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Abstract 
 

Background: Neuromedin S (NMS), a 36 amino acid anorexigenic neuropeptide was 

discovered in rat brain. It is a ligand for receptor FM4/TGR-1 which is also called as 

NMU receptor type II (NMU2R). Mainly it is expressed in suprachiasmatic nucleus 

(SCN) and involved in regulation of food intake and dark light circadian rhythms. In 

rodents its stimulatory role in HPG axis is reported but in higher primates its 

reproductive role is yet to be explored. In present study we examined involvement of 

NMS-NMU2R signaling pathway in the metabolic regulation of the HPG axis in adult 

male rhesus monkey. We used three different approaches in this regard. First, we 

observed the peripheral effect of NMS on HPG axis in two metabolic states (normal 

fed and 48-hrs fasting) as it was known that metabolic status is key factor in HPG axis 

regulation. Second, we studied the role of NMS in HPA regulation and its influence 

on reproductive hormone secretion in male rhesus monkeys and third, we investigated 

the role of exogenous NMS on some other metabolic hormones which are involved 

directly or indirectly in the regulation of HPG axis. For this purpose various hormones 

concentrations such as testosterone (T), cortisol, growth hormone (GH), Prolactin 

(PRL), adiponectin, resistin, leptin and insulin were determined after NMS 

administration in normal fed and 48-hrs fasting monkeys. 
 

Materials and Methods: Four adult male rhesus monkeys (6-8 yr Age: 7-10 kg BW) 

were used in this study. Fifty nmol of NMS was injected through a cannula affixed in 

saphenous vein. Blood samples were collected individually at 15 min intervals, before 

and after NMS/saline/hCG administration. Plasma concentrations of T, cortisol, GH, 

PRL, adiponectin, leptin, resistin and insulin were estimated by using specific 

Enzyme Immunoassay (EIA) kits.  
 

Results: Short term fasting significantly (P<0.001) decreased T while increased 

cortisol concentrations. NMS induced significant (P<0.05) increase in T and cortisol 

concentrations in both fed and 48-hrs fasting monkeys. No significant (P>0.05) 

change was observed in saline treated animals. In fasting conditions T response to 

NMS was delayed and suppressed. 48-hrs fasting significantly (P<0.001) decreased 

PRL but did not affect GH levels significantly. NMS also induced significant 

(P<0.01) rise in GH levels in both fed and fasting conditions while PRL 
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concentrations significantly (P<0.05) increased only in fed conditions. No significant 

change (P>0.05) in GH and PRL concentrations was noticed in saline treated animals. 

Short term fasting significantly increased (P<0.001) adiponectin concentrations while 

decreased leptin (p<0.001), resistin (P<0.01) and insulin (P<0.001) concentrations. 

NMS administration did not effect the adiponectin and insulin levels significantly 

(P>0.05) in both fed and fasting conditions. However NMS induced significant 

(P<0.01) increase in resistin levels, while suppressed leptin (P<0.01) secretion in both 

fed and 48-hrs fasting conditions. In saline treated animals no significant (P>0.05) 

changes in adiponectin, resistin, leptin and insulin levels were observed after saline 

administration. 
 

Discussion: Our results demonstrated that exogenous NMS administration rescues 

suppression of the HPG axis during conditions of metabolic fuels deficiency. In 

fasting conditions the NMS induced T response was both delayed and suppressed. 

Present results indicate that although NMS stimulated T secretion under fasting 

conditions, the response appears to be delayed and suppressed suggesting that fasting-

induced suppression of the HPG axis in the adult male rhesus monkey may involve, at 

least in part, a reduction in the sensitivity of GnRH neuronal network to endogenous 

NMS stimulation. Cortisol is generally considered as negative regulator of HPG axis 

in males so it was assumed that in fasting conditions the delayed response of T 

secretion in present study is, due to the increased concentrations of cortisol. However 

in normal fed monkeys, elevated cortisol levels did not suppress T secretion. So it is 

not yet confirmed, whether increased cortisol levels caused suppression of T release 

or fasting itself has some deleterious effects on NMS expression in hypothalamus. In 

previous studies no association was found between cortisol and T secretion in 

monkeys. So it was concluded that in present study elevated cortisol levels are not 

responsible for delayed and suppressed T response to NMS. In our study increased 

GH and PRL secretions after NMS administration suggest that NMS exerts its 

regulatory actions on HPG axis and testicular steroidogenesis by affecting the 

secretions of these two pituitary hormones. Our results also demonstrated that 

exogenous NMS administration has no significant effect in the secretion of insulin 

and adiponectin but the same dose of NMS significantly inhibited leptin while 
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stimulated plasma resistin levels. These findings suggest a potential involvement of 

NMS in the physiology of adipose tissue.  
 

Conclusion: NMS-NMU2R signaling appears to be critical in the regulation of 

reproductive axis in mammals including primates, during metabolically stressed 

conditions. Whether it is just another redundant pathway or the master conduit for 

relaying such information to GnRH neurons, the research will tell exactly very soon. 
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General Introduction 
    

Hypothalamus, the neuroendocrine center of the brain, controls a diverse 

number of homeostatic processes, such as metabolic control, feeding, drinking, 

reproduction, lactation, sleep-wake cycle, cardiovascular function, thermoregulation, 

and hormone secretion (Everitt and Hokfelt, 1990; Bernardis and Bellinger, 1993, 

1998). Factors are delivered through the hypophyseal portal system from the 

hypothalamus to the anterior pituitary gland. This gland receives stimulatory and 

inhibitory hormones secreted from important hypothalamic nuclei, such as the 

paraventricular nucleus (PVN), arcuate nucleus (ARC), as well as the septal preoptic 

area (SPOA) and the medial preoptic area (MPOA), which in turn regulate the 

secretions of other endocrine glands (Everitt and Hokfelt, 1990; Bernardis and 

Bellinger, 1993, 1998). 
 

Regulation of normal reproductive development and physiology is a complex 

process involving the coordinated interaction of neurotransmitter systems, 

hypothalamic releasing factors, pituitary hormones, gonadal sex steroid hormones and 

various growth factors. The reproductive system is part of the endocrine system, 

which contains an elegant feedback system with control centers at the level of the 

hypothalamus and the pituitary gland, and with target organs such as the testes or 

ovaries. There are also smaller local feedback loops involving paracrine and autocrine 

signals at the levels of the pituitary, testes and ovaries, which maintain organ or cell 

homeostasis (Knobil, 1981). 
 

Normal testicular function comprising steroidogenesis and spermatogenesis 

requires the establishment of a complex network of endocrine–paracrine–autocrine 

systems for optimum cell-cell communication and coordination. The testis is subject 

to a hierarchy of controls like other endocrine-regulated glands. The systemic 

hormones are the first step regulators while the local paracrine and autocrine factors 

produced by the cellular components of the testis work to transform the 

microenvironment essential for germ cell development. There is a complex interplay 

of endocrine, autocrine and paracrine signals which regulate the processes of 

spermatogenesis, steroidogenesis and testicular function. (Heindel and Treinen, 1989; 

Spiteri-Grech and Nieschlag, 1993; Gnessi et al., 1997; Abney, 1999; Hull and 
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Harvey, 2000; Roser, 2001; Welt et al., 2002; Huleihel and Lunenfeld, 2004; 

Holdcraft and Braun, 2004a; Petersen and Soder, 2006). 
 

The hypothalamic pituitary gonadal (HPG) axis plays a vital role in 

controlling of reproductive functions. This axis regulates secretion of pituitary 

gonadotropins, Follicle stimulating hormone (FSH) and Luteinizing hormone (LH) by 

pulsatile release of hypothalamic decapeptide Gonadotropin-releasing hormone 

(GnRH). All these hormones play a major role in gonadal maturation and its functions 

(Plant, 2008). Ernest Knobil was first to demonstrate the episodic release of GnRH 

into hypophyseal portal vein and then subsequent pulsatile release of pituitary 

gonadotropins (Knobil et al., 1980). Episodic hormone secretion is a characteristic 

feature of the HPG axis (Maeda et al., 2010). GnRH pulse generator, localized in the 

ARC region of the mediobasal hypothalamus, is suggested to be responsible for 

pulsatile release of GnRH (Maeda et al., 2010). It is an intrinsic property of GnRH 

neurons to secrete GnRH in rhythmic way (Krsmanović, 1992; Weiner and Martinez 

de la Escalera, 1993; Moenter et al., 2003).  
 

Female rhesus monkeys, in which endogenous GnRH production had been 

abolished due to bilateral lesions in the mediobasal hypothalamus, the significance of 

pulsatile GnRH secretion was demonstrated effectively (Knobil et al., 1980). 

Continuous infusion of GnRH, failed to sustain gonadotropin secretion in these 

animals. While at physiological frequency, the pulsatile administration of GnRH, re-

established the pre-lesion levels of gonadotropins. All these findings have been 

repeated in man and several other species and led to the development of various 

therapeutic remedies (Maeda et al., 2010). A large number of excitatory and 

inhibitory neurotransmitters and neuropeptides govern the activities of GnRH pulse 

generator either by mediating through internal or external factors (Terasawa and 

Fernandez, 2001; Plant and Shahab, 2002; Plant and Barker-Gibb, 2004; Ebling, 

2005). 
 

Many internal and external factors may affect the proper functioning of HPG 

axis. The most important factor is the nutritional status of an individual (Bronson, 

1985; Cameron, 1996; Wade et al., 1996; Wade and Jones, 2004). The relationships 

between nutritional status and reproduction are not clearly understood. The 
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observations of Pirke and colleagues suggested the possible role of specific nutrients 

on reproductive functions in humans. The vegetarian diets with low protein content 

disrupted the reproductive cycle in human females more than a non-vegetarian diet, 

suggesting the important role of nutrients in reproduction (Pirke et al., 1986). Later on 

it was confirmed by certain evidences that suppression of reproductive activity is not 

due to deficiency of a particular nutrient but due to the deficiency of oxidizable 

metabolic fuels (Foster and Olster, 1985; Foster et al., 1989). The suppressed status of 

HPG axis in food restricted animals can be reversed in few hours after a single meal 

(Foster et al., 1989; Bronson and Manning, 1991; Cameron, 1996). In monkeys the 

normal FSH and LH levels were maintained even after several week utilization of 

isocaloric protein deficient diet (Cameron, 1996). This study further supported the 

idea that a deficiency of dietary protein does not provide the signal leading to 

reproductive dysfunction. Similarly neither lipid nor carbohydrate deficiencies 

resulted in suppression of gonadotropin levels (Cameron, 1996). All these evidences 

suggested that HPG axis functioning is negatively affected by any activity, situation, 

or condition which restrict the supply of metabolic fuels for oxidation (Wade and 

Jones, 2004). In some situations like diabetes mellitus and obesity, excess of 

metabolic fuel is present but as this fuel is not available for oxidation resulting in 

reproductive dysfunction (Wade and Jones, 2004). 
 

Energy imbalance can impair reproduction as it is an energy demanding 

process (Schneider, 2004). Energy imbalance and metabolically stressed conditions 

delay the onset of puberty in pre-pubertal animals (Kennedy and Mitra, 1963; Foster 

and Olster, 1985), while it hobbles the pulsatile release of GnRH with concomitant 

hypogonadotropic hypogonadism in post-pubertal animals (Cameron, 1996; Wade et 

al., 1996; Wade and Jones, 2004), and strangle the sexual behavior (Gill and 

Rissmann, 1997). In large number of mammalian species, the effect of metabolic 

imbalance have also been studied in relation to seasonal breeding, cyclicity, gestation, 

lactation, and major reproductive hormones secretion (Delgado et al., 1978; Merry 

and Holehan, 1979; Chakravarty et al., 1982; Knuth and Friesen, 1983; Cameron, 

1996; Wade et al., 1996; Wade and Jones, 2004). During pubertal period, the 

metabolic reserves of body influence the pubertal awakening of the HPG axis 

(Kennedy and Mitra 1963; Foster and Olster, 1985). Pubertal onset is interrupted by 
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energy imbalance and severe metabolic stress conditions (Roa et al., 2009). Many 

studies in rats revealed that during the critical reproductive period, the metabolic 

stress prevents or delays the awakening of the HPG axis (Kennedy and Mitra, 1963; 

Schenck et al., 1980). Similar results were found in mice (Marstellar and Lynch, 

1983; Perrigo and Bronson, 1983; Hamilton and Bronson, 1985; 1986), lamb (Foster 

and Olster, 1985; Foster et al., 1989), syrian hamster, (Morin, 1975) and humans 

(Kulin et al., 1984; Biederman et al., 1986). 
 

Chronic metabolic stresses (such as dieting, extensive exercise in the athletes, 

prolonged undernutrition or fasting) during adulthood, cause irregularity or acyclicity 

in menstrual cycle in the human female (Chakravarty et al., 1982; Knuth and Friesen, 

1983; Manning and Bronson, 1989), while these are associated with decrease in 

plasma concentrations of sex hormones and gonadal atrophy (Crewal et al., 1971; 

Smith et al., 1975). Disruption of the HPG axis function produced delayed menarche, 

uterine bleeding, and secondary amenorrhea among anorexic women (Eisenberg, 

1981). The consistent metabolic deficiency induced effects, on reproductive system, 

are decreased concentrations of plasma FSH, LH and T. These effects are studied in 

rodents (Howland, 1972; 1975; 1980), non-human primates (Dubey et al., 1986), and 

humans (Hoffer et al., 1986). Metabolic stresses also affect embryonic survival in rats 

(Pond et al., 1989) and primiparous swine (Pond et al., 1988), due to decrease in the 

supply of carbohydrates and lipids. Metabolic deficiencies also prolonged the 

breeding intervals in mammals (Merry and Holechan, 1979). Such metabolic 

deficiencies caused lactational anovulation in cattle (Echternkamp et al., 1982; 

Easdon et al., 1985), rats (Woodside, 1991), and women (Delgado et al., 1978). In 

some cases, such conditions prolonged lifespan and duration of reproductive period in 

addition to delayed puberty (Merry and Holechan, 1979). Many studies on rats, cattle 

and hamsters, have also shown that the metabolic deficiencies affect the testicular size 

and sperm production, as caused by other environmental factors such as photoperiod 

and social cues (Lincoln and Short, 1980; Walkden-Brown et al., 1994). 
 

The exact mechanisms of such responses to metabolic deficit are not clearly 

understood. However, this is evident that hypothalamus perceives such energy 

deficiencies and controls the gonadotropins and gonadal hormone secretion by 

regulating GnRH release (Ebling et al., 1990; Foster et al., 1998; Ichimaru et al., 
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2001). It is confirmed through many studies in different animals that energy 

availability puts great impact on gonadotropin secretions, by regulating the release of 

GnRH. It was suggested through many studies that this reproductive suppression, is 

due to a decrease in release of GnRH and not by decrease in pituitary-gonadal axis 

sensitivity to GnRH (Bergendahl et al., 1991; Cameron and Nosbisch, 1991; Aloi et 

al., 1997). So any neurotransmitters or neuromodulators, which are known to regulate 

GnRH neurons, may mediate the effects of energetic imbalance on GnRH secretion.  
 

To understand the mechanism of the effects of metabolic status on 

reproductive functions, various animal models are used in different studies (Cameron 

1996; Blache et al., 2000; Barb et al., 2002).  Rhesus monkeys have been widely used 

as an animal model to deduce the mechanisms that suppress the HPG axis in situation 

of metabolic stresses (Cameron, 1996). Indeed being a primate, it is the best and the 

most-relevant experimental animal model to decipher the metabolic regulation of 

reproduction in humans. Various studies showed that metabolic deficiencies 

negatively affect the secretion of LH and T (Cameron and Nosbisch, 1991; Helmreich 

and Cameron, 1992). This decrease in LH and T secretion in response to metabolic 

stress is due to suppression of GnRH release (Cameron and Nosbisch, 1991; 

Helmreich and Cameron, 1992). This concept is further supported by the evidence 

that suppression in the frequency of pulsatile LH secretion, during brief periods of 

metabolic fuels deficiency, is not accompanied by a decrease in the LH pulse 

amplitude (Cameron and Nosbisch, 1991). All these studies suggest that the 

hypothalamic GnRH pulse generator may be the main site of action for metabolic 

signals to trespass on the reproductive axis in primates (Cameron, 1996). So on the 

basis of these evidences, it may be suggested that the suppression of pituitary 

gonadotropin and testicular T due to metabolic deficit, involves a gradual decrease of 

the GnRH release to the reproductive axis. 
 

A direct effect of metabolic signals at the pituitary level in suppressing LH 

secretion is less likely, as the pituitary maintains its normal response to GnRH 

stimulation, during metabolic fuels deficient conditions. It was observed that under 

these stress situations, very low doses of exogenous GnRH were enough to enhance 

LH levels (Cameron and Nosbisch, 1991). This study further supported the idea that 

under metabolic fuels insufficiency, decrease in hypothalamic stimulation of the 
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pituitary is the main reason in the decrease of gonadotropin secretion. Of note, such 

suppression of LH and T secretion can be reversed by refeeding (Parfitt et al., 1991; 

Schreihofer et al., 1993a; 1993b). This restoration depends directly on the amount of 

the refed meal (Parfitt et al., 1991). All these data show that the primate HPG axis is 

very sensitive to energy conditions and changes its activity accordingly. 
 

The exact mechanism of how metabolic fuel deficiencies arrest the neural 

networks, which regulate the intermittent GnRH discharge, is not completely 

understood. The master position of the hypothalamic GnRH in the hierarchy of 

signals controlling the reproductive axis, makes it a target of multiple regulators of 

both central and peripheral origins. Neurotransmitters, glial factors and neuropeptides 

are included in central modulators, while leptin and sex steroids are included in 

peripheral modulators. A wide variety of excitatory and inhibitory 

neurotransmitters/neuropeptides have been identified and it is suggested that these 

may play a vital role in HPG axis arrest under metabolic fuels deficiency (Terasawa 

and Fernandez, 2001; Plant and Shahab, 2002; Plant and Barker-Gibb, 2004; Ebling, 

2005). This idea is further supported by the observation of reduced sensitivity of the 

HPG axis to NMDA administration in fasting (Shahab et al., 1997) condition. In the 

mammalian hypothalamus, Glutamate and GABA are the most abundant excitatory 

and inhibitory neurotransmitters, respectively (Cotman and Iversen, 1987; Thind and 

Goldsmith, 1997; Terasawa and Fernandez, 2001), and in several species the neurons 

containing both these neurotransmitters, synapse with GnRH neurons in the 

hypothalamus (Jennes et al., 1983; Leranth et al., 1992). Metabolic deficiency 

suppressed GnRH secretion, is associated with increased levels of GABA due to over 

expression of GABA synthesizing enzymes (Leonhardt et al., 1999). The study of 

Mahesh and Brann showed that EAA stimulates LH secretion (Mahesh and Brann, 

2005).  Similarly the energy deficiency (short term fasting) induced HPG axis 

inactivity, is terminated by EAA (Shahab et al., 1997). Glutamate, which is known to 

stimulate LH secretion, decreased during restricted supply of food intake (Tal et al., 

1983), and aspartate derivatives administration to hypogonadotrophic lambs on an 

insufficient diet, results in increased plasma LH levels (Ebling et al., 1990). Similar 

stimulatory effect of aspartate on LH concentrations was noticed in lambs, with 

lowered LH secretion due to food insufficiency (Bucholtz et al., 1996). 
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The idea that metabolic fuel deficiency induced LH suppression, is mediated 

by Endogenous opioids peptides (EOP) looks promising as EOP have been known to 

be inhibitory to LH secretion. However, this idea was ruled out as naloxone, an opioid 

antagonist, failed to relieve suppression of LH pulse frequency in fasting conditions 

(Helmreich and Cameron, 1992). It has been suggested that one day fasting in adult 

male rhesus monkey, has only mildly activated the hypothalamic-pituitary-adrenal 

axis and there is no evidence that LH suppression is caused due to the increased 

activity of the hypothalamic-pituitary-adrenal axis (Helmreich et al., 1993). 

Gonadotropin inhibiting hormone (GnIH), characterized in several mammalian 

species including primates, is known to be as putative suppressor of gonadotropin 

secretion (Tsutsui, 2010). Theoretically it can be suggested that such a peptide is 

involved in suppression of GnRH neurons, however, such a possibility has not been 

examined to date. In recent years, a role of glial cells produced molecules, in 

regulation of GnRH secretion has been indicated (Ojeda et al., 2008). However, its 

involvement in metabolic regulation of GnRH secretion has not been investigated 

until now. Certain metabolic hormones, like insulin, adiponectin, leptin and cortisol 

may play a contributory role in metabolic deficiency induced LH suppression 

indirectly by determining the concentrations of certain neurotransmitters in the central 

nervous system (CNS) (Qi et al., 2004; Smith et al., 2006; Kos et al., 2007; Ahima 

and Lazar, 2008; Xu et al., 2009). 
 

Adipokines (Adiponectin, leptin, and resistin) play important role in the 

regulation of energy homeostasis and metabolism (Fischer-Posovszky et al., 2007).  

Leptin acts as a surfeit factor and its systemic concentration, is in proportion to body 

fat mass. Adiponectin is found most abundantly in the circulation. Adiponectin, unlike 

leptin, is negatively correlated with body fat mass. Adiponectin boosts insulin 

sensitivity while leptin and resistin decrease it (Ahima and Lazar, 2008). These 

adipokines have also some impacts on the reproductive axis. Leptin and adiponectin 

act antagonistically on the output of key reproductive hormones (Lado-Abeal et al., 

2000; Fischer-Posovszky et al., 2007; Rodriguez-Pacheco et al., 2007; Caminos et al., 

2008). Resistin role in reproduction is less understood. Changes in plasma 

concentrations of adipokines play some role in energy imbalance (Arita et al., 1999; 

Hotta et al., 2000; Kadowaki and Yamauchi, 2005; Fischer-Posovszky et al., 2007; 
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Ahima and Lazar, 2008). Short-term fasting decreases the plasma leptin and resistin 

secretion, while increases adiponectin secretion (Rajala et al., 2004; Kadowaki and 

Yamauchi, 2005; Guevara et al., 2008). Cortisol and insuline levels are also affected 

by energy imbalance (Lado-Abeal et al., 2002; Guevara et al., 2008). So the 

metabolic hormones may serve as a possible link between metabolism and 

neuroendocrine regulation of reproductive functions. 
 

 The neuromedins belong to one of the largest family of neuropeptides i.e. 

tachykinin family (Helke et al., 1990). Neuromedins were first studied in the porcine 

CNS (Minamino et al., 1983) and were given the name on the basis of their receptor 

preference (B: bombesin-like, K: kassinine-like, N: neurotensin- like, etc.). Those 

CNS sites which are involved in the autonomic, behavioural and endocrine processes 

have abundant expression of these peptides (Minamino et al., 1985). Neuromedin B 

and C are involved in above mentioned processes (Ohki-Hamazaki, 2000) while 

Neuromedin N has a critical role in HPA axis (Malendowicz et al., 1993), and plays 

an important role in thermoregulation (Dubuc et al., 1988). 
 

Neuromedin U is a brain-gut peptide, discovered in porcine spinal cord and 

was considered to be involved in contraction of uterine smooth muscle (Minamino et 

al., 1985). NMU plays very important role in both peripheral as well as central 

regulation. Its peripheral activities are blood pressure elevation, smooth muscle 

contraction and modification of ion transport in intestine while its central regulation 

include food suppression, stimulation of ACTH and corticosterone secretion 

(Minamino et al., 1985; Honzawa et al., 1987; Malendowicz et al., 1994; Nakazato et 

al., 2000; Chu et al., 2002; Wren et al., 2002; Hanada et al., 2003). Further studies 

confirmed that CRH neurons are involved in NMU regulated central processes. All 

the processes like inhibition of gastric acid release, behavioural and HPA activation, 

are looked to be CRH-dependent (Wren et al., 2002; Hanada et al., 2003; Mondal et 

al., 2003).  
 

Neuromedin S (NMS), highly expressed in SCN of the hypothalamus has 

close resemblance with NMU (Mori et al., 2005). NMS and NMU have similarity in 

their C-terminals but they are very different to each other in N-terminal sequence. 

Moreover these two neuromedins are coded by two different genes (Mori et al., 
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2005). Furthermore, NMS and NMU act trough the same receptors i.e. FM-3/GPR66 

(NMU1R) and FM-4/TGR-1(NMU2R). Both these neuropeptides have similar 

affinity to NMU1R, indicating similarities in their effects but as NMS has more 

affinity to NMU2R (Mori et al., 2005) so it was suggested that NMS mediates it 

physiological activities through NMU2R. The expression of NMS receptor is 

restricted almost only to the central nervous system having abundant expressions in 

SCN and PVN (Guan et al., 2001; Nakahara et al., 2004). The presence of receptor 

within SCN, suggests its ligand role in regulation of circadian rhythm of temperature, 

sleep/wake cycle and hypothalamic hormones like CRH and GnRH secretion (Mori et 

al., 2005) while its PVN presence implies its role in feeding and the regulation of 

HPA axis. NMS receptors are also abundantly present outside the hypothalamus such 

as thalamus, amygdala, hippocampus and cerebellum (Raddatz et al., 2000), which 

indicates its presumptive role in motor phenomena, emotions and regulation of 

behaviour. It has been demonstrated that NMS has higher expression than that of 

NMU in the hypothalamus (Rucinski et al., 2007), which suggests the predominance 

of NMS in central regulatory processes.  
 

NMS mRNA has higher expressions in the hypothalamus, testes and spleen 

(Mori et al., 2005). In the brain, NMS mRNA has predominant expressions in SCN 

with slight expressions in other hypothalamic regions (Fujii et al., 2000; Mori et al., 

2005). NMS has been demonstrated to influence the feeding (Ida et al., 2005; Shousha 

et al., 2006), circadian rhythm (Mori et al., 2005), and pituitary LH secretion (Vigo et 

al., 2007). It was proposed that activation of CRH release from PVN and pro-

opiomelanocortin (POMC) from the ARC nucleus are crucially involved in NMS 

mediated processes (Ida et al., 2005). The CRH and dopamine play very important 

role in regulation of certain behaviours e.g. stress related motor phenomena, anxiety 

and NMS evoked hypophagia (Majovski et al., 1981; Vale et al., 1981; Monnikes et 

al., 1992; Menzaghi et al., 1994; Skutella et al., 1994; Ida et al., 2005). 
 

In rats NMS administration activates SCN neurons. It acts through its receptor 

in a paracrine or autocrine manner within the SCN and acts as a nonphotic motor 

factor of circadian rhythm (Mori et al., 2005). SCN is the major region of circadian 

pacemaker in mammals and regulates circadian rhythms of physiological and 

behavioural processes (Lowrey and Takahashi, 2000; Reppert and Weaver, 2001, 
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2002). SCN is divided into two regions i.e. core and shell, corresponding to the 

ventrolateral and dorsomedial portions of the SCN, respectively (Moore et al., 2002). 

These SCN regions are very important in regulation of circadian entrainment and 

generation of strong rhythms (Hanada et al., 2001). Several neuropeptides in SCN are 

involved in circadian pacemaker regulation (Reppert and Weaver, 2001). For 

example, in the core region of SCN, Vasoactive intestinal peptide (VIP) plays very 

important role in both photic entrainment and maintenance of the circadian rhythms 

(Piggins and Cutler, 2003).  
 

In medioparvocellular area of the PVN (mpPVN), where CRH and arginine 

vasopressin (AVP) expressing neurons are present, the SCN shows some direct 

projections (Antoni et al., 1983; Swanson et al., 1983, Sawchenko et al., 1984a,b; 

Vrang et al., 1995; Engeland and Arnhold, 2005). SCN also innervates different 

adjacent regions in the PVN which may contact the pituitary neurons (Berk and 

Finkelstein, 1981; Stephan et al., 1981;Watts et al., 1987; Buijs et al., 1993; Vrang et 

al., 1995), the dorsomedial nucleus of the hypothalamus (DMH) and the 

subparaventricular zone (subPVZ), which in turn send projections to the mpPVN (Ter 

Horst and Luiten, 1986; Buijs et al., 2003; Engeland and Arnhold, 2005). All these 

SCN projections enable simultaneous regulation of circadian changes in various brain 

outputs (Watts et al., 1987; Buijs et al., 1993) and integration with other 

environmental factors (Saeb-Parsy et al., 2000; Buijs et al., 2003; Saper et al., 2005). 

The abundant expression of NMS in SCN, PVN and ARC suggest that NMS like 

other neuromedins, plays important role in the regulation of hypothalamic functions 

(Raddatz et al., 2000; Mori et al., 2005).  
 

Intracerebroventricular (icv) injection of NMS in rats reduced 12- hr food 

intake during the dark period in a dose-dependent manner. Similarly icv injection of 3 

nmol NMS and NMU into rats caused a significant decrease in 12-h food intake. On 

the other hand, at low doses (0.5 nmol and 1 nmol), only NMS administration 

suppressed food intake (Miyazato, 2008). NMS administration in rats augmented 

POMC mRNA in the ARC and CRH mRNA in the PVN, inducing c-Fos expression 

in POMC neurons in the ARC. These results suggest that POMC in the ARC and 

CRH in the PVN are involved in NMS action on feeding (Miyazato et al., 2008).  
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The presences of NMS mRNA in testes (Fujii et al., 2000) suggest its possible 

role in reproduction. Only few studies are available on the role of NMS on 

reproduction. Central administration of NMS in female rats has a stimulatory role in 

LH secretion (Vigo et al., 2007) and peripheral administration of NMS induced T 

secretion in rhesus monkeys in a dose dependant manner (Jahan et al., 2011).  
 

 

Objectives of the study 
 

This project was designed to investigate the possible role of NMS in metabolic 

regulation of reproductive axis in intact adult male rhesus monkeys by:  
 

 Investigating the involvement of NMS in the regulation of HPG axis and HPA 

axis under normal fed and metabolically stressed conditions. 
 

 Determining the role of NMS on the secretion of two pituitary hormones i.e. 

GH and PRL under normal fed and fasting conditions.  
 

 Analyzing the effects of NMS on the secretion of adipokines (adiponectin, 

leptin and resistin), important for the functioning of the HPG axis, under fed 

and fasting conditions. 

 Studying the effects of NMS on insulin release under fed and metabolically 

stressed conditions. 
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Materials and Methods 
 

Animals 
 

 The animals used in the concerned study were, four adult normal male 

monkeys (Macaca mulatta) of age and weight ranging from 6-8 years and 7-10 kg 

respectively. All the animals were kept in specific colony environment of primate 

facility at Department of Animal Sciences, Quaid-i-Azam University Islamabad, 

Pakistan. The animals were daily provided with feed comprising of fresh fruits, 

boiled potatoes, eggs and bread at specific times according to their body weights, and 

water was available ad libitum. Prior to the start of experiment, appetite monitoring 

was carried out for a month. It was observed that all animals used to finish their food 

within 10-15 min. All experiments were approved by the Departmental Committee 

for Care and Use of Animals. 
 

Chair restraining 
 

 Prior to initiation of experiment, the animals were chair restrained for one 

month in order to minimize stress factor on blood sampling and time period of this 

restraint was progressively increased up to 4-5 hrs a day. The chemical, Ketamine 

HCl, was used to sedate the animals during the procedure.  

 The experiment was launched after the approval of Departmental committee for care 

and use of animals. 
 

Venous Catheterization 
 

 A cathy cannula (Silver surgical complex, Karachi, Pakistan; 0.8 mm O.D/22 

G×25mm) was affixed in the sephnous vein after anesthesizing the animals with 

Ketamine HCl (10 mg/kg BW, im), to bring about all the chemical administration and 

sequential blood sampling. A butterfly tubing (24 G×3/4˝ diameter and 300 mm 

length; JMS Singapore) was attached with free end of the cannula. All the sampling 

was performed after full recovery of animals from sedation. 
 

Experimental Design 
 

 This project was designed to evaluate the effect of an anorexigenic peptide 

NMS, on the regulation of HPG-axis in both physiological and metabolically stressed 
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conditions. The whole project comprised of four sub-studies. First study was designed 

to investigate the possible involvement of NMS on T and cortisol secretion. In the 

second study the effect of NMS was evaluated on the regulation of GH and PRL 

secretion. In the third study the effect of NMS was investigated on three vital 

adipokines i.e. leptin, adiponectin and resistin in both fed and fasting animals. In the 

fourth study the plasma insulin concentrations were determined before and after NMS 

administration. All the experiments were performed on normally fed and 48-hrs 

fasting male rhesus monkeys. 
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Pharmacological Reagents 
 

Pharmacological reagents used in the study are listed below: 

Heparin (Sinochem Ningbo, China) 

Ketamine HCl (Rotexmedica, Trittau, Germany)  

Human Neuromedin S (Anaspec, USA) 

hCG (Gonacor®, Instituto Massone S.A Argentina) 

All the working solutions were prepared in saline solution (0.9% NaCl). 
 

Blood sampling 
  

Blood sampling (2-3 ml) was conducted, at regular intervals of 15 min, using 

heparinized syringes. An equivalent quantity of heparinized (5 IU/ml) saline was 

injected after each sample withdrawal. Samples were collected 60 min before and 

120 min after NMS administration. The time of NMS (50 nmol) administration was 

considered as 0 min. In case of hCG treatment, samples were collected 60 min before 

and 180 min after hCG administration (30 IU/kg BW). In this case NMS (50 nmol) 

was injected after 60 min of hCG infusion.  All blood samples were obtained 

between 1100-1500 hrs. All experiments were performed in a couple of weeks in 

order to reduce the alterations in hormonal levels associated with seasonal changes. 

Samples were centrifuged for 10 min at 3000 rpm, and then plasma was pipetted out 

and stored at -20˚C until analyzed. 
 

Analysis of hormones 
 

Plasma hormonal concentrations were assessed using specific Enzyme linked 

immunosorbent assay (ELISA) kits according to the assay protocol provided with the 

kits. Specific enzyme immunoassays kits (Amgenix inc. USA) were used to 

determine plasma T, cortisol, GH and PRL concentrations. The minimum limits of 

detectable T and cortisol levels were upto 0.05 ng/ml and 1.5 ng/ml respectively; 

intra-assay and inter-assay coefficients of variation for both T and cortisol were 

<12%. For both GH and PRL the minimum detectable levels were 0.05 ng/ml; intra-

assay and inter-assay coefficients of variation were <8%. Specific EIA kits 

(AssayMax Human ELISA; Assaypro 41 Triad south drive St. Charles, USA) were 

used for determining the changes in plasma leptin, adiponectin and resistin levels. 

The minimum limit of detectable level of leptin was upto 0.12 ng/ml; intra-assay and 
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inter-assay coefficients of variation were 4.5% and 7.2% respectively. The minimum 

limit of detectable adiponectin levels was upto 0.5 ng/ml; intra-assay and inter-assay 

coefficients of variation were 4.2% and 7.3% respectively. In case of resistin the 

minimum detectable level was upto 0.2 ng/ml; intra-assay and inter-assay 

coefficients of variation were 4.2% and 7.3% respectively. Human insulin EIA kit 

(Calbiotech Inc. CA) was used to determine plasma insulin levels. The minimum 

limit of detectable insulin levels was upto 1.47 µIU/ml; Intra-assay and inter-assay 

coefficients of variation were 8.1% and 8.5% respectively. 
 

All EIA procedures were used according to the manufacturer instructions. 
 

Statistical analysis  
 

All the data were presented as mean±SEM. Hormonal concentrations after 

NMS and saline administration were compared by one-way ANOVA followed by 

post hoc Dunnett’s multiple comparisons test. Student’s t test was employed to 

compare mean pre- and post-treatment hormonal levels, in 48-hrs fasting and normal 

fed conditions. 
 

 Statistical significance was set at P≤0.05. All the data were analyzed by 

using statistical software GraphPad Prism version 5. 
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Sampling protocol 

 

 

 

(a) 
      Saline/ NMS 
 
 
 
 
 │        │         │         │         │         │        │        │        │        │        │        │        │ 
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(b) 

 

                             hCG   Saline/NMS 
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 (a) Saline/NMS, fed and fasting conditions (b) hCG, Saline/NMS fed condition 
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Abstract 
 

Background: Neuromedin S (NMS), an anorexigenic neuropeptide was discovered in 

rat brain. It is a ligand for receptor FM4/TGR-1 which is also called as NMU receptor 

type II (NMU2R). Mainly it is expressed in SCN and involved in regulation of food 

intake and dark light circadian rhythms. In rodents its stimulatory role in HPG axis is 

reported but in higher primates its reproductive role is yet to be explored. In the 

present study the stimulatory role of NMS was investigated in the regulation of HPG 

axis and HPA axis. For this purpose after NMS administration plasma T and cortisol 

levels were determined in normal fed and 48-hrs fasting monkeys.  
 

Materials and methods: Four adult male rhesus monkeys were used in this study. 

Single dose of 50 nmol NMS was injected through a cannula affixed in saphenous 

vein. Blood samples were collected individually 60 min before and 120 min with 15 

min intervals, after NMS/saline administration. In case of hCG administration, 

samples were collected 60 min before and 180 min at 15 min intervals, after hCG 

administration. Plasma T and cortisol concentrations were determined by using 

specific Enzyme Immunoassay (EIA) kits.  
 

Results: 48 hrs fasting significantly (P<0.001) decreased plasma T and increased 

cortisol (P<0.001) levels compared to normal fed monkeys. In both fed and fasting 

conditions, NMS injection induced a significant increase (P<0.05) in T and cortisol 

concentrations compared to saline treated animals.  
 

Conclusion: In summary our results suggested that NMS is a positive modulator of 

both HPG and HPA axis. In fasting conditions its effect on T secretion was delayed 

but in fed conditions no such response was observed suggesting that fasting has 

inhibitory role on HPG axis and NMS has ability to temporary terminate this 

inhibition. The exact pathway of its signaling is not clearly understood, so in future 

further studies are required to confirm the NMS involvement and its pathway in the 

regulation of reproductive axis. 



Chapter 1                                                                                                    Introduction 
 

 
Possible role of Neuromedin S in male reproduction 

 

21

 

Introduction 
 

Reproductive functions are vitally controlled by HPG axis. This axis regulates 

secretion of pituitary gonadotropins, follicle stimulating hormone (FSH) and 

luteinizing hormone (LH) by pulsatile release of hypothalamic decapeptide 

gonadotropin-releasing hormone (GnRH). All these hormones play a major role in 

gonadal maturation and functions (Plant, 2008). Many internal and external factors 

may affect the proper functioning of HPG axis. The most important factor is the 

nutritional status of an individual (Bronson, 1985; Cameron, 1996; Wade et al., 1996; 

Wade and Jones, 2004). The relationships between nutritional status and reproduction 

are not clearly understood. The observations of Pirke and colleagues suggested the 

possible role of specific nutrients on reproductive function in the human (Pirke et al., 

1986). Many studies on rats, cattle and hamsters, have also shown that the metabolic 

deficiencies affect the testicular size and sperm production, as caused by other 

environmental factors such as photoperiod and social cues (Lincoln and Short, 1980; 

Walkden-Brown et al., 1994). 
 

The exact mechanism that how metabolic fuel deficiencies arrest the neural 

networks which regulate the intermittent GnRH discharge is not completely 

understood. In the hierarchy of signals controlling the reproductive axis, the position 

of the hypothalamic GnRH makes it a target for both peripheral and central regulators. 

Neurotransmitter, glial factors and neuropeptides are included in central modulators 

while leptin and sex steroids are peripheral modulators. A wide variety of inhibitory 

and excitatory neurotransmitters/neuropeptides may play a vital role in HPG axis 

arrest under metabolic fuels deficiency (Terasawa and Fernandez, 2001; Plant and 

Shahab, 2002; Plant and Barker-Gibb, 2004; Ebling, 2005). This idea is further 

supported by the observation of reduced sensitivity of the HPG axis to NMDA 

administration in fasting (Shahab et al., 1997). In the mammalian hypothalamus, 

Glutamate and GABA are the most abundant excitatory and inhibitory 

neurotransmitters respectively (Cotman and Iversen, 1987; Thind and Goldsmith, 

1997; Terasawa and Fernandez, 2001), and in several species the neurons containing 

both these neurotransmitters synapse with GnRH neurons in the hypothalamus 

(Jennes et al., 1983; Leranth et al., 1992). 
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 Metabolic deficiency suppressed GnRH secretion, is associated with 

increased levels of GABA due to over expression of GABA synthesizing enzymes 

(Leonhardt et al., 1999). The study of Mahesh and Brann showed that EAA stimulates 

LH secretion (Mahesh and Brann, 2005).  Similarly the energy deficiency (short term 

fasting) induced HPG axis inactivity, is terminated by EAA (Shahab et al., 1997). 

Glutamate, which is known to stimulate LH secretion, decreased during restricted 

supply of food intake (Tal et al., 1983), and aspartate derivatives administration to 

hypogonadotrophic lambs, on an insufficient diet, results in increased plasma LH 

levels (Ebling et al., 1990). Similar stimulatory effect of aspartate on LH 

concentrations was noticed in lambs with lowered LH secretion due to food 

insufficiency (Bucholtz et al., 1996). 
 

Neuromedin S is a novel 36-amino acid peptide which binds with the G 

protein-coupled receptor FM4/TGR-1 also called neuromedin U receptor type-2 

(NMU2R), and is highly expressed in the suprachiasmatic nucleus (SCN) of the 

hypothalamus (Mori et al., 2005). Structurally, NMS shows complete sequence 

homology with the C- terminal seven amino acid portion of a brain-gut peptide, 

NMU, originally isolated from porcine spinal cord (Minamino et al., 1985). The 

expression of NMS receptor is restricted almost only to the central nervous system 

having abundant expressionin SCN and PVN (Guan et al., 2001; Nakahara et al., 

2004). The presence of receptor within SCN, suggests its ligand role in regulation of 

circadian rhythm of temperature, sleep/wake cycle and hypothalamic hormones like 

CRH and GnRH secretion (Mori et al., 2005) while its PVN presence implies its role 

in feeding and the regulation of HPA axis. NMS receptors are also abundantly present 

outside the hypothalamus such as thalamus, amygdale, hippocampus and cerebellum 

(Raddatz et al., 2000), which indicates its presumptive role in motor phenomena, 

emotions and regulation of behavior. It has been demonstrated that NMS has higher 

expression than that of NMU in the hypothalamus (Rucinski et al., 2007), which 

suggests the predominance of NMS in central regulatory processes. NMS mRNA has 

higher expression in the hypothalamus, testes and spleen (Mori et al., 2005).  
 

In rats, SCN plays a stimulatory role in cortisol secretion (Cascio et al., 1987). 

AVP is one of the main neurotransmitters in the SCN having projections towards 

PVN/DMH (Buijs et al., 1993, 1999). AVP administration into these brain regions, 
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inhibited cortisol secretion in SCN removed rats (Kalsbeek et al., 1992), suggesting 

that PVN/DMH mediates this effect of SCN, and AVP alone can imitate the inhibition 

of this effect. In support of this hypothesis, when AVP antagonist was administered 

into these brain areas, at the peak time of AVP release, the cortisol secretion was 

stimulated (Kalsbeek et al., 1992, 1996a, b). It was also suggested that during second 

half of the light period, increase in cortisol and ACTH release after AVP antagonist 

administration, are most prominent and consistent activities (Kalsbeek et al., 1996b).                           

By evoking marked ACTH and cortisol release, NMS and SCN association is 

an effective activator of the HPA axis (Miklos et al., 2007). CRH release and 

activation of its receptor CRHR1 might be responsible for these effects, since the 

corticosterone secretion was inhibited after treatment of CRHR1 antagonist i.e. 

antalarmin. Moreover the administration of CRHR2 antagonist i.e. astressin 2B, did 

not inhibited the NMS stimulated HPA activation, supporting the hypothesis, that 

CRHR1 pathway is important in central regulation of the stress response (Miklos et 

al., 2007). The presence of NMS mRNA in testes (Fujii et al., 2000), suggest its 

possible role in reproduction. Central administration of NMS in female rats, 

stimulated LH secretion (Vigo et al., 2007) and peripheral administration of NMS, 

induced T secretion in rhesus monkeys in a dose dependant manner (Jahan et al., 

2011). The present study was designed to investigate the possible involvement of 

NMS in T and cortisol secretion in normal and metabolically stressed conditions in 

adult male rhesus monkeys. 
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Materials and Methods 
 

Animals 
 

 The animals used in the concerned study were, four adult normal male 

monkeys (Macaca mulatta) of age and weight ranging from 6-8 years and 7-10 kg 

respectively. All the animals were kept in specific colony environment of primate 

facility at Department of Animal Sciences, Quaid-i-Azam University Islamabad, 

Pakistan. The animals were daily provided with feed comprising of fresh fruits, boiled 

potatoes, eggs and bread at specific times according to their body weights, and water 

was available ad libitum. Prior to the start of experiment, appetite monitoring was 

carried out for a month. It was observed that all animals used to finish their food 

within 10-15 min.  
 

Venous Catheterization 
 

 A cathy cannula (Silver surgical complex, Karachi, Pakistan; 0.8 mm O.D/22 

G×25mm) was affixed in the sephnous vein after anesthesizing the animals with 

Ketamine HCl (10 mg/kg BW, im), to bring about all the chemical administration and 

sequential blood sampling. A butterfly tubing (24 G×3/4˝ diameter and 300 mm 

length; JMS Singapore) was attached with free end of the cannula. All the sampling 

was performed after full recovery of animals from sedation. 
 

Pharmacological Reagents 
 

Pharmacological reagents used in the study are listed below: 

Heparin (Sinochem Ningbo, China) 

Ketamine HCl (Rotexmedica, Trittau, Germany)  

Human Neuromedin S (Anaspec, USA) 

hCG (Gonacor®, Instituto Massone S.A Argentina) 

All the working solutions were prepared in saline solution (0.9% NaCl). 
 

Blood sampling  

 

Blood sampling (2-3 ml) was conducted, at regular intervals of 15 min, using 

heparinized syringes. An equivalent quantity of heparinized (5 IU/ml) saline was 

injected after each sample withdrawal. Samples were collected 60 min before and 
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120 min after NMS/saline administration. The time of NMS (50 nmol) administration 

was considered as 0 min. In case of hCG treatment, samples were collected 60 min 

before and 180 min after hCG administration (30 IU/kg BW). In this case NMS was 

injected after 60 min of hCG infusion.  All blood samples were obtained between 

1100-1500 hrs. All experiments were performed in a couple of weeks in order to 

reduce the alterations in hormonal levels associated with seasonal changes. Samples 

were centrifuged for 10 min at 3000 rpm, and then plasma was pipetted out and 

stored at -20˚C until analyzed. 
 

Analysis of hormones 
 

T and cortisol concentrations were quantitatively determined by using EIA kits 

(Amgenix Inc. USA). The minimum limit of detectable T levels was upto 0.05 ng/ml; 

intra-assay and inter-assay coefficients of variation were 6.4% and 4.4% respectively 

and the minimum limit of detectable cortisol levels was upto 1.5 ng/ml; intra-assay 

and inter-assay coefficients of variation were 9.4% and 10.2% respectively. All the 

procedures of EIA were followed as provided with the kits. 
 

Statistical analysis  
 

All the data were presented as mean±SEM. T and cortisol concentrations after 

NMS and saline administration were compared by one-way ANOVA followed by 

post hoc Dunnett’s multiple comparisons test. Student’s t test was employed to 

compare mean pre- and post-treatment T and cortisol concentrations, under 48-hrs 

fasting and normal fed conditions. 
 

Statistical significance was set at P≤0.05. All the data were analyzed by using 

statistical software GraphPad Prism version 5. 
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Results 
 

Basal plasma T concentrations in fed and fasting conditions 
 

Basal plasma concentrations of T (ng/ml) during 1-hr before saline 

administration in fed and 48-hrs fasting monkeys are given in Fig. 1.1A-1.1B. Plasma 

T concentrations significantly (P< 0.001) decreased in 48-hrs fasting monkeys 

compared to normal fed monkeys. 
 

Effect of NMS on plasma T secretion in normal fed adult male monkeys 
 

The individual and mean plasma T concentrations (ng/ml) before and after 

saline/NMS administration in normal fed monkeys are given in table 1.1-1.2 and Fig. 

1.2A. At 30 min after NMS administration significant (P<0.05) increase in T secretion 

was observed. Maximum levels of T concentrations were observed at 60 min of NMS 

treatment compared to 0 min sample (Fig. 1.2B). Comparison between pre- and post-

treatment also showed a significant (P<0.05) increase in T secretion after NMS 

treatment (Fig. 1.3). 
 

Effect of NMS on plasma T secretion in 48-hrs fasting adult male monkeys 
 

The individual and mean plasma T concentrations (ng/ml) before and after 

saline/NMS administration in 48-hrs fasting monkeys are given in table 1.3-1.4 and 

Fig. 1.4A. At 60 min after NMS administration significant (P<0.05) increase in T 

secretion was observed. Maximum levels of T concentrations were observed at 75 

min of NMS treatment compared to 0 min sample (Fig. 1.4B). Comparison between 

pre- and post-treatment also showed a significant (P<0.05) increase in T secretion 

after NMS treatment (Fig. 1.5). 
 

Effect of NMS on hCG induced plasma T secretion in adult male monkeys 
 

The individual and mean hCG induced plasma T levels (ng/ml) before and 

after saline/NMS administration are given in table 1.5-1.6 and Fig 1.6A. NMS 

administration did not cause any significant (P>0.05) change on hCG induced T levels 

compared to saline treatment (Fig. 1.6B).  
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Basal plasma cortisol concentrations in fed and fasting conditions 

 

The pattern of basal plasma concentrations of cortisol (ng/ml) during 1-hr 

before saline administration in fed and 48-hrs fasting adult male monkeys are given in 

Fig. 1.7A-1.7B. Basal plasma cortisol concentrations significantly (P< 0.001) 

increased in 48-hrs fasting compared to normal fed monkeys. 
 

Effect of NMS on plasma cortisol secretion in normal fed adult male monkeys 
 

The individual and mean plasma cortisol concentrations (ng/ml) before and 

after saline/NMS administration in normal fed monkeys are given in table 1.7-1.8 and 

Fig. 1.8A. NMS induced significant (P<0.01) increase in cortisol secretions at 45 min 

compared to 0 min sample. Maximum cortisol concentrations (P<0.001) were 

observed at 105 min of NMS administration compared to 0 min sample (Fig. 1.8B). 

Comparison between pre- and post-treatment also showed a significant (P<0.05) 

increase in cortisol levels after NMS treatment (Fig. 1.9). 
 

Effect of NMS on plasma cortisol secretion in 48-hrs fasting adult male monkeys 
 

The individual and mean plasma cortisol concentrations (ng/ml) before and 

after saline/NMS administration in 48-hrs fasting monkeys are given in table 1.9-1.10 

and Fig. 1.10A. NMS induced significant (P<0.05) increase in cortisol secretion at 60 

min compared to 0 min sample. Maximum increase in cortisol concentrations 

(P<0.001) was observed after 90 min of NMS administration compared to 0 min 

sample (Fig. 1.10B). Comparison between pre- and post-treatment showed a 

significant (P<0.05) increase in cortisol concentrations in post-NMS treated animals 

(Fig. 1.11). 
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Table 1.1. Individual and mean (±SEM) plasma T concentrations (ng/ml) before 

and after saline administration (at 0 min) in normal fed adult male monkeys 

(n=4). 

 
Time (Min) 

 
Animal Numbers 

 
Mean±SEM 

201 202 203 204
-60 1.17 1.53 1.48 0.97 1.29±0.13 
-45 1.06 1.67 1.41 1.48 1.40±0.13 
-30 0.96 1.02 1.46 1.35 1.20±0.12 
-15 0.94 0.87 1.03 1.39 1.06±0.11 
0 1.10 1.18 1.30 1.40 1.24±0.07 
15 1.30 1.22 1.23 1.44 1.30±0.05 
30 1.39 1.26 1.31 1.58 1.39±0.07 
45 1.25 1.54 1.20 1.73 1.43±0.13 
60 1.50 1.66 1.36 1.85 1.59±0.10 
75 1.42 1.47 1.39 1.91 1.55±0.12 
90 0.96 1.28 1.42 1.64 1.32±0.14 
105 0.98 1.23 1.58 1.81 1.40±0.18 
120 0.79 1.11 1.38 1.21 1.12±0.12 

 

 

 

Table 1.2. Individual and mean (±SEM) plasma T concentrations (ng/ml) before 

and after NMS administration (at 0 min) in normal fed adult male monkeys 

(n=4). 

 
Time (Min) 

 
Animal Numbers 

 
Mean±SEM 

201 202 203 204
-60 1.29 1.62 1.16 1.48 1.39±0.10 
-45 1.75 1.68 1.07 1.46 1.49±0.15 
-30 1.94 1.70 0.97 1.27 1.47±0.22 
-15 1.00 1.97 1.49 0.79 1.31±0.26 
0 1.66 1.82 1.11 1.04 1.41±0.20 
15 1.89 1.10 1.69 1.38 1.51±0.17 
30 1.81 2.39 1.86 1.97   2.01±0.13* 
45 2.19 2.05 2.51 2.21    2.24±0.10** 
60 2.28 2.01 2.17 2.77      2.31±0.16*** 
75 1.82 2.00 1.80 1.75 1.84±0.05 
90 1.63 1.96 1.21 1.47 1.56±0.16 
105 1.79 2.01 1.69 1.49 1.75±0.11 
120 1.47 1.78 1.31 1.61 1.54±0.10 

 
*P<0.05, **P<0.01, ***P<0.001 vs 0 min (ANOVA followed by post hoc 

Dunnett’s test). 
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Table 1.3. Individual and mean (±SEM) plasma T concentrations (ng/ml) before 

and after saline administration (at 0 min) in 48-hrs fasting adult male monkeys 

(n=3). 

 
Time (Min) Animal Numbers 

 
Mean±SEM 

201 202 203
-60 0.77 0.76 1.01 0.85±0.08 
-45 0.64 0.78 0.85 0.76±0.06 
-30 0.61 0.60 0.88 0.70±0.09 
-15 0.63 0.54 0.98 0.72±0.13 
0 0.71 0.70 1.06 0.82±0.12 

15 0.62 0.67 0.82 0.70±0.06 
30 0.53 0.70 0.70 0.64±0.06 
45 0.66 0.68 0.64 0.66±0.01 
60 0.74 0.82 0.59 0.72±0.07 
75 0.78 0.85 0.72 0.78±0.04 
90 0.99 0.81 0.75 0.85±0.07 
105 0.94 0.78 0.86 0.86±0.04 
120 0.97 0.65 0.62 0.74±0.11 

 
 
 

Table 1.4. Individual and mean (±SEM) plasma T concentrations (ng/ml) before 

and after NMS administration (at 0 min) in 48-hrs fasting adult male monkeys 

(n=4). 

 
Time (Min) Animal Numbers 

 
Mean±SEM 

201 202 203 204
-60 0.63 0.86 0.99 0.79 0.82±0.07 
-45 0.77 0.91 0.69 0.77 0.79±0.05 
-30 0.64 0.82 0.68 0.49 0.66±0.07 
-15 0.60 0.84 0.59 0.69 0.68±0.06 
0 0.69 0.95 0.58 0.67 0.72±0.08 
15 0.61 0.81 0.68 0.48 0.65±0.07 
30 0.72 0.98 0.89 0.83 0.85±0.05 
45 0.78 0.96 0.92 1.01 0.92±0.05 
60 0.83 1.16 0.98 1.12  1.02±0.07* 
75 0.93 1.18 1.23 1.31     1.16±0.08*** 
90 1.04 1.03 1.11 1.22    1.10±0.04** 

105 0.96 0.84 0.91 1.14 0.96±0.06 
120 0.87 0.85 1.10 1.02 0.96±0.06 

 
*P<0.05, **P<0.01, ***P<0.001 vs 0 min (ANOVA followed by post hoc 

Dunnett’s test). 
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Figure 1.1. (A) Changes in mean (±SEM) basal plasma T concentrations 

(ng/ml) in 1-hr period in fed and 48-hrs fasting adult male monkeys (B) 

Overall mean (±SEM) basal plasma T concentrations (ng/ml) in  1-hr period 

in normal fed, and 48-hrs fasting adult male monkeys. ***P<0.001 vs fed 

(Student’s t test). 
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Figure. 1.2. (A) Mean (±SEM) changes in plasma T levels (ng/ml) before and after 

saline/NMS administration (at 0 min) in normal fed adult male monkeys. (B) 

Comparison of mean (±SEM) T concentrations (ng/ml) between post NMS (15-120 

min) and pre NMS (at 0 min) in fed monkeys. *P<0.05, **P<0.01, ***P<0.001 vs 0 

min (ANOVA followed by post hoc Dunnett’s test). 
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Figure. 1.3. Comparison of mean (±SEM) plasma T concentrations (ng/ml) in 60 min 

pre- and 120 min post saline/NMS in fed adult male monkeys. *P<0.05 vs pre-

treatment (Student’s t test) 
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Figure. 1.4. (A) Mean (±SEM) changes in plasma T concentrations (ng/ml) before 

and after saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. 

(B) Comparison of mean (±SEM) T concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in 48-hrs fasting monkeys. *P<0.05, **P<0.01, 

***P<0.001 vs 0 min (ANOVA followed by post hoc Dunnett’s test). 
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Figure. 1.5. Comparison of mean (±SEM) plasma T levels (ng/ml) in 60 min pre- and 

120 min post saline/NMS in 48-hrs fasting adult male monkeys. *P<0.05 vs pre-

treatment (Student’s t test). 
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Table 1.5. Individual and mean (±SEM) plasma T concentrations (ng/ml) before 

and after hCG and saline administration (at 0 min and 60 min respectively) in 

normal fed adult male monkeys (n=4). 

 
Time 
(Min) 

 

 
Animal Numbers 

 
 

Mean±SEM 201 202 203 204 

-60 1.09 2.61 1.28 1.79 1.69±0.34 

-45 1.31 2.40 1.28 2.03 1.76±0.28 

-30 1.85 2.34 1.49 2.21 1.97±0.19 

-15 1.80 2.18 1.66 2.26 1.98±0.15 

0 1.88 2.22 2.03 2.45 2.15±0.12 

15 1.95 2.72 2.92 2.69 2.57±0.21 

30 4.82 6.98 5.39 5.24 5.61±0.47 

45 7.48 7.99 9.34 7.68 8.12±0.42 

60 9.25 8.80 9.94 8.98 9.24±0.25 

75 10.41 9.18 9.55 10.92 10.02±0.40 

90 10.86 10.43 9.85 11.74 10.72±0.40 

105 11.19 10.96 9.26 9.94 10.34±0.45 

120 9.55 10.42 8.22 8.79 9.25±0.48 

135 7.50 7.31 6.13 6.99 6.98±0.30 

150 5.13 5.08 4.70 5.79 5.18±0.23 

165 4.32 5.17 4.03 4.82 4.59±0.25 

180 3.61 4.52 3.98 3.66 3.94±0.21 
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Table 1.6. Individual and mean (±SEM) plasma testosterone concentrations 

(ng/ml)  before and after hCG and NMS administration (at 0 min and 60 min 

respectively) in normal fed adult male monkeys (n=4). 

 
Time 
(Min) 

 

 
Animal Numbers 

 
 

Mean±SEM 
 201 202 203 204 

-60 1.97 1.48 0.92 1.99 1.59±0.25 

-45 2.72 2.03 1.26 1.92 1.98±0.30 

-30 3.07 2.13 1.02 1.09 1.83±0.49 

-15 3.65 2.42 1.31 1.58 2.24±0.53 

0 3.47 2.56 1.80 1.52 2.34±0.44 

15 3.61 2.85 2.34 1.88 2.67±0.37 

30 5.15 6.31 4.94 3.27 4.92±0.63 

45 6.78 7.07 5.62 7.36 6.71±0.38 

60 8.16 9.63 8.35 9.05 8.80±0.34 

75 8.38 10.21 9.86 9.66 9.53±0.40 

90 9.02 10.90 8.53 9.83 9.57±0.52 

105 8.94 9.38 8.49 9.96 9.19±0.31 

120 8.28 9.79 8.78 10.22 9.27±0.45 

135 9.02 10.21 8.99 10.77 9.75±0.44 

150 7.09 8.76 8.14 8.45 8.11±0.36 

165 6.76 8.79 6.82 7.34 7.43±0.47 

180 6.65 7.49 6.22 6.58 6.74±0.27 
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Figure 1.6. (A) Mean (±SEM) changes in hCG (at 0 min) induced plasma T 

secretion (ng/ml) before and after saline/NMS administration (at 60 min) in 

intact adult male monkeys. (B) Comparison of mean (±SEM) hCG induced 

plasma T levels (ng/ml) in 120 min after saline/NMS administration. P>0.05 

(Student’s t test). 
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Table 1.7. Individual and mean (±SEM) plasma cortisol concentrations (ng/ml) 

before and after saline administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 
201 202 203 204

-60 374.56 433.94 451.67 401.81 415.50±17.11 
-45 359.45 451.21 524.62 389.54 431.21±36.53 
-30 391.25 488.35 556.10 414.87 462.64±37.39 
-15 358.03 475.71 510.75 431.17 443.92±32.93
0 321.86 502.57 517.33 451.35 448.28±44.45 
15 334.16 482.48 551.54 435.85 451.01±45.63 
30 376.35 418.93 511.86 443.02 437.54±28.35 
45 352.07 487.65 594.24 481.55 478.88±49.56 
60 323.69 583.02 520.68 355.11 445.63±62.96 
75 382.58 561.40 486.33 372.78 450.77±44.94
90 344.91 512.80 503.18 425.13 446.51±39.14 

105 312.53 490.77 468.57 410.34 420.55±39.80 
120 391.14 428.91 472.06 387.51 419.91±19.74 

 

 

 

Table 1.8. Individual and mean (±SEM) plasma cortisol concentrations (ng/ml) 

before and after NMS administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 361.51 342.29 423.85 391.35 379.75±17.83 
-45 387.32 435.41 369.63 322.63 378.75±23.30 
-30 411.23 382.45 363.14 341.27 374.52±14.85 
-15 398.12 408.30 370.37 376.18       388.24±8.97 
0 383.48 437.99 383.73 366.10 392.83±15.61 
15 393.06 455.01 426.97 399.23 418.57±14.21 
30 431.14 482.24 494.25 418.93 456.64±18.58 
45 485.85 543.85 567.09 527.81    531.15±17.12** 
60 502.56 564.47 586.46 591.88    561.34±20.47** 
75 527.06 634.31 653.10 560.95     593.86±29.85*** 
90 563.54 665.20 662.93 537.18     607.21±33.27*** 

105 618.93 703.91 604.26 515.75     610.71±38.53*** 
120 523.49 583.10 530.37 479.06   529.01±21.32** 

 

**P<0.01, ***P<0.001 vs 0 min (ANOVA followed by post hoc Dunnett’s test). 
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Table 1.9. Individual and mean (±SEM) plasma cortisol concentrations (ng/ml) 

before and after saline administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 
201 202 203 204

-60 652.59 612.68 572.91 689.46 631.91±25.15 
-45 597.69 569.66 599.36 712.83 619.89±31.72 
-30 581.55 591.25 619.14 788.96 645.23±48.57 
-15 634.11 613.79 653.62 858.91 690.11±56.85
0 688.97 580.92 669.42 762.89 675.55±37.42 
15 604.01 492.14 618.37 743.53 614.51±51.43 
30 669.09 594.19 572.85 684.15 630.07±27.40 
45 690.28 518.24 629.14 607.49 611.29±35.63 
60 700.44 668.46 644.68 656.74 667.58±11.98 
75 702.69 777.28 652.94 660.96 698.47±28.44
90 730.49 681.21 598.55 736.03 686.57±31.82 

105 784.60 630.57 592.12 700.37 676.92±42.31 
120 570.19 582.84 570.28 669.67 598.25±23.99 

 

 

 

Table 1.10. Individual and mean (±SEM) plasma cortisol concentrations (ng/ml) 

before and after NMS administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 
201 202 203 204

-60 611.29 512.36 551.78 703.24 594.67±41.51 
-45 645.52 534.13 574.23 742.69 624.14±45.74 
-30 602.89 521.63 599.30 782.39 626.55±55.22 
-15 630.92 580.44 577.52 725.56 628.61±34.56 
0 604.38 568.43 550.62 721.18 611.15±38.34 

15 635.21 607.16 613.33 732.85 647.14±29.20 
30 665.58 638.03 630.74 785.14 679.87±35.88 
45 678.98 702.28 676.99 810.95 717.30±31.74 
60 714.21 751.92 731.49 926.07  780.92±48.99* 
75 754.75 779.13 741.95 954.96    807.70±49.69** 
90 805.03 823.65 816.50 977.88      855.77±40.89*** 

105 799.79 768.25 786.55 845.88    800.12±16.57** 
120 738.87 705.60 699.81 842.49 746.69±33.07 

 

*P<0.05, **P<0.01, ***P<0.001 vs 0 min (ANOVA followed by post hoc 

Dunnett’s test). 
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Figure 1.7. (A) Changes in mean (±SEM) basal plasma cortisol 

concentrations (ng/ml) in 1-hr period in normal fed and 48-hrs fasting 

monkeys (B) Overall mean (±SEM) basal plasma cortisol concentrations 

(ng/ml) in  1-hr period in normal fed, and 48-hrs fasting adult male 

monkeys. ***P<0.001 vs fed (Student’s t test). 
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Figure. 1.8. (A) Mean (±SEM) changes in plasma cortisol levels before and after 

saline/NMS administration (at 0 min) in normal fed adult male monkeys. (B) 

Comparison of mean (±SEM) cortisol concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in fed monkeys. **P<0.01, ***P<0.001 vs 0 min 

(ANOVA followed by post hoc Dunnett’s test). 
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 Figure. 1.9. Comparison of mean (±SEM) plasma cortisol levels (ng/ml) in 60 min 

pre- and 120 min post saline/NMS in normal fed adult male monkeys. *P<0.05 vs pre-

treatment (Student’s t test). 
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Figure. 1.10. (A) Mean (±SEM) changes in plasma cortisol levels (ng/ml) before and 

after saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. (B) 

Comparison of mean (±SEM) cortisol concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in 48-hrs fasting monkeys. *P<0.05, **P<0.01, 

***P<0.001 vs 0 min (ANOVA followed by post hoc Dunnett’s test). 
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 Figur 3 (Fasted saline/NMS) cortisol 
 
 
 
 
 
 
 
Figure. 1.11. Comparison of mean (±SEM) plasma cortisol levels (ng/ml) in 60 min 

pre- and 120 min post saline/NMS in 48-hrs fasting adult male monkeys. *P<0.05 vs 

pre-treatment (Student’s t test). 
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Discussion 
 

 

In present study it was observed that 48-hrs fasting suppressed basal plasma T 

levels (P<0.001) suggesting that short term fasting has inhibitory effect on HPT axis 

in monkeys. This inhibition was possibly due to suppressed GnRH secretion, as it was 

evident in previous findings that inhibitory effect of short term fasting on HPT axis in 

monkeys is due to inhibition of GnRH secretion (Wahab et al., 2008) and not by 

changes in pituitary response to GnRH or changes in testicular response to LH 

(Cameron and Nosbisch, 1991). The fasting condition attained in this study was also 

evident by increase in plasma cortisol levels in metabolically stressed animals.  
 

In our study single peripheral injection of NMS (50 nmol) significantly 

increased (P<0.05) T secretion in both normally fed and 48-hrs fasting animals. On 

the basis of these results it may be concluded that NMS has ability to overcome the 

fasting suppressed inactivity of HPG axis. Our results are in accordance with the 

findings of a previous study where iv administration of NMS significantly induced T 

secretion in dose dependent manner in rhesus monkeys (Jahan et al., 2011). This 

increase in T secretion is more likely due to increase in LH from pituitary and GnRH 

from hypothalamus. In female rats central administration of NMS significantly 

elicited LH secretion at estrus and metabolically stressed conditions (Vigo et al., 

2007) suggesting that NMS might have been playing very important role in regulation 

of female gonadal axis. Our results suggested that more likely NMS is also a potent 

regulator of male gonadal axis in monkeys. The most important finding of our study 

was that in fasting conditions, the T response to NMS administration was delayed 

compared to normal fed monkeys.  
 

The positive role of NMS on gonadotropin release was not unpredicted as 

NMU, which acts through the same receptor, influenced LH secretion in OVX female 

rats when centrally injected (Quan et al., 2003, 2004). However unexpectedly the 

effects of NMU on LH release were inhibitory, which are otherwise stimulatory by 

satiety signaling factors like leptin (Casanueva, 1999; Cunningham et al., 1999). In 

contrast to these findings Vigo and his colleagues found stimulatory role of NMS on 

LH secretion in female rats (Vigo et al., 2007). Our data also suggest that increase in 

T secretion after NMS administration might be due its stimulatory effect on LH 
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release. 
 

The exact mechanism of this stimulatory response of NMS on LH secretion is 

yet not clear. However possibly NMS modulates expression of neuropeptides in ARC 

(Ida et al., 2005). ARC is the main site with abundant expression of NMU2R (Mori et 

al., 2005), involved in control of reproduction and energy balance. So it may be 

concluded that this stimulatory role of NMS in HPG axis is due to activation of ARC 

pathways. Kisspeptin and galanin like peptides, which have abundant expression in 

ARC, are most suitable candidates for this intermediatory action (Gottsch et al., 2004; 

Tena-Sempere, 2006). NMS also induced LH secretion in fasting female rats at 

diestrus. Similar response was noticed in underfed animals with different stimuli e.g. 

kisspeptin and galanin like peptide (Castellano et al., 2005, 2006). These observations 

are clear evidence that NMS has ability to counteract the inhibitory effect of 

metabolic stress on the gonadotropic axis and potentiate its role in regulation of 

energy balance and reproduction. In the present study, effect of NMS on hCG induced 

T secretion was not markedly different from saline treated animals. In this case hCG 

over activity might have masked the NMS individual effect on T secretion.  
 

In our study, short term fasting (48-hrs) significantly increased (P<0.001) 

basal cortisol concentrations. These findings are in accordance with the study of 

Wahab et al, (2008). NMS and NMU are the potent activators of HPA axis (Hanada et 

al., 2001; Jaszberenyi et al., 2007). SCN and PVN expressions of NMS are important 

in this regard as both SCN and PVN play very important role in CRH release and the 

regulation of HPA axis (Cascio et al., 1987; Ozaki et al., 2002; Wren et al., 2002; 

Brighton et al., 2004; Ida et al., 2005; Jaszberenyi et al., 2007). In our study, 

peripheral administration of NMS stimulated cortisol secretion significantly (P<0.05) 

in both fed and short term fasting monkeys. This increase was more prominent in 

fasting monkeys compared to normal fed. Similar results were obtained after icv 

administration of NMS and NMU in rats and steers (Jászberényi et al., 2007; Yayou 

et al., 2009). It was suggested that this stress response was due to the activation of 

CRHR1 pathway and not by CRHR2 pathway (Aguilera et al., 2001). NMS released 

from hypothalamus (Mori et al., 2005), acts at PVN (Alonso et al., 1986) and the 

amygdala (Wiersma et al., 1995), stimulate CRH secretion, which stimulate the 

secretion of ACTH or dopamine through CRHR1 pathway.  
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Cortisol is generally considered as negative regulator of HPG axis in males, as 

in many studies on rats showed that increased levels of cortisol has inhibitory effect 

on steroidogenesis (Weber et al., 2000; Gao et al., 2003; Wagner and Claus, 2004:  

Ge et al., 2005a). However it is not clear whether these effects are the part of normal 

regulative step or detrimental to animal (Wagner and Claus, 2004). On the basis of 

above observations it was assumed that in fasting conditions the delayed response of 

T secretion in our study is, due to the increased concentrations of cortisol. However in 

normal fed monkeys NMS induced cortisol release did not suppress T secretion. So it 

was not confirmed, whether increased cortisol levels caused suppression of T release 

or fasting itself has some deleterious effects on NMS expression in hypothalamus. 

Previously in adult rhesus monkeys no association was found between cortisol and T 

concentrations and their release was independent of each other (Rose et al., 1971; 

Rasmussen and Suomi, 1989), while in another study positive relationship was found 

in T and cortisol concentrations (Higley et al., 1992). Blockage of glucocorticoid 

secretion in male savanna baboons did not cause stress induced drop in LH levels 

(Sapolsky and Krey, 1988). In cotton-top tamarins (Saguinus Oedipus) and common 

marmosets (Callitrhixjacchus) irregularities in gonadotropin and GnRH profiles were 

not associated with elevated cortisol levels (Abbott, 1993) In addition, stress-induced 

cortisol rise did not suppress LH release in rhesus monkeys (Helmreich et al., 1993), 

and in intact male rhesus monkeys CRH infusion failed to reduce LH levels (Norman, 

1993). On the basis of these results it was concluded that in nonhuman primates, the 

gonadal steroid levels are independent to cortisol concentrations (Bercovitch and 

Clarke, 1995). 
 

In summary our results suggest that NMS is a modulator of both HPG axis and 

HPA axis. It induces T secretion in both fed and fasting conditions but its effect was 

delayed in fasting monkeys compared to NMS treated normal fed. So it is suggested 

that the suppression of GnRH release by metabolic fuel deficiency might be the result 

of decrease in NMS receptor signaling to GnRH neurons or the neurons afferent to 

GnRH neurons. NMS also induced cortisol secretion in both fed and fasting 

conditions. In fasting conditions it was assumed that elevated cortisol levels might 

have inhibitory effect on the T secretion. However the earlier studies and the results 

of present study in fed monkeys exclude this possibility. Further studies are 
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required to confirm the role of adrenal glucocorticoid in regulation of reproductive 

processes in adult male rhesus monkeys. 
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Abstract 
 

Background: Growth hormone (GH) and Prolactin (PRL) released from anterior 

pituitary, directly or indirectly play very important role in male reproduction. In 

present study the role of peripheral administration of NMS was investigated in the 

release of GH and PRL in both fed and 48-hrs fasting monkeys. 
 

Materials and Methods: Four intact adult male rhesus monkeys were used in this 

study. 50 nmol of NMS was injected through a cannula affixed in saphenous vein. 

Blood samples were collected individually 60 min before and 120 min at 15 min 

intervals, after NMS/saline administration. The plasma GH and PRL concentrations 

were determined by using specific Enzyme Immunoassay (EIA) kits. 
  

Results: Short term fasting caused a significant decrease (P<0.001) in PRL 

concentrations but did not cause any significant (P>0.05) change in plasma GH levels. 

NMS injection induced a significant (P<0.05) increase in GH concentrations in both 

normal fed and metabolically stressed conditions compared to saline treated animals. 

PRL levels in normal fed animals were also significantly (P<0.05) increased after 

NMS administration but no significant change was observed in 48-hrs fasting 

conditions compared to saline treated animals.  
 

Conclusion: These results suggest that fasting has a negative role on PRL secretion. 

In conclusion our study suggests that NMS has stimulatory role on the secretion of 

GH and PRL and both these hormones might play an important intermediate role for 

NMS in the regulation of reproductive axis. Further studies are needed to explore the 

importance of this relationship between NMS and these pituitary hormones in the 

regulation of reproductive functions.  
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Introduction 
 

In mammals, hormone secretion and needs of the organism are precisely 

balanced in a particular state. Mainly from the different hypothalamic nuclei, 

releasing or inhibitory factors define the final concentrations of many pituitary 

hormones in circulatory system (Schibler & Sassone- Corsi, 2002). Higher brain sites 

with an integrative system control these nuclei. The afferent inputs to these areas of 

brain may be of hormonal or neural origin. The neural networks, controlling hormone 

release include feedback loops in which the released signaling molecule directly or 

indirectly modifies its pattern of secretion (Schibler & Sassone- Corsi, 2002). 
 

Hypothalamus controls a variety of homeostatic processes, such as metabolic 

control, reproduction, thermoregulation, lactation, cardiovascular function, feeding, 

drinking, sleep-wake cycle and hormone secretion. Hypothalamus delivers its 

secretions through the hypophyseal portal system to the anterior pituitary gland. 

Important hypothalamic nuclei like PVN, SPOA, ARC and MPOA release their 

stimulatory and inhibitory factors to pituitary gland which in turn regulate the 

secretions of other endocrine glands (Everitt and Hokfelt, 1990; Bernardis and 

Bellinger, 1993; Bernardis and Bellinger, 1998). 
 

A complex network of hormonal system is required for spermatogenesis and 

steroidogenesis, which are normal testicular functions. Like other glands testes are 

also controlled by secretion of certain hormones. These hormones are the primary 

regulators while the local paracrine and autocrine chemicals produced by the cellular 

parts of testes, work to establish the important microenvironment for sperm 

development. Steroidogenesis, spermatogenesis and testicular functions are controlled 

by the complex interaction of autocrine, paracrine and endocrine signals (Heindel and 

Treinen, 1989; Spiteri-Grech and Nieschlag, 1993; Gnessi et al., 1997; Abney, 1999; 

Hull and Harvey, 2000; Roser, 2001; Welt et al., 2002; Huleihel and Lunenfeld, 2004; 

Holdcraft and Braun, 2004a; Petersen and Soder, 2006).  

  

Growth hormone and prolactin belongs to protein family (Niall et al., 1971). 

GH is secreted from anterior pituitary gland and this secretion is mainly stimulated by 

ghrelin and growth hormone releasing hormone (GHRH), and repressed by 

somatostatin. GHRH binds to its receptors (GHRH-R) on the adenohypophyseal cells. 
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These receptors are coupled to G protein. So GHRH activates adenylate cyclase (AC), 

concequently accumulation of cyclic adenosine-monophosphate (cAMP) occurs. This 

elevated cAMP causes phosphorylation and hence activation of the transcription 

factor CREB via protein kinase A (PKA). CREB targets the gene for a pituitary 

specific transcription factor named as Pit-1. Pit-1 increases the transcription of GH 

(Mayo et al., 1995).  
  

Growth hormone is required for pubertal maturation and sexual differentiation. 

It is also involved in gametogenesis, gonadal steroidogenesis, and ovulation. During 

pregnancy GH is also needed for fetal nutrition, growth, development of mammary 

gland and lactation.  These roles reflect the effect of GH on the secretion and action of 

FSH and LH (Chandrashekar and Bartke, 1998), directly and indirectly through 

insulin-like growth factor I production. Moreover, production of GH in mammary and 

gonadal tissues reflects paracrine or autocrine actions of extrapituitary GH. 

Experimental studies showed that GH affects gonadal differentiation, steroidogenesis, 

gonadotrophin secretions and gametogenesis (Zachmann, 1992; Franks, 1998). 
 

Compelling evidences suggest that growth hormone (GH) plays an important 

role in the reproductive process. The presence of GH receptors has been documented 

in the ovary (Mathews et al., 1989; Lobie et al., 1990). In male reproductive system, 

GH receptors are found ubiquitously including Sertoli and Leydig cells, vas deferens, 

seminal vesicles and prostate gland (Lobie et al., 1990). Deficiency of GH in children 

led to the delayed onset of pubertal development suggesting its significant role in 

reproduction (Burns et al., 1981). GH also plays very important role in testicular 

development and growth. GH deficiency in human is associated with abnormally 

small testes. Similarly, pituitary and testicular GH may affect testicular function, 

including gametogenesis and steroidogenesis (Spiteri-Grech and Nieschlag, 1992). 
 

Prolactin (PRL) is also very important in male reproduction (Bartke, 2004; 

Hernandez et al., 2006). It plays very important role in steroidogenesis and 

gametogenesis and affects the reproductive system and sexual behaviour (Bartke, 

2004). Specific PRL receptors are located on Leydig cells, accessory reproductive 

glands and membrane of testes (Roux et al., 1985; Hernandez et al., 2006). PRL also 

indirectly regulates testosterone secretion by increasing the number and affinity for 
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LH receptors on the seminiferous tubules (Lincoln et al., 2001; Hair et al., 2002) and 

Leydig cells (Regisford and Katz, 1993; Hondo et al., 1995; Jedlinska et al., 1995; De 

Rosa et al., 2003). LH secretion regulates Leydig cell function and is very important 

in testosterone production (Huhtaniemi and Toppari, 1995).  
 

PRL receptor expressions on different tissues suggest that this hormone plays 

an important role in reproduction through various potential targets. These targets 

include different groups of neurons in anterior pituitary, hypothalamus, reproductive 

tracts and different types of somatic cells in the gonads (Posner et al., 1974; Werther 

et al., 1989; Kelly et al., 1991).  PRL, stimulates the release of gonadotropins (Bartke 

et al., 1978; Bartke et al., 1986), induces fertility in male mice with PRL deficiency 

and in male golden hamsters with suppressed testicular activity due to seasonal effects 

(Bartke et al., 1978) and potentiates the sex steroid stimulation of both male and 

female accessory sex glands (Bartke et al., 1978; Prins and Lee, 1982; Freeman et al., 

2000). In the present study it was hypothesized that NMS is possibly involved in the 

regulation of HPG axis by affecting the secretion of GH and PRL. For this purpose 

the effect of NMS was observed on GH and prolactin secretion in normal fed and 48-

hrs fasting male monkeys. 

 

 



Chapter 2                                                                                   Materials and Methods 
 

 
Possible role of Neuromedin S in male reproduction 

 

53

 

Materials and Methods 
 

Animals 
 

 The animals used in the concerned study were, four adult normal male 

monkeys (Macaca mulatta) of age and weight ranging from 6-8 years and 7-10 kg 

respectively. All the animals were kept in specific colony environment of primate 

facility at Department of Animal Sciences, Quaid-i-Azam University Islamabad, 

Pakistan. The animals were daily provided with feed comprising of fresh fruits, boiled 

potatoes, eggs and bread at specific times according to their body weights, and water 

was available ad libitum. Prior to the start of experiment, appetite monitoring was 

carried out for a month. It was observed that all animals used to finish their food 

within 10-15 min.  
 

Venous Catheterization 
 

 A cathy cannula (Silver surgical complex, Karachi, Pakistan; 0.8 mm O.D/22 

G×25mm) was affixed in the sephnous vein after anesthesizing the animals with 

Ketamine HCl (10 mg/kg BW, im), to bring about all the chemical administration and 

sequential blood sampling. A butterfly tubing (24 G×3/4˝ diameter and 300 mm 

length; JMS Singapore) was attached with free end of the cannula. All the sampling 

was performed after full recovery of animals from sedation. 
 

Pharmacological Reagents 
 

Pharmacological reagents used in the study are listed below: 

Heparin (Sinochem Ningbo, China) 

Ketamine HCl (Rotexmedica, Trittau, Germany)  

Human Neuromedin S (Anaspec, USA) 

All the working solutions were prepared in saline solution (0.9% NaCl). 
 

Blood sampling 
  

Blood sampling (2-3 ml) was conducted, at regular intervals of 15 min, using 

heparinized syringes. An equivalent quantity of heparinized (5 IU/ml) saline was 

injected after each sample withdrawal. Samples were collected 60 min before and 

120 min after NMS/saline administration. The time of NMS (50 nmol) administration 
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was considered as 0 min. All blood samples were obtained between 1100-1500 hrs. 

All experiments were performed in a couple of weeks in order to reduce the 

alterations in hormonal levels associated with seasonal changes. Samples were 

centrifuged for 10 min at 3000 rpm, and then plasma was pipetted out and stored at -

20˚C until analyzed. 
 

Analysis of hormones 
 

GH and PRL concentrations were quantitatively determined by using EIA kits 

(Amgenix Inc. USA). The minimum detectable limit for both GH and PRL levels was 

0.05 ng/ml; intra-assay and inter-assay coefficients of variation were <8%. All the 

procedures of EIA were followed as provided with the kits. 
 

Statistical analysis  
 

All the data were presented as mean±SEM. GH and PRL concentrations after 

NMS and saline administration were compared by one-way ANOVA followed by 

post hoc Dunnett’s multiple comparisons test. Student’s t test was employed to 

compare mean pre- and post-treatment GH and PRL concentrations, under 48-hrs 

fasting and normal fed conditions. 
 

 Statistical significance was set at P≤0.05. All the data were analyzed by 

using statistical software GraphPad Prism version 5. 
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Results 
 

Basal plasma GH concentrations in fed and fasting conditions 
 

Basal plasma concentrations of GH (ng/ml) during 1-hr before saline 

administration in fed and 48-hrs fasting animals are given in Fig. 2.1A-2.1B. 48-hrs 

fasting did not cause any significant change (P>0.05) in basal plasma GH levels. 
 

Effect of NMS on plasma GH secretion in normal fed adult male monkeys 
 

The individual and mean plasma GH concentrations (ng/ml) before and after 

saline/NMS administration in normal fed monkeys are given in table 2.1-2.2 and Fig. 

2.2A. After 45 min of NMS injection GH concentrations significantly (P<0.05) 

increased compared to 0 min sample. Maximum levels of GH concentrations 

(P<0.001) were observed at 90 min of NMS injection compared to 0 min sample (Fig. 

2.2B). Comparison between pre- and post-treatment also showed a significant 

(P<0.01) increase in GH levels after NMS administration (Fig. 2.3). 
 

Effect of NMS on plasma GH secretion in 48-hrs fasting adult male monkeys 
 

The individual and mean plasma GH concentrations (ng/ml) before and after 

saline/NMS administration in 48-hrs fasting monkeys are given in table 2.3-2.4 and 

Fig. 2.4A. NMS treatment in 48-hrs fasting monkeys significantly (P<0.01) increased 

GH concentrations after 60 min of NMS injection. Maximum levels of GH 

concentrations (P<0.001) were observed at 90 min of NMS injection compared to 0 

min sample (Fig. 2.4B). Comparison between pre- and post-treatment also showed a 

significant (P<0.01) increase in GH levels after NMS administration (Fig. 2.5). 
 

Basal plasma PRL concentrations in fed and fasting conditions 
 

Basal plasma concentrations of PRL (ng/ml) during 1-hr before saline 

administration in fed and 48-hrs fasting animals are given in Fig. 2.6A-2.6B. Basal 

PRL concentrations significantly (P<0.001) decreased in 48-hrs fasting compared to 

normal fed adult male monkeys. 
 

Effect of NMS on plasma PRL secretion in normal fed adult male monkeys 
 

The individual and mean plasma PRL concentrations (ng/ml) before and after 
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saline/NMS administration are given in table 2.5-2.6 and Fig. 2.7A. After 45 min of 

NMS injection PRL concentrations significantly (P<0.05) increased compared to 0 

min sample. Maximum levels of PRL concentrations (P<0.01) were observed at 60 

min of NMS injection compared to 0 min sample (Fig. 2.7B). Comparison between 

pre- and post-treatment also showed a significant (P<0.05) increase in PRL levels 

after NMS administration (Fig. 2.8). 
 

Effect of NMS on plasma PRL secretion in 48-hrs fasting adult male monkeys 
 

The individual and mean plasma PRL concentrations (ng/ml) before and after 

saline/NMS administration are given in table 2.7-2.8 and Fig. 2.9A. No significant 

(P>0.05) change was observed after NMS treatment in 48-hrs fasting monkeys 

compared to 0 min sample (Fig. 2.9B). Comparison between pre- and post-treatment 

did not show any significant (P>0.05) change in PRL levels after NMS administration 

(Fig. 2.10). 
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Table 2.1. Individual and mean (±SEM) plasma GH concentrations (ng/ml) 

before and after saline administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 1.79 1.51 1.99 1.20 1.62±0.17 
-45 1.90 1.41 2.08 1.05 1.61±0.23 
-30 1.98 1.29 1.96 1.17 1.60±0.22 
-15 1.94 1.34 2.04 1.10 1.61±0.23 
0 1.88 1.43 2.19 1.23 1.68±0.22 

15 2.03 1.37 2.43 1.31 1.79±0.27 
30 2.17 1.63 2.52 1.72 2.01±0.21 
45 2.46 1.82 2.46 1.83 2.14±0.18 
60 2.36 1.88 2.12 1.74 2.03±0.14 
75 2.17 2.57 1.84 1.65 2.06±0.20 
90 2.11 2.44 2.01 1.47 2.01±0.20 

105 2.29 2.74 2.68 1.53 2.31±0.28 
120 2.13 2.69 2.01 1.29 2.03±0.29 

 
 
 

Table 2.2. Individual and mean (±SEM) plasma GH concentrations (ng/ml) 

before and after NMS administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 1.19 1.67 1.12 1.69 1.42±0.15 
-45 1.29 1.77 1.18 1.65 1.47±0.14 
-30 1.21 1.85 1.09 1.76 1.48±0.19 
-15 1.30 1.94 1.13 1.82 1.55±0.20 
0 1.17 1.85 1.29 1.97 1.57±0.20 

15 1.25 2.09 1.81 2.03 1.80±0.19 
30 1.51 2.84 2.42 2.80 2.39±0.31 
45 2.13 3.21 3.08 3.92   3.09±0.37* 
60 2.87 4.15 3.94 5.09      4.01±0.46*** 
75 3.26 4.67 4.74 5.43      4.53±0.46*** 
90 4.28 4.96 5.37 6.11      5.18±0.38*** 
105 4.03 4.89 4.64 5.84      4.85±0.38*** 
120 4.02 4.53 4.12 4.35      4.26±0.11*** 

 
*P<0.05, ***P<0.001 vs 0 min (ANOVA followed by post hoc Dunnett’s test). 
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Table 2.3. Individual and mean (±SEM) plasma GH concentrations (ng/ml) 

before and after saline administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 1.41 1.19 1.20 1.62 1.36±0.10 
-45 1.37 1.28 1.31 1.72 1.42±0.10 
-30 1.32 1.36 1.39 1.79 1.47±0.11 
-15 1.44 1.26 1.46 1.87 1.51±0.13 
0 1.76 1.44 1.54 2.19 1.73±0.17 

15 1.82 1.22 1.48 2.02 1.64±0.18 
30 1.96 1.39 1.45 2.22 1.76±0.20 
45 2.09 1.52 1.49 2.18 1.82±0.18
60 2.56 1.64 1.62 2.45 2.07±0.25 
75 2.59 1.76 1.52 2.73 2.15±0.30 
90 2.82 1.88 1.64 2.76 2.28±0.30 

105 2.95 1.61 1.88 2.81 2.31±0.33 
120 2.26 1.52 1.66 2.08 1.88±0.17 

 
 
 

Table 2.4. Individual and mean (±SEM) plasma GH concentrations (ng/ml) 

before and after NMS administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 1.35 1.75 1.27 1.55 1.48±0.11 
-45 1.45 1.72 1.35 1.61 1.53±0.08 
-30 1.29 1.59 1.29 1.69 1.47±0.10 
-15 1.26 1.68 1.37 1.81 1.53±0.13 
0 1.37 1.54 1.51 2.01 1.61±0.14 

15 1.49 1.79 1.58 2.88 1.94±0.32 
30 2.20 2.75 1.72 3.39  2.52±0.36 
45 2.43 2.61 1.95 3.89  2.72±0.41 
60 3.14 3.17 2.75 4.26     3.33±0.32** 
75 4.05 3.53 4.11 5.23      4.23±0.36*** 
90 4.33 4.26 4.74 5.29      4.66±0.24*** 
105 3.25 3.73 4.02 4.46      3.87±0.25*** 
120 3.13 3.93 3.61 4.19      3.72±0.23*** 

 
**P<0.01, ***P<0.001 with 0 min sample (ANOVA followed by post hoc 
Dunnett’s test). 
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Figure 2.1. (A) Changes in mean (±SEM) basal plasma GH concentrations 

(ng/ml) in 1-hr period in fed and 48-hrs fasting adult male monkeys (B) 

Overall mean (±SEM) basal plasma GH concentrations (ng/ml) in  1-hr 

period in normal fed, and 48-hrs fasting adult male monkeys. P>0.05 vs fed 

(Student’s t test). 
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Figure. 2.2. (A) Mean (±SEM) changes in plasma GH levels (ng/ml) before and after 

saline/NMS administration (at 0 min) in fed adult male monkeys. (B) Comparison of 

mean (±SEM) GH concentrations (ng/ml) between post NMS (15-120 min) and pre 

NMS (at 0 min) in fed monkeys. *P<0.05, ***P<0.001 vs 0 min sample (ANOVA 

followed by post hoc Dunnett’s test). 
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Figure. 2.3. Comparison of mean (±SEM) plasma GH levels (ng/ml) in 60 min pre- 

and 120 min post saline/NMS in fed adult male monkeys. **P<0.01 vs pre-treatment 

(Student’s t test). 
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Figure. 2.4. (A) Mean (±SEM) changes in plasma GH levels (ng/ml) before and after 

saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. (B) 

Comparison of mean (±SEM) GH concentrations (ng/ml) between post NMS (15-120 

min) and pre NMS (at 0 min) in 48-hrs fasting monkeys. **P<0.01, ***P<0.001 with 

0 min sample (ANOVA followed by post hoc Dunnett’s test). 
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Figure. 2.5. Comparison of mean (±SEM) plasma GH levels (ng/ml) in 60 min pre- 

and 120 min post saline/NMS in 48-hrs fasting adult male monkeys. **P<0.01 vs pre-

treatment (Student’s t test). 
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Table 2.5. Individual and mean (±SEM) plasma PRL concentrations (ng/ml) 

before and after saline administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 
201 202 203 204

-60 16.39 13.74 15.33 14.32 14.95±0.58 
-45 15.43 14.69 15.34 15.09 15.14±0.17 
-30 17.39 14.13 14.53 15.78 15.46±0.73 
-15 14.83 15.62 15.59 15.54 15.40±0.19
0 15.14 16.18 15.95 16.09 15.84±0.24 

15 15.92 14.78 14.99 14.33 15.01±0.33 
30 15.73 13.89 15.38 14.92 14.98±0.40 
45 16.74 13.34 16.14 15.58 15.45±0.74 
60 15.19 13.37 16.79 15.96 15.33±0.73 
75 17.38 14.06 16.30 16.52 16.07±0.71
90 16.95 13.48 15.89 15.39 15.43±0.73 

105 17.71 13.99 16.02 15.33 15.76±0.77 
120 18.21 14.16 16.48 16.08 16.23±0.83 

 
 
 

Table 2.6. Individual and mean (±SEM) plasma PRL concentrations (ng/ml) 

before and after NMS administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 
201 202 203 204

-60 16.06 14.74 15.85 15.93 15.65±0.30 
-45 16.92 14.81 16.26 16.29 16.07±0.45 
-30 17.89 15.24 17.16 16.25 16.64±0.57 
-15 18.19 14.89 18.49 16.92 17.12±0.82 
0 18.14 15.77 18.56 17.24 17.43±0.62 
15 17.84 15.85 19.10 17.59 17.60±0.67 
30 18.93 16.23 20.04 18.95 18.54±0.81 
45 19.37 18.43 20.52 20.38   19.68±0.49* 
60 21.24 19.93 20.82 18.33      20.08±0.64** 
75 18.42 17.05 17.49 16.45 17.35±0.41 
90 16.38 15.71 17.16 16.16 16.35±0.30 

105 15.63 15.10 16.13 15.37 15.56±0.22 
120 16.72 15.87 15.99 15.53 16.03±0.25 

 
*P<0.05, **P<0.001 vs 0 min sample (ANOVA followed by post hoc Dunnett’s 
test) 
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Table 2.7. Individual and mean (±SEM) plasma PRL concentrations (ng/ml) 

before and after saline administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 
201 202 203 204

-60 8.57 9.65 7.49 8.21 8.48±0.45 
-45 8.11 9.55 7.12 8.72 8.38±0.51 
-30 8.19 9.23 7.18 8.51 8.28±0.43 
-15 8.58 9.44 6.99 8.93 8.49±0.53
0 8.33 9.52 7.62 8.69 8.54±0.40 

15 8.58 9.03 7.91 8.14 8.42±0.25 
30 8.39 8.81 7.65 7.89 8.19±0.26 
45 8.65 9.23 7.93 8.16 8.49±0.29 
60 8.23 8.87 7.39 8.5 8.25±0.31 
75 9.02 9.18 7.98 8.77 8.74±0.27
90 7.97 8.67 7.59 8.53 8.19±0.25 
105 8.31 8.54 7.18 7.24 7.82±0.35 
120 8.45 9.2 7.32 6.95 7.98±0.52 

 
 

 

Table 2.8. Individual and mean (±SEM) plasma PRL concentrations (ng/ml) 

before and after NMS administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 
201 202 203 204

-60 8.99 9.28 7.1 8.39 8.44±0.48 
-45 8.94 9.88 7.43 8.57 8.71±0.51 
-30 9.31 9.67 7.89 8.74 8.90±0.39 
-15 9.21 8.96 7.61 9.04 8.71±0.37 
0 9.71 8.63 7.85 8.49 8.67±0.39 
15 9.62 8.12 7.31 8.47 8.38±0.48 
30 10.54 9.19 7.62 9.07 9.11±0.60 
45 10.74 9.75 7.54 9.36 9.35±0.67 
60 10.98 10.04 8.37 9.42 9.70±0.55 
75 9.18 9.81 8.23 9.97 9.30±0.39 
90 8.73 9.27 7.89 9.29 8.80±0.33 

105 8.48 9.09 7.49 8.86 8.48±0.35 
120 8.67 9.01 7.18 8.97 8.46±0.43 

  
P>0.05 vs 0 min sample (ANOVA followed by post hoc Dunnett’s multiple test) 
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Figure. 2.6. (A) Changes in mean (±SEM) basal plasma PRL concentrations 

(ng/ml) in 1-hr period in fed and 48-hrs fasting adult male monkeys (B) 

Overall mean (±SEM) basal plasma PRL concentrations in 1-h period in 

normal fed, and 48 hrs fasting adult male monkeys. ***P< 0.001 vs fed 

(Student’s t test). 
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Figure. 2.7. (A) Mean (±SEM) changes in plasma PRL levels (ng/ml) before and after 

saline/NMS administration (at 0 min) in normal fed adult male monkeys. (B) 

Comparison of mean (±SEM) PRL concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in fed monkeys. *P<0.05, **P<0.01 vs 0 min 

sample (ANOVA followed by post hoc Dunnett’s test). 
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Figure. 2.8. Comparison of mean (±SEM) plasma PRL levels (ng/ml) in 60 min pre- 

and 120 min post saline/NMS in normal fed adult male monkeys. *P<0.01 vs pre-

treatment (Student’s t test). 
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Figure. 2.9. (A) Mean (±SEM) changes in plasma PRL levels (ng/ml) before and after 

saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. (B) 

Comparison of mean (±SEM) PRL concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in 48-hrs fasting monkeys. P>0.05 vs 0 min sample 

(ANOVA followed by post hoc Dunnett’s test). 
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Figure. 2.10. Comparison of mean (±SEM) plasma PRL levels (ng/ml) in 60 min pre- 

and 120 min post saline/NMS in 48-hrs fasting adult male monkeys. P>0.05 vs pre-

treatment (Student’s t test). 
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Discussion 
 

In the present study, the role of peripheral administration of NMS on two 

pituitary hormones i.e. GH and PRL was studied. Both these hormones are considered 

very important in regulation of reproductive functions. It was hypothesized that NMS 

might be playing its stimulatory role in HPG axis through stimulation of the secretion 

of these two pituitary hormones. For this purpose effect of peripheral administration 

of NMS on GH and PRL secretion was investigated in normal fed and 48-hrs fasting 

monkeys. 
 

 Growth hormone (GH) plays very important role in autocrine/paracrine and 

endocrine regulation of reproduction. It is involved in the control of growth, 

differentiation, proliferation, apoptosis and the secretory activities of reproductive 

organs. It also regulates the response of reproductive structures to GnRH and 

gonadotropins (Sirotkin, 2005). GH and its receptors are present in large number of 

tissues and cells including pituitary, uterus, mammary gland, placenta, Leydig cells, 

granulosa cells, theca cells, cumulus cells of oocyte and many other reproductive and 

non-reproductive tissues (Hull and Harvey, 2000a,b, 2001; Kaiser et al., 2001; 

Marchal et al., 2003). 
 

In our study 48-hrs fasting did not cause any significant effect on basal GH 

concentrations and its levels were remained constant in both fed and metabolically 

stressed animals. GH plays an important role in regulation of metabolic activities 

during fasting conditions (Norrelund, 2005; Moller and Jorgensen, 2009) but there are 

discrepancies in GH release in fasting periods in different animals. Among two 

groups of healthy human adult males, 24-hrs fasting induced a significant rise in GH 

levels in one group while in second group GH levels remained same to the initial pre 

fasting values (Alkén et al., 2008). Similar results were also observed in young 

healthy human females (Beer et al., 1989). Several other studies also showed that upto 

2.5 days fasting did not cause significant change and the GH levels remained same in 

adult human females (Bergendahl et al., 1999; Norrelund et al., 2001; Darzy et al., 

2006; Sakharova et al., 2008). Thissen et al, found negative effect of fasting on GH 

secretion in men (Thissen et al., 1994). In rats 24-hrs fasting did not effect GH levels 

but five days fasting caused significant decrease in GH secretion (Ohashi et al., 1995). 
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In our study 48-hrs fasting caused no effect (P>0.05) on GH secretion in rhesus 

monkeys. On the basis of these findings it is very difficult to suggest the exact role of 

fasting on GH secretion but it is more logical to say that species difference and 

periods of fastings employed, might have contributed in these different responses.  
 

Peripheral admistration of NMS significantly increased (P<0.01) GH 

concentrations in both fed and 48-hrs fasting adult male monkeys suggesting that 

irrespective of the metabolic status of animals NMS stimulated GH secretion. The 

possible mechanism involved in the regulation of GH by NMS, is through the α-MSH 

and β-END from POMC in ARC. Both α-MSH and β-END are the products of the 

POMC gene (Smith and Funder, 1988). These POMC products stimulate the release 

of GHRH from hypothalamus. It was shown by Dupont and colleagues that 2 μg and 

higher dose of β-END resulted in a significant stimulation of plasma GH release from 

6 to 10 and 20 to 30-fold respectively (Dupont et al., 1976). Another study (Bricaire 

et al., 1973) showed that α-MSH induced GH release in 18 among 23 normal males. 

Similarly, a significant rise in GH secretion by α-MSH administration in children 

suffering from hypopituitarism was observed (Bernasconi et al., 1975). NMS 

expression at the SCN, PVN within the brain (Mori et al., 2005; Ida et al., 2005) may 

regulate the POMC mRNA expression at ARC. NMS icv administration led to the 

augmentation of POMC mRNA levels in the ARC and elevated expression of c-Foss 

in ARC POMC neurons (Mori et al., 2005). These outcomes propose the involvement 

of α-MSH in NMS regulated feeding behaviour and pituitary hormones regulation.  
 

Prolactin (PRL) has a wide range of actions in male reproductive functions. It 

has been shown to cause the induction of proliferation and differentiation of Leydig 

cells in prepubertal hypophysectomized rats (Dombrowicz et al., 1992) and the 

maintenance of cell morphology of these cells, potentiation of LH induced 

steroidogenesis in hypophysectomized rats and upregulation of LHR expression (Zipf 

et al., 1978; Purvis et al., 1979; Dombrowicz et al., 1992; Bole-Feysot et al., 1998; 

Manna et al., 2001).  
  

 In our study,  the plasma PRL levels were significantly (P<0.001) lowered 

after 48-hrs fasting is in accordance with the preexisting literature, where fasting also 

put the suppressive effect on PRL secretion in different animals (Sirek et al., 1976; 
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Campbell et al., 1977; Dyer et al., 1985; Bergendahl et al., 1991; Xie, 1991). In the 

present study, as a novel finding it was found that NMS positively regulates plasma 

PRL concentration (P<0.05) in fed monkeys but did not show such stimulatory effect 

in 48-hrs fasting monkeys. Hypothalamus might be the possible site where NMS may 

act to effect the stimulation of PRL release. Increase in PRL releasing hormones like 

VIP or decrease in release of its inhibitory chemicals like dopamine may effect PRL 

secretion (Ben-Jonathan et al., 1989). As ARC in the hypothalamus shows large 

number of NMS receptors (Mori et al., 2005) so it may be suggested that certain 

peptides released by ARC may modulate the PRL secretion (Kalra et al., 1999) under 

the effect of NMS. A large number of neurons are present in ARC nucleus, produce β-

END, α-MSH and many other nutrition regulated factors (Kalra et al., 1999). Pro-

opiomelanocortin (POMC) gene which is responsible for the production of β-END 

and α-MSH (Smith and Funder, 1988), is cleaved to synthesize many hormones like 

ACTH, lipotropin, α-MSH, corticotrophin-like intermediate peptide (CLIP) and β-

END which may act as important link between the metabolic condition of an 

individual and its reproductive functions (Bergendahl et al., 1992; Schwartz et al., 

1997; Mizuno et al., 1998; Koegler et al., 2001). It is evident that NMS stimulate the 

expression of the POMC genes in ARC (Mori et al., 2005). NMS administration (icv) 

increased the expression of POMC mRNA in the ARC and stimulated expression of 

c-Fos in POMC neurons (Miyazato et al., 2008).  Both α-MSH (Hill et al., 1993; Hill 

et al., 1991; Nunez and Frawley, 1998) and β-END (Selmanoff and Gregerson, 1986; 

Kehoe et al., 1993) are considered as excitatory in action on PRL secretion. So it 

seems convincible that NMS plays stimulatory role in PRL secretion by these two 

products of POMC gene.  
 

Dopamine (DA) released from hypothalamic neurons inhibits PRL secretion 

(Freeman et al., 2000). This DA comes from three discrete neuronal populations from 

the pituitary gland: the tuberohypophyseal dopaminergic (TIDA) neurons that arise 

from the rostral ARC and project to intermediate and neural lobes of the pituitary 

(Holzbauer and Racke, 1985), the TIDA neurons that are located in the dorsomedial  

(DM) portion of arcuate (ARC) nucleus and project to the median eminence (ME) 

(Kawano and Daikoku, 1987), and the periventricular hypophyseal  dopaminergic 

neurons that arise in the periventricular (Pe) nucleus and innervate  exclusively the 
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intermediate lobe (Goudreau et al., 1995). Taken together, this data provide 

compelling evidence supporting a role for ARC neurons in the regulation of 

hypothalamic DA and thereby PRL secretion. 
 

 Another possible mediator of this NMS stimulated PRL release is oxytocin. It 

was observed that in ovariectomized (OVX) rats with addition to oxytocin antagonist 

daily stimulatory rhythm of PRL secretion blocked, suggesting that oxytocin has some 

stimulatory role on PRL secretion (Arey and Freeman, 1989, 1992). Later on, it was 

confirmed by further experiments that oxytocin has a definite role in regulation of 

PRL secretion (Egli et al., 2004; Bertram et al., 2006). It was also demonstrated that 

icv injection of NMS increased the plasma oxytocin concentration significantly within 

5 min in dose dependent manner. It was established that NMS may mimic the 

suckling-induced oxytocin release (Sakamoto et al., 2008). SCN neurons seem to be 

affecting the release of both DA and oxytocin. From the SCN, VIP fibers originate 

and lead to DA neurons in ARC (Gerhold et al., 2001), and a previous study 

suggested that oxytocin neurons are also innervated by VIP fibers in the PVN (Egli et 

al. 2004). 
 

 GnRH was the first candidate for paracrine modulation of PRL release from 

lactotrophs (Denef and Andries., 1983). GnRH only stimulate prolactin secretion 

when lactotrophs and gonadotrophs are cocultured (Denef and Andries, 1983), 

pointing towards the possibility of involvement of other gonadotroph-related products 

in stimulation of prolactin secretion. GnRH has been reported to release prolactin in 

monkeys, in vivo (Geisthoevel et al., 1988; Olive et al., 1989) and in women during 

the menstrual cycle (Casper and Yen, 1981, Yen et al., 1980). Now it is evident that 

NMS plays a significant role in stimulation of GnRH so it is more likely to say that 

NMS induced PRL secretion was due to the stimulation of pituitary by GnRH. 
  

 In summary, our results suggested that NMS is a presumptive regulator of 

pituitary hormones like GH and PRL. So, it is plausible that NMS might play its 

positive role in HPG regulation through the stimulation of pituitary hormones like GH 

and PRL. Various pathways may be considered as suitable candidates for this 

regulation but it is very difficult to confirm the exact pathway of NMS action in this 

regard. Further studies are required to confirm the exact mechanism of this regulation. 
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Abstract 
 

Background: Adipokines are known as important adiposity signals and play certain 

roles in various biological processes. Now their involvement in the regulation of HPG 

axis has also been established. In the present study, we investigated the role of 

peripheral administration of NMS on adipokines (adiponectin, leptin and resistin) 

secretion in 48-hrs fasting and normal fed adult male monkeys. For this purpose after 

NMS administration plasma adiponectin, leptin and resistin levels were determined in 

normal fed and 48-hrs fasting monkeys.  
 

Materials and Methods: Four intact adult male rhesus monkeys (6-8 yr Age: 7-10 kg 

BW) were used in this study. 50 nmol of NMS was injected through a cannula affixed 

in saphenous vein. Blood samples were collected individually 60 min before and 120 

min at 15 min intervals, after NMS/saline administration. The plasma adiponectin, 

leptin and resistin concentrations were determined by using specific Enzyme 

Immunoassay (EIA) kits.  
 

Results: 48 hrs fasting significantly increased plasma adiponectin (P<0.001), while 

decreased leptin (P<0.001) and resistin (P<0.01) concentrations compared to normal 

fed monkeys. No significant (P>0.05) change in adiponectin levels was observed after 

NMS/saline injection in both normal and metabolically stressed conditions. NMS 

administration induced a significant (P<0.01) increase in resistin levels, while 

suppressed leptin (P<0.05) secretion in both fed and 48-hrs fasting conditions 

compared to saline treated animals. 
 

Conclusion: In conclusion our study suggested that NMS has a definite role in 

regulation of adipokines secretion. Its inhibitory effect on leptin and stimulatory effect 

on resistin shows an important relationship between NMS and adipokines in the 

regulation of reproductive axis in male rhesus monkeys. To best of our knowledge 

this is the very first study regarding the role of NMS on adipokines secretion in male 

monkeys. Therefore, further studies are recommended to confirm the exact 

mechanism of this regulation and its importance in male reproduction.  

 
 



Chapter 3                                                                                                     Introduction 
 
 

 
Possible role of Neuromedin S in male reproduction 

 

76

 

Introduction 
 

 Adipokines, a group of bioactive peptides, are released from adipose tissue and 

play an important role in variety of biological processes (Fischer-Posovszky et al., 

2007). Resistin, leptin and adiponectin are important regulators of metabolism and 

energy homeostasis. Leptin acts as a surfeit factor and its concentrations are positively 

related to body fat mass. Adiponectin is most abundantly present in blood circulation 

and negatively related with body fat mass. Adiponectin enhances sensitivity of insulin 

while resistin and leptin reduce it (Ahima and Lazar, 2008). Adipokines play a very 

important role in regulation of reproductive axis. Adiponectin attenuates while Leptin 

augments the release of main reproductive hormones (Lado-Abeal et al., 2000; Smith et 

al., 2006; Fischer-Posovszky et al., 2007; Rodriguez-Pacheco et al., 2007; Caminos et 

al., 2008) but the effect of resistin in regulation of reproduction is not clearly 

understood. 
  

 Adipokines released from adipose tissue act via a network of endocrine, paracrine 

and autocrine pathways, and playing very important role in variety of physiological 

aspects, such as cardiovascular functions, lipid and glucose metabolism, immunity, 

neuroendocrine function and reproduction (Shankar et al., 2010; Pataky et al., 2010). 

Number of changes appears in adipokine concentrations due to energy imbalance (Arita 

et al., 1999; Hotta et al., 2000; Kadowaki and Yamauchi, 2005; Fischer-Posovszky et 

al., 2007; Ahima and Lazar, 2008; Guevara et al., 2008). Adiponectin levels increase 

while leptin and resistin levels decrease during short term metabolic deficiencies 

(Rajala et al., 2004; Kadowaki and Yamauchi, 2005; Guevara et al., 2008). 
 

Adiponectin, is basically involved in regulation of insulin sensitivity 

(Kershaw, 2004). A large number of adiponectin receptors are expressed on testicular 

Leydig cells, the major source of the testosterone (T), an important element of male 

reproductive functions (Caminos et al., 2008). It was observed that testosterone 

therapy decreased adiponectin concentrations and similarly high adiponectin levels 

decreased T concentrations in rats (Page et al., 2005). It was also suggested that 

adiponectin is directly involved in HPA axis, by regulating the secretion of 

hypothalamic and pituitary hormones (Qi et al., 2004; Rodriguez-Pacheco et al., 2007; 

Iwama et al., 2009). 
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Leptin has been considered as a major factor, which links the metabolic status 

to reproduction (Barash et al., 1996). Hypothalamus looks to be the major area of the 

leptin activity in HPG axis regulation (Lin et al., 2001; Williams et al., 2002). Leptin 

receptor mRNA is observed in the hypothalamic region might be playing an important 

role in regulation of feeding and reproductive functions (Magni et al., 2000; Barb and 

Kraeling, 2004). In metabolically stressed ovariectomized (OVX) ewes central 

administration of leptin restored LH levels but it was failed to do so in normal fed 

OVX ewes (Henry et al., 1999, 2001). Conversely icv administration of leptin did not 

cause any significant change in LH secretion in food restricted OVX sheep, while in 

normal fed intact sheep it decreased LH levels in circulation (Blache et al., 2000; 

Morrison et al., 2001). In sterile ob/ob mice, the sterility defect was overcome with 

increase in LH concentrations after leptin infusions (Barash et al., 1996; Chehab et 

al., 1996; Mounzih et al., 1997; Cleary et al., 2001). In rat hCG treated Leydig 

(Caprio et al., 1999) cells and testicular slices (Tena-Sempere et al., 1999, 2000) 

leptin suppressed testosterone levels indicating that it plays an inhibitory role in 

androgen secretion. In contrast to these findings leptin did not affect steroidogenesis 

in mice and primates (Banks et al., 1999; Lado-Abeal et al., 1999).  
  

 Resistin, expressing in rat adipose tissue, was considered to be a key factor in 

impairment of insulin sensitivity (Steppan et al., 2001a). Barrett-Connor, (1992) 

suggested that low plasma T levels are frequently associated with insulin resistance 

although exact mechanism of this alteration is unclear but as this effect is reversed after 

losing weight, signaling a link to dysfunctioning of adipocytes (Kopelman, 1992). In rat 

testes 48-hrs fasting significantly reduced resistin mRNA expressions (Nogueiras et al., 

2004). In an in vitro study in rat testes, different doses of resistin were seen to enhance 

T concentrations in both basal and hCG induced conditions (Nogueiras et al., 2004). 
  

 NMS an anorexigenic neuropeptide expressing in SCN of hypothalamus is 

involved in the regulation of HPA axis (Jászberényi et al., 2007) and HPG axis (Vigo et 

al., 2007). On the basis of above evidences that adipokines play a very important role in 

the regulation of HPG axis, in this study it was hypothesized that NMS might be 

involved in controlling the secretion of adipokines from adipocytes. For this purpose in 

the present study, the effect of peripheral NMS injection was investigated on the 

secretion of leptin, resistin and adiponectin in normal fed and 48-hrs fasting adult 
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male rhesus monkeys.  To best of our knowledge it was the first study regarding NMS 

role on adipokines secretion.  
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Materials and Methods 
 

Animals 
 

 The animals used in the concerned study were, four adult normal male 

monkeys (Macaca mulatta) of age and weight ranging from 6-8 years and 7-10 kg 

respectively. All the animals were kept in specific colony environment of primate 

facility at Department of Animal Sciences, Quaid-i-Azam University Islamabad, 

Pakistan. The animals were daily provided with feed comprising of fresh fruits, boiled 

potatoes, eggs and bread at specific times according to their body weights, and water 

was available ad libitum. Prior to the start of experiment, appetite monitoring was 

carried out for a month. It was observed that all animals used to finish their food 

within 10-15 min.  
 

Venous Catheterization 
 

 A cathy cannula (Silver surgical complex, Karachi, Pakistan; 0.8 mm O.D/22 

G×25mm) was affixed in the sephnous vein after anesthesizing the animals with 

Ketamine HCl (10 mg/kg BW, im), to bring about all the chemical administration and 

sequential blood sampling. A butterfly tubing (24 G×3/4˝ diameter and 300 mm 

length; JMS Singapore) was attached with free end of the cannula. All the sampling 

was performed after full recovery of animals from sedation. 
 

Pharmacological Reagents 
 

Pharmacological reagents used in the study are listed below: 

Heparin (Sinochem Ningbo, China) 

Ketamine HCl (Rotexmedica, Trittau, Germany)  

Human Neuromedin S (Anaspec, USA) 

All the working solutions were prepared in saline solution (0.9% NaCl). 
 

Blood sampling 
  

Blood sampling (2-3 ml) was conducted, at regular intervals of 15 min, using 

heparinized syringes. An equivalent quantity of heparinized (5 IU/ml) saline was 

injected after each sample withdrawal. Samples were collected 60 min before and 

120 min after NMS/saline administration. The time of NMS (50 nmol) 
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administration was considered as 0 min. All blood samples were obtained between 

1100-1500 hrs. All experiments were performed in a couple of weeks in order to 

reduce the alterations in hormonal levels associated with seasonal changes. Samples 

were centrifuged for 10 min at 3000 rpm, and then plasma was pipetted out and 

stored at -20˚C until analyzed. 
 

Analysis of hormones 
 

Leptin, adiponectin and resistin concentrations were quantitatively determined 

by using EIA kits (AssayMax Human ELISA; Assaypro 41 Triad south drive St. 

Charles, USA). The minimum limit of detectable level of leptin was upto 0.12 ng/ml; 

intra-assay and inter-assay coefficients of variation were 4.5% and 7.2% respectively. 

The minimum limit of detectable adiponectin levels was upto 0.5 ng/ml; intra-assay 

and inter-assay coefficients of variation were 4.2% and 7.3% respectively. In case of 

resistin the minimum detectable level was upto 0.2 ng/ml; intra-assay and inter-assay 

coefficients of variation were 4.2% and 7.3% respectively. All the procedures of EIA 

were followed as provided with the kits. 
 

Statistical analysis  
 

All the data were presented as mean±SEM. Leptin, adiponectin and resistin 

concentrations after NMS and saline administration were compared by one-way 

ANOVA followed by post hoc Dunnett’s multiple comparisons test. Student’s t test 

was employed to compare mean pre- and post-treatment leptin, adiponectin and 

resistin concentrations, under 48-hrs fasting and normal fed conditions. 
 

 Statistical significance was set at P≤0.05. All the data were analyzed by 

using statistical software GraphPad Prism version 5. 
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Results 
 

Basal plasma adiponectin concentrations in fed and fasting conditions 
 

Basal plasma concentrations of adiponectin (ng/ml) during 1-hr before saline 

administration in fed and 48-hrs fasting animals are given in Fig. 3.1A-3.1B. 

Adiponectin levels significantly (P<0.001) increased in 48-hrs fasting compared to 

normal fed monkeys.  
 

Effect of NMS on plasma adiponectin secretion in normal fed adult male 

monkeys 
 

The individual and mean plasma adiponectin concentrations (ng/ml) before 

and after saline/NMS administration are given in table 3.1-3.2 and Fig. 3.2A. After 60 

min of NMS injection adiponectin concentrations significantly (P<0.01) decreased 

compared to 0 min sample (Fig. 3.2B). Comparison between pre- and post-treatment 

did not show any significant (P>0.05) change in adiponectin levels after NMS 

administration (Fig. 3.3). 
 

Effect of NMS on plasma adiponectin secretion in 48-hrs fasting adult male 

monkeys 
 

The individual and mean plasma adiponectin concentrations (ng/ml) before 

and after saline/NMS administration are given in table 3.3-3.4 and Fig. 3.4A. 

Adiponectin levels significantly (P<0.01) decreased after 60 min of NMS injection 

compared to 0 min sample in 48-hrs fasting monkeys. Maximum decrease in 

adipoectin concentrations (P<0.001) was observed at 90 min of NMS injection 

compared to 0 min sample (Fig. 3.4B). Comparison between pre- and post-treatment 

showed a non significant (P<0.05) decrease in adiponectin levels after NMS 

administration (Fig. 3.5). 
 

Basal plasma leptin concentrations in fed and fasting conditions 
 

Basal plasma concentrations of leptin (ng/ml) during 1-hr before saline 

administration in fed and 48-hrs fasting animals are given in Fig. 3.6A-3.6B. 48-hrs 

fasting caused a significant decrease (P<0.001) in basal plasma leptin levels compared 

to normal fed adult male monkeys. 
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Effect of NMS on plasma leptin secretion in normal fed adult male monkeys 
 

The individual and mean plasma leptin concentrations (ng/ml) before and after 

saline/NMS administration in normal fed monkeys are given in table 3.5-3.6 and Fig. 

3.7A. After 45 min of NMS injection leptin concentrations significantly (P<0.05) 

decreased compared to 0 min sample. Maximum decrease in leptin concentrations 

(P<0.001) was observed at 105 min of NMS injection compared to 0 min sample (Fig. 

3.7B). Comparison between pre- and post-treatment also showed a significant 

(P<0.01) decrease in leptin levels after NMS administration (Fig. 3.8). 
 

Effect of NMS on plasma leptin secretion in 48-hrs fasting adult male monkeys 
 

The individual and mean plasma leptin concentrations (ng/ml) before and after 

saline/NMS administration in 48-hrs fasting monkeys are given in table 3.7-3.8 and 

Fig. 3.9A. NMS treatment in 48-hrs fasting monkeys caused a significant (P<0.01) 

decrease in leptin concentrations after 75 min of NMS injection. The most significant 

decrease (P<0.01) in leptin concentrations (P<0.001) was observed at 90 min and 105 

min of NMS injection compared to 0 min sample (Fig. 3.9B). Comparison between 

pre- and post-treatment showed a significant (P<0.01) decrease in leptin levels after 

NMS administration (Fig. 3.10). 
 

Basal plasma resistin concentrations in fed and fasting conditions 
 

Basal plasma concentrations of resistin (ng/ml) during 1-hr before saline 

administration in normal fed and 48-hrs fasting animals are given in Fig. 3.11A-

3.11B. Basal resistin levels significantly (P<0.01) decreased in 48-hrs fasting 

compared to normal fed monkeys.  
 

Effect of NMS on plasma resistin secretion in normal fed adult male monkeys 
 

The individual and mean plasma resistin concentrations (ng/ml) before and 

after saline/NMS administration in normal fed monkeys are given in table 3.9-3.10 

and Fig. 3.12A. After 60 min of NMS injection resistin concentrations significantly 

(P<0.05) increased compared to 0 min sample (Fig. 3.12B). Comparison between pre- 

and post-treatment showed a significant (P<0.01) increase in resistin levels after NMS 

administration (Fig. 3.13). 
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Effect of NMS on plasma resistin secretion in 48-hrs fasting adult male monkeys 
 

The individual and mean plasma resistin concentrations (ng/ml) before and 

after saline/NMS administration in 48-hrs fasting monkeys are given in table 3.11-

3.12 and Fig. 3.14A. NMS treatment in 48-hrs fasting monkeys induced a significant 

(P<0.05) increase in resistin concentrations after 45 min of NMS injection. Maximum 

levels of resistin concentrations (P<0.01) were observed at 75 min of NMS injection 

compared to 0 min sample (Fig. 3.14B). Comparison between pre- and post-treatment 

also showed a significant (P<0.01) increase in resistin levels after NMS 

administration (Fig. 3.15). 
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Table 3.1. Individual and mean (±SEM) plasma adiponectin concentrations 

(ng/ml) before and after saline administration (at 0 min) in normal fed adult 

male monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 19.21 21.16 25.91 14.11 20.10±2.44 
-45 17.02 19.22 23.14 13.61 18.25±2.00
-30 17.12 15.41 23.65 18.35 18.63±1.78
-15 14.21 16.46 19.33 15.81 16.45±1.07 
0 21.33 19.82 23.71 18.16 20.76±1.18 

15 17.39 19.46 21.97 16.75 18.89±1.18 
30 20.81 25.11 22.48 18.59 21.75±1.38 
45 22.45 20.31 18.49 15.82 19.27±1.41 
60 21.25 19.99 16.81 15.03 18.27±1.43 
75 24.13 20.52 19.16 21.14 21.24±1.05 
90 19.44 17.92 17.61 16.60 17.89±0.59 

105 18.92 16.27 21.76 19.19 19.04±1.12 
120 21.64 17.59 24.14 20.49 20.97±1.36 

 
 
 

Table 3.2. Individual and mean (±SEM) plasma adiponectin concentrations 

(ng/ml) before and after NMS administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 21.34 15.22 13.42 18.23 17.05±1.74 
-45 19.55 13.94 12.34 15.99 15.46±1.56 
-30 19.92 14.98 14.21 24.18 18.32±2.33 
-15 17.64 12.08 12.45 20.24 15.60±2.00 
0 19.24 23.3 17.94 21.22 20.43±1.17 
15 16.40 20.25 13.09 19.64 17.35±1.65 
30 16.90 18.31 13.93 16.88 16.51±0.92 
45 14.66 17.92 11.63 15.25 14.87±1.29 
60 12.85 16.23 11.33 12.45    13.22±1.06** 
75 17.42 19.75 15.97 12.54 16.42±1.51 
90 18.15 21.64 13.88 14.95 17.16±1.75 
105 22.86 19.55 15.46 15.21 18.27±1.82 
120 17.71 18.22 14.94 19.56 17.61±0.97 

 
**P<0.01 vs 0 min sample (ANOVA followed by post hoc Dunnett’s test). 
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Table 3.3. Individual and mean (±SEM) plasma adiponectin concentrations 

(ng/ml) before and after saline administration (at 0 min) in 48-hrs fasting adult 

male monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 49.06 45.82 39.44 53.54 46.97±2.97 
-45 42.15 39.36 35.12 51.45 42.02±3.46 
-30 44.46 48.31 39.74 55.86 47.09±3.41 
-15 40.78 41.16 35.87 49.02 41.71±2.72 
0 43.19 54.43 34.95 49.76 45.58±4.23 
15 43.93 49.91 36.31 46.89 44.26±2.92 
30 46.11 56.51 39.96 49.52 48.03±3.45 
45 41.85 53.11 36.71 47.46 44.78±3.54 
60 42.04 54.62 39.83 55.96 48.11±4.18 
75 43.34 49.91 41.37 57.45 48.02±3.64 
90 43.83 52.99 45.05 52.09 48.49±2.36 
105 44.16 55.65 47.88 53.26 50.24±2.60 
120 45.09 52.78 53.91 48.14 49.98±2.05 

 
 
 

Table 3.4. Individual and mean (±SEM) plasma adiponectin concentrations 

(ng/ml) before and after NMS administration (at 0 min) in 48-hrs fasting adult 

male monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 50.21 41.33 45.1 34.02 42.67±3.41 
-45 46.59 36.25 37.38 30.76 37.75±3.28 
-30 49.33 43.52 39.54 39.24 42.91±2.35 
-15 43.42 38.58 40.22 34.25 39.12±1.91 
0 45.25 33.59 43.9 38.62 40.34±2.67 

15 49.77 41.23 44.82 48.29 46.03±1.91 
30 41.29 40.27 39.71 42.13 40.85±0.54 
45 38.51 41.09 34.75 37.29 37.91±1.32 
60 34.55 31.61 25.77 33.55    31.37±1.96** 
75 33.07 29.88 28.95 34.62   31.63±1.33* 
90 30.13 29.08 25.55 27.36    28.03±1.00*** 
105 31.66 36.13 26.94 28.05    30.70±2.07** 
120 37.11 39.36 29.14 33.25 34.72±2.25 

 
*p<0.05, **P<0.01, ***P<0.001 with 0 min sample (ANOVA followed by post hoc 

Dunnett’s test). 
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Figure. 3.1. (A) Changes in mean (±SEM) basal plasma adiponectin 

concentrations (ng/ml) in 1-hr period in fed and 48-hrs fasting adult male 

monkeys (B) Overall mean (±SEM) basal plasma adiponectin concentrations 

(ng/ml) in  1-hr period in normal fed, and 48-hrs fasting adult male 

monkeys. ***P<0.001 vs fed (Student’s t test). 
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Figure. 3.2. (A) Mean (±SEM) changes in plasma adiponectin levels (ng/ml) before 

and after saline/NMS administration (at 0 min) in normal fed adult male monkeys. (B) 

Comparison of mean (±SEM) adiponectin concentrations (ng/ml) between post NMS 

(15-120 min) and pre NMS (at 0 min) in fed monkeys. **P<0.01 vs 0 min sample 

(ANOVA followed by post hoc Dunnett’s test). 
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Figure. 3.3. Comparison of mean (±SEM) plasma adiponectin levels (ng/ml) in 60 

min pre- and 120 min post saline/NMS in normal fed adult male monkeys. P>0.05 vs 

pre-treatment (Student’s t test). 
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Figure. 3.4. (A) Mean (±SEM) changes in plasma adiponectin levels (ng/ml) before 

and after saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. 

(B) Comparison of mean (±SEM) adiponectin concentrations (ng/ml) between post 

NMS (15-120 min) and pre NMS (at 0 min) in 48-hrs fasting monkeys. *p<0.05, 

**P<0.01, ***P<0.001 vs 0 min sample (ANOVA followed by post hoc Dunnett’s 

test). 
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Figure. 3.5. Comparison of mean (±SEM) plasma adiponectin levels (ng/ml) in 60 

min pre- and 120 min post saline/NMS in 48-hrs fasting adult male monkeys. P>0.05 

vs pre-treatment (Student’s t test). 
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Table 3.5. Individual and mean (±SEM) plasma leptin concentrations (ng/ml) 

before and after saline administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 2.92 3.99 3.61 3.05 3.39±0.25 
-45 3.11 3.61 3.71 3.16 3.40±0.15 
-30 3.22 3.78 3.92 3.22 3.54±0.18 
-15 3.17 3.51 3.69 3.15 3.38±0.13 
0 3.61 3.81 4.04 3.75 3.80±0.09 

15 3.51 3.94 4.13 3.40 3.75±0.17 
30 3.19 4.06 4.41 3.98 3.91±0.26 
45 3.41 3.89 3.97 4.06 3.83±0.15 
60 3.59 3.41 3.72 3.82 3.64±0.09 
75 3.38 3.88 3.59 3.74 3.65±0.11 
90 3.65 3.71 2.99 3.20 3.39±0.17 

105 3.21 3.39 3.04 2.96 3.15±0.10 
120 2.98 3.41 3.34 3.14 3.22±0.10 

 
 
 

Table 3.6. Individual and mean (±SEM) plasma leptin concentrations (ng/ml) 

before and after NMS administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 3.03 4.13 4.11 3.10 3.59±0.30 
-45 3.52 3.77 4.69 3.26 3.81±0.31 
-30 2.97 3.79 3.82 3.48 3.52±0.20 
-15 3.17 3.51 4.66 4.21 3.89±0.34 
0 3.19 3.42 4.41 3.62 3.66±0.26 

15 3.35 3.51 3.82 3.98 3.67±0.14 
30 2.99 2.56 2.93 3.72 3.05±0.24 
45 2.54 2.39 2.41 3.49   2.71±0.26* 
60 2.99 2.79 2.31 3.08   2.79±0.17* 
75 2.08 2.21 2.52 2.71      2.38±0.14***
90 1.77 1.62 1.91 2.19      1.87±0.12*** 
105 1.55 1.41 1.99 1.92      1.72±0.14*** 
120 1.72 2.01 1.89 2.71      2.08±0.22*** 

 
*P<0.05, ***P<0.001 vs 0 min sample (ANOVA followed by post hoc Dunnett’s 

test). 
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Table 3.7. Individual and mean (±SEM) plasma leptin concentrations (ng/ml) 

before and after saline administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 0.81 1.2 1.42 0.78 1.05±0.16 
-45 0.97 1.04 1.13 0.81 0.99±0.07
-30 0.88 0.92 0.99 1.11 0.98±0.05
-15 1.02 0.99 1.06 1.19 1.07±0.04 
0 1.00 0.82 1.11 1.09 1.01±0.07 

15 0.85 0.91 1.05 1.17 1.00±0.07 
30 0.93 1.01 1.59 0.89 1.11±0.16 
45 1.16 0.93 1.04 0.86 1.00±0.07 
60 0.99 0.88 1.15 0.71 0.93±0.09 
75 1.08 0.95 1.11 0.83 0.99±0.06 
90 0.85 1.05 0.82 0.96 0.92±0.05 

105 0.89 1.21 0.95 0.75 0.95±0.10 
120 1.04 1.13 0.98 0.92 1.02±0.04 

 
 
 

Table 3.8. Individual and mean (±SEM) plasma leptin concentrations (ng/ml) 

before and after NMS administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 1.03 0.84 1.51 1.12 1.13±0.14 
-45 0.96 1.16 1.18 1.27 1.14±0.07 
-30 1.26 1.02 1.24 1.44 1.24±0.09 
-15 0.94 1.01 0.99 1.10 1.01±0.03 
0 0.73 1.15 1.25 0.86 1.00±0.12 
15 0.91 1.14 1.06 1.05 1.04±0.05 
30 0.73 0.96 0.96 1.01 0.92±0.06 
45 0.68 0.79 0.85 0.91 0.81±0.05 
60 0.77 0.64 1.01 0.84 0.82±0.08 
75 0.62 0.55 0.81 0.79   0.69±0.06* 
90 0.61 0.49 0.72 0.67    0.62±0.05** 

105 0.47 0.53 0.69 0.78    0.62±0.07** 
120 0.52 0.72 0.62 0.68    0.64±0.04** 

 
*p<0.05, **P<0.01 vs 0 min sample (ANOVA followed by post hoc Dunnett’s 

test). 

 
 
 
 



Chapter 3                                                                                                              Results 
 

 
Possible role of Neuromedin S in male reproduction 

 

93

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 3.6. (A) Changes in mean (±SEM) basal plasma leptin 

concentrations (ng/ml) in 1-hr period in fed and 48-hrs fasting adult male 

monkeys (B) Overall mean (±SEM) basal plasma leptin concentrations 

(ng/ml) in  1-hr period in normal fed, and 48-hrs fasting adult male 

monkeys. ***P<0.001 vs fed (Student’s t test). 
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Figure. 3.7. (A) Mean (±SEM) changes in plasma leptin levels (ng/ml) before and 

after saline/NMS administration (at 0 min) in normal fed adult male monkeys. (B) 

Comparison of mean (±SEM) leptin concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in fed monkeys. *P<0.05, ***P<0.001 vs 0 min 

sample (ANOVA followed by post hoc Dunnett’s test). 
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Figure. 3.8. Comparison of mean (±SEM) plasma leptin levels (ng/ml) in 60 min pre- 

and 120 min post saline/NMS in normal fed adult male monkeys. **P<0.01 vs pre-

treatment (Student’s t test). 
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Figure. 3.9. (A) Mean (±SEM) changes in plasma leptin levels (ng/ml) before and 

after saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. (B) 

Comparison of mean (±SEM) leptin concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in 48-hrs monkeys. *p<0.05, **P<0.01 vs 0 min 

sample (ANOVA followed by post hoc Dunnett’s test). 
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Figure. 3.10. Comparison of mean (±SEM) plasma leptin levels (ng/ml) in 60 min 

pre- and 120 min post saline/NMS in 48-hrs fasting adult male monkeys. **P<0.01 vs 

pre-treatment (Student’s t test). 
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Table 3.9. Individual and mean (±SEM) plasma resistin concentrations (ng/ml) 

before and after saline administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

 
Animal Numbers  

Mean±SEM 
201 202 203 204

-60 15.05 12.23 17.91 17.46 15.66±1.31 
-45 15.36 13.75 15.84 16.24 15.30±0.55 
-30 14.69 12.47 14.99 16.08 14.56±0.76 
-15 15.24 12.79 15.73 17.11 15.22±0.90 
0 14.68 13.94 14.07 16.46 14.79±0.58 
15 15.01 11.02 14.62 18.19 14.71±1.47 
30 15.24 12.81 16.98 18.64 15.92±1.25 
45 14.92 13.15 16.81 17.70 15.65±1.01 
60 14.43 14.21 15.97 17.26 15.47±0.71 
75 16.28 14.52 15.21 15.96 15.49±0.39 
90 16.21 15.61 16.39 16.76 16.24±0.24 

105 16.06 13.29 17.10 16.21 15.67±0.82 
120 15.96 11.6 16.91 16.06 15.13±1.20 

 
 
 

Table 3.10. Individual and mean (±SEM) plasma resistin concentrations (ng/ml) 

before and after NMS administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

 
Animal Numbers  

Mean±SEM 
201 202 203 204

-60 15.31 13.51 13.09 18.05 14.99±1.13 
-45 14.24 11.23 15.99 17.65 14.78±1.37 
-30 17.17 12.77 16.78 16.28 15.75±1.01 
-15 18.27 14.53 15.07 15.56 15.86±0.83 
0 15.20 16.18 16.89 17.21 16.37±0.45 
15 16.39 17.44 14.51 18.68 16.76±0.88 
30 18.96 17.97 16.68 19.75 18.34±0.66 
45 18.41 18.54 17.67 19.90 18.63±0.46 
60 19.53 18.08 17.94 19.57  18.78±0.45* 
75 17.13 17.69 17.98 19.26 18.02±0.45 
90 14.65 17.02 16.61 18.09 16.59±0.72 

105 15.26 16.68 17.10 17.06 16.53±0.43 
120 16.31 15.81 17.42 17.26 16.70±0.38 

 
*P<0.05 vs 0 min sample (ANOVA followed by post hoc Dunnett’s test). 
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Table 3.11. Individual and mean (±SEM) plasma resistin concentrations (ng/ml) 

before and after saline administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time (Min) 

 
Animal Numbers  

Mean±SEM 
201 202 203 204

-60 13.41 12.19 10.71 10.40 11.68±0.70 
-45 13.06 11.49 10.45 11.55 11.64±0.54 
-30 13.52 12.95 11.86 12.75 12.77±0.34 
-15 12.93 10.99 12.17 11.08 11.79±0.46 
0 12.81 10.61 11.26 12.46 11.79±0.51 
15 13.22 11.13 11.52 12.99 12.22±0.52 
30 13.02 10.82 12.85 11.76 12.11±0.51 
45 13.34 11.95 12.68 12.81 12.70±0.29 
60 12.95 11.09 11.07 12.45 11.89±0.48 
75 12.09 12.83 11.43 11.76 12.03±0.30 
90 13.24 11.14 10.83 10.98 11.55±0.57 

105 12.92 11.95 10.51 10.59 11.49±0.58 
120 13.51 11.83 9.86 10.02 11.31±0.86 

 
 
 

Table 3.12. Individual and mean (±SEM) plasma resistin concentrations (ng/ml) 

before and after NMS administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time (Min) 

 
Animal Numbers  

Mean±SEM 
201 202 203 204

-60 10.84 12.52 12.73 16.40 13.12±1.17 
-45 10.99 12.30 13.05 16.86 13.30±1.26 
-30 10.85 12.05 12.18 14.61 12.42±0.79 
-15 9.66 13.76 12.89 15.99 13.08±1.31 
0 9.55 11.01 12.61 15.88 12.26±1.36 
15 10.09 12.33 12.15 16.09 12.67±1.25 
30 11.28 14.30 13.11 17.27 13.99±1.26 
45 15.69 16.08 15.33 19.65  16.69±1.00* 
60 16.21 17.33 16.99 19.79   17.58±0.77** 
75 16.99 17.23 18.24 20.23   18.17±0.74** 
90 14.65 17.49 15.38 18.11      16.41±0.83 

105 12.64 17.07 15.69 17.89      15.82±1.15 
120 13.01 16.65 13.22 15.44      14.58±0.88 

 
*p<0.05, **P<0.01 vs 0 min sample (ANOVA followed by post hoc Dunnett’s 

test). 
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Figure. 3.11. (A) Changes in mean (±SEM) basal plasma resistin 

concentrations (ng/ml) in 1-hr period in fed and 48-hrs fasting adult male 

monkeys (B) Overall mean (±SEM) basal plasma resistin concentrations 

(ng/ml) in 1-hr period in normal fed, and 48-hrs fasting adult male monkeys. 

**P<0.001 vs fed (Student’s t test). 
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Figure. 3.12. (A) Mean (±SEM) changes in plasma resistin levels (ng/ml) before and 

after saline/NMS administration (at 0 min) in normal fed adult male monkeys. (B) 

Comparison of mean (±SEM) resistin concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in fed monkeys. *P<0.05 vs 0 min sample 

(ANOVA followed by post hoc Dunnett’s test). 
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Figure. 3.13. Comparison of mean (±SEM) plasma resistin levels (ng/ml) in 60 min 

pre- and 120 min post saline/NMS in normal fed adult male monkeys. **P<0.01 vs 

pre-treatment (Student’s t test). 
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Figure. 3.14. (A) Mean (±SEM) changes in plasma resistin levels (ng/ml) before and 

after saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. (B) 

Comparison of mean (±SEM) resistin concentrations (ng/ml) between post NMS (15-

120 min) and pre NMS (at 0 min) in 48-hrs fasting monkeys. *p<0.05, **P<0.01 vs 0 

min sample (ANOVA followed by post hoc Dunnett’s test). 
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Figure. 3.15. Comparison of mean (±SEM) plasma resistin levels (ng/ml) in 60 min 

pre- and 120 min post saline/NMS in 48-hrs fasting adult male monkeys. **P<0.01 vs 

pre-treatment (Student’s t test). 
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Discussion 
 

In the present study, we investigated the role of peripheral administration of 

NMS on adipokines (leptin, adiponectin and resistin) secretion in 48-hrs fasting and 

normal fed adult male monkeys. We hypothesized that NMS being a food regulatory 

peptide might have some effects on adipokines secretions, which may possibly 

modulate its regulatory effect on energy metabolism and reproductive functions. No 

data is available in this regard and we are the pioneer to investigate the role of NMS 

on adipokines regulation in non human primates. Adipokines released from adipose 

tissue act via a network of endocrine, paracrine and autocrine pathways, and playing 

very important role in variety of physiological aspects, such as cardiovascular 

functions, lipid and glucose metabolism, immunity, neuroendocrine function and 

reproduction (Shankar et al., 2010; Pataky et al., 2010). 
 

In our study, 48-hrs fasting significantly increased (P<0.001) basal 

adiponectin levels compared to normal fed conditions suggesting that fasting might 

have stimulatory effect on adiponectin secretion. This effect may be due to the fasting 

induced suppression of HPG axis and hence T secretion. Elevated levels of androgens 

were observed to decrease adiponectin concentrations while in androgen receptor null 

mice, adiponectin levels were reasonably increased (Combs et al., 2003; Bottner et 

al., 2004; Fan et al., 2005; Xu et al., 2005). Some other studies in rats also indicated 

that LH and T secretions are inhibited by adiponectin (Rodriguez-Pacheco et al., 

2007; Caminos et al., 2008). Other possibility is that during fasting, expression of 

certain peptides and their receptors, like kisspeptin may contribute to this elevated 

adiponectin response (Brown et al., 2008; Wahab et al., 2010). In the present study, 

after NMS administration, overall adiponectin levels were non significantly (P>0.05) 

decreased compared to pre-treated NMS, although some individual values showed 

significant decrease. These findings suggest that NMS might have little or no effect 

on adiponectin secretion from adipocytes. However considering that this dose of NMS 

might have no effect on adiponectn secretion, the different doses of NMS may be 

applied in future, to investigate its exact role on adiponectin secretion. 
 

In this study, leptin levels were significantly decreased (P<0.001) in case of 

fasting monkeys compared to normal fed, suggesting that fasting has suppressive 
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effect on leptin secretion. These results are in accordance with various studies where 

fasting caused decreased leptin concentrations in rodents, pigs and humans (Ahima et 

al., 1996; Kolaczynski et al., 1996; Barb et al., 2001b). In the cow and ewe, 48-hrs 

fasting resulted in decreased leptin as well as LH levels (Amstalden et al., 2000; 

Henry et al., 2001; Morrison et al., 2001). Similarly in OVX gilts fasting for 7 days 

also reduced serum leptin and LH secretion (Whisnant and Harrell, 2002). All these 

data suggest that fasting negatively affects HPG axis via inhibiting leptin and LH 

secretion (Wahab et al., 2010). In the present study we demonstrated that NMS (50 

nmol) administration significantly decreased (P<0.01) leptin levels in both normal fed 

and 48-hrs fasting conditions. The leptin regulatory pathways include large number of 

neuropeptides and several intracellular complex pathways (Kuo et al., 2005). Our 

results showed that NMS is playing a significant role in leptin suppression in 

monkeys. The exact mechanism that how NMS suppresses the leptin levels and what 

pathway it uses is still under question. However it is proposed that NMS induced 

HPG axis regulation might not involve leptin stimulation in non human primates.   
 

Resistin is known as a novel adipokine having a potential role in the regulation 

of adipocyte differentiation and insulin sensitivity (Kim et al., 2001; Steppan et al., 

2001a). Resistin gene and its mRNA expression in testes suggests that like ghrelin and 

leptin, it acts as an endocrine mediator in regulation of reproduction and energy 

homeostasis (Nogueiras et al., 2004). Role of resistin in reproduction is least 

understood among all the adipokines. In our study, 48-hrs fasting suppressed (P<0.01) 

resistin levels suggesting that fasting has an inhibitory effect on resistin secretion. 

Similarly fasting and leptin administration (icv) signifintly reduced testicular resistin 

mRNA levels (Nogueiras et al., 2004). In the present study, both in 48-hrs fasting and 

normal fed conditions, peripheral administration of NMS significantly increased 

(P<0.01) circulating resistin levels. This stimulatory response was independent of the 

metabolic status of animals. It was shown that in rat testes, both FSH and LH 

participate in tuning of resistin expression (Nogueiras et al., 2004). Under the control 

of gonadotropins, the testicular resistin expression was assumed to playing very 

important role in development and function of testes (Tena-Sempere and Huhtaniemi, 

2003). Further evidence suggested that resistin has also ability to significantly 

increase basal and hCG induced T levels in vitro (Nogueiras et al., 2004). Our results 
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proposed that NMS affects the stimulation of resistin which might be playing, some 

contributory role in T secretion and regulation of HPG axis. 
 

In summary, NMS plays very interesting role in regulation of adipokines. Role 

of NMS on adiponectin is not clearly understood. However NMS play a definite role 

in regulation of leptin and resistin. It inhibits leptin secretion but on the other hand 

stimulates resistin levels in both fed and metabolically stressed conditions. The exact 

mechanism that how NMS regulates the adipokine secretion on the basis of this single 

study is very difficult to prove so further studies are required to explore the pathways, 

involved in this regulation.    
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Abstract 
 
Background: Insulin is an adiposity signal, believed to be involved in long time food 

intake regulator and storage of energy. It was assumed that NMS and insulin are 

playing a synergistic role in food regulation and energy metabolism, so NMS might 

have some stimulatory effect on insulin secretion. For this purpose the effect of iv 

administration of NMS was investigated on the basal insulin secretion in normal fed 

and 48-hrs fasting male rhesus monkeys.  
 

Materials and Methods: Four intact adult male rhesus monkeys (6-8 yr Age: 7-10 kg 

BW) were used in this study. 50 nmol of NMS was injected through a cannula affixed 

in saphenous vein. Blood samples were collected individually 60 min before and 120 

min at 15 min intervals, after NMS/saline administration. The plasma insulin 

concentrations were determined by using specific Enzyme Immunoassay (EIA) kits.  
 

Results: Insulin levels were significantly (P<0.001) decreased in 48-hrs fasting 

monkeys compared to normal fed but NMS infusion did not induce any significant 

change (P>0.05) in insulin concentrations in both fed and fasting conditions.  
 

Conclusion: Our results suggest that although both NMS and insulin act as 

anorexigenic peptides and utilize same hypothalamic neuronal system in food 

regulation and energy metabolism but exogenous NMS action in this regard looks 

independent of insulin involvement. On the basis of this single study, it is very 

difficult to confirm the exact mechanism and relationship between NMS and insulin 

therefore, further studies must be planned to explore the exact mechanism and 

pathways for NMS in metabolic and reproductive processes, and to confirm the 

relationship between NMS and insulin. 
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Introduction 
 

Hypothalamus plays a major role in controlling glucose metabolism of the 

body. It is believed that hypothalamus regulate this activity by production and storage 

of glucose in liver (Shimazu, 1987; Uyama et al., 2004), utilizing glucose by muscles 

(Burcelin et al., 2000), and regulating insulin secretion (Magnan et al., 1999). Now it 

has become very clear that the gut-brain axis is a key factor in controlling metabolic 

status and regulation of glucose metabolism in the body (Delaere et al., 2010). 
 

Insulin was discovered as presumptive adiposity signal. It is believed that 

insulin might be involved in long time food intake regulator and storage of energy. 

Central infusion of insulin significantly reduced body weight and food intake (Sipols 

et al., 1995; Volk et al., 1999). In 24-hrs, insulin response to food intake, overall 

insulin concentrations and fasting insulin concentrations are correlated with fat, stored 

in the body (Porte, 1981). It is suggested that insulin is transported from serum to 

cerebrospinal fluid (CSF) through a well regulated mechanism and binds to specific 

receptors to perform its actions. Many areas of the brain, especially ARC inhabit 

insulin receptors, which are involved in energy regulation and controlling feeding 

behaviours. Insulin and leptin in combination are involved in activation of α–MSH 

secretion and inhibition of agouti related peptide (AgRP) and neuropeptide Y (NPY) 

from hypothalamus (Benoit et al., 2000). In mice, the absence of central insulin 

receptor, caused hyperphagia and increased body fat (Bruning et al., 2000; Obici et 

al., 2002). These results confirmed that insulin play very important role in regulation 

of energy balance. Insulin can be considered as important adiposity signal as, in 

addition to inhibition of food intake it also restores the set point of body weight by 

increasing energy utilization.  At cellular level the interaction of leptin and insulin 

signal is most interesting. In ARC both increase POMC expression and inhibit NPY 

gene expression. In knock out mice for both leptin and insulin receptors, resulted in 

heavier body weight and increased food intake (Bruning et al., 2000). 
 

Insulin is secreted by pancreas and plays an important role in energy 

metabolism. Pancreas has receptor expressions for some neuropeptides like 

kisspeptin, which may be involved in regulation of insulin secretion and energy 

homeostasis (Hauge-Evans et al., 2006; Suckale and Solimena, 2008; Bowe et al., 
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2009. Presence of insulin receptors in ARC regions (Bruning et al., 2000) suggests its 

role in regulation of reproductive axis.  
 

NMS is an anorexigenic neuropeptide expressed in SCN region of 

hypothalamus play a stimulatory role in HPG axis in both rodents (Vigo et al., 2007) 

and primates (Jahan et al., 2011). To date, not a single study is available on the effect 

of NMS on insulin secretion. In the present study it was hypothesized that NMS may 

play its role in energy metabolism by regulating the insulin signaling. For this purpose 

the effect of NMS in normal fed and 48-hrs fasting monkeys in insulin secretion was 

investigated to explain the exact pathway of NMS signaling in metabolic regulation 

and reproduction. 
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Materials and Methods 
 

Animals 
 

 The animals used in the concerned study were, four adult normal male 

monkeys (Macaca mulatta) of age and weight ranging from 6-8 years and 7-10 kg 

respectively. All the animals were kept in specific colony environment of primate 

facility at Department of Animal Sciences, Quaid-i-Azam University Islamabad, 

Pakistan. The animals were daily provided with feed comprising of fresh fruits, boiled 

potatoes, eggs and bread at specific times according to their body weights, and water 

was freely available through out the day. Prior to the start of experiment, appetite 

monitoring was carried out for a month. It was observed that all animals used to finish 

their food within 10-15 min.  
 

Venous Catheterization 
 

 A cathy cannula (Silver surgical complex, Karachi, Pakistan; 0.8 mm O.D/22 

G×25mm) was affixed in the sephnous vein after anesthesizing the animals with 

Ketamine HCl (10 mg/kg BW, im), to bring about all the chemical administration and 

sequential blood sampling. A butterfly tubing (24 G×3/4˝ diameter and 300 mm 

length; JMS Singapore) was attached with free end of the cannula. All the sampling 

was performed after full recovery of animals from sedation. 
 

Pharmacological Reagents 
 

Pharmacological reagents used in the study are listed below: 

Heparin (Sinochem Ningbo, China) 

Ketamine HCl (Rotexmedica, Trittau, Germany)  

Human Neuromedin S (Anaspec, USA) 

All the working solutions were prepared in saline solution (0.9% NaCl). 
 

Blood sampling 
  

Blood sampling (2-3 ml) was conducted, at regular intervals of 15 min, using 

heparinized syringes. An equivalent quantity of heparinized (5 IU/ml) saline was 

injected after each sample withdrawal. Samples were collected 60 min before and 

120 min after NMS/saline administration. The time of NMS (50 nmol) administration 
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was considered as 0 min. All blood samples were obtained between 1100-1500 hrs. 

All experiments were performed in a couple of weeks in order to reduce the 

alterations in hormonal levels associated with seasonal changes. Samples were 

centrifuged for 10 min at 3000 rpm, and then plasma was pipetted out and stored at -

20˚C until analyzed. 
 

Analysis of hormones 
 

Plasma insulin concentrations were quantitatively determined by using EIA 

kits (Calbiotech Inc. CA). The minimum limit of detectable insulin levels was upto 

1.47 µIU/ml; Intra-assy and inter-assay coefficients of insulin were 8.1% and 8.5% 

respectively. All the procedures of EIA were followed as provided with the kits. 
 

Statistical analysis  
 

All the data were presented as mean±SEM. Insulin concentrations after NMS 

and saline administration were compared by one-way ANOVA followed by post hoc 

Dunnett’s multiple comparisons test. Student’s t test was employed to compare mean 

pre- and post-treatment insulin concentrations, under 48-hrs fasting and normal fed 

conditions. 
 

 Statistical significance was set at P≤0.05. All the data were analyzed by 

using statistical software GraphPad Prism version 5. 
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Results 
 

Basal plasma insulin concentrations in fed and fasting conditions 
 

Basal plasma concentrations of insulin (µIU/ml) during 1-hr before saline 

administration in fed and 48-hrs fasting animals are given in Fig. 4.1A-4.1B. Insulin 

levels significantly (P<0.001) decreased in 48-hrs fasting compared to normal fed 

adult male monkeys. 
 

Effect of NMS on plasma insulin secretion in normal fed adult male monkeys 
 

The individual and mean plasma insulin concentrations (µIU/ml) before and 

after saline/NMS administration in normal fed monkeys are given in table 4.1-4.2 and 

Fig. 4.2A. Saline/NMS administration did not cause any significant change in insulin 

concentrations compared to 0 min sample. Comparison between pre- and post-

treatment did not show any significant (P>0.05) change in insulin levels both in NMS 

and saline treated monkeys (Fig. 4.2B). 
 

Effect of NMS on plasma insulin secretion in 48-hrs fasting adult male monkeys 
 

The individual and mean plasma insulin concentrations (µIU/ml) before and 

after saline/NMS administration in 48-hrs fasting monkeys are given in table 4.3-4.4 

and Fig. 4.3A. NMS administration in 48-hrs fasting monkeys did not cause any 

significant (P>0.05) change in insulin concentrations compared to 0 min sample. 

Comparison between pre- and post-treatment did not show any significant (P>0.05) 

change in insulin levels after NMS administration (Fig. 4.3B). 
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Table 4.1. Individual and mean (±SEM) plasma insulin concentrations (µIU/ml) 

before and after saline administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 16.50 16.17 19.23 21.27 18.29±1.21 
-45 21.26 25.29 18.69 24.33 22.39±1.50 
-30 23.02 19.18 22.31 21.26 21.44±0.84 
-15 24.92 25.47 19.78 17.29 21.87±1.99 
0 18.28 19.08 14.52 22.14 18.51±1.57 

15 27.21 22.69 18.54 25.71 23.54±1.91 
30 19.25 24.41 23.97 22.19 22.46±1.17 
45 23.51 29.89 21.97 27.15 25.63±1.79
60 19.29 23.88 19.72 21.81 21.18±1.06 
75 22.17 18.92 24.29 23.12 22.13±1.15 
90 18.87 13.31 17.27 21.53 17.75±1.72 

105 16.89 18.29 21.66 17.69 18.63±1.05 
120 19.14 21.71 20.17 22.19 20.80±0.70

 
 
 
Table 4.2. Individual and mean (±SEM) plasma insulin concentrations (µIU/ml) 

before and after NMS administration (at 0 min) in normal fed adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 15.21 19.70 21.41 19.75 19.02±1.33 
-45 19.03 24.31 27.11 24.59 23.76±1.70 
-30 20.70 22.18 18.95 23.79 21.41±1.03 
-15 24.45 27.95 23.61 27.99 26.00±1.15 
0 18.28 19.59 26.07 31.43 23.84±3.05 

15 22.36 23.51 29.35 27.13 25.59±1.61 
30 17.06 21.24 23.97 28.77 22.76±2.46 
45 25.41 24.15 19.21 21.89 22.67±1.36 
60 16.48 18.08 21.21 30.66 21.61±3.17 
75 19.32 16.91 14.23 22.96 18.36±1.85 
90 23.10 13.31 19.67 25.28 20.34±2.61 

105 17.55 18.23 22.53 19.57 19.47±1.10 
120 14.80 24.07 15.10 28.29 20.57±3.35

 
P>0.05 vs 0 min sample ((ANOVA followed by post hoc Dunnett’s test). 
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Table 4.3. Individual and mean (±SEM) plasma insulin concentrations (µIU/ml) 

before and after saline administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 2.87 2.02 1.76 1.90 2.14±0.25 
-45 2.69 2.34 1.89 2.05 2.24±0.18 
-30 1.98 2.14 2.41 2.49 2.26±0.12 
-15 2.22 1.91 1.71 2.39 2.06±0.15 
0 1.94 2.23 2.24 2.53 2.24±0.12 

15 2.26 2.51 2.72 1.95 2.36±0.17 
30 2.75 2.02 2.18 1.77 2.18±0.21 
45 1.99 1.82 2.07 2.16 2.01±0.07 
60 1.72 2.10 1.92 2.40 2.04±0.14 
75 1.84 2.19 1.81 2.12 1.99±0.10 
90 1.64 1.80 1.93 1.88 1.81±0.06 
105 1.92 1.69 2.11 2.09 1.95±0.10 
120 1.43 1.52 1.92 2.15 1.76±0.17 

 
 
 
Table 4.4. Individual and mean (±SEM) plasma insulin concentrations (µIU/ml) 

before and after NMS administration (at 0 min) in 48-hrs fasting adult male 

monkeys (n=4). 

 
Time 
(Min) 

Animal Numbers 
 

Mean±SEM 

201 202 203 204
-60 2.29 2.50 2.12 1.89 2.20±0.13 
-45 2.51 2.47 2.01 1.98 2.24±0.14 
-30 2.57 2.3 2.19 1.71 2.19±0.18 
-15 2.44 2.36 2.11 1.63 2.14±0.18 
0 2.37 2.13 2.02 1.88 2.10±0.10 

15 2.21 2.42 2.19 2.01 2.21±0.08 
30 2.34 2.12 2.64 2.33 2.36±0.11 
45 2.10 2.31 2.19 1.99 2.15±0.07 
60 1.93 1.81 1.61 1.62 1.74±0.08 
75 2.06 1.89 1.76 1.66 1.84±0.09 
90 1.97 2.27 2.16 1.73 2.03±0.12 
105 1.73 2.27 1.68 2.25 1.98±0.16 
120 1.79 2.29 2.36 1.95 2.10±0.14 

 
P>0.05 vs 0 min sample ((ANOVA followed by post hoc Dunnett’s test). 
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Figure 4.1. (A) Changes in mean (±SEM) basal plasma insulin 

concentrations (µIU/ml) in 1-hr period in normal fed, and 48-hrs fasting 

adult male monkeys. (B) Overall mean (±SEM) basal plasma insulin 

concentrations (µIU/ml) in  1-hr period in normal fed, and 48-hrs fasting 

adult male monkeys. ***P<0.001 vs fed (Student’s t test). 
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Figure. 4.2. (A) Mean (±SEM) changes in plasma insulin levels (µIU/ml) before and 

after saline/NMS administration (at 0 min) in normal fed adult male monkeys. (B) 

Comparison of mean (±SEM) plasma insulin levels (µIU/ml) in 60 min pre- and 120 

min post saline/NMS in fed adult male monkeys. P>0.05 vs pre-treatment (Student’s t 

test). 
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Figure. 4.3. (A) Mean (±SEM) changes in plasma insulin levels (µIU/ml) before and 

after saline/NMS administration (at 0 min) in 48-hrs fasting adult male monkeys. (B) 

Comparison of mean (±SEM) plasma insulin levels (µIU/ml) in 60 min pre- and 120 

min post saline/NMS in 48-hrs fasting adult male monkeys. P>0.05 vs pre-treatment 

(Student’s t test). 
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Discussion 
 

In this study, the peripheral effect of NMS on insulin regulation in normal fed 

and nutritionally suppressed adult male rhesus monkeys was investigated. Insulin is 

very important adiposity signal. It is believed that insulin might be involved in long 

time food intake regulator and storage of energy. Insulin and its receptors were 

identified in rat brain, including ARC in hypothalamus, olfactory bulbs and 

hippocampus (DeFronzo, 1988). Similar findings were also obtained for the human 

brain (Tanaka et al., 1998). Presence of insulin receptors in these brain areas 

suggesting its role in food intake, reproductive functions, glucoregulation, learning 

and memory (Stockhorst et al., 2004). The increased insulin levels at ARC region in 

the hypothalamus, reduced food intake and body weight. It was suggested that insulin 

stimulates POMC gene expression at POMC neurons and regulates its response on 

feeding behaviour. NMS was also considered to induce its anorexigenic effect through 

this neuronal system (Ida et al., 2005). So it was hypothesized that NMS and insulin 

might have some synergistic role in food regulation or NMS have some stimulatory 

effect on insulin secretion. 
 

In our study, 48-hrs fasting significantly reduced (P<0.001) plasma insulin 

levels compared to normal fed monkeys. This was expected as insulin levels are 

related to glucose circulation in blood. Short term fasting reduced blood glucose 

levels, which rendered the decline in insulin secretion. To our dismay, exogenous 

NMS administration did not cause any stimulatory or inhibitory effect on insulin 

secretion in both normal fed and 48-hrs fasted monkeys. These results indicate the 

absence of NMU2R receptors on pancreatic cells in rhesus monkeys. It further 

suggests that NMS pathway in metabolic regulation and reproduction is independent 

of insulin secretion. 
 

In summary, we conclude that although both NMS and insulin act as 

anorexigenic peptides and utilize same hypothalamic neuronal system in food 

regulation and energy metabolism but exogenous NMS action in this regard looks 

independent of insulin involvement. On the basis of this single study, it is very 

difficult to confirm as we don’t know the relationship between endogenous NMS and 

insulin in regulation of energy metabolism. So further studies are required to explore 
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the exact mechanism and pathways for NMS in metabolic and reproductive processes, 

and to investigate the relationship between NMS and other metabolic hormones. 
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