.606719(0.0554734) 

200 3.04246(0.18793) 5.00586(0.39879) 0.605195(0.0376934) 

300 3.030238(0.16077) 5.01088(0.30495) 0.60319(0.030999) 

 

 

S 

R 

I 

G 

 

0.40 

 

50 3.41649(0.46943) 5.02906(0.60632) 3.41649(0.46943) 

100 3.19301(0.32525) 5.03024(0.41549) 3.19301(0.32525) 

200 3.095991(0.21871) 5.019696(0.28319) 3.095991(0.21871) 

300 3.065164(0.17442) 5.00724(0.22066) 3.065164(0.17442) 

 

0.60 

50 3.24634(0.36121) 5.13588(0.79265) 3.24634(0.36121) 

100 3.15724(0.27792) 5.03233(0.57548) 3.15724(0.27792) 

200 3.07901(0.18526) 5.00091(0.39436) 3.07901(0.18526) 

300 3.05520(0.15972) 5.00671(0.30394) 3.05520(0.15972) 
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3.8 A Real Life Example 

Mendenhall and Hader (1958) mixture data
1 211 12 1 21 22 2( , , , , , , , )r rt t t t t tt    consists of hours 

to failure for ARC-1 VHF radio transmitter receivers of a single commercial airline. The radio 

transmitter receivers that seemed to be failed at or before 630 hours of operation were 

removed from the aeroplanes as a general policy of the airline giving Type-I right censored 

observations at 630T   hours. On the other hand, inspection of the failed units allowed the 

engineers to allocate the failed units to any one of the two different subpopulations. The 

mixture failure data can be found on page 509 in Mendenhall and Hader (1958). Mendenhall 

and Hader fitted Exponential distribution to this data. The transformation x t  of an 

Exponential random variable ( )t  yields a Rayleigh random variable ( )x . This property allows 

us to use the transformed Mendenhall and Hader data set for our analysis. The transformed 

test termination time will be the square root of the termination time used by Mendenhall and 

Hader. It is interesting to note that despite the transformation almost no major computations 

are required to have the data summary required to evaluate the proposed estimates. For 

instance, 
1 1

2
1 1

1 1

 20458
r r

j j
j j

x t
 

    and 
1 2

2
2 2

1 1

50056
r r

j j
j j

x t
 

   . Other sample characteristics 

required are as follows. 1 1 1 2369,  107,  218,  325n r r r r r      . The Rayleigh mixture 

parameters 1 2 1( , , )   can be evaluated using the estimators derived in Section 3.4.  The Bayes 

(Jeffreys) estimates of Rayleigh mixture parameters are computed using equations of the form 

given in Section 4 as 1 2
ˆ ˆ241.25951,  334.84301    and 1ˆ 0.31299   (corrected to five 

decimal places) with their respective standard errors, 1̂( ) 33.80173SE   , 

2̂( ) 25.666077SE    and 1ˆ( ) 0.46371SE   . The estimates are compatible with ones 
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presented in Mendenhall and Hader (1958) and Sinha (1998). It can easily be shown that 

having an informative (SRIG) prior, the standard error of estimates can further be reduced. 

Also, it is encouraging to note that the proposed lifetime estimates are much greater than the 

corresponding sample average lifetimes of the two subgroups i.e., 

1 2191.2 241.25951,  229.6 334.84301t t     as is expected in the right censoring 

situations. The values of Bayes estimates assuming different priors are presented in Table 3.8.  

 
Table 3.8 A comparison of Bayes (Uniform), Bayes (Jeffreys) and Bayes (Informative) 

estimates of the mixture parameters using Mendenhall and Hader mixture data. 

 

3.9  Conclusion 

Some interesting properties of the Bayes estimates are highlighted by the simulation study. 

The estimates of all the mixture parameters are over-estimated.  The extent of over-estimation 

is higher in case of the first lifetime parameter than the second one.  Increasing the sample 

size reduces the extent of over-estimation of all the estimates. The extent of over-estimation 

 is higher for the estimates of parameters of larger size. 

Uniform 

1  2  1  

245.080(34.607) 335.653 (25.881) 0.3137 (0.0265) 

Jeffreys 

1  2  p  

241.260(33.802) 334.843 (25.666) 0.3130 (0.4637) 

Informative Prior 

1  2  1  

225.369(30.392) 331.071(24.719) 0.310 (0.026) 
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Another interesting remark concerning the variances of the estimates of the lifetime 

parameters is that increasing (decreasing) the proportion of a component in the mixture 

reduces (increases) the variance of  the estimate of the corresponding lifetime parameter. The 

variances of estimates of lifetime and proportion parameters are reduced as the sample size 

increases. The effect of increase in censoring rate on the estimates of the first lifetime 

parameter is always observed in the form of an increase in the extent of over-estimation. The 

same is true for the estimates of the mixing proportion parameter. The effect of an increase in 

the censoring rate of the second life time parameter is a bit interesting, slight over-estimation 

is observed to change into a slight under-estimation in most of the cases. However, a slight 

fall in the extent of over-estimation is observed in some rare exceptions. Increasing the 

censoring rate decreases the variances of estimates of all the mixture parameters. 

The Bayes (Jeffreys), Bayes (Uniform) and Bayes (SRIG) estimates of the lifetime 

parameters and those of the proportion parameters are over-estimated. The extent of over-

estimation is slightly higher in case of Bayes (SRIG) but with lesser standard errors of all the 

estimates for lifetime parameters. The extent of over-estimation and variances of the estimates 

are slightly higher in case of Bayes (Uniform) than the Bayes (Jeffreys). So the Bayes lifetime 

estimates with informative (SRIG) prior seem to be more efficient than their uninformative 

counterparts. A better choice of hyperparameters may further improve the efficiency of Bayes 

(SRIG) estimates. In the real life example the results are presented using the three Bayes 

estimates with the help of a Rayleigh mixture. These estimates are comparable with those 

presented in Sinha (1998) with the help of an Exponential mixture. The Bayes (SRIG) 

estimates seem superior in terms of lesser standard errors. 
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CHAPTER 4 

THE PRIOR SELECTION FOR THE MIXTURE OF 
RAYLEIGH DISTRIBUTION USING PREDICTIVE INTERVALS 
 

4.1  Introduction 

Rayleigh model is especially suitable for the life-testing of the products that age with time. In 

this chapter, the 95% Bayes predictive intervals are evaluated for the two component mixture 

of the Rayleigh distribution assuming three conjugate priors i.e.,  Inverted Chi, the Inverted 

Rayleigh and the Square Root Inverted Gamma priors. The conjugate priors have functional 

form compatible with the likelihood. The Bayesian predictive intervals are evaluated for 

different choices of the hyperparameters. The motivation is to explore the prior that produce 

the most precise estimates. The trends are also explored in terms of the hyperparameters of 

each prior distribution as to how do they affect the scatter of the respective predictive 

intervals. These trends serve as a sort of partial prior elicitation, reduce prior subjectivity and 

increase precision of the estimates.  A type-IV mixture sample data is simulated and the type-

I, right censoring is employed. Sloan and Sinha (1991) constructed Bayesian predictive 

intervals for a mixture of Exponential failure-time distributions. Dey and Das (2005) explores 

Bayesian predictive intervals for Rayleigh distribution. Saleem and Aslam (2008b) observe 

the behavior of Bayesian predictive intervals in terms of hyperparameters of three conjugate 

priors. 

 

4.2 The Rayleigh Mixture Model 

A finite type-I mixture distribution as described in Section 3.2 is considered with two 

Rayleigh component densities with unknown parameters and unknown mixing weights. 
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4.3  Sampling 

A type-IV mixture sample as stated in Section 3.3 is simulated to conduct the computations 

involved with ordinary type-I, right censoring. 

 

4.3.1 The Likelihood Function for Censored Data 

For the said type-I mixture with two Rayleigh components and with a sample of type-IV, the 

likelihood function as developed in Section 3.3 is adopted. 

 

4.4  The Posterior Distribution assuming the Inverted Chi Prior 

We assume that 1  and 2  are independent a priory and follow Inverted Chi (IC) distributions 

with 1a  and 2a  degrees of freedom respectively. We further assume that 1  is Uniform 

random variable with support [0, 1]. So the joint prior distribution of 1 2,     and 1  is  

    2 21 2
1 2 1 1

11
, , exp{ (1/ 2 )},  1, 2;  0,  0 1

ai
i i i

ii
g i

 


            

 
(4.1) 

Combining likelihood and prior we get joint posterior distribution of 1 2,     and p  as follows 

        2 2
2 2 2 1(2 2 ) (2 3 3 )

IC 1 2 1
1 10

2 2 2

g , , | t  
  

            exp[ {  {(2 ) (2 2 3 )} 0.5}],  

                                                                

n r r ar k n i n k r i i
i i

i ik

i i i

n r
k

r t k r n i n r k T

       

 



      

        

1 0,  0 1,  1, 2.i i       
(4.2) 

Here 1 2,a a  are the hyperparameters to be elicited. 

 

4.4.1  Bayes Estimators assuming the Inverted Chi Prior 

The expectations of 1 2,     and 1  with respect to their respective marginal posterior 
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distributions are called the Bayes estimators of 1 2,     and 1  (posterior means) under the 

square error loss function. 

   
(2 ) ( 1)1 20

1 22 2

,1ˆ  ( ) ,  1, 2
  2

n r
k ki

i i a i a i
k r r

k k

a ba n rr i
k

A B



   
  

        
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where    1
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n r
k ki

i a a
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

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The algebraic expressions for the variances of the above estimates are given as under.  
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4.4.2  Bayesian Predictive Intervals assuming the Inverted Chi Prior 

The predictive distribution of the future observation y is  

       
1

1 2 1 1 2 1 1 2 1
0 0 0

t , , | t  | , ,  p y g p y d d d
 

           
  

(4.3) 

Where  1 2 1, , | tg     is the posterior distribution given by equation (4.2) and 1 2 1( | , , )p y     

is the data model described in Section 4.2. 
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 (4.4) 

where       
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A (1 )100%  Bayesian prediction interval ( , )L U  is obtained by solving the two 

equations    
0

  t  
2

t
L

U
p y dy p y dy



 


  . After manipulation these equations become 
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(4.6) 

where 2 2 2 2
1 2 2 2

1 1  ( ) ,  ,  1 
1 2 2kA r t n r k T B r t k T a n r k

k k
            and 

2 2 21,  ( 1) ( 1)k kb r k G n r k r k           .  

 

4.5 The Posterior Distribution assuming the Inverted Rayleigh Prior 

We assume that 1  and 2  are independent a priory and follow Inverted Rayleigh (IR) 

distribution with parameters 1a  and 2a  respectively. We further assume that 1  is a Uniform 

 random variable with support as [0, 1]. Here is the joint prior distribution of 1 2,     and 1 . 
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Combining likelihood and prior we get joint posterior distribution of 1 2,   and   as  
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1 2 1      ,  0,  0 1.     

          (4.8) 

Here 1 2,a a  are the hyperparameters to be elicited. 

 

4.5.1  Bayes Estimators assuming the Inverted Rayleigh Prior 

The expectations of 1 2,    and 1  with respect to their respective marginal posterior 

distributions are called the Bayes estimators (posterior means) under the square error loss 

function.

 

     
3

( )0 ( / 2) 21 2
1 2

,1ˆ  ,  1,2
  2

n r
k k

i i i
rk r i

k k

a bn rr i
k

A A




 

       

     
1 1 11 20

1 2

1,
ˆ  1  

   

n r
k k

i r r
k

k k

a bn rr
k A A



 


       

where      1
1 11 20

1 2

,
1

   

n r
k k

i r r
k

k k

a bn rr
k A A




 


     .  

The algebraic expressions for the variances of the above estimates are as under.  
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4.5.2  Bayesian Predictive Intervals assuming the Inverted Rayleigh Prior 

The predictive distribution of the future observation y is  again what is stated in (4.3) 

where  1 2 1, , | tg     is the posterior distribution given by equation (4.8) and  1 2 1| , ,p y     
 
  

is the data model described in Section 4.2. 
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The  (1 )100%  Bayesian Prediction Interval ( , )L U  is obtained by solving the two equation 

as given in Section 4.4.2. On manipulation these equations become 
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where 2 2{(2 ) (2 2 3 )} ,  1, 2.ik i i iA r t k r n i n r k T a i          

 

 



 52 
 

4.6  The Posterior Distribution assuming the Square Root Inverted Gamma Prior 

We assume that 1  and 2  are independent a priory and follow Square Root Inverted Gamma 

(SRIG) distribution with parameters ( 1 1,m s ) and ( 2 2,m s ) respectively. Here 1 2 ,   m m and 

1 2,s s  are the hyperparameters to be elicited. We further assume that 1  is a Uniform random 

variable with support on [0, 1]. So the joint prior distribution of 1 2,     and 1  is the same as 

derived in Section 3.4.1. Combining likelihood and prior we get joint posterior distribution of 

1 2,     and 1  is the same as derived in Section 3.4.1. 

 

4.6.1 Bayes Estimators  assuming the Square Root Inverted Gamma Prior 

The expectations of 1 2,     and 1  with respect to their respective marginal posterior 

distributions are called the Bayes estimators (posterior means) under the square error loss 

function. The resulting Bayes estimates and their respective variances are given in Section 

3.4.1 and Section 3.4.2 respectively. 

 

4.6.2 Bayesian Predictive Intervals assuming the Square Root Inverted Gamma Prior 

The predictive distribution of the future observation y is defined in (4.3). Where 

 1 2 1 , , | tg    is the posterior distribution given in Section 3.4.1 and  1 2 1| , ,p y     is the 

data model described in Section 4.2. 
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The (1 )100%  Bayesian Prediction Interval ( , )L U  is obtained by solving the two 

equations    
0 2

t t
L

U
p y dy p y dy


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  . On algebraic manipulation, these equations become 
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where  2 2  (2 ) (2 2 3 ) ,  1,  2.ik i i iB r t k r n i n r k T b i          

 

4.7 An Example based on Simulated Data 

Consider a random sample of size 400n   from the mixture of two Rayleigh distributions 

with test termination time fixed at 15T  . To generate a mixture data we make use of 

probabilistic mixing with probability 1  and 2  and take 1 0.375  . A uniform number u  is 

generated 400 times and if 1u    the observation is taken randomly from 1F  (the Rayleigh 

distribution with parameter 1 8  ) otherwise from 2F  (from the Rayleigh distribution with 

parameter 2 12  ). Hence the parameters to be estimated are known to be 1 8  , 2 12   

and 1 0.375  . To avoid an extreme sample, we repeat this simulation 1000 times using a 

computer program and an averaged data summary is used to conduct computations. Actually, 

the observations that are greater than T are not observed during a real life test. Hence all the 

observations that are greater than  T are considered as censored ones while calculations are 
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conducted. In practical situations, elements generating observations are easily distinguished to 

be a member of either Subpopulation 1 or Subpopulation 2 of the mixture after minor 

inspection regarding their cause of death. The above data yields 400,n
 

1 146,r  2 197,r 
 

2 2
1 256.9146, 84.3234, 343t t r    and 57n r  . 

 

4.7.1  Bayesian Predictive Intervals assuming the Inverted Chi Prior 

Bayesian Predictive Interval assuming the IC prior are evaluated using equations (4.5) and 

(4.6) for different combinations of the hyperparameters, 1a  and 2a . We used combinations of 

1 10,  40,  70,  100a   and 2 10,  40,70,  100a  . We are only reporting here the values of L  

and U  for those combinations of 1a  and 2a  that produce the shortest predictive intervals. 

Here the trend observed is “the smaller the 1a , the greater the 2a , the shorter will be the 

predictive intervals”. Hence for 1 10a   and 2 10a  , the lower and upper limits of the 95% 

predictive interval are found to be   1.54969L   and  21.41852 U  respectively, while for 

1 10a   and 2 100a  , these are  1.50622 L  and  19.15067 U  respectively. Hence the 

width of the interval reduced from 19.86883   to 17.64445   for the said change in the 

hyperparameters as is clear from Table 4.1. On comparison of Tables 4.1-4.3, it can be 

observed that this reduction is greater than that of with IR prior and is lesser than that of with 

the SRIG prior. 

 

4.7.2  Bayesian Predictive Intervals assuming the Inverted Rayleigh Prior 

Bayesian Predictive Interval assuming the IR prior are evaluated using equations (4.11) and 

(4.12) for the said combinations of the hyperparameters. Although, there is a negligible effect 
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on the spread of the predictive interval but a trend is again observed which is “the lower the 

2a  , the higher the 1a , the narrower are the predictive intervals”. Hence for 1 10a   

and 2 10a  , the lower and upper limits of the 95% predictive interval are found to be 

  1.57204L   and    21.59739U   respectively, while for 1 100a   and 2 10a  , they are 

  1.57798 L  and    21.57672U  . Hence the width of the interval reduced from 

20.02535   to 19.99874   for the said change in the hyperparameters. Here, no further 

reduction is observed, whatever be the combination of the said hyperparameters be used as is 

clear from Table 4.2. A comparison of Tables 4.1-4.3 tell that this reduction is the smaller 

than those of the IR prior and the SRIG priors. This is an indication that the IR is the weakest 

prior to be used. 

 

4.7.3  Bayesian Predictive Intervals assuming the Square Root Inverted Gamma Prior 

Bayesian Predictive Interval assuming the SRIG prior are evaluated using equations (4.15) 

and (4.16) for the said combinations of the hyperparameters. “The lower are the values of 

1 2,  s s  and the higher are the values of 1 2,  m m  , the efficient are the predictive intervals” is the 

trend observed. Hence for 1 2 1 2 10,  10,  10,  10m m s s    , the lower and upper limits of the 

95% predictive interval were found to be  1.52469L  and  21.20159U   respectively, 

while for 1 2 1 2 100,  100,  10,  10m m s s    , these were  1.21844L   and    17.91917U  . 

Hence the width of the interval reduced from 19.6769   to 16.70073   for the said change 

in the hyperparameters as is immediate from Table 4.3. This reduction is the greater than 

those of the IR prior and the IC prior as depicted by Tables 4.1-4.3. This points out that the 

SRIG is the best among these three conjugate priors. It is interesting to note that as compared 
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to scale parameter the change in the shape parameter of the SRIG prior has more control on 

the length of predictive intervals. Also, the change in upper limit is more rapid as compared to 

the change in the lower limit of the predictive interval. 

 

4.7.4  The Objectivity, the Efficiency and the Partial Prior Elicitation             

To chose among the prior distributions each having a functional form compatible with the 

likelihood, a trend can be looked for after studying the length of the predictive intervals for a 

number of combinations of hyperparameters. If a trend is observed on the pattern given in 

Table 4.3, we may proceed as follows to further filter the available prior information. Let the 

prior information from n experts be processed by some suitable method of prior elicitation to 

yield n  sets of hyperparameters. Let 1 2 1 2[( ,  ,  ,  ),i i i ia a b b 1,2,3, , ]i n   be the n  sets of 

hyperparameters, one set for each expert, where n  is the number of experts. Here the 

available prior information varies from expert to expert but the said trend observed may help 

us to reach a consensus by choosing a single set of hyperparameters as 

1 2 1 2 1 1 2 2 1 1 2 2[ ,  ,  ,  ] [ max( ),  max( ),  min( ),  min( )].i i i ia a b b a a a a b b b b      

Hence the subjective prior information turned into objective prior information with the help of 

the said trend observed in the possible values of the hyperparameters. Secondly, this choice of 

hyperparameters would obviously result in the efficient estimation and prediction. As the said 

trend observed narrows the possible range of the unknown hyperparameters, it can be called a 

sort of partial prior elicitation.  

 

4.8 Conclusion 

The Bayesian Predictive Intervals of the future observation assuming the Inverted Chi prior, 
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the Inverted Rayleigh prior and the Square Root Inverted Gamma prior are constructed for 

various choices of the hyperparameters. The Square Root Inverted Gamma prior can produce 

more precise estimates and predictive intervals than its competitors, Inverted Chi prior and 

Inverted Rayleigh prior. Inverted Chi performs better than Inverted Rayleigh in terms of 

efficiency and precision. Inverted Rayleigh prior makes almost no improvement in the 

efficiency of the estimates.  

If a trend can be established with the help of predictive intervals in terms of more 

favorable combinations of the hyperparameters, it is a sort of partial prior elicitation. The said 

trend adds objectivity to the subjective prior information and guaranties more precise 

estimation and prediction.  

The role of the shape parameter of the square root inverted gamma prior is more 

influential as compared to its scale parameter on the breadth of predictive intervals. The 

changes in predictive intervals are mainly contributed by the changes in the upper limits and 

the changes in the lower limits are relatively slow. 
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Table 4.1 Bayesian Predictive Interval for different values of the hyperparameters, 1a and 

2a  of the Inverted Chi prior. 

      
1 10a   1 40a   1 70a   1 100a   1 150a   
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




 

 

1.371958

23.002211

21.6302

L

U








 

 

2 40a   

 

1.567585

21.781478

20.213893

L

U








 

 

1.508695

21.958387

20.449692

L

U








 

 

1.45995

22.052681

20.592731

L

U








 

 

1.417656

22.106942

20.689286

L

U








 

 

1.356888

22.154273

20.797385

L

U








 

 

2 70a   

 

1.551772

20.962175

19.410403

L

U








 

 

1.491471,

21.173564

19.682093

L

U








 

 

1.443135

21.280562

19.837427

L

U








 

 

1.401654

21.340768

19.939114

L

U








 

 

1.342373

21.392575

20.050202

L

U








 

 

2 100a   

 

1.540310

20.189093

18.648783

L

U








 

 

1.475632

20.456404

18.980772

L

U








 

 

1.427213

20.579458

19.152245

L

U








 

 

1.386349

20.646516

19.260167

L

U








 

 

1.328387

20.703284

19.374897

L

U








 

 

2 150a   

 

1.555455

19.822219

18.266764

L

U








 

 

1.453654

19.371259

17.917605

L

U








 

 

1.402766

19.539050

18.136284

L

U








 

 

1.362360

19.620528

18.258168

L

U









 

 

1.306194

19.686750

18.380556

L

U








 

L   the lower limit,U   the upper limit,    the length of the predictive interval 
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Table 4.2 Bayesian Predictive Interval for different values of the hyperparameters, 

1a and 2a  of the Inverted Rayleigh prior.        

     
1 10a   1 40a   1 70a   1 100a   1 150a   

 

2 10a   

 

1.609639

22.870927

21.261288

L

U








 

 

1.611813

22.863517

21.251704

L

U








 

 

1.613980

22.856029

21.242049

L

U








 

 

1.616140

22.848464

21.232324

L

U








 

 

1.619725

22.835686

21.215961

L

U








 

 

2 40a   

 

1.609883

22.882947

21.273064

L

U








 

 

1.612057

22.875558

21.263501

L

U








 

 

1.614224

22.868092

21.253868

L

U








 

 

1.616385

22.860549

21.244164

L

U








 

 

1.619970

22.847808

21.227838

L

U








 

 

2 70a   

 

1.610127

22.894957

21.28483

L

U








 

 

1.612301

22.887589

21.275288

L

U








 

 

1.614469

22.880144

21.265675

L

U








 

 

1.616629

22.872622

21.255993

L

U








 

 

1.620215

22.859919

21.239704

L

U








 

 

2 100a 
 

 

1.610370

22.906956

21.296586

L

U








 

 

1.612545

22.899609

21.287064

L

U








 

 

1.614713

22.892185

21.277472

L

U








 

 

1.616874

22.884685

21.267811

L

U








 

 

1.620460

22.872018

21.251558

L

U








 

 

2 150a 
 

 

1.610776

22.926931

21.316155

L

U








 

 

1.612951

22.919619

21.306668

L

U








 

 

1.615119

22.912230

21.297111

L

U








 

 

1.617281

22.904766

21.287485

L

U








 

 

1.620869

22.892159

21.27129

L

U








 

L   the lower limit,U   the upper limit,    the length of the predictive interval 
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Table 4.3 Bayesian Predictive Interval for different values of the hyper parameters 1m , 

2m and 1 2,  s s of the Square root inverted Gamma prior.      

         

 

1

2

10

10

m

m




 
1

2

40

40

m

m




 
1

2

70

70

m

m




 
1

2

100

100

m

m




 
1

2

150

150

m

m




 

 

1

2

10

10

s

s




 

 

1.559359

22.433777

20.874418

L

U








 

 

1.4239907

21.066623

19.642632

L

U








 

 

1.321602

19.871959

18.550357

L

U








 

 

1.239922

18.840033

17.60011

L

U








 

 

1.133306

17.411904

16.278598

L

U








 

 

1

2

40

40

s

s




 

 

1.561678

22.439364

20.877686

L

U








 

 

1.426038

21.074081

19.648043

L

U








 

 

 

1.323459

19.880053

18.556594

L

U








 

 

1.241641

18.848243

17.606602

L

U








 

 

1.134858

17.419886

16.285028

L

U








 

 

1

2

70

70

s

s




 

 

1.563991

22.444904

20.880913

L

U








 

 

1.428080

21.081505

19.653425

L

U








 

 

1.325312

19.888125

18.562813

L

U








 

 

1.243356

18.856438

17.613082

L

U








 

 

1.136409

17.427860

16.291451

L

U








 

 

1

2

100

100

s

s




 

 

1.566300

22.450397

20.884097

L

U








 

 

1.430119

21.088896

19.658777

L

U








 

 

1.327161

19.896173

18.569012

L

U








 

 

1.245067

18.864617

17.61955

L

U








 

 

1.137956

17.435824

16.297868

L

U








 

 

1

2

150

150

s

s




 

 

1.570135

22.459449

20.889314

L

U








 

 

1.433508

21.101137

19.667629

L

U








 

 

1.330234

19.909537

18.579303

L

U








 

 

1.247911

18.878214

17.630303

L

U








 

 

1.140527

17.449078

16.308551

L

U








 

 L   the lower limit,U   the upper limit,    the length of the predictive interval 



CHAPTER 5 
 
ESTIMATION AND APPLICATION OF THE PARETO MIXTURE 
  

5.1 Introduction 

Pareto model is often used for investigating the distribution of many empirical phenomena 

including personal incomes, city population sizes, the sizes of firms and the lifetimes. In this 

chapter, a lifetime population of certain objects is assumed to be composed of 1 k    

subgroups mixed together in an unknown proportion. The random observations taken from 

this population are supposed to be characterized by one of the k distinct unknown members of 

a Pareto distribution. So the k-component mixture of the Pareto distribution is recommended 

to model this population provided the data is not available on the individual components 

rather on the mixture only. 

Abdel-All et al. (2003) discussed geometrical properties of Pareto distribution. Ismail 

(2004) presented a simple estimator for the shape parameter of the Pareto distribution. Bhat 

(2005) focus Bayes estimation and reliability functions for a two component mixture of Pareto 

lifetime distributions. Sankaran and Nair (2005) discussed the properties of finite mixture of 

Pareto distributions in the context of income analysis.  Nadarajah and Kotz (2005) focused the 

information matrix for a mixture of two Pareto distributions. A truncated Pareto distribution is 

studied by Ali and Nadarajah (2006).  

The uninformative and informative Bayes estimators of 2 -1 k parameters of the k-

components Pareto mixture are derived. In this chapter, the said Pareto mixture, the likelihood 

and the system of three non-linear equations, required to be solved iteratively for the 

computations of maximum likelihood estimates, are developed in Section 2. The components 

of the information matrix are constructed as well. In Section 3, the expressions for the Bayes 
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estimators and their variances are presented along with the expression for the posterior 

predictive distribution and the equations required for finding the predictive intervals. The 

complete sample expressions for the ML and Bayes estimators and variances are derived in 

Section 4. In Section 5, a comprehensive simulation scheme consisting of a large number of 

parameter points is accomplished to highlight the properties and behavior of the estimates in 

terms of sample size, censoring rate, parameters size and the proportion of the components of 

the mixture. A real life data set is used to evaluate and compare the Bayes estimates in 

Section 6. Some interesting comparisons and properties of the proposed estimates are 

discussed in Section 7 as concluding remarks. The Bayes estimates are evaluated under the 

squared error loss function. 

 

5.2 The Maximum Likelihood Estimates for Censored Data 

A finite mixture density function with a known integer number ( 1k  ), of component 

densities of specified parametric form but with k unknown parameters, ,  1, 2, ,i i k    and 

with k unknown mixing weights, ,  1, 2, ,i i k    where 
1

1

1
k

k i
i

 




   is defined as in (2.1). 

The following Pareto distribution is assumed for the k components of the mixture.  

( 1)( )  , 1, 2,...,  ; 1, 2,3,..., ; 0  ;  1i
i i ij i i ijf x x i k j r x               

And the corresponding Survivor functions are ( ) i
i ijS x x  , 1, 2,...,i k . The corresponding 

mixture distribution function is given by 
1

( ) ( )
k

i i
i

F x F x


 . The sampling scheme and 

likelihood function (2.2) of Section 2.3 is considered with a Type-IV sample of size n   units 
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from the Type-I mixture model described above under ordinary type-I, right censoring. Here 

1 211 12 1 21 22 2 1 2( , , , ) ( , , , , , , , , , , , , )
kk r r k k krx x x x x x x x x 1 2x x x x     is data while the 2 1k   

parameters are 1 2( , , , )k  α  and
1

1 2
1

 ( , , , ) , 1
k

k k i
i

    




  π  . 

1 2 ( 1)( 1) ( 1)1 2
1 1 1 2 2 2

1 1 1

-1 2
1 2

( , ) { (   )}{ (   )}...{ (   )}

                  {( ) }

rr r k
k

j j k k kj
j j j

n rk
k

L x x x

T T T

 

 

     

  

    

  

 

   

   

α π x



 

-

( 1)

1 1 1

( , )   
i

i

n rrk k
i

i i ij i
i j i

L x T
    

  

  
   

  
 α π x     (5.2) 

The likelihood function in (5.2) can take the following form 

 
1 2 1 11 1

        ( , )  ( )   exp ln ln
  , , ,

k
n r ir ki i

i

H rk k k
r

i i i ij i
kl i ji i

n rL x k T
k k k

  
 

  

             
       

   α π x


 

(5.3)                                   

Here k
n rH  denotes the number of distinct terms in the expansion of a multinomial   as 

mentioned in Section 2.3. Maximum Likelihood Estimates of α  and of π  are obtained by 

solving the system of  2 1 k  nonlinear equations (5.4) obtained by setting first order 

derivatives of the natural log of the likelihood (5.2) to zero. 

 
1

1

( ) ln( )
ln( ) 0,  1, 2, ,

ii

i

r
i i

ij k
ji i

i
i

r n r p T Tl
x i k

T



  








    

 


    (5.4)

 

1

( )( )
0,  1, 2, , 1

i k

i

i k
k

i i k
i

i

r rl n r T T
i k

T

 

   

 





  
     

 
    (5.5) 

Solving the system of nonlinear equations (5.4)-(5.5) with the help of an iterative numerical 

procedure, the ML estimates can be found. The information matrix with the following 
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elements can help find variances as discussed in Section 2.3. 

1

( )
2

2
1

2 2
2

1

( )( ) (ln )
( ) ,  1, 2, ,

( )

k

i
i

i

k

i
i i

k
i i

i
i

n r T T
rl

E i k
T







 















  






    (5.6)               

2 2

2 2 2
2

1

( )( )
( ) , 1, 2, , 1

( )

i k

i

i k
k

i i k
i

i

r rl n r T T
E i k

T

 

   

 





  
     

 
   (5.7)                  

1

( )

2 2
1

2 2

1

( )( )
( ) ( ) ,  1, 2, ,

(ln ) ( )

k

i
i

i

k

i
i

k
i j j i

i
i

n r T
l l

E E j i k
T T







    














 
    

   




  (5.8)                       

1

( )
2 2

2

1

( ) (ln )
( ) ( ) , 

( )

                                       1, 2, , 1;  1, 2, , .

k

i
i

i

k
i j i j

i
i

l l n r T T
E E

T

j k i k



    










  

  
   

  


 

   (5.9)                          

2

2
2

1

( )( )( )
( ) ,

( )

                           1, 2, , 2;  1 2, , 1

ji k k

i

k
k

i j k
i

i

rl n r T T T T
E

T

i k j i k

  

   

  





   
 

 

     


 

   (5.10) 

 

5.3 Bayes Estimators assuming the Conjugate Prior 

Here Gamma prior is used as a conjugate prior. Let ( , )i i iGamma m s   1, 2,...,  i k   

and 1 2( , , , ) (1,1, ,1)k Dirichlet  π  �  , so 1 ( ) i i im s
i i ig e     , 1, 2,..., .i k  Assuming 

independence, the joint prior is incorporated with the Likelihood (5.3) to give the joint 

posterior and then marginal posterior densities are obtained. The expressions for the Bayes 

estimators under the squared error loss function are given by the respective expectations under 
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the marginal posterior distributions. The following are the expressions for the k estimators of 

the k parameters of the k component densities of the mixture.  

1 1

        
  , ,..., 1 1 2 21 2

, ,...,1 2

1

1 1

ˆ =  ( ) ( 1, 1,..., 1) 

( )( 1)
,  1, 2, ,

ln( ) ln( ) ln( ) ln( )

k
n r

j j
ji

H
n r

i k k k k kk
k k kk

j ji i
r m r mrr

j i

i ij i j ij j
j j

r k r k r k

r mr m
i k

s x k T s x k T






  


 

       

   
 
          

    




 


 

The following are the k estimators of the k mixing proportions of the finite mixture. 

1 2

1 2

        
  , ,..., 1 1

, ,..., 1

1

( )
ˆ =  ( ) ( 1, , 2, , 1) ,  1, 2, ,

ln( ) ln( )

k
n r

k j j
i

k

H k
j jn r

i k k k i i k k r mrk k k j
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  and 

( ) τ , 1 2( , ,..., )k  τ  is the multinomial Beta function having k arguments and can be 

expressed in terms of Gamma functions ( ),  1, 2,...,i i k  . The expressions for the variances 

of the Bayes estimators can be evaluated on the same lines as under.  
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Here B stands for 1 1( 1, , 1)k kr k r k     . 
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5.3.1 Bayes Estimators assuming the Uninformative Priors 

The simplest and the oldest uninformative priors are the Uniform and the Jeffreys. 

 

5.3.1.1 Bayes Estimators assuming the Uniform Prior 

Let us assume a state of ignorance i.e., ,  1, 2, ,i i k    is uniformly distributed over (0, )  

and ,  1, 2, ,i i k    are uniformly distributed over [0,1]. Hence  ( )i i if k  , 0 i    

 1, 2,...,i k   and 1 2( , , , ) (1,1, ,1).k Dirichlet  π  �   Assuming independence we have 

an improper joint prior that is proportional to a constant and is incorporated with the 

likelihood (5.3) to yield a proper joint posterior distribution. The respective marginal posterior 

distributions yield the Bayes estimators under the squared error loss function. The expressions 

for the estimators assuming Uniform prior are obtained by replacing 

2,  1, 2, ,  im i k   and  0,  1, 2, ,  is i k   equations of Section 5.3.  

 

5.3.1.2 Bayes Estimators assuming the Jeffreys Prior 

For the components of the Pareto mixture model given in Section 2, based on the definition  

of Section 2.5.2, the Jeffreys priors are assumed as ( ) 1/i i ig   ,  0 i   ,    

1, 2,...,  i k  and 1 2( , , , ) (1,1, ,1).k Dirichlet  π  �   Assuming independence, the joint 

prior is incorporated with the likelihood (5.3) to have the joint posterior. Then the respective 
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marginal posterior distributions give the Bayes estimators under the squared error loss 

function. The expressions for the Bayes estimators using the Jeffreys prior are obtained by 

replacing 1,  1, 2, ,   im i k    and s 0,  1, 2, ,  i i k   in equations of Section 5.3.  

 

5.3.2 The Posterior Predictive Distribution and Predictive Intervals 

Equation (4.3) defines the posterior predictive distribution. Assuming    2k  , the predictive 

distribution of the future observation y given the data  x  is 

  1 1 2 2

1 1 2 2

1 1 1 2 2
2 2 1y

0 1 1 2 2

1 1 2 2
2 2 1

1 1 2 2

( 1) ( )
( )     { ( 2, 1) 

  ( ) ( )

( ) ( 1)
                   + ( 1, 2) },  0

( ) ( ln  )

n r

r r m
k k k

r r m
k k

r m r mn rp y n r k r k
k s A s A

r m r m
n r k r k y

s A A s y







  
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  
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           

    
      

 

x

 (5.10) 

The (1 )100%  Bayesian Prediction Interval ( , )L U is obtained by solving the two equations 

1

 ( ) ( ) 
2

L

U

p y dy p y dy
 

  x x . On necessary manipulation these equations become 
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where   2
1
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0 1
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i i

r m
k i i ik
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  .   

These predictive intervals when evaluated for a number of combinations of the hyperparameters 

can help locate a range of hyperparameters that may lead to the Informative Bayes estimates 

having lesser variances than the uninformative Bayes estimates. Saleem and Aslam (2008a) 
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used predictive intervals for the Rayleigh mixture to discuss precision of Bayes estimates in 

terms of hyperparameters. Also, a sort of objectivity can be added to the prior information 

provided by a number of experts provided a trend is observed for the narrower predictive 

intervals in terms of the hyperparameters.  

 

5.4 The Complete Sample Expressions 

Under the conditions given in Section 2.6, the expressions for the Bayes estimators and their 

variances are simplified as given in Tables 5.1-5.2. The comments regarding amount of 

information, computational ease and simplification quoted in Section 2.6 also applies here. 

 

5.5 A Simulation Study 

We take random samples of sizes 50,  100,  200,  300n   from the two component mixture  

of Pareto distribution with 1 2( , )   { (0.5,1.5), (1.0,4.0), (2.5,0.5), (4.0,1.0) } and    0.25 , 

0.40 .  Censoring rates assumed are 10%,  20%C  . To generate a mixture data we make use 

of probabilistic mixing. A uniform number u is generated n times and if u  the 

observation is taken randomly from 1F  (the Pareto distribution with parameter 1  ) otherwise    

from 2 F  (from the Pareto distribution with parameter 2 ). Remaining details of the 

simulation study is the same as mentioned in Section 2.7. Some interesting properties of the 

Bayes estimates are highlighted in Tables 5.3-5.4 while a comparison of the estimates is 

summarized in Table 5.5. 
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5.5.1 WinBUGS Code for computations using Gibbs Sampling 

The full Bayesian model can be fit in WinBUGS. Here's an example with 

  15,    10, 5 n r  observations come from component 1 and 5  come from component 2 . 

Here zi is the component indicator and xi are data. The code is given bellow which makes use 

of the Exponential-Pareto connection described in Section 5.6. 

mod  {

               (   1 : ) { . log[ ] log( [ ]);  [ ]  ( [1 : ])}

   (   1 : ) { [ ] log( [ ]);  [ ]  exp( [ [ ]])}

              [1 : ]   ( [1 : ])

             

el

for i in n cens i cens i z i dcat p k

for i in r y i x i y i d alpha z i

p k ddirch ones k

 
 

�

�

�

  (   1 : ) { [ ] (1,  1)}

               (   ( 1) : ) { [ ] exp( [ [ ]]) ( . log[ ], )}

             

for i in k alpha i dgamma

for i in r n x i d alpha z i I cens i
�

�

 

 (   (1,  1),  

  (1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  10,  10, 10,  10,  10),

list ones c

cens c




 

  (2.0,  2.5,  3.0,  2.7,  1.5,  5.5,  8.0,  7.2,  9.4,  8.7,  ,  ,  ,  ,  ),

  (1,  1,  1,  1,  1,  2,  2,  2,  2,  2,  ,  ,  ,  ,  ))

x c NA NA NA NA NA

z c NA NA NA NA NA




 

 

5.6 A Real Life Example 

Mendenhall and Hader mixture data
1 211 12 1 21 22 2( ,  ,...,  ,  ,  ,...,  )r rt t t t t tt  consists of hours to 

failure for ARC-1 VHF radio transmitter receivers. Radio transmitters that had not failed by 

630 hours were removed from the aeroplanes anyway, so these are Type-I right censored data 

at 630 hours. Inspection of failed units allowed the engineers to allocate the failed units to two 

different subpopulations. Mendenhall and Hader fitted Exponential distributions to this data. 

The transformation exp( )x t  of an Exponential distribution yields a Pareto distribution. This 

transformation allowed us to use Mendenhall and Hader (MH) data set for our analysis with 

the obvious transformation of the data. It is interesting to note that despite the transformation 
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exp( )x t  almost no major computations are required to have the data summary required to 

evaluate the estimates. For instance, 
1 1

( )1 1
1 1

ln 20458
r r

j j
j j

x t
 

    and
2 2

( )2 2
1 1

ln  50056
r r

j j
j j

x t
 

   ,  

1 2 1 2369,  107,  218,  325,  - 44n r r r r r n r       . Other sample characteristics required 

are also made available easily. Pareto mixture parameters 1 2 1( ,  ,  )   are estimated using 

estimators derived in Section 5.3. The Bayes (Jeffreys) estimates of the MH mixture lifetime 

parameters, after an obvious re-parameterization as evident from the functional form of the 

component densities of the mixture given in Section 5.2,  are found to 

be 11 22 1 2ˆ ˆ ˆ ˆ( ,  ) (1/ ,  1/ ) (237,333)       where  1 2ˆ ˆ0.00422,  0.00300    (correct to 

five decimal places) are the Bayes (Jeffreys) estimates of Pareto mixture parameters with 

1ˆ( )SE   0.000574 , 2ˆ( ) 0.00023SE    respectively. The variances of the lifetime parameters 

of the MH mixture are computed as 11 22ˆ ˆ( ) 33.8015,  ( ) 25.6659SE SE   . The estimate of 

the proportion parameter of the MH mixture is ˆ 0.313   with ˆ( ) 0.02642SE   . This is 

encouraging to note that the estimates are much greater than the two respective subgroup 

sample means i.e., 1 2191.2 237,  229.6 333t t     which happens in the right censoring 

situations. Also the proposed estimates presented here are slightly more precise than the 

estimates presented in Sinha (1998). A comparison of the various estimates based on the 

Mendenhall and Hader (1958) mixture data is displayed in Table 5.6. 

 

5.7 Conclusion 

The simulation study depicts some interesting properties of the Bayes estimates. The 

properties of the estimates are highlighted in terms of sample sizes, sizes of mixing proportion 

parameters, sizes of the component densities parameters and censoring rates.  
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The estimates of the parameters of the component densities are generally over-estimated 

with a few exceptions in case of the second component. The extent of over-estimation is 

higher in case of the estimates of the first component density parameter. On the other hand the 

estimates of the mixing proportion parameter are observed to be under-estimated with a few 

exceptions. It is interesting to note that the estimates seem to approach the true parameter 

values with the increase in sample size. 

Another interesting remark concerning the variances of the estimates of the component 

densities’ parameters is that increasing (decreasing) the proportion of a component in the 

mixture reduces (increases) the variance of the estimate of the corresponding component 

density parameter. The variances of estimates of all three mixture parameters reduce with an 

increase in sample size. However, the variances of the estimates of the component densities’ 

parameters seem to be quite large in cases when the value of the parameters are large and 

quite small for relatively smaller values of the parameters.  



Table 5.1 The complete sample expressions for the Bayes (Uniform)*,         

Bayes (Jeffreys) and ML estimators as  T  .   

 
Parameters 

 
Bayes Estimators 

(Uniform) 

 
Bayes Estimators  

(Jeffreys ) 

 
ML Estimators 

 

1  
1

1

( 1)

( ln )j

n

x




 1

1( ln )j

n

x
 1

1( ln )j

n

x
 

 

2  
2

2

( 1)

( ln )j

n

x




 2

2( ln )j

n

x
 2

2( ln )j

n

x
 

 

1  
1( 1)

( 2)

n

n




 1( 1)

( 2)

n

n




 1n

n
 

*Bayes (Uniform) means the Bayes estimates assuming the Uniform prior. 

 
 
Table 5.2 The complete sample expressions for the variances of the Bayes (Uniform), 

Bayes (Jeffreys) and ML estimators as  T  . 

Parameters Variances of  
Bayes Estimators 
(Uniform prior) 

Variances of  
Bayes Estimators 
(Jeffreys prior) 

Variances of  
ML  

Estimators 
 

 

1  
1

2
1

1

( ln )j

n

x




 1
2

1( ln )j

n

x
 1

2
1( ln )j

n

x
 

 

2  
2

2
2

1

( ln )j

n

x




 2
2

2( ln )j

n

x
 2

2
2( ln )j

n

x
 

 

1  
1 2

2

( 1)( 1)

( 2) ( 3)

n n

n n

 
 

 1 2
2

( 1)( 1)

( 2) ( 3)

n n

n n

 
 

 1 2
3

n n

n
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Table 5.3 Bayes (Jeffreys) estimates of Pareto mixture parameters and their standard 

errors (in parenthesis) with 11 20.5,  1.5,  0.25,  0.40     and censoring 

rates, 10%,  20%C   

 

11 2,  ,  )(    

 

n  

10% Censoring 

1̂  2̂  1̂  

(0.5, 1.5, 0.25) 

50 0.63926(0.36444) 1.51497(0.31810) 0.25334(0.06394) 

100 0.56961(0.21440) 1.50283(0.22687) 0.24911(0.04824) 

200 0.53881(0.13534) 1.49248(0.15310) 0.24785(0.03389) 

300 0.517657(0.0944522) 1.49677(0.129143) 0.249782(0.027997) 

(0.5, 1.5, 0.40) 

50 0.55870(0.22151) 1.50016(0.34748) 0.39219(0.06957) 

100 0.52027(0.11974) 1.50942(0.22711) 0.39877(0.05048) 

200 0.50815(0.07325) 1.50428(0.16261) 0.39890(0.03515) 

300 0.5054(0.0566698) 1.50235(0.13542) 0.398518(0.0289886)

 

11 2,  ,  )(    

 

n  

20% Censoring 

1̂  2̂  1̂  

 

 

(0.5, 1.5, 0.25) 

50 0.75179(0.55476) 1.58108(0.41216) 0.25461(0.06546) 

100 0.67048(0.33805) 1.50765(0.26856) 0.24579(0.05274) 

200 0.60366(0.20462) 1.49444(0.20106) 0.24513(0.04295) 

300 0.573052(0.165515) 1.49599(0.175607) 0.244256(0.0375923)

(0.5, 1.5, 0.40) 

50 0.65813(0.35527) 1.48759(0.38060) 0.38131(0.07868) 

100 0.57586(0.18428) 1.48787(0.30622) 0.38774(0.05822) 

200 0.53164(0.11201) 1.48527(0.20755) 0.39231(0.04185) 

300 0.519594(0.0837556) 1.49218(0.18015) 0.392906(0.0359372)



 

 74 
 

Table 5.4 Bayes estimates (Jeffreys) of Pareto mixture parameters and their standard 

errors (in parenthesis) with 11 21.0,  4.0,  0.25,  0.40     and censoring 

rates, 10%,  20%C  . 

 

11 2,  ,  )(    

 

n  

10% Censoring 

1̂  2̂  1̂  

(1.0, 4.0, 0.25) 

50 1.33812(1.06763) 4.06876(0.82902) 0.25284(0.06420) 

100 1.10941(0.43288) 4.03982(0.58555) 0.24878(0.04572) 

200 1.03321(0.22509) 3.991(0.40274) 0.25084(0.03235) 

300 1.02742(0.185037) 3.97965(0.327512) 0.2498889(0.0265039)

(1.0, 4.0, 0.40) 

50 1.08311(0.45645) 4.05159(0.84810) 0.39995(0.07131) 

100 1.02705(0.23688) 4.01479(0.60296) 0.40027(0.05200) 

200 1.00512(0.14181) 4.01193(0.40115) 0.39855(0.03521) 

300 1.00049(0.108703) 3.99171(0.331273) 0.399337(0.0285543) 

 

11 2,  ,  )(    

 

n  

20% Censoring 

1̂  2̂  1̂  

 

 

(1.0, 4.0, 0.25) 

50 1.81191(2.62688) 4.09448(0.96668) 0.245927(0.06863) 

100 1.38455(0.97628) 3.98446(0.69090) 0.24081(0.05626) 

200 1.18649(0.45700) 3.96388(0.52966) 0.24374(0.04474) 

300 1.12527(0.322429) 3.98573(0.443237) 0.245717(0.0358915) 

(1.0, 4.0, 0.40) 

50 1.29493(0.66903) 3.94695(0.97085) 0.38350(0.07792) 

100 1.10029(0.35337) 3.97788(0.71211) 0.39131(0.05627) 

200 1.04657 (0.20215) 3.95922(0.50577) 0.39668(0.04054) 

300 1.02093(0.1474) 3.98558(0.423434) 0.39626(0.0326351) 
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Table 5.5. A comparison of the Bayes (Uniform), Bayes (Jeffreys) and Bayes (Gamma)* 

estimates of Pareto mixture parameters and their standard errors                     

(in parenthesis) with 11 20.5,  1.5,  0.25    and censoring 

rate, 10%C  . 

*Bayes (Gamma) means the Bayes estimates assuming the Gamma prior. 

 

 

 

 

 

Uniform  

n  
1̂  2̂  ̂  

50 0.79498(0.53338) 1.5329(0.33227) 0.24861(0.06751) 

100 0.62560(0.25225) 1.51213(0.23418) 0.24692(0.04991) 

200 0.56126(0.14727) 1.49772(0.15623) 0.24695(0.03457) 

Jeffreys 

n  
1̂  2̂  ̂  

50 0.63926(0.36444) 1.51497(0.31810) 0.25334(0.06394) 

100 0.56961(0.21440) 1.50283(0.22687) 0.24911(0.04824) 

200 0.53881(0.13534) 1.49248(0.15310) 0.24785(0.03389) 

Gamma 

n  
1̂  2̂  ̂  

50 0.56053(0.24039) 1.40222(0.26659) 0.25142(0.06208) 

100 0.54739(0.17978) 1.44430(0.20676) 0.24765(0.04748) 

200 0.53243(0.12688) 1.46210(0.14604) 0.24684(0.03364) 
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Table 5.6 A comparison of the various estimates based on the Mendenhall and  

Hader (1958) mixture data. 

parameters Mendenhall and 

Hader (1958) 

Sinha  

(1998) 

Saleem and  

Aslam (2010) 

Saleem and Aslam 

(proposed) 

1  234.234 241.227 

(33.957) 

200 

(17.7513) 

237 

(33.8015) 

2  335.664 334.845 

(25.956) 

250 

(14.6994) 

333 

(25.6659) 

1  0.3098 0.313 

(0.0265) 

0.331 

(0.0260) 

0.313 

(0.02642) 

 
 

The effect of an increase in censoring rate on the estimates of the component density 

parameters is observed in terms of an increase in the extent of over-estimation with some rare 

exceptions in case of estimates of the second component density parameter. But the effect of 

an increase in censoring rate on the estimates of the mixing proportion parameter is observed 

in terms of an increase in the extent of under-estimation except a few exceptional cases when 

its over-estimation turns into a slight under estimation with the increase in censoring rate.  

However, this is interesting to note that the variances of all the estimates of the component 

density and mixing proportion parameters are increased with an increase in the censoring rate.  

As the cut off sensor value gets infinitely large, the   complete sample expressions for the 

estimators and variances are greatly simplified. Also variances of the complete sample 

estimates are expected to be reduced further as is clear from the effect of censoring rates.  

An over-estimation is observed in Bayes (Uniform) and Bayes (Jeffreys) estimates of the 

component density parameters with some rare exceptions in case of the second component 

density estimates. On the other hand, the Bayes (Uniform) and the Bayes (Jeffreys) estimates 
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of the mixing proportion parameter are generally under-estimated with some rare exceptions. 

The Bayes (Gamma) estimates of the first component density and mixing proportion 

parameters are over-estimated while under-estimated for the second component density 

parameter. The extent of over-estimation is higher in case of Bayes (Uniform) as compared to 

Bayes (Jeffreys) but the latter has relatively smaller variance. All the Bayes estimates get 

more precise with the increase in sample size. The informative Bayes (Gamma) estimates 

have least variances than the uninformative Bayes estimates. The efficiency of Bayes 

(Gamma) can further be improved with an improvement in the prior information. 

 In the real life example, the proposed estimates evaluated with the help of Pareto 

mixture appears to be slightly more precise than those based on Exponential mixture as 

presented in Sinha (1998).  
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CHAPTER 6 

PROPERTIES AND COMPARISON OF THE BAYES ESTIMAES OF 
THE BURR MIXTURE PARAMETERS 
 

6.1 Introduction 

Burr (1942) has suggested a number of cumulative distribution functions yielding a wide 

range of values of skewness and kurtosis and hence can be used to fit almost any given set of 

unimodal data. Johnson et al. (1994) presented the twelve forms for the cumulative 

distribution function of Burr distribution.  

I. ( ) ,  0 1F y y y    

II. ( ) ( 1)y kF y e   

III. ( ) ( 1) ,  0c kF y y y      

IV. 1/( ) [(( ) / ) 1],  0cF y c y y y c      

V. tan( ) ( 1) ,  / 2 / 2y kF y ce y        

VI. sinh( ) ( 1)k y kF y ce     

VII. ( ) 2 (1 tanh )k kF y y   

VIII. 1( ) [(2 / ) tan ]y kF y e   

IX. ( ) 1 2 /{ {1 } 1} 2}y kF y c e      

X. 
2

( ) (1 ) ,  0  y kF y e y    

XI. ( ) [ (1/ 2 )sin 2 ] ,  0 1kF y y y y      

XII. ( ) 1 (1 ) ,  0c kF y y y                 
 

A special case of Burr Type-XII distribution is discovered as a transformed version of the 

Pareto distribution. The proposed distribution has an advantage over the Pareto distribution in 

terms of its more realistic support. In life testing and reliability we confront with many 

applications where a population under study is supposed to comprise of a number of 

subpopulations mixed together in an unknown proportion. If the observations are supposed to 

be characterized by the proposed Burr distribution, the use of the finite mixture Burr 

distribution becomes inevitable provided the data is not available on the individual 
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components rather on the mixture only. Burr (1942, 1968 and 1973), Burr and Cislak (1968), 

and Rodriguez (1977) devoted special attention to one of these forms, denoted by Type-XII 

whose distribution function ( )F x  is given as below.  

 ( ) 1 (1 ) ,    0,    0,    0c kF x x x c k       

Both c and k are shape parameters. The probability density function is 

 1 ( 1)( )   (1 ) ,   0,    0,   0c c kf x k c x x x k c        

The rth moment about the origin of X can easily be shown to be 

( )  ( / ) ( / 1) / ( 1) ,    r
rE X k k r c r c k ck r           

Tadikamalla (1980) presents a nice account of the Burr and related distribution. Mixtures of 

Burr distribution have not been paid much attention in literature so far. Economou and Caroni 

(2005) have considered a Burr distribution in terms of Graphical tests. Saleem and Aslam 

(2010) are the first to consider a two component mixture of one parameter Burr type-XII 

distribution. In this Chapter, a two component mixture of the proposed Burr distribution is 

considered to model a lifetime mixture data. The said mixture model is defined in section 2. 

The likelihood is discussed in section 3. In section 4, the expressions are derived for the 

Bayes estimators assuming uninformative priors, the uniform and the Jeffreys. Section 5 

consists of the expressions of the Bayes estimators assuming informative Gamma prior. The 

complete sample expressions for the ML and Bayes estimates are given in Section 6. A 

simulation study is conducted in section 7 to highlight some interesting properties of the 

estimates of the proposed Burr mixture in terms of different sample sizes, component density 

and mixing proportion parameter values and sample sizes. A real life application of the 

proposed mixture is presented as well in Section 8 and the concluding remarks are given in 

Section 9.  
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6.2  A Burr Finite Mixture Model 

A finite mixture density function with the k  component densities of specified parametric 

form (but with unknown parameters, ,  1, 2, ,i i k   ) and with unknown mixing weights 

( ,  1, 2, ,i i k   ) is defined as in (2.1). Consider the following Burr distribution (a special 

case of Burr Type-XII) to assume for k  components of the mixture.  

( 1)( )  (1+ ) , 1, 2, ,  ;  0  ;  0i
i i if x x i k x           

This Burr distribution is a practical transformed version of Pareto distribution having a life 

time specific support. It has an interesting relation with the Exponential distribution as well 

through Burr-Exponential link. The motivation for this Burr distribution is derived from the 

fact that it is a transformed version of the one parameter Pareto distribution given by 

( 1)( )  , 1, 2, ,  ;  0  ;  1i
i i if x x i k x           

But, unlike the above Pareto distribution, the considered Burr distribution has support on the 

positive x-axis and hence seems more suitable to fit lifetime data. The mixture model defined 

in (2.1) takes the following form 

( 1)

1

( )   (1+ )  ;   0   1,  1, 2, ,i

k

i i ij i
i

f x x i k   



     . 

The corresponding mixture Survival function is given by  

1

( ) (1 ) i

k

i
i

S T T  



     

where   T is the fixed test termination point used in the ordinary type-I, right censoring. 

 

6.3 The Maximum Likelihood Estimates for Censored Data  

The sampling scheme of Section 2.3 is considered with a Type-IV sample of size   n units 
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from the Type-I mixture model described above under ordinary type-I, right censoring.  The 

likelihood function ( , )L α π x  for the censored data is considered as given in equation (2.2). 

Where 1 2( , , , )kx x x x is data where 1 2( ,  , , ),  1, 2, ,
ii i i irx x x i k x    

( 1)

11 1

( , ) {  (1 ) } {   (1 ) }
kk rin ri i

i i i ij
ji i

L T x
     

 

  α π x      (6.1)                                    

 1 1 1

1

ln ( , )   ln    ln    ( 1) { ln  (1 )}

                                                                        +( ) ln  { (1 ) }

k k k

i i i i i ij
i i i

k
i

i
i

l L r r x

n r T

  



  



       

 

  



α π x

 (6.2)             

The likelihood function in (6.2) can take the following form as well 

 
1 2

k

1 2 , , , 1i=1 1

        ( , )  ( )( ) exp ln  (1 ) ln  (1 )
  , , ,

k
n r r ki i

i

k

H k k
r

i i i ij i
kk k k ii

n rL x k T
k k k

  
 



        
   

   α π x




         (6.3)    

k
n rH  denotes the number of all -k ary  sequences 1 2( , , , )kk k k of non-negative integers as 

defined in Section 2.3. Maximum Likelihood Estimates of ,  1, 2, ,i i k    and of 

,  1, 2, ,i i k    are obtained by solving the system of nonlinear equations (6.4)-(6.5) 

obtained by setting first order derivatives of the log likelihood (6.3) to zero. 

1

1

( ) (1 ) ln(1 )
ln(1 ) 0,  1, 2, ,

(1 )

ii

i

r
i i

ij k
ji i

i
i

r n r T Tl
x i k

T






  







  
     

 



  (6.4)                                   

1

( )((1 ) (1 ) )
0,  1, 2, , 1.

(1 )

i k

i

i k
k

i i k
i

i

r rl n r T T
i k

T

 

   

 





    
     

 
   (6.5)                                   

Variances of the maximum likelihood estimates are on the main diagonal of the inverted 

Information matrix. The elements of the Information matrix as given in equation (2.7) are as 

below. 
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1

( )

2
1

2 2
2

1

( )( )(1 )
( ) ,  1, 2, , .

(ln(1 )) (1 )

k

i
i

i

k

i
i i

k
i i

i
i

n r T
rl

E i k
T T







 












 


  

  




    (6.6) 

 
2 2

2 2
2

1

( )((1 ) (1 ) )
( ) ,  1, 2, , 1

( (1 ) )

i k

i

i
k

i i
i

i

rl n r T T
E i k

T

 

  

 





    
    

 
   (6.7) 

 

1

2
2 2

1

( )
2

1

( )( )(ln(1 ))
( ) ( ) ,  1, 2, ,

(1 ) ( (1 ) )

k

i
i i

k

i
i

ki j j i

i
i

n r T
l l

E E j i k

T T






   








  
 

   
    

 




  (6.8) 

 
1

( )
2 2

1 2

1

(1 ) (ln(1 ))
( ) ( ) ,  1, 2, , ;  1, 2, , 1 

( ) ( (1 ) )

k

i
i

i

k
i j j i

i
i

l l T T
E E i k j k

n r T



    










    

     
     



           (6.9) 

 

2

22

1

1

{(1 ) (1 ) }{(1 ) (1 ) }
( ) 0,

( ) (1 )

                                                     1, 2, , 2,  1 2, , 1

ji k k

i

k

k
j i k

i
i

rl T T T T
E

n r T

i k j i k

  

  


  





      
   

     
 

      




 (6.10) 

The equations (6.5)-(6.6) can be solved using an iterative numerical to reach ML estimates 

and the estimated variances can be evaluated by using equations (6.7)-(6.11) and by inverting 

the information matrix as mentioned above. 

 

6.4 The Posterior Distributions assuming the Uninformative Priors 

Uninformative priors works in the state of ignorance about the parameter of interest. 

  

 



 

 83 
 

6.4.1  The Posterior Distributions assuming the Uniform Prior 

Let us assume a state of ignorance, that is, are uniformly distributed over (0, ) . Hence 

( ) , 0i i i if k     ,  1, 2, ,i k   and 1 2( , , , ) (1,1, ,1).k Dirichlet  π  �   Assuming 

independence we have an improper joint prior that is proportional to a constant which is 

incorporated with the likelihood (6.4) to yield a proper joint posterior distribution as follows. 

1 2

1
 

1 2, , , 11 1

        ( , )  ( )( ) exp{ ( )},
  , , ,

                                                                 0 ,  0 1,  1, 2, , .

k
n r

i i i
U

k

H k k k
r k r

U i i i ik
kk k k ii i

i i

n rg A
k k k

i k

  

 




 

    
 

      

  α π x


  

where 
1 2

1 1 1
1 2, , , 1

( 1)         ( 1, , 1)
  , , ,

k
n r

k

H k
i

U k k rikk k k i ik

rn r r k r k
k k k A






             
    

 





, 
1

k

i
i

r r


 , 

1

ln  (1+ ) ln  (1+ )
ir

ik ij i
j

A x k T


  , 1,2, ,i k  ; and 
1

k

i
i

k n r


  . 

 The following are the respective marginal posterior distributions of ,  1, 2, ,i i k   .  

1 2

1 2
1 1 121 2, , , 2

( 1)        ( ) ( 1, , 1) exp( ),
  , , ,

                                                                             

k
n r

i
Ui

k

H k
r

i U k k i i ikr
kk k k j i k

rn rg r k r k A
k k k A

  







             
    

 x





                                 0 ,  1, 2, , .i i k    

 

Marginal distributions of ,  1, 2, ,i i k     can be obtained on the same lines as well. 

 

6.4.1.1 Bayes Estimators assuming the Uniform Prior 

Under the squared error loss function, the posterior expectations of ,  1, 2, ,i i k     

and ,  1, 2, , 1i i k    with respect to the above marginal posterior distributions are  

the Bayes estimators are as under. 
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1 2

1
1 1 2 1

1 2, , ,

( 1)( 2)        ˆ  ( 1, , 1) ,
  , , ,

                                                                                   

k
n r

j

k

H
ji

i U k k r rikk k k i j jkik

rrn r r k r k
k k k AA





 



               
    

 





                          1, 2, , .i k 

 

1 2

1
1 1 1

1 2, , , 1

( 1)       ˆ ( 1, ,  2, , 1)  ,  
, , ,

                                                                               

k
n r

j

k

H k
j

i U i i k k r
kk k k j jk

rn r r k r k r k
k k k A









                 
     

 


 


                                        1, 2, , .i k 

 

The expressions for the variances of the Bayes estimators are 

1 2

1
1 1 3 1

1 2, , ,

1
1 1 2 1

1 2

( 1)( 3)      ˆ( ) ( 1, , 1)
, , ,

( 1)( 2)              ( 1, , 1)
, , ,

k
n r

j

k

j

H
ji

i U k k r rikk k k i j jkik

ji
U k k r rik jkik

rrn rV r k r k
k k k AA

rrn r r k r k
k k k AA





 




 

               
    

          
 

 








1 2

2

, , ,

,

                                                                                                               1, 2, , .

k
n r

k

H

k k k i j

i k





     
    



 




 

1 2

1
1 1 1

1 2, , , 1

1
1 1

1 2

( 1)      ˆ( )  ( 1, ,  3, , 1)
, , ,

( 1)                 ( 1, ,  2, , 1)
  , , ,

k
n r

j

k

j

H k
j

i U i i k k r
kk k k j jk

j
U i i k k r

k jk

rn rV r k r k r k
k k k A

rn r r k r k r k
k k k A











               
    

           
 

 


 


 


1 2

2

1
, , , 1

,
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6.4.2  The Posterior Distributions assuming the Jeffreys Prior 

For the Burr models given in Section 6.2, the Jeffreys priors, as defined in Section 2.5.2,  

are  ( ) 1/ ,  1, 2, ,i i ig i k    ,  0 i    and 1 2( , , , ) (1,1, ,1).k Dirichlet  π  �   

Assuming independence, the joint prior is incorporated with the likelihood (6.4) to have the 

joint posterior distribution as follows. 
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 The following are the respective marginal posterior distributions of ,  1, 2, ,i i k   .  
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Marginal distributions of ,  1, 2, ,i i k    can be obtained similarly. 

 

6.4.2.1 Bayes Estimators assuming the Jeffreys Prior  

The expressions for the Bayes estimators of ,  ,  1, 2, ,i i i k    , assuming the Jeffreys prior 

are obtained by taking expectations of ,  ,  1, 2, ,i i i k     with respect to their respective 

marginal posterior distributions. 
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The expressions for the variances of the Bayes estimators are 
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6.5 The Posterior Distributions assuming the Conjugate Prior 

The suitable informative conjugate prior to be used in this case is the Gamma prior. 

 

6.5.1  The Posterior Distributions assuming the Gamma Prior 

Let ( , ),  1, 2, ,i i iGamma m s i k     and 1 2( , , , ) (1,1, ,1).k Dirichlet  π  �   That is, 

1( ) exp( ),  1, 2, , .im
i i i ig s i k       Assuming independence, the joint prior is incorporated 

with the Likelihood to give the following joint posterior distribution of ,   ( 1, 2, )i i i k     as 

follows. 
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Marginal distributions of ,  1, 2, ,i i k    can be obtained in the same fashion as well. 

 

6.5.1.1 Bayes Estimators assuming the Gamma Prior 

To find the expressions for the Bayes estimators of ,  ,  1, 2, ,i i i k     under the squared 

error loss function are given by the posterior means of ,  ,  1, 2, ,i i i k    with respect to the 

respective marginal posterior distributions. The posterior means or the Bayes estimators of 

,  ,  1, 2, ,i i i k     under the squared error loss function are given bellow.       
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 The expressions for the variances of the Bayes estimators are 
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6.6 The Complete Sample Expressions 

Under the conditions given in Section 2.6, the expressions for the Bayes estimators and their 

variances are simplified as given in Tables 6.1-6.2. The comments regarding amount of 

information, computational ease and simplification quoted in Section 2.6 also applies here. 

 

Table 6.1 The complete sample expressions for the Bayes and Maximum likelihood 

estimators as T   
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Table 6.2 The complete sample expressions for the variances of the Bayes and Maximum 

likelihood estimators as T   

Parameters Variances of Bayes 
Estimators 

(Uniform prior) 

Variances of Bayes 
Estimators 

(Jeffreys prior) 

Variances of ML 
Estimators 
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6.7  A Simulation Study 

A simulations study is conducted to investigate the performance of the Bayes estimators in 

terms of sample size, censoring rate and various parameter points. Samples of sizes 

50,  100,  150,  250 n  from the two component mixture of Burr distribution with parameters 

1 2,     and p  such that  1 2( , ) (0.5,1.5),(1,4),(1.5,4.5),(2,6),(3,9)    and   0.4,0.6p . 

Probabilistic mixing was used to generate the mixture data. For each observation a random 

number u was generated from the Uniform distribution on [0, 1]. If u p , the observation 

was taken randomly from 1F  (the Burr distribution with parameter 1 ) and if  u p , the 

observation was taken randomly from 2F  (the Burr distribution with parameter 2 ). The 

choice of the censoring time, in each case, was made in such a way that the censoring rate in 

the resulting sample to be approximately 10% and 20%. The remaining details of the 

simulation study are the same as mentioned in Section 2.7. The findings of the simulation 

study are 6.3-6.8. Some properties of Bayes estimates are depicted in Tables 6.3-6.7 in terms 
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of sample sizes, censoring rates and parameter points while Table 6.8 displays a comparison 

among the three Bayes estimates. 

 

6.8 A Real Life Example 

Davis (1952) mixture data,
1 211 12 1 21 22 2( , , , , , , , )r rt t t t t t  t , consist of hours to failure for electronic 

valves, an indicator valve and for a transmitter valve, both used in aircraft radar sets. The 

category of the failure is not known until the failure occurs. Inspection of failed units allows 

the engineers to allocate the failed units to two different subpopulations. The total number of 

tests carried out was 1003. The data set can be seen in Everitt and Hand (1981) on page 76. 

 Davis (1952) fitted exponential distributions to this data. The transformation 

exp( ) 1x t    of an exponential distribution yields the said Burr distribution. This 

transformation allowed us to use the Davis mixture data set for our analysis with the obvious 

transformation of the data. 

It is interesting to note that despite the transformation exp( ) 1x t    almost no major 

computations are required to have the data summary required to evaluate the estimates. 

For instance,  
11

1 1
1 1

ln(1 ) 151130
rr

j j
j j

x t
 

     and 
2 2

2 2
1 1

ln(1 ) 22550
r r

j j
j j

x t
 

    . 

Other sample characteristics required are also made available easily. 

1 2 1 21003,  891,  92,  983,  - 20n r r r r r n r        

Burr mixture parameters 1 2( ,  ,  )p  are evaluated using estimators derived in Sections 4.2. 

The Bayes (Jeffreys) estimates 11 22ˆ ˆ( ,  )  of the Davis mixture lifetime parameters, after an 

obvious re-parameterization as evident from the functional form of the component densities of 

the mixture given in section 2,  are found to be 
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11 22 1 2ˆ ˆ ˆ ˆ( ,  ) (1/ ,  1/ ) (179.553,320.513)      where 1 2ˆ ˆ0.00557,  0.00312    (correct to 

five decimal places) are the Bayes (Jeffreys) estimates of Burr mixture parameters. 

with 1 2ˆ ˆ ( ) 0.000204599,  ( ) 0.000414361 SE SE   respectively. The standard errors of the 

lifetime estimates of the Davis mixture are computed as 

11 22ˆ ˆ( ) 6.60642,  ( ) 34.6218SE SE   . The estimate of the proportion parameter of the Davis 

mixture is ˆ 0.901774p   with ˆ ( ) 0.00968426SE p  . This is encouraging to note that the 

estimates are much greater than the two respective subgroup sample means i.e., 

1 2169.618 179.533,  245.109 320.513t t     which happens in the right censoring 

situations. Also the proposed estimates presented here are superior to those presented in 

Everitt and Hand (1981) in terms of Bayesian analysis and information on standard error of 

the estimates. 

 

6.9 Conclusion 

The simulation study highlights some interesting properties of the Bayes estimates. The 

estimates of the component density parameters are generally over-estimated with some rare 

exceptions in case of the second component. Also the extent of over-estimation is higher in 

case of the estimates of the first component density. The estimates of the mixing proportion 

parameter are under-estimated. 

The variances of the estimates of the component density parameters seem to be quite large 

(small) for the relatively larger (smaller) values of the parameters. The variances of the 

estimates of all the mixture parameters are reduced as the sample size increases. Another 

remark concerning the variances of the estimates of the component density parameter is that  
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Table 6.3 Bayes estimates (Jeffreys) of Burr mixture parameters and their standard 

errors (in parenthesis) with 1 2 10.5,  1.5,  0.4,  0.6      and censoring 

rates, 10%, 20%C  . 

11 2,  ,  )(     n   

10% Censoring 

1̂  2̂  1̂  

(0.50,1.50,0.40) 

50 0.563245(0.212829) 1.51724(0.350963) 0.394582(0.0705581) 

100 0.520936(0.120153) 1.51118(0.24209) 0.396616(0.0495987) 

150 0.512384(0.0894173) 1.4997(0.196023) 0.398852(0.0422593) 

250 0.507501(0.0652004) 1.49638(0.144842) 0.39834(0.0307418) 

(0.50,1.50,0.60) 

50 0.519267(0.12693) 1.5424 (0.425452) 0.586989(0.070666) 

100 0.504399(0.082749) 1.50667(0.271674) 0.596691(0.0507526) 

150 0.502445(0.0608871) 1.5077(0.214871) 0.598474(0.0377672) 

250 0.50212(0.0464165) 1.50679(0.168577) 0.597064(0.0296618) 

11 2,  ,  )(     n   

20% Censoring 

1̂  2̂  1̂  

 

 

(0.50,1.50,0.40) 

50 0.6404 (0.34735) 1.51658(0.411874) 0.385982(0.0745899) 

100 0.586221(0.195429) 1.47665(0.296009) 0.386156(0.0580364) 

150 0.549889(0.145323) 1.47479(0.239981) 0.391429(0.0497621) 

250 0.532881(0.100711) 1.47944(0.190058) 0.392174(0.0385402) 

(0.50,1.50,0.60) 

50 0.571622(0.189876) 1.47721(0.467739) 0.573809(0.0750944) 

100 0.526989(0.112306) 1.50218(0.344042) 0.587839(0.0551717) 

150 0.51612(0.0783961) 1.48119(0.260268) 0.591603(0.0439547) 

250 0.508395(0.0575559) 1.49048(0.2059) 0.594128(0.0328895) 
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Table 6.4 Bayes estimates (Jeffreys) of Burr mixture parameters and their standard errors 

(in parenthesis) with 1 2 11,  4,  0.4,  0.6      and censoring rates, 

10%, 20%C  . 

11 2,  ,  )(     n   

10% Censoring 

1̂  2̂  1̂  

(1,4,0.40) 

50 1.05859 (0.432553) 4.0607 (0.880235) 0.402192(0.0704995) 

100 1.01501(0.214597) 4.01675(0.584037) 0.399608(0.0488987) 

150 1.01573 (0.164883) 4.01755(0.481591) 0.397903(0.0405221) 

250 1.0097 (0.125912) 4.00205(0.362668) 0.397923 (0.0301273)

(1,4,0.60) 

50 1.01158(0.220562) 4.11042 (1.05833) 0.59385(0.0662204) 

100 1.00607(0.154689) 4.07697  (0.720826) 0.595179(0.049105) 

150 0.99606 (0.117763) 4.08422 (0.558807) 0.598152(0.0397743) 

250 1.00347(0.091507) 4.03637(0.419032) 0.600054(0.0315375) 

11 2,  ,  )(     n   

20% Censoring 

1̂  2̂  1̂  

(1,4,0.40) 

50 1.26429 (0.665624) 4.01434(1.06246) 0.380388(0.0783151) 

100 1.11181(0.381456) 3.9762 (0.708017) 0.389651(0.0583055) 

150 1.07679 (0.264695) 3.97594 (0.595045) 0.392915 (0.0461595)

250 1.03148(0.16494) 3.96117 (0.458245) 0.395455(0.0349119) 

(1,4,0.60) 

50 1.09388(0.375397) 4.09782 (1.26045) 0.583676(0.0720112) 

100 1.02327(0.19868) 4.01138(0.759477) 0.592166 (0.0502647)

150 1.01544 (0.140035) 4.01229(0.642166) 0.596443(0.0408702) 

250 1.00772 (0.105068) 4.00914 (0.480287) 0.597176(0.0310371) 
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Table 6.5 Bayes estimates (Jeffreys) of Burr mixture parameters and their standard errors 

(in parenthesis) with 1 2 11.5,  4.5,  0.4,  0.6      and censoring rates, 

10%, 20%C  . 

11 2,  ,  )(     n   

10% Censoring 

1̂  2̂  1̂  

(1.5, 4.5, 0.40) 

50 1.65432 (0.663069) 4.53824 (1.02221) 0.395974 (0.0678431)

100 1.56651 (0.330227) 4.5318 (0.70716) 0.399456(0.0512226) 

150 1.53337 (0.25748) 4.55327(0.57368) 0.397583(0.0417845) 

250 1.5147 (0.19115) 4.49578 (0.444445) 0.399321 (0.0315452)

(1.5, 4.5, 0.60) 

50 1.55619 (0.396521) 4.5808 (1.32379) 0.593287(0.0684327) 

100 1.51279(0.228073) 4.56592 (0.840181) 0.597119(0.0492198) 

150 1.5024 (0.182506) 4.55109 (0.662697) 0.599052(0.0397222) 

250 1.50809 (0.139536) 4.51429(0.505096) 0.597286 (0.0309605)

11 2,  ,  )(     n   

20% Censoring 

1̂  2̂  1̂  

 

 

(1.5, 4.5, 0.40) 

50 2.09186 (4.34854) 4.53329(1.2932) 0.382362(0.0784554) 

100 1.76558(0.600229) 4.45613 (0.901008) 0.384719(0.0611575) 

150 1.64011 (0.396642) 4.46345 (0.734239) 0.389264 (0.0496912)

250 1.58799(0.277652) 4.41593 (0.545297) 0.391451(0.0396456) 

(1.5, 4.5, 0.60) 

50 1.69817(0.552653) 4.42644 (1.45622) 0.574746(0.0764883) 

100 1.57887 (0.317611) 4.41687(1.00175) 0.585484 (0.0535618)

150 1.54821 (0.242906) 4.44615(0.829013) 0.593493(0.0435132) 

250 1.528 (0.162178) 4.47749 (0.598865) 0.596234 (0.0337839)
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Table 6.6 Bayes estimates (Jeffreys) of Burr mixture parameters and their standard errors 

(in parenthesis) with 1 2 12,  6,  0.4,  0.6      and censoring rates, 

10%, 20%C  . 

11 2,  ,  )(     n   

10% Censoring 

1̂  2̂  1̂  

(2, 6, 0.40) 

50 2.24802 (0.892374) 6.08347 (1.46152) 0.39222 (0.0735677) 

100 2.1047 (0.48607) 6.04929 (0.988346) 0.39982(0.0489828) 

150 2.05072 (0.341908) 5.98034(0.755177) 0.398359 (0.0410617)

250 2.03708 (0.262091) 6.00147 (0.578209) 0.398681 (0.0316621)

(2, 6, 0.60) 

50 2.06376 (0.508258) 6.11963 (1.65882) 0.59171(0.0699953) 

100 2.01328 (0.299106) 6.04311 (1.10052) 0.594093(0.0513299) 

150 2.01817 (0.252408) 6.00469 (0.866215) 0.597663(0.0394122) 

250 2.01162 (0.182618) 5.98786(0.636022) 0.59811 (0.0304095) 

11 2,  ,  )(     n   

20% Censoring 

1̂  2̂  1̂  

 

 

(2, 6, 0.40) 

50 2.55501 (1.21309) 6.11759(1.72849) 0.383844(0.0760835) 

100 2.31269 (0.733036) 5.96783 (1.23128) 0.387768(0.0602393) 

150 2.18727 (0.544893) 5.98064 (0.975847) 0.393029 (0.0500159)

250 2.11128(0.379879) 5.94117 (0.769935) 0.393224 (0.0380757)

(2, 6, 0.60) 

50 2.29083(0.801201) 5.93851 (1.97904) 0.577608(0.0797272) 

100 2.12503 (0.449143) 5.8851(1.41371) 0.582634 (0.0550745)

150 2.05912 (0.317596) 5.97591 (1.04254) 0.590399(0.0442136) 

250 2.03132 (0.225605) 5.95041 (0.85228) 0.597053 (0.033136) 
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Table 6.7 Bayes estimates (Jeffreys) of Burr mixture parameters and their standard errors 

(in parenthesis) with 1 2 13,  9,  0.4,  0.6      and censoring rates, 

10%, 20%C  . 

11 2,  ,  )(     n   

10% Censoring 

1̂  2̂  1̂  

(3, 9, 0.40) 

50 3.37042 (1.20231) 9.06943 (2.15165) 0.394986 (0.0691276)

100 3.13938 (0.703413) 9.07597 (1.41536) 0.397902(0.0498643) 

150 3.09128 (0.559522) 8.917 (1.16236) 0.395241 (0.0414236)

250 3.04876 (0.382345) 9.0191 (0.850516) 0.398479 (0.0318075)

 (3, 9, 0.60) 

50 3.1006 (0.774) 9.22706 (2.52174) 0.588959 (0.0720894)

100 3.04615 (0.481875) 9.07567 (1.71137) 0.595205(0.0488415) 

150 3.00422 (0.362654) 9.04443 (1.31639) 0.595519(0.0397315) 

250 3.0096 (0.267927) 9.04052(1.01117) 0.598233 (0.0305004)

11 2,  ,  )(     n   

20% Censoring 

1̂  2̂  1̂  

 

 

(3, 9, 0.40) 

50 3.89071 (1.82021) 9.05081(2.49022) 0.378545 (0.0764212)

100 3.49255 (1.17498) 8.91389 (1.8142) 0.386272(0.0618352) 

150 3.26047 (0.780437) 8.88824 (1.42102) 0.391153 (0.0488964)

250 3.17515(0.564824) 8.92507 (1.08309) 0.39318 (0.0391872) 

 (3, 9, 0.60) 

50 3.4299 (1.17686) 8.9686 (3.0807) 0.570009(0.075344) 

100 3.14887 (0.660037) 8.86383 (2.00151) 0.588208 (0.0554302)

150 3.08956 (0.468894) 8.94374 (1.59991) 0.59083(0.0424624) 

250 3.04201 (0.331964) 9.01183 (1.17878) 0.597894 (0.0318113)
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Table 6.8  A comparison of the Bayes (Uniform) and Bayes (Jeffreys) estimates of Burr 

mixture parameters and their standard errors (in parenthesis) with 

11 20.5,  1.5,  0.25    and censoring rate, 10%C  . 

Prior 
1  n  

1̂  2̂  1̂  

U 

N 

I 

F 

O 

R 

M 

 

0.40 

 

50 0.611974(0.250889) 1.56884(0.36821) 0.393967(0.072079) 

100 0.53933(0.126465) 1.53816(0.247555) 0.396633(0.049935) 

150 0.5238(0.092298) 1.518(0.198886) 0.398937(0.042411) 

250 0.514029(0.066073) 1.50749(0.14596) 0.398427(0.030777) 

 

0.60 

50 0.538668(0.13124) 1.63726(0.447465) 0.588103(0.070883) 

100 0.513777(0.083804) 1.55149(0.277023) 0.597118(0.050738) 

150 0.508742(0.061413) 1.537(0.217735) 0.598709(0.037749) 

250 0.505952(0.046685) 1.52397(0.169821) 0.59718(0.029653) 

J 

E 

F 

F 

R 

E 

Y 

S 

 

 

0.40 

50 0.563245(0.212829) 1.51724(0.350963) 0.394582(0.070558) 

100 0.520936(0.120153) 1.51118(0.24209) 0.396616(0.049599) 

150 0.512384(0.089417) 1.4997(0.196023) 0.398852(0.042259) 

250 0.507501(0.0652) 1.49638(0.144842) 0.39834(0.030742) 

0.60 

50 0.519267(0.12693) 1.5424(0.425452) 0.586989(0.070666) 

100 0.504399(0.082749) 1.50667(0.271674) 0.596691(0.050753) 

150 0.502445(0.060887) 1.5077(0.214871) 0.598474(0.037767) 

250 0.50212(0.046417) 1.50679(0.168578) 0.597064(0.029662) 

 

 

  G 

A 

M 

M 

A 

0.40 

 

50 0.549771(0.191977) 1.46817(0.327981) 0.549771(0.191977) 

100 0.51722(0.117482) 1.48681(0.235083) 0.51722(0.117482) 

150 0.510209(0.088367) 1.48359(0.192396) 0.510209(0.088367) 

250 0.506287(0.064957) 1.48678(0.143341) 0.506287(0.064957) 

 

0.60 

50 0.515472(0.124858) 1.4655(0.387584) 0.515472(0.124858) 

100 0.502549(0.082407) 1.47172(0.261841) 0.502549(0.082407) 

150 0.501148(0.060726) 1.48489(0.209638) 0.501148(0.060726) 

250 0.549771(0.191977) 1.46817(0.327981) 0.549771(0.191977) 
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increasing (decreasing) the proportion of a component in the mixture reduces (increases) the 

variance of the estimate of the corresponding parameter. 

The effect of censoring on the estimates of the first component density parameter is in 

the form of an increase in the extent of over-estimation. To be more specific, larger degree of 

censoring results in bigger size of over-estimation. The slight over-estimation in the estimates 

of the second component density parameter turns into a slight under-estimation and in the 

exceptional cases there is an increase in the extent of the under-estimation in response to an 

increase in the censoring rate. On the other hand the extent of under-estimation is further 

increased in case of estimates of the proportion parameter as a result of an increase in the 

censoring rates. It is interesting to note that the size of this over or under-estimation is directly 

proportional to the amount of the censoring rates and inversely proportional to the sample size. 

Also the extent of over-estimation is more intensive for larger parameter values. The increase in 

censoring rate increases the variances of estimates of all the mixture parameters.  

Furthermore, increasing the sample size reduces the variance of all the estimates without 

any exception. The increase in proportion of a component in the mixture reduces the variance of 

the estimate of the corresponding parameter.  

As the cut off sensor value tends to infinity, the complete sample expressions for the 

estimators and variances are greatly simplified. In addition, variances of the complete sample 

estimates are expected to be reduced further as there in no more effect of censoring. 

 The Bayes (Uniform), the Bayes (Jeffreys) and the Bayes (Gamma) estimates of the 

parameter of the first component density are over-estimated but the extent of over-estimation is 

higher in case of Uniform and the least in case of Gamma. On the other hand, the Bayes 

(Uniform) estimates of the parameter of the second component density are over-estimated as 
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well, while the Bayes (Jeffreys) estimates are generally over- estimated but with some 

exceptions and the Bayes (Gamma) estimates are under-estimated. It is interesting to note that 

the all the three Bayes estimates of the mixing proportion are under-estimated.  

The Bayes estimates of the parameters of the component densities with informative 

(Gamma) prior have smaller variances than their Uniform and Jeffreys counterparts while the 

Bayes (Jeffreys) show smaller variances than Bayes (Uniform). However, the variances of the 

Bayes (Gamma) estimates of the mixing proportion parameter may not be the least all the times.  

In other words, the Bayes estimates with informative (Gamma) prior seem to be more efficient 

than their uninformative counterparts with a few exceptions only in case of the mixing 

proportion estimates. Actually, the quality of Bayes (Gamma) depends upon the quality of prior 

information. The hyperparameters can be considered as outcomes of the prior information. The 

informative Bayes estimates may turn out to be the most efficient provided that useful prior 

information and consequently the appropriate hyperparameters are available. In the real life 

example, the proposed estimates are superior in terms of the Bayesian analysis, information on 

and size of standard error of the estimates. 
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CHAPTER 7 
 
PROPERTIES AND APPLICATION OF A POWER FUNCTION 
MIXTURE 
 
7.1  Introduction 
 
The Power Function distribution is often used to study the electrical component reliability. A 

population of lifetimes of a certain electrical elements may be divided into a number of 

subpopulations depending upon the possible causes of failure. If the random observations taken 

from this population are supposed to be characterized by one of the two distinct members of a 

Power Function distribution, then the two components mixture of the Power Function 

distribution is recommended to model this population provided the data is not available on the 

individual components rather on the mixture only. Acheson and McElwee (1952) reported that 

an electronic tube may fail either due to gaseous defects or mechanical defects or normal 

deterioration of the cathode. Mixed failure populations can be found in Davis (1952), Epstein 

and Sobel (1953) and Mendenhall and Hader (1958). Ahsanullah and Lutful Kabir (1974) gave 

a brief characterization of the Power Function distribution. Meniconi and Barry (1996) 

discussed the electrical component reliability using the Power Function distribution. Ali et al. 

(2005) considers a characterization of Power Function distribution. Saleem and Aslam (2010) 

focused Bayesian analysis of the Power Function mixture. There are a few works available in 

literature on the Bayesian analysis of the Power Function distribution and its mixture. 

 In this chapter, the Power Function mixture model is defined in Section 2 and its 

likelihood is developed in Section 3. The system of three non-linear equations, required to be 

solved iteratively for the computations of maximum likelihood estimates, is derived. The 

components of the information matrix are constructed as well. In Sections 4-5, the elegant 

closed form expressions for the Bayes estimators and their variances are derived. In Section 5, 
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the posterior predictive distribution with the informative prior is derived and the equations 

required to find the lower and upper limits of the predictive intervals are constructed. The 

complete sample expressions of these estimators and their variances are derived in Section 6. In 

Section 7, a comprehensive simulation scheme including a large number of parameter points is 

followed to highlight the properties and behavior of the estimates in terms of sample size, 

censoring rate, parameters size and the proportion of the components of the mixture. A 

simulated mixture data with censored observations is generated by probabilistic mixing for the 

computational purposes.  A real life data is used in Section 8 for the evaluation of Bayes 

estimates. Some concluding remarks are given in Section 9. The Bayes estimates are evaluated 

under the squared error loss function.  

 

7.2  A Power Function Mixture Model 

A finite mixture density function with the two component densities of specified parametric form 

(but with unknown parameters, ,  1, 2, ,i i k   ) and with unknown mixing weights 

( ,  1, 2, ,i i k   ) is defined as in (2.2). And the corresponding mixture survival function is as 

follows. 
1

( ) 1 ( ) 1  ( )
k

i i
i

S x F x F x


     . The Power Function distributions assumed for the 

two components of the mixture are as under. 

1( ) , 1, 2, ,  ;  >0 ;  0 1i
i i if x x i k x      

And the corresponding distribution functions are given as follow. 

( ) 1 , 1, 2, ,  ;  >0 ;  0 1i
i iF x x i k x       
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7.3 The Maximum Likelihood Estimates for Censored Data 

The sampling scheme of Section 2.3 is considered with a Type-IV sample of size   n units from 

the Type-I mixture model described above under ordinary type-I, right censoring.  We define, 

ijx  as the failure time of the jth unit belonging to the ith subpopulation, 1, 2,3,..., ij r , where 

1, 2, , ;  0 iji k x T   . The likelihood function, ( , )L α π x , under the above conditions takes 

the form as given in (2.2) where 
1 211 12 1 21 22 2( , , , , , , , )r rx x x x x x  x  is data. 

 
1 2

1 2 1 21 1 -
1 1 1 2 2 2 1 2

1 1

( , ) {   }{   }{(1 ( )) }
r r

n r
j j

j j

L x x T T         

 

   α π x  (7.1) 

After some simplifications the above likelihood can be expressed as  

 

    
1 2

1 2

1 2
1 2

0 0

1 1 2 2
1 11 2

( , )    1
  

1 1
exp[ { ln( ) ( ) ln }] exp[ { ln( ) ln }]

                           

n r k
r k m r m

k m

r r
r r

j jj j

k n r kL
k m

k m T m T
x x

 

   


  

 

 

 

     

 

 

α π x

 (7.2)   

The ML estimates of 1 2,     and 1  are obtained by solving the system of nonlinear equations 

(7.3)-(7.4), obtained by differentiating the likelihood (7.2) with respect to 1,  2  and 1  

respectively.  

  
1 2

1 1 2

( ) (ln )
ln( ) 0,  1, 2

(1 )

iir
i i

ij
ji i

r n r T Tl
x i

T T



 


   


    

      (7.3) 
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Variances of the ML estimates are on the main diagonal of the inverted Information matrix. The 

Information matrix is given by the expectation of the negative Hessian matrix of the form as 

given by equation (2.7), where elements of the Information matrix are: 
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7.4 The Posterior Distributions assuming the Uninformative Priors                                          

Uniform and Jeffreys are considered as uninformative priors to implement Bayesian inference. 

 

7.4.1   The Posterior Distributions assuming the Uniform Prior 

Let  ~  (0, ),  1, 2i iUniform i      and 1 ~ (0,1)U . Assuming independence, we have a 

joint prior that is proportional to a constant. This joint prior is incorporated with the likelihood 

(7.3) to yield a joint posterior distribution of 1 2,     and 1   as follows.  
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   . The marginal 

posterior distribution of each parameter is obtained by integrating out the nuisance parameters.  
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7.4.1.1 Bayes Estimators assuming the Uniform Prior  

The expectation of each parameter with respect to its marginal posterior distribution gives 

 the Bayes estimator of the parameter under the square error loss function. The Bayes  

estimators of 1 2,     and 1  assuming the uniform prior, are given by 
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7.4.1.2 Variances of the Bayes Estimators assuming the Uniform Prior  

The variances of the Bayes estimators of 1 2,     and 1  assuming the uniform prior are: 
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7.4.2  The Posterior Distributions assuming the Jeffreys Prior 

According to the definition of Jeffreys prior given in Section 2.5.2, Let  ( ) ( )i ig I   
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Section 7.2. Assuming independence, the joint prior, 1 2 1
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1
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 
  is incorporated with 

the likelihood (7.3) to yield a joint posterior distribution of 1 2,     and 1  as follows.  
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The marginal posterior distribution of each parameter is obtained by integrating out the 

nuisance parameters. The expectation of each parameter with respect to its marginal posterior 
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distribution gives the Bayes estimator of the parameter under the square error loss function. 

Marginal posterior distributions follow as under. 
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7.4.2.1  Bayes Estimators assuming the Jeffreys Prior 

The Bayes estimators of 1 2,     and 1  assuming the Jeffreys prior are: 
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7.4.2.2 Variances of the Bayes Estimators assuming the Jeffreys Prior  

The variances of the Bayes estimators of 1 2,     and 1  using the Jeffreys prior are: 
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7.5  The Posterior Distributions assuming the Conjugate Prior 

The appropriate informative prior, being compatible with the likelihood, is the Gamma 

distribution.  

 

7.5.1  The Posterior Distribution assuming the Gamma Prior 

Let  ~ ( , ),  1, 2i i iGamma i     and 1 ~ (0,1)U . Assuming independence, the joint prior, 
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a joint posterior distribution of 1 2,     and 1 . The marginal posterior distribution of each 
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marginal posterior densities are obtained by integrating out the nuisance parameters as follows. 
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7.5.1.1 Bayes Estimators assuming the Gamma Prior 

The Bayes estimators under the squared error loss function are obtained by takingexpectations 

of 1 2,     and 1  with respect to their respective marginal posterior densities as under.  
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7.5.1.2 Variances of the Bayes Estimators assuming the Gamma Prior  

The expressions for the variances of the above estimators are as follows. 
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7.5.2  Predictive Distribution  

The predictive distribution contains the information about the independent future random 

observation given the observations, already accomplished.  

 

7.5.2.1 Predictive Intervals assuming the Gamma Prior 

The posterior predictive distribution of a future observation y is defined as follows 

1

1 2 1 1 2 1 1 2 1

0 0 0

( ) ( , , ) ( , , )    p y g p y d d d        
 

   x x  

Where 1 21 1
1 2 1 1 1 2 2( , , )   p y y y          is the Pareto mixture model described in  

Section 7.2 and 1 2 1( , , )g    x  is the joint posterior distribution given in Section 7.5.1.                                  

The posterior predictive distribution of the future observation y becomes as under. 
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A (1 )100%a Bayesian predictive interval  ,L U  can be obtained by solving the two equations 
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1
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  x x  which can be expressed as follows. 
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These predictive intervals when evaluated for a number of combinations of the hyperparameters 

can help locate a range of hyperparameters that may lead to the informative Bayes estimates 

having smaller variances than the uninformative Bayes estimates. Saleem and Aslam (2008b) 

used predictive intervals for the Rayleigh mixture to discuss precision of Bayes estimates in 

terms of hyperparameters. If a trend in terms of the hyperparameters is observed for the 

narrower predictive intervals, then a sort of objectivity may be added to the prior information 

provided by a number of experts.  

 

7.6  The Complete Sample Expressions  

Under the conditions given in Section 2.6 and letting 1 T  the expressions for the Bayes 

estimators and their variances are simplified as given in Tables 7.1-7.2. The comments 

regarding amount of information, computational ease and simplification quoted in Section 2.6 

also apply here. 
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7.7 A Simulation Study 

A simulations study reflects the performance of Bayes estimates under the impact of sample 

size and censoring rate. Samples of sizes 50,100,200n   were generated from the two 

component mixture of Power Function distribution with parameters 1,  2   and 1  such that 

 

Table 7.1 The complete sample expressions for the Bayes (Uniform), Bayes (Jeffreys) 

and ML estimators as T→1 

 

 

 

 

 

 

 

 

 

 

Table 7.2 The complete sample expressions for the variances of the Bayes (Uniform), 

Bayes (Jeffreys) and ML estimators as T→1 

 
Parameters 
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 1 0.25,0.40   and 1 2( , )   (0.25,0.8), (0.25, 4.0), (4.0,1.2) . Probabilistic mixing was used 

to generate the mixture data. For each observation a random number u  was generated from the 

Uniform on [0, 1] distribution. If 1 u  , the observation was taken randomly from 1F  (the 

Power Function distribution with parameter 1 ) and if 1 u  , the observation was taken 

randomly from 2F  (the Power Function distribution with parameter 2  ). The choice of the 

censoring time, in each case, was made in such a way that the censoring rate in the resulting 

sample to be approximately 10% and 20%. The results of the simulation study are presented in 

Tables 7.3-7.5. A careful study of the Tables 7.3-7.4 depicts many interesting properties of the 

Bayes estimates while Table 7.5 presents an interesting among three Bayes estimates.  

 

7.8  A Real Life Example 

Mendenhall and Hader (1958) mixture data
1 211 12 1 21 22 2( , , , , , , , )r rt t t t t tt    consisting of hours 

to failure for ARC-1 VHF radio transmitter receivers of a single commercial airline is 

considered. The radio transmitter receivers that seemed to be failed at or before 630 hours of 

operation were removed from the aeroplanes as a general policy of the airline giving Type-I 

right censored observations at 630T   hours. On the other hand, inspection of the failed units 

allowed the engineers to allocate the failed units to any one of the two different subpopulations. 

The mixture failure data can be found on page 509 in Mendenhall and Hader (1958). 

Mendenhall and Hader fitted Exponential distribution to this data. The transformation 

exp( )x t   of an Exponential random variable ( )t  yields a Power Function random 

variable ( )x . This property allows us to use the transformed Mendenhall and Hader data set for 

our analysis. It is interesting to note that despite the transformation almost no major 
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computations are required to have the data summary required to evaluate the proposed 

estimates. For instance,  
1 1

1
1 11

1
ln 20458

r r

j
j jj

t
x 

 
   

 
   and 

2 2

2
1 12

1
ln 50056

r r

j
j jj

t
x 

 
   

 
  . While 

other sample characteristics required are: 

1 1 1 2369, 107, 218, 325n r r r r r      , 1 2 1 2369,  107,  218,  325n r r r r r      . 

The Power Function mixture parameters 11 2,  ,  )(   can be evaluated using the estimators 

derived in Sections 7.4-7.5.  The Bayes (Jeffreys) estimates of Power Function mixture 

parameters are computed as 1 2
ˆ ˆ0.005,  0.004    and 1ˆ 0.331   (corrected to three decimal 

places) with their respective standard errors, 1
ˆ( ) 0.0005SE   , 2

ˆ( ) 0.000305SE   and 

1ˆ( ) 0.0261SE   . The lifetime estimates of the average lifetimes of the two subgroups of the 

radio transmitter receivers require a subtle re-parameterization and turn out to be 

11
1

1 1
ˆ 200

ˆ 0.005



    and 22

2

1 1
ˆ 250

ˆ 0.004



    while the proportion estimate remains the 

same as 1ˆ 0.331  . The standard errors of these lifetime estimates are computed as 

 11
ˆ 17.7513SE   ,  22

ˆ 14.6994SE    while the standard error of proportion estimate is again 

unchanged as 1ˆ( ) 0.0261SE   . In general, the standard errors of all the three proposed 

estimates are much lower than the respective standard errors of the estimates presented in 

Mendenhall and Hader (1958) and Sinha (1998). The proposed proportion estimate is almost the 

same while the proposed lifetime estimates seem to be under-estimated but on the other hand it 

is encouraging to note that the proposed lifetime estimates are greater than the corresponding 

sample average lifetimes of the two subgroups i.e., 1 2191.2 200, 229.6 250t t     as is 

expected in the right censoring situations.  
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7.9  Conclusion  

The simulation study displays some interesting properties of the Bayes estimates. The estimates 

of the first component density parameter seem to be under-estimated with some exceptions. It is 

interesting to note that when the component density parameters are very well separated, the 

estimates of the first component density parameter seem to be over-estimated with rare 

exception. The estimates of the second density parameter are under-estimated while the 

estimates of the proportion parameter are over-estimated. 

The effect of an increase in censoring on the estimates of component density and 

proportion parameters is in terms of an increase in the intensity of over or under-estimation. 

However, with an increase in the censoring rate, the variances of the estimates of the 

component densities parameters are reduced while the variances of the estimates of mixing 

proportion parameter are increased.   

The extent of over-estimation or under-estimation is more intensive for larger parameter 

values of the component density and proportion parameters. Also, the variances of the estimates 

of the component density parameters seem to be quite large (small) for the relatively larger 

(smaller) values of the parameters. The variance of the estimate of population proportion is 

slightly increased for larger values of proportion parameter. Furthermore, increasing the sample 

size reduces the variance of estimate of the component density and proportion parameters. The 

increase (decrease) in proportion of a component in the mixture reduces (increases) the variance 

of the estimate of the corresponding component density parameter.  

 As the cut off sensor value tends to unity, the complete sample expressions for the 

estimators and variances are greatly simplified. In addition, variances of the complete sample 

estimates are expected to be reduced further as there in no more effect of censoring. 
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 The Bayes (Jeffreys) estimates of the first component density parameter are under-

estimated while the Bayes (Uniform) estimate of the first lifetime parameter are over-estimated 

with rare exception. Both the uninformative estimates of the second component density 

parameter are under-estimated but the size of under-estimation is greater in case of Bayes 

(Jeffreys) estimates which have smaller variances. On the other hand, both Bayes (Uniform) 

and Bayes (Jeffreys) estimates of the mixing proportion parameter are over-estimated but the 

degree of over-estimation is relatively lower in case of Bayes (Uniform). The Bayes (Gamma) 

estimates under-estimate the component density parameters while over-estimate the mixing 

proportion parameter. The Bayes estimates with informative (Gamma) prior  

seem to be more efficient than their uninformative counterparts with a few exceptions. A better 

choice of hyperparameters may further improve the efficiency of Bayes (Gamma) estimates.  

In the real life example, the proposed estimates of lifetime parameters are under-

estimated as compared with Mendenhall and Hader estimates but they are much greater than the 

respective sample mean lifetime hours as expected in the censoring situations. However, the 

proposed estimate of the mixing proportion parameter is very close to its Mendenhall and Hader 

counterpart. On the other hand the standard errors of all the three proposed estimates are much 

smaller than the respective standard errors of the estimates based on the Mendenhall and Hader 

data which are found in literature so far. 
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Table 7.3 Bayes (Jeffreys) estimates and standard errors (in parenthesis) of the Power 

Function mixture parameters 11 20.25,  0.80,  0.25,  0.40    with 

censoring rates, 10%,  20%C  . 

11 2,  ,  )(    
n  

 

10% Censoring 

1̂  2̂  1̂  

(0.25,0.80,0.25) 

50 0.25699(0.07913) 0.69890(0.11625) 0.27988(0.06417) 

100 0.24843(0.05176) 0.70151(0.08360) 0.27580(0.04644) 

200 0.24476(0.03550) 0.70452(0.05513) 0.27178(0.03296) 

(0.25,0.80,0.40) 

50 0.24768(0.05574) 0.68351(0.12279) 0.43998(0.07646) 

100 0.24332(0.04001) 0.68707(0.09317) 0.42836(0.05211) 

200 0.24182(0.02811) 0.68538(0.06095) 0.42771(0.03745) 

11 2,  ,  )(    
n  

 

20% Censoring 

1̂  2̂  1̂  

 

 

(0.25,0.80,0.25) 

50 0.23887(0.06792) 0.59072(0.09852) 0.31059(0.07440) 

100 0.23515(0.04750) 0.59785(0.06784) 0.30317(0.05306) 

200 0.22895(0.03266) 0.59675(0.04842) 0.29708(0.03675) 

(0.25,0.80,0.40) 

50 0.22746(0.05258) 0.57930(0.10895) 0.46877(0.07859) 

100 0.22499(0.03453) 0.57602(0.07515) 0.46362(0.05484) 

200 0.22450(0.02422) 0.57533(0.04989) 0.46520(0.03873) 

* Bayes (Jeffreys) estimates means the Bayes estimates assuming the Jeffreys prior. 
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Table7. 4 Bayes (Jeffreys) estimates and standard errors (in parenthesis) of Power 

Function mixture parameters 11 20.25,  4.0,  0.25,  0.40    with 

censoring rates, 10%,  20%C  . 

11 2,  ,  )(    

n  

 

10% Censoring 

1̂  2̂  1̂  

(0.25, 4.0,0.25) 

50 0.27262(0.08456) 3.45464(0.58315) 0.29606(0.06569) 

100 0.25680(0.05241) 3.44268(0.40634) 0.28711(0.04848) 

200 0.25372(0.03697) 3.45236(0.27788) 0.28400(0.03504) 

(0.25, 4.0,0.40) 

50 0.25840(0.06170) 3.33087(0.63844) 0.45969(0.07703) 

100 0.25343(0.04250) 3.3663(0.44998) 0.44790(0.05318) 

200 0.24856(0.02779) 3.33515(0.29534) 0.44766(0.03752) 

11 2,  ,  )(    

n  

 

20% Censoring 

1̂  2̂  1̂  

 

(0.25, 4.0,0.25) 

50 0.26582(0.08309) 2.88349(0.47852) 0.26582(0.08309) 

100 0.25693(0.05164) 2.91572(0.33675) 0.25693(0.05164) 

200 0.24911(0.03504) 2.90049(0.22766) 0.24911(0.03504) 

(0.25, 4.0,0.40) 

50 0.25738(0.05936) 2.71112(0.50059) 0.25738(0.05936) 

100 0.24967(0.03942) 2.71219(0.36629) 0.24967(0.03942) 

200 0.24615(0.02740) 2.72858(0.25181) 0.24615(0.02740) 
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Table 7.5 A comparison of Bayes (Uniform), Bayes (Jeffreys) and Bayes (Gamma)* 

estimates and standard errors (in parenthesis) of Power Function mixture 

parameters 11 20.25,  0.80,  0.25,  0.40    with censoring rate, 10%C  . 

* Bayes (Gamma) estimates means the Bayes estimates assuming the Gamma prior.

Prior 
1  n  

1̂  2̂  1̂  

U
ni

fo
rm

 

0.25 

50 0.28052(0.08780) 0.72078(0.11999) 0.27987(0.06421) 

100 0.25918(0.05433) 0.71233(0.08487) 0.27580(0.04645) 

200 0.24995(0.03629) 0.70991(0.05554) 0.27178(0.03296) 

0.40 

50 0.261191(0.05930) 0.711567(0.12798) 0.440075(0.07652) 

100 0.249875(0.04112) 0.700587(0.09493) 0.428405(0.05212) 

200 0.24503(0.02850) 0.69206 (0.06151) 0.42773 (0.03746) 

Je
ff

re
ys

 

0.25 

50 0.23887(0.06792) 0.59072(0.09852) 0.31059(0.07440) 

100 0.23515(0.04750) 0.59785(0.06784) 0.30317(0.05306) 

200 0.22895(0.03266) 0.59675(0.04842) 0.29708(0.03675) 

0.40 

50 0.24768(0.05574) 0.68351(0.12279) 0.43998(0.07646) 

100 0.24332(0.04001) 0.68707(0.09317) 0.42836(0.05211) 

200 0.24182(0.02811) 0.68538(0.06095) 0.42771(0.03745) 

G
am

m
a 

0.25 

50 0.22801(0.05992) 0.62844(0.09346) 0.27966(0.06407) 

100 0.23524(0.04584) 0.66504(0.07513) 0.275701 (0.04641) 

200 0.23844(0.03360) 0.68595(0.05231) 0.27173(0.03295) 

0.40 

50 0.23131(0.04766) 0.59756(0.09364) 0.43952(0.07633) 

100 0.23542(0.03734) 0.64292(0.08174) 0.42815(0.05207) 

200 0.23795(0.02717) 0.66306(0.05717) 0.42761(0.03744) 
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CHAPTER 8 

CONCLUSION AND RECOMMENDATIONS 

The type-I mixtures of distributions belonging to a subclass of single parameter exponential 

family are considered. All the members of this subclass are related with exponential 

distribution  by one one link or the other as described in the WinBUGS code in case of Pareto 

mixture. Also the common feature of this subclass is the availability of the closed form Bayes 

estimates of the mixture parameters. The motivation behind the consideration of this subclass 

is to explore the closed form expressions for the Bayes estimators and their variances as well 

as the conduct of the real life applications in a number of ways. However, the MCMC 

methods e.g., Gibbs Sampling can be applied to deal with gerneralized versions of the 

distributions. 

An extensive simulation study is conducted for Exponential, Rayleigh, Pareto, Burr 

and Power Function mixtures. The simulation study is conducted to explore some interesting 

properties of the Bayes estimates for various combinations of the component density 

parameters, various mixing proportions, different sample sizes and for different censoring 

rates.  Although the findings for each mixture were reported in the respective chapters yet it is 

considered useful to present an overall conclusion in terms of parameters of the component 

densities, mixing proportion parameter of all the mixtures under study. 

The first component density parameter is observed to be over-estimated in all the 

mixtures except the Power Function mixture where it is under-estimated. The second 

component density parameter is also under-estimated in Power Function mixture while in rest 

of the mixtures, its estimates have a mixed behavior, sometimes over-estimated and 

sometimes under-estimated. On the other hand, the mixing proportion parameter is over-
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estimated in all the mixtures under study except in Pareto and Burr mixtures where it is under-

estimated.  

The effect of censoring rates on estimates of parameters in different mixtures is as 

follows. The degree of over-estimation of the estimates of the first component density 

parameter increases with the increase in the censoring rate except in Power Function mixture 

where degree of under-estimation of under-estimated estimates increases. The response of the 

estimates of the second component density parameter is different. It is observed that the slight 

over-estimation of these estimates turns into a slight under-estimation while the degree of 

under-estimation increases with the increase in censoring rate for the under-estimated 

estimates. So far as the behavior of the estimates of the mixing proportion parameter is 

concerned, their degree of over-estimation increases in Exponential, Rayleigh and Power 

Function mixtures whereas the degree of under-estimation increases in Burr and Pareto 

mixtures. 

The effect of censoring on the variance of estimates is another aspect of interest. It is 

interesting to note that the variances of the estimates of the parameter of the first component 

density increase with the increase in censoring rates in all the mixtures. The variances of the 

estimates of the parameters of the second component density parameter also increase except 

in Power Function mixture where the variance of estimates decreases with an increase in the 

censoring rates. The same is the response of the estimates of the mixing proportion parameter 

towards an increase in the censoring rate. 

How does the magnitude of proportion of a component density in a mixture   affect the 

estimates of parameter of that component density? This is interesting to note that the 

variances of estimates of the parameter of a component density decreases when its proportion 
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to the mixture is increased. Also the degree of over-estimation of the estimates of parameter 

of a component density decreases provided the mixing proportion of that component in the 

mixture is increased. The situation is a bit different in case of the Power Function mixture 

where the degree of under-estimation is increased and hence the under-estimation becomes 

more severe. However, the reduction of variance in the estimates of the mixing proportion is 

not ensured. The variances of the estimates of the mixing proportion parameter decrease with 

some exceptions in Exponential and Burr mixtures while increase in Pareto and Power 

Function mixtures while increase in Rayleigh mixture with some rare exceptions and display a 

mixed behavior in case of Burr mixture. Recall that the estimates of the mixing proportion 

parameter are over-estimated in Exponential, Rayleigh and Power Function mixtures while 

under-estimated in Burr and Pareto mixtures. With an increase in the mixing proportion, the 

degree of over-estimation of the mixing proportion estimates decreases (increases) in 

Exponential and Rayleigh (Power Function) mixtures while trends are mixed in case of Burr 

and Pareto mixtures. 

What is the effect of the magnitudes or sizes of the parameters of the component 

densities on the estimates in various mixtures? It is observed that the extent of over-estimation 

of the estimates of the parameter of the first component density increases in Exponential and 

Rayleigh mixtures while no definite trend could be observed in Pareto, Burr and Power 

Function mixtures. In case of the estimates of the parameter of the second component density, 

the extent of over-estimation is seen to be increased in Exponential and Rayleigh mixtures 

with rare exceptions, while no certain pattern could be established in case of Pareto, Burr and 

Power Function mixtures. Now we come to the effect of parameter sizes on the variances of 

the estimates. It is interesting to note that variances of the estimates of the first component 
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density parameter tends to increase in Exponential, Rayleigh, Burr and Power Function 

mixtures while in case of Pareto mixture, there has been observed some rare exceptions. So 

far as the estimates of the parameter of the second component density is concerned, the 

variances are noticed to be increased in Exponential, Rayleigh, Pareto, Burr and Power 

Function mixtures in response to an increase in the parameter sizes.   

The above mentioned properties and trends are analyzed with the help of only the 

Bayes estimates assuming the Jeffreys prior. In each simulation study for every mixture under 

consideration, the Bayes estimates with Uniform prior, the Bayes estimates with Jeffreys prior 

and the Bayes estimates with some informative conjugate prior have also been computed and 

compared. Here comes an overall comparison of these Bayes estimates in terms of various 

mixtures and parameters.  

The Bayes (Uniform), the Bayes (Jeffreys) and the Bayes (Informative) estimates of 

the parameter of the first component density are all observed to be over-estimated in all the 

mixtures except the Power Function mixture where the Bayes (Jeffreys) and Bayes (Gamma) 

are under-estimated while the Bayes (Uniform) estimates are over-estimated with some 

exceptions. In Exponential mixture, the Bayes (Inverted Gamma) estimates are closer to the 

true parameter while in Rayleigh mixture, the Bayes (Jeffreys) are observed close to the 

parameter. In Pareto mixture, the Bayes (Gamma) estimates are found close to the parameter 

and the Bayes (Gamma) are close to the parameter in Burr mixture. However, in case of the 

Power Function mixture, the Bayes (Uniform) are very close to the parameter as compared to 

the other two Bayesian counter parts.  

As is quoted in many classical sources, that precision is more appreciable property of 

an estimate as compared to the unbiasedness. It is observed in all the mixtures under 
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consideration that the Bayes estimates of the parameters of the component densities of the 

mixtures which are based on suitable informative prior are more efficient than their Uniform 

and Jeffreys counterparts. However, there may be some rare exceptions which can easily be 

overcome by a better choice of the hyperparameters. As the hyperparameters of the 

informative prior are outcome of prior information, so the quality of the Bayes estimates 

based on informative prior can further be improved if some better prior information is 

available. So the quality the Bayes estimates with informative prior depends upon the quality 

of the prior information available. 

In our study a real life mixture data has been analyzed by different mixtures using 

some suitable transformations of the data, so that the results may be compared with each other 

and with the results of Davis (1952), Mendenhall and Hader (1958) and Sinha (1998). The 

estimates of Exponential mixture parameters using real life data are superior to the previous 

results found in literature. The estimates obtained with the help of Pareto mixture are close to 

the previously available estimates but having lesser variances. Finally the estimates based on 

Power Function mixture are, although, under-estimated but have much lower standard errors 

than those given in literature so far.  

All the mixtures discussed in this thesis are of type-I, samples of type-IV with 

ordinary type-I, right censoring. The elegant closed form Bayes estimates are provided.  

Obviously, the work may be extended in many possible directions. Some mixtures of the 

single (multiple) parameter distributions, discrete or continuous, may be considered which 

have not been explored so far. Such mixtures can be explored with a careful study of many 

real life situations where the observations coming from some heterogeneous populations 

which can be assumed to be characterized by the some particular component densities. So a 
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possible extension is to consider mixtures of the generalized versions of the distributions 

where the use of Monte Carlo Markov Chains (MCMC) techniques would be inevitable. A 

WinBUGS code is presented in Chapter 5 to deal with such cases. A code in R could meet the 

same purpose.  

Although algebraic expressions are derived for finite mixtues in most of the chapters, 

yet simulation study for each mixture are conducted for two component case. The simulation 

study can also be extended to larger number of components of the mixtures with various 

mixing weights. As the number of components of the mixture depends upon the number of 

causes of death of the objects under study, so the mixtures with more than two components 

can also be considered in the light of real life bio-medical and industrial applications.  
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