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ABSTRACT

In this thesis, we have Investigated the nonlinear dynamics of low-frequency
electrostatic/electromagnetic  waves in  a nonuniform  electron-positron-ion  (e-p-i)
magnetoplasina with sheared ion flows. The ion dynamics is governed by the ion continuity
and momentum balance equations. whereas the electrons and positrens are assumed to follow
Boltzmann distributions. for electrostatic case. It is shown that the low-frequency ton-acoustic
and electrostatic-drift waves can become unstable due to the ion sheared flow. In a collisional
case a drift-dissipative instability can also take place. For the nonlinear case, it is shown that a
quasi-stationary solution of the mode coupling equations can be represented in the form of
monopolar vortex. We have also generalized the said work by considering nonuniform
sirongly magnetized electron-positron plasma with finite ion-temperature effect and in the
presence of sheared ion flows. In the iinear limit, a dispersion relation is obtained that admits
new instability of drift-waves. Whereas, the nonlinear interaction between the finite amplitude
short-wavelength waves give rise to quadrupolar vortices.

We have extended our earlier studies to the ion-temperature-gradient (ITG) driven
electrostatic waves in a collisionless e-p-i magnetoplasma that contain equilibrium density,
temperature, magnetic field, velocity and electrostatic potential gradients. We thus use
hyvdrodynamic equations under drifi-approximation and derive a set of nonlinear equations
composed of ion continuity, the ion equation of motion and ion energy balance equations. In
the linear limit, it is shown that non-zero equilibrium ion-temperature-gradient and the
presence of positrons modify the basic drift modes. On the other hand, in the nonlinear case, it
is shown that under certain conditions possible stationary solutions of the same set of
nonlinear equations are reduced in the form of various types of vortex patterns. We have alsc
incorporated the self-gravitational effect of ions in this work and have shown that pessibje
stationary solutions of the nonlinear equations can be represented in the form of dipolar and
tripolar vortices of gravitational potential.

Furthermore, we have also extended our study of electrostatic ITG modes to the
electromagnetic case and derived a new set of coupled noniinear equations wnich governs the
dynamics of low-frequency electromagnetic ITG-driven modes in a nonuniform electron-

positron-ion magnetoplasma with non-zero ion-temperature-gradients. We re-examined



nonlinear mode coupling equations under various approximations. In the linear limit, a local
dispersion ralation has been derived and analyzed in several interesting limiting cases. On the
other hand, a quasi-stationary solution of the mode coupling equations in the absence of
collisions can be represented in the form of dipolar and vortex-chain solutions.

Finally, we have studied the temporal behavior of electrostatic/electromagnetic TG
modes in e-p-i magnetoplasma and showed that the mode coupling equations can be
represented in the form of well-known Lorenz and Stenflo tvpe equations that admit chaotic

trajectories. The results of our investigations are helpful to understand the wave phenomena in

iaboratory and astrophvsical plasmas.
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Chapter 1

Introduction

1.1 Existence of Electron-Positron-Ion Plasma

The subject of electron-positren (e-pj plasmas, which are composed of particles with the
same mass and opposite charge, is not only important in astrophysical plasmas, but also
relevant in laboratory experiments. Electron-positron pairs are thought to be a major
constituent of the plasma emanating both from the pulsars and from the inner region
of the accretion disks surrounding the central black holes in AGNs {active galactive nu-
clei) [1-4]. They may be formed in the magnetospheres of pulsars by the pair-production
cascade breeding process (51, Such a plasma is found also in the intergalactic jets, in
the early universe, at the centre of owr own galaxy, in Van Allen belts, solar flares and
fireballs producing ~-ray bursts [6-12'. In laboratory experiments, stellarator device has
important advantages for the creation of the first confined electron -positron plasmas,
namely the ability to confine electrons and positrons simulfaneously, at any degree of
neurrality and at relatively high particle kinetic energies, the ability to operate in steady
state, and operate at ultra-low densities [13]. Electron-pesitron pair production is also
possible during intense ultra-short laser pulse propagation in piasma [14] and a ¢lean
pair-dominated plasma can be achieved by letting the resulting plasma to expand freely

after turning off the laser. Electron-positron plasinas are also observed in laboratory ex-



periments in which the positrons can be used to probe the particle transport in tokamalk
[15-17]. Recently. Helander and Ward [18] have investigated the possibility of pair pro-
duction in laree rokamaks due to collisions between multi-Mev run-away electrons and
thermal particles.

For a time ¢ after the Big Bang, plasma of the early universe may be relativistic
(for 1072 = ¢ < 1 sec.) or mildy relativistic or non-relativistic (for 1 < ¢ < 10"sec.)
[8]. Recent experiments have opened up the possibility of creating a non-relativistic e-p
plasma in laboratory. In one scheme, a relativistic electron beam imipinges on a high-Z
target, where positrons are produced copiously. The palr plasma 1s then trapped in a
magnetic mirror and is expected to cool rapidly by emission of radiations [19;. Another
scheme for obfaining the pair plasma, by addition of electrons, proposes the accumulation
of positrons from a radioactive source [20] in an electrostatic trap and cooling to room
temperature. Non-relativistic pair plasmas have also been created in experiments for un-
derstanding the dynamics of pairs [17, 21, 22]. The possibility of creating non-relativistic
e-p plasma source in the laboratory contributes not only to understanding of various
astrophvsical phenomena. but also to the development of plasma source in microwave
dischiarges using bulk or surface waves [23]. Therefore the investigation of pair plasra
is important in the sense that this is the kind of anti-matter that can be experimentally
produced and stored most efliciently.

Although the e-p pairs form the dominant constituent of the several astrophvsical
situations including active galactic nuclel, the pulsars magnetosphere, in early universe.
etc., a mincrity population of 1ons is also likely to be present. Varicus aspects of the
presence of lons in pair plasma have been discussed in literature (see e.g., Refs. 24-
28]3. On the other hand, because af the sufficient life time of the positrons, most of the
astrophysical [7. 11. 12] as well as laboratory electron-ion {e-1) plasimas [15-17) become an
admixture of electrons. positrons and ons. Such a three-component electron-positron-ion
(e-p-1) plasma has in fact been created in laboratory [29 and studied in different mocdels of

pulsar magnetospheres [30. 31]. Propagation of intense short laser pulses in a e-i plasma



can also lead to pair production resulting in a three-component e-p-i plasma [32]. In fact,
three-component plasma has also been seen in laboratory experiments [15-17] carried out
with positrons as probe to study transport in tokamaks. In addition to several other
applications (like the pulsars magnetosphere modelling), an investigation of e-p-i plasma
is also important to understand early universe {7, 33. 34]. in particular, the MeV epoch
it the evolution of the universe. [t may. indeed, be pessible that a deeper insight into
the behavior of interacting plasma Huid in this era may provide valuable clues to its later
evolution. Due to the presence of ions several low-frequency waves can exist in e-p-l
plasma which otherwise do not propagate in e-p plasma. Even a small concentration of
lons can change the dynamics of e-p plasma and several new linear and nonlinear modes
may appear. Therefore. the study of e-p-1 or three-component plasma 1s important to
develop an understanding of the behavior of both astrophysical and laboratory plasmas.

The importance of three-component admixture plasma has led to several theoretical
investigations. The e-p-1 plasma has been studied, for example. in the context of pulsars
magnetosphere by Lakhina and Buti [30" and by Lominadze et al. [317. In contrast to the
usual plasma with electrons and positive 1ons, it has been known that the nonlinear waves
in plasmas having positrons behave differently [35]. Gallant et o/l [36] performed particle-
in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and
e-p-1 plasmas. The shocks in pure e-p plasma have been found to produce only thermal
distribuiion downstream, and declared poor candidates as particle acceleration sites.
When the upstreaimn plasma flow also contained a smaller population of positive ions,
efficient acceleration of positrons. and to a lesser extent of electrons, was observed in the
simulations. Nejoh {37] has studied the effect of the lon-temperature on large amplitude
ion-acoustic waves in an e-p-1 plasma. [t has been shown that the region of the existence
of the lon-acoustic wave spreads as the ion temperature decreases,

Furthermore, Tsintsadze et ol [38] presented a general description for the stabil-
ity problem of a charged surface of e-p-1 plasma in the presence of a negative pressuie.

Conditions under which the charged surface becomes unstable have been obtained. A



potentially important application of the e-p-i plasma may be found in providing an under-
standing of the nature of the intergalactic jets. It has been proposed {6] that intergalactic
jets comprise low-frequency, strong electromagnetic (EM) waves self-focused into a chan-
nel, and generated by, for instance, a dense cluster of rapidly spinning pulsars in the
galactic nuclens, However, it is now believed that strong monochromatic waves emitted
by pulsars are subjected to parametric instabilities even m quite under-dense plasmas.
This mayv tend to rule out pulsars as sources of these well-collimated jets. Honda et
el 361 presented a novel model for collimation and transport of e-p-1 astrophysical jets.
Analytical resuits show that the filamentary structures can be sustained by self-induced
toroidal magnetic felds permeating through the filaments, whose widths significantly
expand in the pair-dominant regimes. The magnetic field strength reflects a character-
istic of equipartition of excess kinetic energy of the jets. It has been also shown that
growth of the hose-like instability is strongly suppressed. Essential features derived from
this model have been found consistent with recent results observed by using very iong
baseline telescopes. Hoshino et ol [40] have carried out theoretical investigations of
relativistic collisionless shock waves in e-p-1 plasmas of relevance to astrophysical sources
of synchrotron radiations. Gail et al. [41] have performed coupled channel calculations
for electron-positron pair production in relativistic collisions of heavy ions. H. Hasegawa
et al. [ 42, 43] and S. Hasegawa ef al. [44] have studied the positron acceleration to
ultrarelativistic energies by a shock wave and perpendicular nonlinear waves in an e-p-i
plasma. Shukia et @l [43] have shown that intense radiation nonlinearly interacts witia

acoustic-like waves in an e-p-i plasma at non-relativistic temperatures,

1.2 Self-organized Structures in Plasma

Plasma occurs in state of turbulence under a wide range of conditions including space and
astrophysical plasmas as well as in stable laboratory confinement devices. The strength

of the turbulence increases as the plasma is driven farther away from thermodynamic



equilibrium, There are several ways to drive the plasma away from equilibriwm with
particle beams. laser beams and radio frequency waves, a universally occurring depar-
twre from equilibrium is the existence of spatial gradients across an ambient magnetic
field. Plasma distributions that are driven away from the thermodynamic equilibrivim of
a spatially uniform Maxwell-Boltzimann velocity distribution are said to have free energy
available to drive plasma turbulence. The nature of the nonlinear saturated state depends
on how far into the unstable domain the system parameters reside which typically varies
with space and time as the plasma turbulence reacts on the plasma distribution to push
the system back toward one of the marginaily stable states. The turbulence provides a
mechanism for self-organization toward a relaxed dynamical state often containing a mix-
ture of waves, vortices and zonal flows (46]. Self-organization refers to a process in which
the internal erganization of a svstem, normally an open system, Increases antomatically
wirthout being guided or managed by an outside source. A vorter 1s a spinning turbulent
flow (or any spiral whirling motion) with closed streamlines. The shape of media or mass
rotating rapidly around a center forms a vortex. The study of self-organizing processes
is of interest both for space and laboratory plasma problems. It 15 also important for
recognizing general regularities of the physical world.

The vortex dynamics in fluids in a simplest possible scenario, is governed by the
Navier-Stokes (NS) equation which admits a monopolar vortex and dipolar vortices. On
the other hand, the nonlinear propagation of two-dimensional Ressby waves in geophysi-
cal fluid dynamics, and pseudeo-three dimensional electrostatic drift waves in non-uniform
magnetized plasmas is governed by the Charney [47] and Hasegawa-Mima [48] equations,
respectively. Larichev and Reznik [49) demonstrated that the Charney eguation admits
a double vortex whose speed is larger than the drift (phase} velocitv of the Rossby waves.
On the other hand when the speed of the travelling nonlinear structure equals the Rogshy
wave drift speed, the Charney equation admits a vortex street as a possible stationary
state. In the presence of the equilibrinum sheared flow, one could have counter rotating,

tripolar and gquadrupolar vertices within the framework of the Charney equation. In



magnetized plasmas, we have the possibility of vortices comprising a monopolar, a dipo-
lar. a tripolar. a quadrupolar or a chain of vortices. Here the vortices are associated with
nonlinear dispersive waves that possess, at least, a two-dimeusional character. When the
velocity of the fuid {or plasma particle) associated with the dispersive waves becomes
locally larger than the phase velocity of the wave due to the nonlinear effects, one en-
counters a curving of the wavefronts which leads to the formation of a twe-dimensional
travelling vortex structure [30,.

The study of nonlinear structures in e-p-1 plasma such as solitons, double layvers.
vortices. etc.. has attracted much interest in last two decays. For instance, Rizzate
135] and Berezhiani et al. [31] have investigated envelop solitons of electromagnetic
waves in an admixture magnetized three-component {e-p-1) plasinas. Later. Berezhiani
and Mahajan [52] described the formation of large amplitude electromagnetic solitary
structures in cold e-p-1 plasma. This work was further extended by Popel ef al. [23], by
considering warm e-p-i plasma and ien-acoustic solitons are found to exist. On the other
hand, Pokhotelov et al. [28] have investigated the nonlinear dynamics of drift-Alfvén
waves in an inhomogeneous e-p plasma with a small fraction of heavy ions. It has been
shown that electromagnetic perturbations in the presence of heavy ions in relativistic
e-p plasma can saturate into two-dimensional dipolar vortices. Kakati and Goswami [33]
have presented a theoretical model to investigate the double lavers, associated with the
kinetic Alfvén waves, in a magnetized e-p-1 plasma and have shown that the existence of
small-amplitude double layers requires an appreciably larger density of ions than that of
positrons at equilibrivm. The properties of the double lavers are deterinined by the ratio
between the nuniber densities of positrons and ions at equilibrium, the direction cosines
defining the moving frame, as well as the electron to positron temperature ratio.

Vranjes ef al. [54] have studied the nonlinear propagation of low-frequency sheared
Alfvén waves and obtained several rvpes of electromagnetic vortices. Recently the linsar
and nonlinear electrostatic and electromagnetic drift waves have been studied in e-p-i

plasmas in Ref. 135], The nonlinear vortex structures have been investigated in this work
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in both electrostatic and electromagnetic limits. In the nonlinear electrostatic case the
drift waves can give rise to vortices. It has been shown in this work that the vortex
speed in e-p-i plasmas can be equal to the phase speed of the drift-wave. while it is
not possible in electron lon [e-1) plasmas. The effects of ion velocity along the exrvernal
magnetic feld has not been taken into account in the investigations [55]. In owr opinion
the system may become unstable in the linear lhmit if a free energy scurce exists in the
form of sheared ion flow. Therefore, we have investigated the nonlinear dynamacs of low-
frequency electrostotic waves in a magnetized nonuniform e-p-i plasma with sheared ion
flows in the cold ion limit. It is found thaot the low-frequency ion acoustic and electrostafic
drift waves con pecome unstoble in uniform electron-positron-ion plasmas due to the (on
shear flow. In a collisional e-p-1 plasma, o drift-dissipative instability can also take place.
On the other hond, o gquasi-stutionary solution of the mode coupling egquations can be
represented in the form of monopolar vortex [56).

Recently, Shulkia et ol [57] have investigated the linear and nonlinear properiies
of obliquely propagating coupled low-frequency electrostatic-drift (ED) and lon-acoustic
(IA) waves in a strongly magnetized nenuniform e-p-i plasma with sheared ion flows
and showed that weakly interacting ED-IA waves admit vortex chain and double vortex
tvpe solutions. The effect of finite ion-temperature, which was not considered in the
earlier findings [56, 57], can drastically modify the nonlinear dynamics of e-p-i plasma.
Therefore, we considered the effect of finite ion-terperature in a nonuniform strongly
magnetized e-p-i plasma in the presence of sheared ion flows. In the linear limit, a
lispersion relation is obtained that admits new instabilities of drift-waves. It is found that
1on-acoustic and electrostetic drift waves can become unstable due to ion sheared flow.
Furthermore, the nonlinear inferactions between these finite amplitude short-wavelength
waves give rise to quadrupclar vortices [58].

The search for nonlinear structures in e-p-i magnetoplasma has been continued. Such
nonlinear coherent structures could serve as building blocks for the understanding of

plasma turhulence, transport and self-organization. Formation of different types of co-
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herent structures, under the effects of ion-temperature-gradient (ITG) and sheared ion
fiows, have not yet been studied. which could play very imporfant role in understanding
the nonlinear dynarmics of e-p-1 magnetoplasma. We have therefore extended our eurlier
inuvestigations [36, 58] to electrosiatic ITG modes in an electron-positron-ion magneto-
plasma in the presence of equilibmium density. femperature, moegnetic field. velocity and
electrostetic potential gradients. In the linear ease. a new linear dispersion relation is
devived and a number of interesting limiting cases ore discussed. On the other hand. w
nonlinear case, it is shown that under certain conditions possible stationary solutions of
the nonlinear equations can be reduced to monopolar, dipolar. tripolar, quadrupoler and
chain of vortices [59).

Since in several laboratories and space plasmas, the plasma beta (§ = RwnT /5],
where » is the plasma number denzity and By is the strength of the ambient magnefic
field) could exceed the electron-to-ion mass ratio, necessitating to incorporate electro-
magnetic effects on ITG-driven modes of e-p-i plasmas. We have, therefore, studied
the linear and noniinear properties of low-frequency electromagnetic drift-dissipative and
drift-Alfvén waves in an electron-positron-ton magnetoplosme containing equilibrivm den-
sity gradient, {on-femperature gradient and magnetic field gradient with peralfel equilib-
rium flow velocifies. In the linear limit, a locel dispersion relation hes been derived and
enalyzed in several interesting limiting cases. On the other hand, ¢ quasi-stationary so-
lution of the mode coupling eguations in the ebsence of collisions can be represented in
the foerm of dipolar and verter-chain solutions [60].

In the last few years, several investigations have been made on linear as well as non-
linear wave motions in a self-gravitating magnetoplasma. For instance, Pandey et al. [61]
and Mhanta et ol [62] have studied the effect of the gravitational field on dust-acoustic
waves by ignoring the ion dynamics. Whereas, Avinash and Shukla [63] and Verheest ef
al. [64] have investizated dust-acoustic waves in a self-gravitating unmagnetized dusty
plasma, taking into account the dynamics of dust grains and ions. Furthermore, Vranjes

[653] has studied the nonlinear sell-organization of perturbations in rotating, nonuniform.



gravitating systems and found the stationary solutions in the form of tripolar and vortex
chains of gravitational potential. Mamun [66] described the effects of dust temperature
and fast ions on gravitational instability in a self-gravitating magnetized dusty plasma
and shown that the growth rate of gravitational instability decreases with dust tempera-
ture, fast ion, and external magnetic field, but increases with the number of free electrons,
with the ratio of ion temperature to electron temiperature, and with the ratio of dust mass
to dnst charge. Later, Mamun and Shulkla [67] have shown the existence of new magnetic
Jeans tvpe instability due to the combined effects of self-gravitational field and collisions
of electrons and lons with the stationary neutral atoms. To the best of our knowledge.
so far, the effect of self-gravitation on ion-temperature-gradient in electron-positran-ion
magnetoplasma has not been considered in the earlier investisations [61-67,. Therefore.
we incorporated the self-gravitational effect of ions in our previous work [59). In the [inear
case, new dispersion relation under loco! approvimation is obteined and discussed. On
the other hand, we hove discussed the possibility of formation of dipolar and tripolar vor-
tices of gravitetional potential in nonuniform self-gravitating e-p-1 magnetoplasme with

non-zerg ion-temperature-gradient [ITG)} and sheared ion flows [68].

1.3 Chaotic Behavior

Historically, the study of chaos is strongly rooted in the mathematical study of nonlinear
dvnamics, going back to the pioneering work of Henri Poincaré at about the turn of
the 20th century. Poincaré’s motivation was partly provided bv the problem of the
orbits of three celestial bodies experiencing mutual gravitatinnal attraction (e.g.. a star
and two planets). By considering the behavior of orbits arising from the sets of inifial
points (rather than focusing on individual orbits), Poincaré was able to show that very
complicated (now called chaotic) orbits were possible. Certain hydrodynamical systems
exhibit steady-state How patterns, while others oscillate in a regular periodic fashian.

Still others vary in an irvegular, seemingly haphazard manner, and even when ohsarver
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for long period of time do not appear to repeat their previous history. These modes
of behavior may all be observed in the familiar rotating-basin experlments. described
by Fultz et ol. [69] and Hide 70]. In these experiments, a cylindrical vessel containing
water is rotated about its axis, and is heated near its rim and cooled near its center in
a steady symmetric fashion. Under certain conditions the resulting flow is as symmetric
and steady as the heating which gives rise to it. For other conditions a system of regularly
spaced waves develops. and progresses at a uniform speed without changing its shape.
For different conditions an irregudar flow pattern forms, moves and changes its shape In
an irregular non-periodic manner.

The first true experimenter in chaos was a meteorologist, named Edward Lorenz. In
1961, Lorentz discovered the bufierfly effect while trying to forecast the weather. The
butterfly effect reflects how changes on the small scale affect things on the large scale, [t
is the classic example of chaos, as small changes lead to large changes at a later time. An
example of this is how a butterfly Happing its wings in Hong Kong could change tornado
patterns in Texas. He was running a long series of computations on a computer when he
decided he neesded another run. Rather than doing the entire run again. he decided to
save some fime by typing in sonle numbers from a previous run. Later, when he looked
over the printout. he found an entirely new set of results. The results should have heen
the same as before. After thinking about this unexpected result, he discovered that the
numbers he typed in had been slightly rounded off. In principle, this tiny difference in
initial conditions should not have made any difference in the result, but it did. From this.
Lorentz concludad that long-distant weather forecasts are impossible to predict, Tiny
differences in weather conditions, on any one day, will show dramatic differences, after a
few weeks, and these differences are entirely unpredictable. Although Lorentz's discovery
was an accident, it planted the seed for the new field called Nonlineor Dynomics.

Well known Lorenz equations were first presented in 1963 [71]. They define a three-
dimensional svstem of ordinary differential equations {ODEs) that depends on three

real positive parameters. As we vary the parameters, we change the behavior of the flow
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determined by the equation. For some parameter values, nurnerically computed solutions
of the equations oscillate, apparently, forever in the pscudo-randonn way, we now call
it chaotic. This is the main reason for the innnense amount of interest generated by
the Lorenz equations. Recently, Stenflo [72] has shown that short-wavelength acoustic
gravity waves in a rotational svstem can be described by a set of four nonlinear erdinary
differential equations with four constant non-dimensional parameters. These equations
coltains as a subset of Lorentz equations. A detailed investigation of Lorenz-Stenilo
nonlinear equations contributes not onlv to the understanding of certain atmospheric
phenomena. hut also to the possible quantitative verification of modern nonlinear theories
and their predictions. Yu et al. 73] have presented the bifurcation characteristics of
these nonlinear equations. Mirza et ol [74, 73] have shown that temporal behavior of
the nonlinear dissipative plasma systems can be expressed in the form of well known
Lorentz and Stenflo type equations that admit chaotic trajectories. It is therefore of
interest to investigate the temporal behavior of nonlinearly interacting finite amplitude
electrostatic/electromagnetic ITG-driven modes in e-p-i magnetoplasma.

In this work, we have also derived the set of nonlinear equations to study the temporal
behauior of low freguency electrostatic and electromagnetic ITG modes in e-p-1 magneto-
plasma and have reduced, wnder certain conditions, the nonlinear equations in the form

ef o muotriz which is o generalization of the Lorenz matriz admitting chaotic behavior.

1.4 Layout of the Thesis

The thesis is arranged in the following fashion: In chapter one, justification for studying
self-organized and chaotic states of e-p-i magnetoplasma and layout of the thesis is given.
In chapter two, the nonlinear set of equations is derived to study the nonlinear dynam-
ics of low-frequency electrostatic and electromagnetic ITG-driven waves In the presernce
of equilibrium density, temperature, magnetic field and velocity gradients for a colli-

sional e-p-i magnetoplasma. Chapter 3 deals with nonlinear dynamics of low-frequency



electrostatic waves in a magnetized nonuniform e-p-i plasma with sheared icn fHows in
the cold and hot ions limits. Chapter 4 and 5 deals with nonlinear dynamics of low-
frequency electrostatic/electromagnetic ITG-driven waves in a magnetized nonuniform
e-p-1 plasma with sheared ion flows. In chapter 6, a temporal behavior of the electro-
static/electromagnetic ITG mode is discussed. A brief summary and conclusion of our

findings is presented 1n chapter 7.

16



Chapter 2

Derivation of Nonlinear Equations

2.1 Introduction

Collective plasma dynainics is moest convenient]y modelled within the fuid description.
Fluid models play a central role in plasma research because their reduced dimensionality
makes it more feasible to analyze realistic configurations, with broad ranges of plasma
parametars, in three-dimensional space geometry. The more standard Auid medels are
derived for regimes of high collisionality but a majority of plasmas of nterest in space
and in magnetic fusion experiments are collisionless or weakly collisional. For these, a
fluid description can still make sense under strong magnretization conditions, as long as
the dynamics perpendicular to the magnetic field is concerned. In plasma fluid theory, a
plasma is characterized by a few local parameters, such as the particle density, the kinetic
temperature, and the flow velocity. the time evolution of which are determined by means
of Huid equations. These equations are analogous to, but generally more complicated
than, the equations of hvdrodynamics due to the presence of electric and magnetic felds
and currents.

There are three fundamental orderings in plasma fluid theory. In the first order-
ing, the fluid velocities are much greater than the thermal velocities. This ordering is

called the cold-plasma approzmaiion. The cold-plasma approximation applies not only
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to cold plasmas, but also to very fast disturbances which propagate through conventional
plasmas. In particuiar, the cold-plasma equations provide a good description of the prop-
agation of electromagnetic waves through plasmas. Nete that the electron, positron and
ien  kinetic pressures can be neglected in the cold-plasma limit. since the thermal ve-
locities are much smaller than the fluid velocities. It follows that there is no nesd for
energv evolution equation for anv species. Furthermore, the motion of the plasma is =0
fast, in this limit. that relatively slow transport effects., such as viscosity and thermal
conductivity, play no role in tie cold-plasma fluid equations.

In second ordering, the fluld velocities are of the order of thermal velocities, This
ordering is called the MHD approzimation. The MED equations are conventionally used
to study macroscopic plasma instatilities, possessing relatively fast growth-rates, Note
that the electron, positron and on pressures cannct be neglected in the MHD linit. since
the fluid velocities are of the order the thermal velocities. Thus, electron and ion energy
evolution equatians are needed in this limit. However, MHD motion is sufficiently fast
that transport effects, such as viscosity and thermal conductivity, are too slow to play
a role in the MHD equations. In fact, the only collisional effects which appear in these
equations are resistivity, the thermal force, and collisional energy exchange between the
particles.

The final ordering corresponds to the fluid velocities which are of the order of drift
velocities. Likewise, the ordering is called the drift approzimation and we may use the
term drift velocity in place of fuid velocity and vice versa. The drift equations are con-
ventionally used to study equilibrium evolution, and the slow growing microinstabilities
which are responsible for turbulent transport in tokamaks. In general, all terms in the
Braginskil equations must be retained in this limit. We shall work in the limit of drift
approximation.

Electromagnetic waves don't propagate in a conductor beyvond the skin depth. How-
ever, in a fluid of high electrical conductivity and in the presence of magnetic field, waves

of low frequency do propagate. The velocity of propagation of these waves can be many
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orders of magnitude less than speed of light. The frequency of these waves must be less
than the ion cyclotron frequency {wy) and are referred as low frequency waves. In inho-
mogenenus magnetized plasmas, low frequency modes with frequency much less than the
ion cyclotron frequency are considered to be the most dangerous one which give the largest
transport. This chapter presents the derivation of the nonlinear equations to study the
nonlinear dvnamics of low frequency electrostatic and electromagnetic ITG-driven waves
in a collisional e-p-1 magnetoplasma. For this purpose, we use Braginskii's transport
equations for the ions and the continuity and momentun equations for the electrons
and positrons using drift-approximation. The system of equations is closed by specifying

some explicit relations of quasineutrality condition and/or Maxwell’'s equations.

2.2 Drift-Motion Across the Ambient Magnetic Field

In a magnetized plasma, the particle dvnamics is usually very different in the direction
parallel or perpendicular to the magnetic field. In the perpendicular direction, the par-
ticles are highly localized due to strong magnetic fleld and fluid description is usually
valid, For fluid approximation in the direction along the masgnetic field, the conditions are
more restrictive and will basically be fulfilled when the phase velocity of the pertiwrbation
is zero (helds for electrons/positrons) or much targer than the thermal velocity {corre-
sponds to the cold plasma appreximation) or mean-free-path is much shorter than the
perturbation wavelength, the particles are not free to mainfain cormnunication between
different parts of perturbation and are thus localized.

The low-frequency region for which w & we; is particularly simple to treat from
the fluid motion point of view, since here the equation of motion may be sclved by an

alzebraic iterative method. We write the equation of motion for the jth species as follows:

& 4 v 1
v vV vy = 2 (B4 D BO) S Vp, - VY, (2.1)
ot e m, c ;T '

where p, = n,;T; is the kinetic pressure, E = — V¢ is the electrostatic fleld, n, is the
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number density. 7 is the temperature. v; is the fluid velocity. v, is the collision frequency,
m, is the mass, Bp is the ambient magnetic field, ¥, {¢} is the gravitational (electrostaric)
potential and ¢ is the speed of light. The ion temperature perturbation can be obtained
by using ion energy balance equation. Assuming By = BpZ. where Z is a wuf vector

along the z-axis. we obtain by taking the vector product of Eq. (2.1) with z:

8 - 75 . BU PR o -
(5 + v, + v, V) ZxXv; = = {Vd)xz—— - _VJ(Z - z)—z(z- VJ)“
1
— zx V{inT,)—2x V¥, (2.2)
1Tty '

By writing d/dt = 3/0t —~ v, ~v; -V, we find from Eq. {2.2)

mLe e d
T s x v, 2

B R
v, = —ZxVo+ x V (n;Ty) +

, —z (2 xv,) (2.3
o ;1 3o ! '

Here the terms on the right-hand-side are, respectively, the E x By, the diamagnetic,
the gravitational and polarization drift velocities. For low-frequency variations, we as-
sume that E x By drift to be the dominating part of the perturbed velocity and we may

substitute it into the polarization drift. We then write the perpendicular velocity as

V,L =vE+ij+vgJ+vpj, {Z_\’
where
ve=—2x V. (2.5)
o
i x V(T (2.6
W = Z T )]
1y a;n, B, i+l /
e , :
vy, = —=2x V¥, (2.7}
9 L0
and
m,c? d 9 %)
vy = ——==—V_0o. 2.3)
# g, B5dt ~ ~ (
Heve V_ = %3/0z + §3/8y. This is the procedure for obtaining explicit expressions
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for the fluid drifts known as the drift approximation, and the resulting closed equations
are referred to as reduced fluid model.

Let us interpret briefly the above-mentioned drifts i.e., Egs. (2.5)-(2.8). The fnid
drifts may differ from actual particle or guiding centre drifrs. The reason for the difference
is that the fluid picture averages particle velocities at a point. regardless of where the
guiding centres are located, while the particle drifts are obtained by first averaging over
the gyro-mation. thus identifying a particle with its guiding centre.

When we take the temporal average over one gyration period of particle motion in
static and uniform felds it would vield perpendicular component equal to the same Ex By
drift velocity Le.. vy, showing that vg is the average cross-field drift of the particle. It
may be noted here that this drift is independent of the particle charge and mass and
hence corresponds te a collective bulk motion of plasma. This drift is caused by the
change in the gyro-radius due to the particle acceleration by the electric field during the
gyrating motion.

The pelarization drift v,,. on the other hand, may be regarded as a correction to
the E x By drift when the E field is time dependent. Due to the large difference in
mass of electrons /positrons and ions, the polarization drift of electrons and positrons can
be ignored. There is strong similarity between the polarization drift caused by a time
variation of E and the finite larmor radius drift, which is due to the space variation of E.
This is because a gyrating particle has no way of deciding if the variation in E originates
due to the time or space. Contrary to vg. v,; (the gravitational drift velocity) leads to
(slow) charge separation because the drift direction is of opposite sign for electrons and
ions/positrons. This charge separation causes electric field and subsequent E x By drift.

Omn the other hand, the diamagnetic drift velocity vp, is purely a fluid velocity, The
diamagnetic drift is due to a pressure gradient. This drift is in opposite direction for the
oppositely charged particles and produces the diamagnetic current j. This j x By current
flows in such a way as to cancel the Imiposed fleld. It is also the source of magnetic

field variation across a plasma boundary as indicated by its name, The diamagnetic drift



does not cause charge separation because V - (n;vp;} = 0. This case is in contrast to
the V By and curvature drifts which are particle drifts but not fluid drifts. It has been
shown 11 Ref. [76! that by taking into account the magnetization drift, that the guiding
centre and reduced fluicdl descriptions yield identical results for the cross-field motion of
non-uniformly magnetized plasmas. Therefore, the above-mentioned particle drifts mayv
be treated for duld description as well.,

Consider the rase when the masnetic fleld is perturbed. ie
=

B:BO+B1, (’

i~
N

where Bg and B are the equilibriwum and perturbed parts of magnetic field. If we conside:

low-7 plasma case, we may neglect the compressional magnetic field. Then we may write

N

bt (Vj

xB) = Bov;. — {0+ v;:) By (2.10}

for a plasma with equilibrium flow velocity ;0. We now solve for v, the Eq. (2.1} in

the same way but for the electromagnetic case to get

c c ,C
Vv =—2><V(J—.f ——2 X V {n,7; zx VY,
3L BO 2 0 BO ( ) BD G
T r" d B;
_VJ_()+ Vo + Vi) = {2.11)
QJBU ( 7 BU 8

2.3 Derivation of Electromagnetic Nonlinear Equa-
tions

Let us consider the nonlinear propagation of low-frequency electromagnetic waves in
a nonuniform collisional e-p-1 magnetoplasma confaining equilibrivm density gradient
O-12,0, equilibrium lon-teroperature gradient 0,7,y equilibrium magnetic field gradient

d: By and equilibrium velocity gradient d;v ;. where v, is the equilibrium plasma fdow
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velocity of the particle species 7 (j equals e for the electrons. p for positrons and 7 for
the ions) in the direction along the equilibrium magnetic field ByZ. In equilibrium, the

charge neutrality condition reads

[J
r—
[Sw]

S

o — o (s : =
E g, ny0 = € (g + iy —nyg) =0,
3

where ¢; stands for the charge of the jth-species. The ion dvnamics 1s governed by the

lon continuity equation

an :
4+ V. (nv)=DV%n, (2.13)
ot -
the momentum transfer equation (ignoring the self-gravitational effect of ions)
a . 1 7 5
mn,l —+uv,+v, V]ivi=en {E+-v.xB| -V {nT), (2.14]
at c
and ion temperature perturbation using the ion energy balance equation,
373 1 .
= E;E—I—V;-V T +T.,V v,=--V q, (2.13)
2 n, ’

where D, represents ion diffusion coefficient, n; is the ion nuinber density, v, is the
1on fluid velocity, m, is the ion niass, v, is the ion collision frequency, E is the electric
field, 7} is the ion temperatwe, c is the speed of light, q. = —x, V. T, + (50T, /2e5)
Z » VT; is the ion-heat flux, x. is the on thermal conductivity and the second term: 1s
the collisicnless cross-field {or Righi-Leduce) ion heat flux [113].

For low-frequency waves (in comparison with the ion gvrofrequency), the light parti-
cles (electrons and positrons) would thermalize very quickly to achieve the same tempera-
ture such that we may assume Ty = T = Tp. Undler this approximation, the continuity
and momentum equations for species j {7 = e, p) can be written as

b m;

o

ot

— V- (nyv;) = D,Vin, (2.16)



a ]' Iy I -
GETELE (a +, v, V) v = q,n, (E + EVJ X B) —TaVn,. (2.17)
’ s

i
Using Eq. (2.11), we may write the following expressions {including the effect of
lon-gvroviscosity) for the fluid velocity perturbations for ions and electrons/positrons

corresponding to the Eq. (2.14) and (2.17), respectively:

C ¢ c
v, &=~ —zxVp—+ 3%V (T3 — D+, +—iex Vo V
Ef} . 'C-'BU"'T-: ( l) BO'—-'JU N BO v
c - - 2 f i B- 5 {7 =l
- Z2x VD) V+u, V| Vig+ g+ v, o + 20, (2.18)
e Hgr, 0
el B-
v, 2 —Z X Vo + Y 5 x Vi, + {1+ )= + 25, (2.19)
0 eBgn,; ’ By '

where v, is the z-component of the ion velocity, we is the lon gyvofrequency. u, =
3v.p2/10 is the coefficient of lon-gyroviscosity, p; is the lon Lannor radius, v, is the
collision frequency of jth species {1131 and v;, is the parallel component of the fluid
velocity of the particle species j{= e,p). For low-4 plasma case, we may neglect the
compressional magnetic field. Then magnetic and electric fleld perturbations can be

expressed via corresponding potentials:
B, =B _- =z X VLAZ,E= —V:;b-«?":é‘g%lz, (220)

where A, s the component of the vector potential along the z axis. Inserting {2.18)
into the lon continuity equation (2.13) and letting n,y =n;, —nge and 7,, = 7, — T,
where n,, € nyand T,) & T.5. where ngyand 7;; are respectively, perturbations in the

equilibrium ion number density and temperature, we obtain

(£ =vo - V=DV )N = 7(va, = Vo) VO =gl [£i + v, —vp V4,V | V20

+va VT — [J?V Nvp VIV_®] +c, £V, + -TG

Ths e

V.A x5V ( ’;‘) = (2.21)

€03

o

where £ = 0, +vep V+{vog+v,.)0., £, =08, +{Ty/eBo)V.A.x2-V and Jyg = enni,..
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The parallel component of the ion momentum equation can be written as

(£i+ v+ vy V)V, = —¢ | (8. -8, V) &+ % (£ +vow V) A +77£,.(T + ,'n.'_.';J ,

) (2.22)
where V, = u,,/+/(To/m;). Using Eq. (2.18) into the fon energy equation and using the
lon continuity equation, we get

2 2X: o2 ) 2 2\
L1+ v V-V | T = - LN, =71, — = v, - V& =0, (2.23)
) 3 -3‘?'?-;0 - 3 3

Substituting Eq. (2.19) into electron and positron contimiity equation {2.16), we get

: Ih Jeo
(E‘I — Ve V—D_Vi) j\"l-,'_(VBE_VHE)'V(I)_'_.U!E‘E?.l/;’_ > V_LAz X% -V (;EJ) =0
Ten® By

(2.24)

and

oy L b . 5
E;D -~ Vigg V—DDVI- ."\!U+ V'_BU_Vrﬁp)'v([)+?)te E:Vu'i' - V.LAZ xz 'V -_J:i = 1.
, ] ! AL ] ! ] / iong EB.\

(2.23)
Substituting the z-component of electric field into the parallel component of the re-

sistive electron and positron momentun equation (2.17) and using Eq. (2.19). we obtain

{LI; B ui. - Vﬂﬁ ' V) VE = 2";‘_'_1 ‘L(aj _"_ S:O - V} (I) + - (E.t + v?’"LJ : V) 1‘51-,' - .E_-:J“\\"._.l (226)
- C
and

1, ., . : \
(L vy V) At .E:i\fp-! (2.27)

I_
(£7 +vp = vop - V)V =~ i_(az =80, V)b ~+

where L7 =8+ vep - V = (v +15:30:, Si(x) = (2 x Vo /wey, Jo = @nov,.. N, =
n /50, Ve = (c1h0/q,Be)2 X Vin By is the VB drift, v,; = (¢T,5/q;B0)2 x V Innyg

is the Vi, drife. D, is the diffusion coefficient. Also. we have denoted ¢, = \/Tpn

p, = cfwe ®=eg/Ty A =ed/To. T =Th/Ty. v =To/Tu. twe =

i

]
(i3]



(cTw/eBo)z x VInT, is the V7 drift and vpy = (cTia/eBo)z x V(T /T + 71 /10).
Vpio = (L +7.)v,, is the zeroth order ion diamagnetic drift with 0, = d.{InTig)/d.(lnng).

To close owr nonlinear system of equations, we may use the quasineuntrality con-
dition V. = w.Ng — auNy o = ngo/t, Ge = fen/nip and Ampere’s law j. =
g (Mitiz + Nplipe — Mallez) = — (cTy/d7e) \_iA:. Equations (2.21)-(2.27) are the desirved
nonlinear mode coupling equations to study the electromagnetic I'TG-driven drift-dissipaf]
and drift-Alfvén waves in an inhomogeneous e-p-1 magnetoplasma with sheared plasia

Hows.,

2.4 Derivation of Electrostatic Nonlinear Equations

Consider the nonlinear propagation of low-frequency electrostatic waves in a nonuniforin
collisional e-p-i magnetoplasma. In equilibrium, the e-p-1 plasma satisfies the charge
neutrality condition (2.12), which is justified as long as the ion plasma frequency (w,.) is
much iarger than the ion gyrofrequency (wg). The ion dynamics, in electrostatic case, is
governed by the same set of equations, e, Eqs. (2.13)-{2.15). For low-frequency modes
(much less than the lon-gyrofrequency). the electrons and positrons are assumed to follow

the Boltzmann distribution, such that

ed ,
ne = nepl{a) exp (—) (2,28}
TEU
and
€ ey o
Ny = Tigp(T) exp (_TF-)) , (2.29)

where T.0(T}) are the electron (positron) temperatures. For very low-frequency processes.

the light particles (electrons and positrons) would thermalize very quickly to achieve the
same temperature such that T =1,y = Tp.

Using Eq. (2.4). the lon-fluid velocity perturbation, including the effect of ion-



gyroviscosity and neglecting the self-gravitational term, can be written as:

& C
R — Y (nT) — Bt v, +—7x VoV
v B 2x Vo + eBon, en Vindhy Bow |_ T Bgz
- ; 5 x V(nT) Vrp, V2| V.oo+ 20, (2.30)
¢ oo,

Inserting Eq. {2.30) inte Egs. (2.13)-(2.15) and letting n.. = n, — ng and I =
T:—Ti. where n,, < ngand T, <« Ty, Here, n,yand T, are respectively, perturbations in
the equilibrium ion number density and temperature. We gbtain the following nonlinear

set of equations for electrostatic case:

(£i+vg: VD, AV IN +vg VI - o2 [E; + v, + Vo V+#l\7'ﬂ Vig
~7(Va = Vi) VO = g7V - [(vpn V)V 8]+ ¢0,V, = 0, (2.31)
(£idv +vpo - VIV.= = [(0. -8, V)& + 770, (T + N, (2.32)
and
oy 3 B 37?-,,0 i 3 4V 7 ., 7 . = (. 33

Egs. (2.31)-(2.33) can also be obtained by setting 4, = 0 Eqs. (2.21)-(2.23}
respectively. To close our noniinear system of equations, we may use the following qua-

sineutrality condition,

. 1 . .
N, = o (e ~ np1) = aeed/ T + cped/Tho = ad, (2.34)
i

where o = Ny/n,q and Ny = nieg + ngg. Equations (2.31)-(2.34) are the desired nonlinear
mode coupling equatians to study the [TG-driven electrostatic waves in a collisional e-p-1

magnetoplasma with sheared ion flows.



Chapter 3

Nonlinear Dynamics in Cold and

Hot Tons Limits

3.1 Introduction

There have been a lot of studies of wave propagation in relativistic and non-relativistic

pair plasmas, with [25, 35| or without [77, 78] the presence of ions. in cold [79; and

hot [80f limits. Recently, it has been suggested in Ref. [53) that low-frequency drift
waves can plav an important role in the dynamics of pair plasmas comprising some
concentration of ions, The nonlinear vortex structures have been investigated in this
work in both electrostatic and electromagnetic limits. In the nonlinear electrostatic case,
the dsift waves can give rise to dipolar vortices. The equilibrium parallel ion flow effect
has not been taken into account in some previous investigations [35. 79, 30}, In our
opinion the systern may become unstable in the linear limit, if a free energy source exists
inn the form of sheared ion flows. Therefore, in the first half of this chapter, we have
presented an investigation of the nonlimear dynamics of low-frequency electrostatic waves
in a magnetized nonuniform e-p-1 plasma with sheared 1on flows in the cold ion limit [56.
In our model the ion dynamics is governed by the lon continuity and momentum balance

equations, whereas the electron and positron fluids are assumed to follow the Boltzmann



distribution. We derive a new set of mode coupling equations. In the linear case. we found
that the coupled ion acoustic and drift waves can become unstable due to nonuniform
ion-flow in a collizionless plasma case. It is interesting to note that the lon acoustic wave
becomes unstable in both homogeneous e-1 and e-p-1 plasmas. Physically, the instability
arizes because of the free energy available in equilibrium lon velocity gradient. In a
collisional plasma a drift-dissipative instability may also arise under certain conditions.
On the other hand, a quasi-stationary solution of the mode coupling equations can be
represented in the form of monopolar vortex [56].

Quite recently, Shukia et al. [37], investigated the linear and nonlinear properties
of obliquely propagating coupled low-frequency electrastatic-drift (ED) and ion-acoustic
(IA} waves in a strongly magnetized nonuniform e-p-1 plasma with sheared ion flows and
it has been shown that weakly interacting ED-TA waves admit vortex chain and double
vortex solntions. The effect of fnite ion-temperature, which was not considered in the
earlier investigations [36. 37|, drastically modify the nonlinear dynamics and give rise
to vortex structures in the form of quadrupolar vortices, Therefore, in the second half
of this chapter, we have generalized the said work by considering a nonuniform stronglv
magnetized e-p plasma with ions at nonrelativistic hot temperature in the presence of

sheared ion flows [58].

3.2 Cold ITons

3.2.1 Nonlinear Equations

Let us consider the nonlinear propagation of low-frequency (Iin comparison with the ion
gvrofrequency) electrostatic waves in an e-p-i plasma in a uniform magnetic field B, =
By 2. where By is the strength of external magnetic fleld which is directed along the
z-axis. Furthermore, the electrons and positrons are assumed to be hot and ions are
assunied to be cold. The ions have equilibrium velocity gradients which are maintained

oy scme external sources. Equilibrium ion velocity {&v.q/0x). and density (Jn,,/dz)
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gradients are assumed to be along the z-axis and, in equilibrium, e-p-1 plasma satisfies
the charge nentrality condition (2.12}. We further assume that D, = p, = 0. Under these

conditions, Eas. (2.31), (2.32) and (2.34) can be combined to vield [36;

(dy 4 v + 00.0.) 00 — ~—J |6, 0] = —— 18, — 5:8,] ¢ (3.1)
BO my
and
: r o : TO”*.U -1
{d) + 0,:0.)0 — un8,0 — a0, ¢ + (1 +=86) " 0.,
' Eeq

2 2 | C : ¥ -l L ¢ K 5

—ps Hdy + ) Vo + ;’EJ’-J[Q’ 73 9] | — 02V  [(0,.8,) V1P| =0, (3.2)
L 2 J

where d, = 0, 108, 1, = code(ni)/ (eBona(l + 6)), & = Tod. (F(x)) / (Bonep(1 + 6))
02 = cTong/ {eBowanea{l + 6)), 6 = nyg/ne, F(x) = (nu + 1,0)/To. S, = (detng) /i
is the ion shear parameter and the Jacobian is defined as Jio b = (8,00,6 — J,ad.b}.
The pair of coupled equations (3.1} and (3.2} are the desired nonlinear mode coupling

equations for the study of vortical motion in nonuniform collisional e-p-1 magnetoplasma

with sheared ion Hows in the cold 1011 limit.

3.2.2 Linear Analysis

In the linear limit, we assume that @ and ».. are proportional to exp [z (k- r - wt)], where
k and w are the wavevector and the frequency, respectively. Equations (3.1) and (3.2)

are transformed and combined to obtain a local dispersion relation

A w - L . T T L? n‘lf Si
k2 0w 4 dw)? 4+ (W 4 k) (W + vy — _ ot My = 0. (3.3
= ’ ?ﬂ.frf.,-:;](l T (5) ﬂ?z
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where o/ = w — k.uy 18 the Doppler shifted frequency and k% = k% + k:i, For non-

dissipative plasma, Eq. (3.3) reduces to

T ey — 20Oy By} 3.4)
(1 — pihl )™ + kyu, munigol{l + &) ( k. ) | o

which is the coupled equation for drift and lon-acoustic waves in the presence of shearad

jon-flow (S;-term). If we define modified ion acoustic velocity ¢o = /n.070/(m.n.o(l = )

and w" = —u,k,, then the above equation can be re-writien as

——
(W
ot

N . k.S,
(14 23 o = 22 (1_ : ) _

For a uniform density profile {w™ = 0), and assuming k,S;/k; >3- 1. Eq. {3.3) becomes

) 7
2 kw;'lf-: C;dz'\ l'-'iEl:-"

(w = hpvjg)? = — ¥ = T 3.6

It is evident from Eq. {3.6) that depending upon the magnitude and direction of the
velocity gradient, the mode can become unstable. Thus the equilibrium shear flow is
found to be responsible for the instability [56].

On the ather hand, in the absence of ion background velocity, the dispersion relation

(3.5) reduces to.

2 W cky 0 (3.7
W e W o =0 (3.7
(1+ p2k) (1+ p2k?) H

which is a dispersion relation 36] for the coupled jon acoustic and electrostatic drift-
waves in electron-lon (e-1) plasmas in the limit ny,y = 0. Equation (3.3) admits two roots

(w2 )

1 —
V=3 [—~b + VB —4d| 58
where
o 212 ' |
it C},» .IJ;..Sx |
fh=——————and d = L — — 1.
T T 0 ke

One of the modes become unstable if the linear and nonlinear propagation of ion

31



acoustic and electrostatic drift-waves in an e-p-i plasma has 4d > b%.
Notice that the ion-acoustic wave can become unstable even if the plasma is honmo-

seneous. The ion-acoustic instability can take place in both e-1 and e-p-1 plasmas due

to vpi{z] # 0. If v; % 0 in Eq. (3.3), then a drift-dissipative instability may also ceccur

under certain conditions. If we let w = w, + iy and +* <« w? |, then the imaginary part

of the mode can be written as

v, (w" + (14 202k2 o, )

(2w, — ) (1 + p2k3)

~ —
=

D

Note that +v > 0 if w, < 5/2. Therefore, a drift-dissipative instability may exist in the

presence of collisions and 1on sheared flow.

3.2.3 Nonlinear Solutions

In the proceeding section. we have shown that how velocity gradient and collisions can
cause instability of electrostatic drift waves and ion acoustic waves. However, the nos-
linear interaction between finite amplitude modes can be responsible for the formation of
ordered structures. Although, it is very difficult to find an analytical general staticnary
or non-stationary solution of Eqs. (3.1)-(3.2), we discuss here some approximate sohi
tions. First, we present the nonlinear coherent vortex solutions of Eqs. (3.1) and (3.2).
Accordingly, the stationary soluticn of equations (3.1) and {3.2) in the moving frame
£ =y~ nyz — ugt, where ng is a constant and wug is the translational speed of the vortex,
by ignoring dissipative term, can be re-written as;

&

iz m1U

Z’)E.",_. == D

(3.1

(U + i~ 1) B + 06060 — 1 | U0V § — = (6. Vhg]| — — Lm0 _
1 R S 1 ~ § ~ = BU : _~i:- @"]EO(]-_'_(S)

e
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where U = ug — f)ytho, EQ = &5 - (C/UBo) (83465‘5 - 8@51,), VL’_ = @2/6)r2 + (92/@52 and
the Jaccbian is now defined as 7 . bl = (0,a0:b — 0:ad,b).

A typical solution of Eg. (3.10} is

he ==y - S o

m, U

Substituting the above value of v;, In Eq. {3.11). we readily obtain

S , e, g s g B . i)
Uty — — | e+ ot — —=(nq — S,) | $0co—pU |0V — —=T&. Vi |l =0.
A * : U (Y~ U By ]
{3.12)

where U2 = Tyrana(ng — Si)/ [muneg{l + 6)). It is somewhat difficult to find the gern-
eral solution of Eq. (3.12) for a localized vortex solution. However, if we consider the
case when the scalar nondinearity is dominant compared with the Jacobian nonlinearity
Jlo, V3¢l then we get

| 5 [ w v\ &
CAYT {1 ha - (__) J 0c¢ + 2900 = 0, (3.13;

U 7

where o) = (9,2(5, — ng)/m. U} — of. 1f we normalize the space variables with o,. we

may integrate Eg. {3.13) and obtain the following result:

‘2—‘ 7
2 j— ( -4 E-- —_ .[i . _&_2 :2 — S I
e ll U ( U> J Oty =0 (314)

Equation (3.14) admits spatially bounded monopolar vortex type solution [$1] for

(1 +w, /U7 = U207 =1 and o/20 = 1.
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3.3 Hot lons

3.3.1 Nonlinear Equations

Let us consider the nonlinear propagation of low-frequency (in comparison with the ion
gyrofrequency w,., = eBo/m.c, where e is the magnitude of the electron charge, m, is the
mass of iocn. ¢ is the speed of light, and By{z) is the strength of external nonuniform
magnetic flield which is pointing along the z-axis) electrostatic waves i a nonuniform
e-p-1 magnetoplasma. In equilibrium, there exists ion-drift velocity z vp(x) which has
a gradient along the z-axis and e-p-i plasma satisfies the cnarge neutrality condition
(2.12). For low-frequency waves and for inertialess electrons and positrons, the pressure
gradient of electrons/positrons is balanced by electrostatic force which leads to Baltzmann
distribution of electrons and positrons. Asswming D, = v, = g, = 0, Eqgs. (231}, (2.32)
and (2.34) can be combined in the limit of hot ions at non-relativistic temperature Ty (

with T.g # 0} to give [38]

Dy + U-;O_,JG) — O:;r;ﬁa],g? =~V V@ — ()f D+ v, V) Vig,J

i , T
02 (Ve V) Vo + (-2) 80 = (3.15)
: = ey ’
and
(Dy + 0000, = —— [(1+a77} 8. - $.8,] ¢. (3.16)
Ty -
where D, = & + vgg - V+1.0., 7 = 15/Tw, u, = —p.ced: (no/Bo), ¢ = Nofrg,

ey = ¢/ Byd, In (No/ Bo). v = (¢Tyo/eByng) 2 x Vi, is the diamagnetic drift velocity,
S, = (devin)/we, 1s the lon shear parameter and p, = ¢;/w,, is the ion gyro-radius with

¢ = v/{roTo) / (Nomy).

Let us introduce the normalized parameters £ = ct/L... =' = z/p,, ¥ = y/p,.

2" = 2) Loy Lng = [d ()] 7 0l = Lot/ (pycs). & = (€0L0 No) [ (p,n.0Tp). Hereafter,

we shall drop the superseript prime for simplicity of the notation. Thus equations (3.15]
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and {3.16) take the following form

8,1 =V o —alod,e— (1+ar™)J 0, Vid]

~N—fa+7) Kgi+ a7’V G0+ D, =0, (3.17

and

Lo, = :(dl?:lo) a, — (1 -+ C.-_T‘—l) 3;' @, (3.15)
where £, = 0, + (3,00, — 0,08,), o) = (0. InNg — 70, Kg.). & = p,/Ln, Kp =
L. /{rLg) and L,.:(Lg;) represents the magnitude of equilibrium density (magnetic field)
inhomogeneity scale length. Equations {3.17)-(3.18) are the governing equations for non-
linearly coupled electrostatic waves in a nonuniform warm e-p-1 magnetoplasma with

sheared ion flows which is produced by a radial electric feld.

3.3.2 Linear Analysis

In this section, we present a derivation of linear dispersion relation by neglecting the
nonlinear terms in Eqs. (3.15)-(3.16) and by assuming that the perturbation wavelength
is much smaller than the scale lengths of the equilibrium velocity, density and magnetic
field gradients. The governing equations (3.15} and (3.16) are then Fourier transformer
by assumming that the perturbed quantities ¢ and v,, varv as exp [7 (k- r — wt)], where k
and w are the wavevector and the frequency, respectively. Thus, from Eqgs. (3.13) and

(3.16), we obtain the following dispersion relation {33]

L+ K220 = [(1+a ) wg — (077 = ) wa] ©

o : k.5, ;
—tE (1 +atr) = —‘i—— =0, (3.19]
where @ = w — k- vy is the Doppler shifted frequency, #* = &7 + L:i, G =il Y

and wg, = k- vp are the ion diamagnetic and magnetic-drift frequencies, respectively.

Equation (3.19) shows that drift and ion acoustic waves are coupled in the presence of
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ion sheared flow and finite Larnor radius effects.
For uniform density plasma case and in the limit of vanishing perpendicular ion inertia
(k_p, = 0) and for homogeneous magnetic fleld case, the above dispersion relation reduces

to

{w—k- V;,D)z =C (3.20)

This shows that ion acoustic mode would become unstable due to equilibrivm sheared
ion fows.
On the other hand. for homogeneous magnetic field case and i the absence of ion

strearning flow and &y g, = 0, the local dispersion relation becomes

W+ W — k(14 a77) =0, (3.21}
which is the dispersion relation of coupled ion acoustic waves and drift waves in electron-
ion plasma with n.y = 0. Here w., = o™~ Twp.

Further, equation {3.19) predicts instability of the ion drift waves for a finite value of
sheared flow parameter (S.) with wg: = 0 =k p,, #,5:/k, > (1 + a7 7] and k k.c? |5,

3 w?,. The growth rate of the instability is given by

3= ket 18] — w2, /4 (3.22)

3.3.3 Nonlinear Solution

In the following section, we present a possible solution of Egs. (3.17) and (3.18) by
involving vortex scenario, ie., we search for travelling solutions that are stationary in
a reference frame which is mioving with some velocity up. We introduce a new frame
£ = y + fpz — ugt, where 7y and up are constants, and assulne that ¢ and v, are
funcrions of & and & only. The effect of equilibrium perpendicular ion flow velocity which
1s caused by the radial electric field —V ¢y, is incorporated in the E x B drift by writing

down the total electrostatic potential as a surn of equilibrium (g@y) and perturbed (&)
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potentials. We choose the equilibrium potential ¢q ~ Vg {z — zg) + %Vio (z — .i.'g:'i,
such that it describes only the linearly varying perpendicular flows[24]. Since the fiow is
slieared. we may assume Gaussian type density and magnetic field profiles, so that we
may approximate Kpg, &= Kgpn+ Kpax. With this choice of K. and &y, equations (3.17}
and {3.18) can be re-written as

S

Tgnoring the scalar nonlinearitvi22, 23] in Eq. (3.17) and using Eq. (3.23), we get

' (K =V Vi —2.)° VA i sy
\:‘r {()_Vi(:)—\ Bl —G-)( 1) ©+ _;_-IL 2/ ]
L

= [/.','-’/\
K 5 3 0. (3.24)

where

= ((V_:_{; — Vi +{l-ny—-ar —(o+7) Hap) (L+ a7 1)_1) [ (TK gy — V).

and
Ly = ((uo +ar ) {1+ 057_1)71 —(V.g+ Viozo)) Vi
Setting #, = 3, we may write the general solution of Eq. (3.24) as
(VIi-1e+b0X?=F{p+X7), (3.25)
where ¢ = 20/ V"5, b= (7Kgin — V]) /Vig X = (& — 71} and F i an arbitrary functicn

of the given argument and we choose it as a linear one. Le., F &~ [g+~{p+ X*) /. With

this choice of £, we can re-write Eq. (3.25) as
(V2 =)o+ bX? =g+ (g+ X)) F, {3.26)

A localized quadrupolar vortex solution can be cbtained. if we divide the space by

a circle of radius rp and solve Eq. (3.26) by using cvlindrical coordinates in which
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- oy b 4P ~ . . . . .
roe (X2 Y)Y and 6 = arctan (Y/X) independently outside and inside a circle. such
that the constants fp and £ can have different values i these regions.

For outer solution, we may write
Bl oueth] _oub b o2 ot ot X"Z' .
|Vl—f1+F~,_ f' 1;3 T )\ _I__U _){’_1 o —~O

By letting £5* = 0 and A7 = (1 = £54') and F¢" = 4, the above equation takes the

following form:

The general solution of the above equation can be written as a contbination of Bessel

functions. such that
07, 6) = B Ka( M) + B, Ka(\r)cos 28, v > rp [3.27)

where Ko are the modified Bessel functions of the given order,

For the inner solution, Eq. {3.26) can be re-written as

o~
[

V2 - (1= F7)) ¢+ bXF - FY - PN =0

If we let A2 = — (1 + /%), then we have

[V 42 - Y+ - X =0

The solution of above differential equation takes the following form:

2 T

N 8) = gy (or) — A% — B+ laae (Aor) — A%W cos 26,1 < g, (3.28)

R

[#4]

where A = (b= F7)/A5 and B = ~(F&/ M3+ 2(b— Fi")/A3). Here. Jyz are the zero and

second order Bessel functions of the first kind, and the unknown constants 3., J3,. or.
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an, A, B, and M\, can be found from the appropriate continuity condifions at the given
ciccle, i.2.. from the continuity of the function /7, the continuity of the potential ¢ and
the continuity of dw/8r at r = ry [82].

The above continuity conditions vield the following set of equations:

-

2 n ; AN
FU (BeRo(Mre) + 1) = FE7 4 FY" oo (Aaro) + (1 - 7) o~ B} ‘ (3.29)

L

BoKo(Mire) = agly (Marg) — ‘;rg -5, (3.30;
3Ky rg) = aod) (Narg) — Arg. (3.31)
3.0 (M) 4+ 15 = 0, (3.32)
gy {Agrg) + (1 - ’;) r2 =0, (3.33)
and
3,1 (Do) = alJs, (Aarg) — Avg. (3.34)

From Eqs. (3.32) and (2.33), we get

2
r2

By = ———2 3.35)

o K5 (/\17'0)‘ (d 35

_ (=472, 3 s

Gn = J,z (/\.2710) fD k&,._,()/

Substituting the vaiues of o and §, using Eqs. (3.35) and {3.36) into Eq. (3.34), we

obtain the following nonlinear dispersion relation

== =
5 0

i euPT "0 A Ja e
2 ) (1 ) faaro) (3.37)

where the prime denotes the derivative with respect to r at » = rg. Choosing & = 1 and
Ay = 141, and vy = 2, from equations (3.29)-(3.37), we may find the other unknown

constants.
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Figure 3-1: Contour plot of quadrupolar vortex given by Egs. (3.27) and (3.28). The
dashed lines represent negative values of the potential.
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Figure 3-2: Three-dimensional view of the potential for the quadrupolar vortex from Fig
3-1.
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The contour plot of the quadrupole vortex solution is given in Fig. 3-1. The contours
show a dipole vortex between the lobes of an other dipole-like structure. The dashed lines
represents negative values of the potential ¢. The 3D-view of the vortex is presented in

Fio. 3-

R}

go

3.4 Summary

In the first half of this chapter. linear and nonlinear propagation of lon acoustic and
electrostatic drift waves in an e-p-i plasma have been investigated in the presence of ion
sheared flow along the external magnetic field. It has been found that the free energy
avallable in the form of shear flow can give rise to electrostatic instabilities of ion acoustic
and drift waves in the lnear limit. It is important to note that the ion acoustic wave can
become unstable in both e-i and e-p-1 plasmas due to ion shear fiow even in the absence
of density gradient, In the presence of ion collisions a drift-dissipative instability may
also take place under suitable conditions. On the other hand, when the finite amplitude
disturbances weakly interact among themselves, the nonlinear coupling of various modes
may lead to the formation of coherent nonlinear structures (monopolar vortex) in a
collisionless plasma.

In the second half of this chapter, we have studied the linear and nonlinear dynamics
of low-frequency ion-acoustic and drift-waves in a nonuniforn: e-p-1 plasma with sheared
ion flow. In the linear case, we have shown that lon-acoustic and electrestatic drift-waves
become unstable due to equilibrium sheared ion flow. In the nonlinear case. we have
shown thar for some specific profiles of the equilibrium density and sheared plasma flows,

the nonlinear eguations admit quadrupolar vortices.
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Chapter 4

Nonlinear Dynamics of I'TG-driven

Electrostatic Waves

4.1 Introduction

A plasma is said to be in a state of stable thermodynamic equilibrium, 1if it has a
Maxwellian velocity distribution and is homogeneous in space. If the plasma is inhomo-
ceneous or different kinds of free energy sources are available to drive instabilities, then
the state of plasma will alwavs be a non-equilibrium state. Coulomb collisions would
drive transport in an inhomogencous plasma by scattering particles from one gyro-orbit
to another. In a turbulent plasma the collective turbulent fleld has a similar influence to
the microscopic field in Coulomb collisions. There is, however, a phase difference requirecd
between densify or temperature perturbation and electric field perturbation to cbtain a
net transport. For turbulence driven by linear instabilities, this phase difference is caused
by the linear growth. The linear growth thus acts as a source of turbulence, at the same
tfime giving a correlation between density or temperature perturbation and driving elec-
tric feld necessary for transport. Among other instabilities, several experirmental results
are in favor of [TG mode (also known as n,-mode, where 7, = dInT,/dinn;) as a major

candidate for explaining anomalous transport. The #, instability was first discovered by
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Rudakov and Sagdeev [83], within the context of a local fluid analysis in a slab geometry,
where it was shown that the growth of the ionic-electrostatic-wave was caused by a con-
tinuous inflow of hieat from a region with a high unperturbed temperature into the region
where the temperature was rising on account of the compression due to the plasma wave
under the conditions of zero density gradient and finite temperature gradient. Later,
Kadomtsev and Pogufse [84) presented a detailed analysis which was based on the fluid
and kinetic models. and derived local dispersion relation, the critical value of 5, for the
marginal stability and localizaticn of mode based on local approximation. Hahm and
Tang [85) have presented some new properties of ITG mode in the presence of magnetic
shear.

Recently, a great deal of interest has aroused in the study of [TG modes. Several
authors [36-30] have investigated the ITG mode by emploving Braginskil's transport
equations for the ions and Boltzmann distribution for the electrons. Shukla et ol [90¢
extended the work of Jarmen ei /. [91] by including the parallel ion dynamics for the
electrostaric ITG nmode for a nonuniform magnetized plasma. Therefore, due to the
importance of ITG mode, we have extended our earlier work (36, 58] and this chap-
ter presents same extension [39) dealing with the nonlinear dynamics of low-frequency
ITG-driven electrostatic waves in a collisionless e-p-1 magnetoplasma in the presence of
equilibrium densify, temperature, magnetic field. velocity and electrostatic potential era-
dients. In our model the lon dynamics 1s governed by the lon continuity, momentum and
energy balance equations, whereas the electron and positron fluids are assumed to fol-
low the Boltzmann distributions. We have also incarporated the self-gravitational effect
of lons and showed that possible stationary solutions of the nonlinear equations can be

represented in the form of dipolar and tripolar vortices of gravitational potential



4.2 Electrostatic I'TG Modes

4.2.1 Nonlinear Equations

We consider e-p-1 plasma embedded in an inhomogeneous external masnetic feld Bg(z)
Zz. where By is the strength of external magnetic field and 2 is the unit vector along
the z-axis. The plasma also contains equilibrinm lon velocity (8.1.0), equilibrium ion-
temperature (9,7,0) and density (&:n;o) gradients, which are maintained by external
sources. In equilibrimm, the e-p-i plasma satisfies the charge neuatrality condition {2.12).
Eqs. (2.31)-(2.34) for electrostatic ITG mode, and for collisionless case (l.e. D, = v, =

p, = 0), can be rewritten as [59]

| C h € - i T f o i . T'- -i I 5
(dy + 1301, + 73;0] [0, 75, = ‘rr—ﬁ_? [{(1 + T 1) d. — b,\l-)ciy} &+ 9, (-E—l)—l o4l
b Dvg - V) Ty T Tl = 2227 5.0 No) 68,
S 3 =5 <1 Br 1 4 35? In &
2 : 2
——eaT dp -7, — 3 Ve V& =10 (4.2)
3
and
(d, +2:8) (1= p2V° ) o+ uld,0 — ay80,0 + va - Vo +7(ae)  vp, - VI
5 (i E € zn] ”'52 Fies
—p; | (Vo V)Vig— B J[-.‘). Vidll - o V- Hvp, - V)V, ] + = 20,1, #413)
| 0 1 .

where dy = & + vpd:, S.(z) = (deovin)/we 15 the ion shear flow parameter, Ny = n.g +

ngo, o3 = ¢/ Bod In (No/Bp). u), = —p,es8:In (no/Bo). ¢, = /(npTo/Ngm,) is the ion

acoustic speed. p, = ¢;/we., T =T/ T, a = No/nyg, vg, = (cTin/eBy)z x Vin By is the
lon V By drift. vy, = (¢Tip/eBg)2x Vinnygis the Vi, drift, vy, = (cTip/eBy)2x V In T,
is the VI drift, vpan = (To/eBa)z x V(Th/Tw +n.a/ng) and the zeroth order ion

diamagnetic drift velocity vpo = (1 —1,)v, with n, = 4, (InTy)/d.(Inny). Equations
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(4.13-(4.3) are the desired nonlincar mode coupling equations to study the [TG-driven

electrostatic waves in an inhomogeneous e-p-1 magnetoplasma with sheared ion flows.

4.2.2 Linear Analysis

In this secticn, we present a derivation of linear dispersion relation. In the linear limif.
we neglect the nonlinear termis in Egs. (4.1)-{4.3) and assume that ¢, T} and v, are
proportional to exp [—4 (wt — k- r)], where k and w are the wavevector and the frequency

of the perturbed quantities, respectively, Equations (4.1)-(4.3) become

2 Sk, Ti]
Qu,. = 2 g [ 1 —ar - 21 ¢+ —ll ' (4.4)
my | k; ' e |
0 3 Np 02 g 2 0\, )
ST WA 11 = | T EGT L—el Wy — ZwWa 3 k)
378 3 "3 J g \
and
QO +Ep7) —wa (L+ar™) dwn (@77 = kip?) —wr (K203)] ¢
-1 2
r T O
———wpily — —— kv, =0, (4.6)
e e

where 2 = «w — k- vjg is the Doppler shifted frequency. w,, = k- v, ion-density drift
frequency. wg, = k- vg, and wy;, = k- vy, Combining Eqs. (4.4), (4.5) and (4.6}, we

obtain a local dispersion relation

-

D 5 -
UL = swp )AL + ko) —wel{l+ar™h) v wn o™ — k2 p?) — wr (B2 03]
I
10,02 2 5} L
—{Quwa, + a’r"lc_fkf)[g.q — o r{wp — Ewmﬂ — (@ - 'jwﬁ)[(l + CfTﬂ)ka.ﬁ
—k k.28, (z)) =0 (4.7)

In the absence of ion sheared flow and uniform equilibrivm temperature and magnetic

field case. the above dispersion relation takes the following form for w > 7w, /(7= 5a/3)

M
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and k207w < 1

! : : 5G R '] !
o (1 +- Alpz) +ar hw — (1 + 3_> ’xf‘r; =0 (4.5)
3T

The above dispersion relation is the usual coupled drift and modified ion-acoustic

waves in e-p-1 plasma. Here the modified ion acoustic velocity ¢, = /n.oTo/m.(nag + Npa).
For a uniform density plasma (w,, = 0) case, we have the following modified ion-acoustic

mode
(1 + 5¢:/371)Y/? .

However. for w = k,c,, we have the usual drift waves defined bv

CiTilu)-,,_, (' ]{}\
o= <——--—~' 3 . <. L ,"
(1 + k1p?)

Similarly, if we consider a uniform density plasma case in which w,, = 0, with k&, p, =0
and neglecting the parallel ion dynamics with &, = 0, Eq. (4.7} takes the following form

2 T e
oy —':‘—-FC‘{ J)wf_ct..:—','uiﬁ,_l

3

] W

(l+o™'T)+a T——]=0. (4.11)

Ca o
£
o

The roots of above equation are

o w2 = (D T (4.12)
Hi I 3 2 o T 1 1|

where n. = (10¢ /97 + 7/4a). Notice that the modified ion-temperature-gradient mode

becomes unstable, if n, < Lg, /Ly, with a growth rate [39

T 1/2 L]
1= W (a) ‘LBi/LTi - ;:".—Ilf_', (41"))\'

s

where L g and L, are the scale lengths of magnetic fleld and equilibrium temperature

gradients, respectively.
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Furthermore. if we consider homogeneous magnetic field case, Eq. (4.7) vields the

following result
L

A1+ 12 08) + (o7 — 2 p%) s — K2 plr,

Lic? He kS (2/3wn —wrs
Pl J_ S _ L~ 4 1 — O ”._' /i
(s ) - R 1

W
—
o

For uniform density plasma, Eq. {4.14) for wy; >3 Q{1+3a/37) and &7 p? = 0, reduces
to

O 4 (ky k2809 + kel =0, 4

fass

s

(]
N

This equation represents a dispersion relation for the coupled ion-acoustic and elec-
trostatic ion-temperature-gradient mode in the presence of sheared ion flow. One of the
voots of the above cubic dispersion relation would always be unstable irrespective the
direction of the shear and lon-temperature gradient. Furthermore, the earlier resulis of
Mirza et al. [36]. can be recovered froni Eq. (4.14) by considering the cold ion case.

On the other hand, Eq. (4.14) with w5 = 0 reduces to
2c2wog. (4.16)

This cubic equation predicts the Rudakov-Sagdeev |83) instability which has been
modified in this case for e-p-1 plasma. The growth rate of the instability can be expressed
as [59],

4.17)

4.2.3 Nonlinear Solutions

In the proceeding section, we have shown that how velocity, temperature, density and
magnetic field gradients causes instability of electrostatic drift waves and modified jon
acoustic waves, Af a certain stage in the development of the instability, for some values

of the perturbed guantities. nonlinear effects seems to become important. Althouzh i
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is very difficult and aimost impossible to find an exact analytical solution of equations
(4.1)-(4.3), we discuss here some approximate solutions.

Let us introduce the normalized parameters ¢ = ¢y¢/L,,, =’ =
= zfLg @

/pe v = u/p,.
(ccﬁLﬂP\r"o)/(P.,nUTO) T — ({-TIILFZE) /({')STEO): = Lra'é"'lpz/(psc-‘i').‘ )l‘—" -
[d-(In n,.-_.)i‘l, ¢; = /(npTy) / (Mmy), and p,

= ¢;/we. Hereafter, we shall drop the
superscript prime for simplicity of the notation. Equations (4.1)-(4.3) can be written as

Do = [dv,08y ~ (L + ar™1) 8;]¢ — ar7'8.T,

(4.18)
: 5 2 2 . _ 5 : .
\J'I_:]r - _—{.‘t‘ft B,@y)T — —(;Dg@ — 3‘8; (h) J’\/D) @8”(;7 + (— — Ti’(]‘;)ij(i) =0 ’.;—- l())
and
¢m1_ggm_aﬁ@p+aﬁm@T—UfﬂaTTﬂwf+aKﬁVU@@
~(l=ar™)J [0, Vil —ar™ 'V I[T.V ¢ +8.0=0, (4.20)
where Iy = 0, 4 (0:00, — 0,00,), o = (0. InNy —78,Kp,), 6, = p /Lo Kg =
Lo J{tLg:d. Ky = (L4 1,)/7. La(Lg;) represents equilibrium density (magnefic field)
inhomogeneity scale length. Here, we have assumed |[(¢/Bg)2 x Va - V| = 0,0,

To obtain stationary solution of Eqs. (4.18)-(4.20). we assume that v. T and ¢ are

functions of 2 and § = y 4 7z — ugt, where 7y i1s a constant and uy is the translatinnal

speed of the vortex. In stationary frame Eqgs. (4.18) to (4.20) can be re-written as

)= ?35 f((l + aT"l) My — dIT,J-,;D) @ + car‘lryg'f] , (4.21;
D -
(. s S 2 Z . . 1 5 )
(D — 2 T — 2 Ded+ =—0, (In Ny) 906~ — (2~ 7lp)dep =0 (4.22)
3 ug 3 3ug ug 3 N



and

}
o G C{[\B - 5o
F:(1 = V2 ) + =8 — 0T + Il —(a+7)Kg + oK,V 80
K UG e tin -
v By ) =
([ + T e 37 T < ] ,‘;-‘-: P
4= fji@,V‘_u. - V. JT,V.i¢| - —=0un=0. (4.23"
() - ’ Ug g

where D¢ = 8/8¢ — {1/uo)[{8:9) 8: — (8:)0.] and V> = 9%/8z* + 82/ 9¢2.

Monopolar vortex

When the scalar nonlinearity is stronger than the vector nowlinearity {or Jacobian non-

linearity) in the Egs. (4.21)-{4.23). Eq. {4.22) can be rewritten as

5, JI -y I. 3
(1— 29880 a0 L0, (InNp)8es? — (2 = 1 Kr)0po = 0.
LUp 3 3U0 {1@ 3
The above equation can be integrated, vielding
T = app — boo”, (4.24)

where ag = (2ug + 5 — 37K7.) / {3ug — BaKp,) and by = (3 In Ny) / (3ug — 50:K 5. ).
Using the above relation for T in Eq. (4.21), we readily integrate to obtain the
following result

r=a,9— bi¢, (4.25)

where oy = (ngar ™ (1 + ag + a7 7) — deig)/ug and b; = a7~ 17pbs/ u.
Finally, eliminating 7" and » from Eqs. {4.23) by using Eqs. (4.24) and (4.23). we
obtain

V60— 1@+ x20° = 0, [4.26)

-1

with x. = (ug + 1 — (L +ap+ e 7)akp —nga1)/ (ug — aKp,) and x, = (67Kg —
I Ny —2aby Kg, — 2061 )/ (2ug — 20 K7;:). Eq. (4.26) admits a cylindrically symmetric

monitopolar vortex [31] when x, > 0.
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Chain of vortex
On tie other hand. if the Jacobian nonlinearity is stronger than the scalar nonlinearity
in Eqgs. {4.21)-{4.23), then we may integrate Eq. {4.22) to obtain a trivial solution of the

form
(221.0 + 0= 37K7)

T = OIS = ase (4.27)
\3010 — OC‘(KB-L)
Eliminating 7" from Egs. (4.21) and {4.27), we get
1 , . .
v=—{npat T {1+ ay+a"l7) —drug) o = azd. (4.28)
o
Inserting T and v from Egs. (4.27) and (4.28) into Eq. {4.23), we obtain
[(o(L+az)+7) Kg —ug =1 +1npas) Gepp~ (uy — aKr,) V2 o
~{l+am ' (1+a))J [0, Vig] =0 (4.29)

If we ser ug = (a(l+ap) +7)Kg, — 1 + pas in BEq. (4.29). then we obtain a well

known stationary Navier-Stokes equation

where 4, = (1 —e7 7 {1 = @) and v = (ug — aKpy). For y. > 0 and ug # oK. Eq.

(4.30) is satisfied by

where ¢, K, and a4 are some arbitrary constants. The analytical solution of Eg. (4.31)

13

. i 1 )
o = pij + ¢y ln I?COSh(K:ﬂ) + 2 (1 ~ (—.,) cos( K f_ﬂ[ {4.32)
3! L 1y

which represents the Kelvin-Stuart ~cat’s eyes” that are chains of vortices [92| for a, > 1.
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Heve ¢, represents the size of the vortex.

Dipolar vortex

Let us now present another stationary solution of kq. (4.29) by letting

iy =fug — (a{l+ay) +7) Kai+ 1 = mas] / (ug — oK) > 0.

L

In this case. Eq. (4.29) is satisfied by the ansatz
Vi@ = Q) + AT, (4.33)

where a; and ag satisfy the following condition
as {l+or‘1(1+ag]"

| g = 0 4.34
Ha 1__ o {H.j — CJ:]".’T? ] (

R

Equation (4.33) is a second order inhomogeneous differential equation which admits a
1 { ! g

dipolar vortex solution [93,94]. The constants a; and ¢g can be determined by matching
the inner and cuter solutions of ¢ at the vortex interface. This exercise has been done in

Ref. 193,94] in some detail where explicit expressions of various constants are obtained.

Tripolar vortex

Now we look for another type of stationary solution of Eqs. (4.21)-(4.23) called tripolar
vortex solution. In order to find the stationary vortex type solution in the presence of
ion sheared flow in e-p-1 plasma, we may assume Gaussian tvpe 98] density, temperature
and magnetic field profiles, so that we may approximate Kg, = Kg.g+ Kgor and K, =
Kro+ Kz The effect of the equilibrium perpendicular ion fow velocity, which is
caused by a radial electric fleld —V¢,. is incorporated in the E x B drift, by writing
down the total electrostatic potential as a sum of the equilibrium (@) and perturbed (¢

. , ' ; 2 g
} potentials, where ¢y & Vip(z — z0) = Vg (o — 20)” /2. It may be noted here that the
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equilibriwm potential profile only describes the linearly varying perpendicular flows '93

With this choice of Kz, and K7;, and in the absence of scalar nonlinearity, Eq

v, Eg. {4.22)
can be re-written as follows
i - 42 2
H T — & - T :E'__ . -
T 1o+ (1’104— SG[X,B,l)(——{)“ﬂ)—,TTIXT;';TL—*S“i =0, (%.30}
where
Ty = (UO -V 10— D’\OL[\ - (D/B)GABLO) / ([/13 T (3 B)Qf\gil)
and

Lo = '(2'&0 +5— 3’7’1[{']",_0) /ST,{\I’Tl

Although it is very difficult to analyvtically solve Eq. (4.33) for a localized vortex
solution. However. If we set r; = u». then one may integrate Eq. {4.35) to obtain

i : (I"‘Il)z - 5 ('-'C“E’I'_)Q ¢ oy
T+ "T\TLT_—Q—_ =hH|lo+ rJ + BCJ& 8 | ———— 4,36

B j [
where the condition z; = a4, basically determines the phase velocity of the vortex, Here

f- 18 an arbitrary function of its argument. On the condition of vanishing perturbations
at infinity, we have

ATzl'
T = - - = Q-0 4.37
T 6/ akan) . = (4.37

Inserring 7 i eguation (4.21), which. 1n turn, 1s satisfied by

T — J;;-\”?
f2 @ + VJ’—D_(—""_

]

+ e (13—&74—0_}.‘) (= x4). (4

e
[
o 8]
M

where 23 = {ug — Vio+ V] j20) /V/ g and 24 = v/ (07 ' (1 + a7 + o7 '7)) and fy is an
arbitrary function and we take it as a linear form such that f{y) = Fo.y, we get

E).EH = an‘fd) (’139}



Equations {4.37), (4.38) and (4.23) can be combined to give the Jaccbian

7 1-.:'; + o dra (L + ar~t(1+a:)) "+ Vi) (& — 355)2_ Via 4 K pu (& — )" - 0.
] 2 = 2 ]
- {4_’.[:[11
where
o (U..o -+ -.:]. + o7t (1 -+ CIT)) (Vigﬂ.in,} == VLu_\, =5 GI(T-;Q)
T (1~ ar {1 +a)) Vi + akry)
and
. (g + 1 — (a+ T)Kpig + aor K g+ npF3)
Tg =

Cc‘.lr{H; [1 + Gy + G.’_ITI,"
Again setting r; = z5. Eq. (4.40) can be integrated to obtain a general solution of

following form:

- 2 - = - .2
2 K pn (.’L‘ — 'L:.:I : (C{I\TU (]. + ar™! l:l i CT\) 1 V_f_,:,:'- (.L — Is)
Vie+ =falo~+ :
2 2
(4.41}
where f3 Is an arbitrarv function. Using the appropriate boundary conditions for a
localized vortex solution, we obtain

2
Vie = el (4.42)

where 3%/+% = (7K g1)/ (QKTn (I+om (1+ar)) " + Vio)' Using the standard pro-
cedure \96]. Eq. (4.42) can be solved in cylindrical coordinates, independently inside and
outside a circle with the radius r = . The solution of E¢. (4.42) is obtained in the form
of tripolar vortex [97, 98].

Quadrupolar vortex

Equation (4.41) can also be expressed as

Vie+asX = fi (9 +asX?). (4.43)



- ; - _ —1 rt
where as = 7Kpn/2, g = (eRKra(L+ar7 (L+a7)) " + V,)/2, X = (x—z5) and
fa is an arbitrary function of the given argument and we choose it as a linear one, ie.,
i Fio+ (60— X?) fir. With this choice of f;, we can re-arrange Eq. (4.43) defining
new constants

(Vi1 eo=awuX’ = fu+ (o= X fu. (4.44)

where a;g = 1 = as + fa1 — agfiy. foo = L+ far- A localized quadrupolar vortex of the

.

above equation has been obtained in Ref. {99].

4.3 Self-Gravitation Effect of Ions

4.3.1 Nonlinear Equations

Consider the three-component plasma in the self-gravitational field of ions, consisting of
thermally distributed ions and Boltzmann distributed electrons and positrons embeddesd
in an inhomogeneous external magnetic field By(z) Z, where By is the strength of exter-
nal magnetic field and Z is the unit vector along the z-axis. The plasma alsc contains
equilibrium ion velocity (@.14g), equilibrium ion-temperature (8,T,0) and density (8,7 5)
gradients, which are maintained by external sources. In eguilibrium. the e-p-i magneto-
plasma satisfes the charge neutrality condition (2.12). The ion dynamics is governed by
ion continuity equation (2.13) with D, = 0, and the momentum transfer equation (2.1)
with v, = 0. The ion temperature perturbation can be obtained by using ion energy

balance equation (2.14). The gravitational potential ¥, is given by Eq. {2.1) such that
VE\PQ = 4wGrm,n,. (4.43)

where & is the universal gravitational constant. Taking the cross product of Eq. (2.1)
with 2z, we obtain the lon-fluid velocity perturbation under drift-approximation. We

express dependent variables n,. T, 2. ¥, and v,; in termis of their equilibrium and



perturbed parts as

n, = TNyt

T = Tp+Th

thy = UWgTt
¢ = 0+9¢
D, = Wt e (4.46)

For low-frequency processes (inuch less than the ion-gyvrofrequency} and Boltzmann
distributed electrons and positrons. the quasi-neutrality condition leads to Eaq. {2.34).
Considering callisionless plasma (v, = 0} and keeping the leading order nonlinear terms.

we obtain

d, (1 — piV7y) (e9) + 0, (e9 + m¥g) + v - Vied)

o rvg VT, - p? ‘:(VD,_O V)V {eo)| + m,cid,v =0, (4.47)
madyn = — f{ {1 + &T—l) g, — Si{zf)ﬁy} led) + 0. (T + ??21\11(;)} , (4.43)

5 2 2 ‘
(d, - %VS, : V) Ty — g&'r—ld: (eq) — (ni — g) V., Vieo+mV¥eg) =0 (4.49)

and
ToV e = aw’ (ed) (4.50]

where w5 = 4wGr,nyy is the Jeans frequency of ions [100]. Equations (4.473-(4.50) is the
desired nonlinear set of mode coupling equations to study the dynamics of low-frequency

[TG-driven waves i1 a self-gravitating e-p-1 magnetoplasma with sheared ion Hows.

4.3.2 Linear Analysis

[ the linear limit, we neglect the nonlinear terms in Eqs. (4.47)-(4.30) and assume that ¢.

U, 7oy and @ are proportional to exp [—i (wt — k - r)], where k and w are the wavevectar

D)



and the frequency of the perturbed quantities, respectively. Equations (4.47)-{4.50) in

the transformed space, can be written as.

E Y §
Qo = Ry I.L(l +art — -ﬁ“ ﬁ) (ed) + (T _—'n’L,\I/G)J : (4.531)
J 2 1 2
(Q - Fws Ty = 307 1) {e@) — {wri — W (eo -~ mYea), (4.52)

QU +b) —we L+ o™ '7) +we (a7l = b)) — by, (ed)

—_ ; — 2 o -
—orwe Ty + o7 (s —waedm Ve — kocimae = 0, (4.53)
PG = 6 (ed) (4.54)

Here. © = w — k- v, is thie Doppler shifted frequency, w,, = k- v,, 1s lon-density drift
frequency, wi, = K- vg, wp = k- vy, b = &ip? and §; = w?3/k%2 Combining Eos.

(4.51)-(4.54), we obtain a local dispersion relation

Q{0 - 3@\&) U1 +6:) —wa(l+ a7'7) + wasla™7 — b)) — buwpd]
s a2 ﬁ 2
— (wa: )l + ot kIch fﬂﬂQ — o T{wre — Swa)
S8 3 ]

5 : T SR T
— {0 - ng;)[(l +ar™l) k22 — kk, 28 (x)]

19— Do a7 (= 50 O — KEEE) 6
A J
2 |
— s — Ewm)(a_l-rwg?fl + k23 &, =0. (4.53)

Equartion {4.553) is a new dispersion relation modified by the combined effects of
lon-temperarure-gradient, self-gravitational force, ion shear flow, inhomogeneity in the

background plasma density and external magnetic field. Assuming v,y = 0, wg: = wr. ~ 0
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and w 3 a7 ', W, Bge (4.53) simplifies to
L+ b)) +wll -8 = blcm"l:[ Wi — (1 R (5;) ke =0 (4.50)

Which 1s a dispersion relation of coupled drift and modified 1on-acoustic mode in a
N . . e o
self-gravitating e-p-i magnetoplasma. For a uniform density plasma {(w,, = 0) case. we

have the following modified ion-acoustic mode

(1+a lr — (SJ)1/2

W= 2 k.o (4.57)
VASE Y

However, for w > k,c,;, we have a modified dispersion relation for drift waves defined

85— (1 +biat 1]

W= - Wy 4.58
(1+5) r (4.58)

Further. if we assume &; =~ 0. {1 + 3a77'/3)Q « wr,, and wg, = w,; ~ 0, then Eqg.

(4.33) takes the following form:

Q3 L7.2,.2 r‘i‘-'?-’“?i -i {4 =N
+ kics | 1 Q-%-sz(l—-&J;i = 1. (4.59)

Equation (4.59) represents a dispersion relation for the coupled ion-acoustic and I'T'G-
driven mode in the presence of ion sheared flow and self-gravitational field. If we take

wr; = 0. The dispersion relation reduces to

where Q@ = Q/k.c.. The above equation predicts an instability, if S, < 0. Thus the
mode described by Eq. (4.60) may beconre unstable depending upon the direction of ion

sheared flow. The growth rate for the instability is




IfS, =0, in Eq {4.39), we get
O+ wr (1= 64) AZCE =0 (4.61)

Equation (4.61) represents a dispersion relation for the lon-temperature-gradient mode
in the presence of self-gravitational fleld. This cubic dispersion relation reduces to the
Rudakov-Sagdesv [83] equation in the absence of positrons and self-gravitational field.
The grewth rate of the instability can be expressed as

V3

=

lwr (1 — 6,0 K227 (1.62)

This 1s an interesting result which shows that the effect of self-gravitation, although

very weak, tends to suppress the well known Rudakov-Sagdeev [83] instability.

4.3.3 Nonlinear Solutions

[n the proceeding section, we have shown that how velocity. temperature, density and
magnetic field gradients causes instability of electrostatic drift-waves and modificd 1on
acoustic waves in the presence of self-gravitational field. At a certain stage in the devel-
opment of the instability, for some values of the perturbed guantities, nonlinear effects
seemns to beconic important. Although it is very difficult and almost impossible to find
an exact analvtical solution of equations (4.47) to (4.50), we shall discuss here some
approxirate solutions.

Let us first introduce the normalized parameters t' = ¢4/ L., 2" = o/p,. v = y/p..

=2/l W = (Volnm:No} [{praTa), &= (edLniNo) /{p,naTo). T = (T L) /(p,Tn).

’ r L /7 L PaT
v = Lov/(p.cs), Lo = {do(lnng)|™, ¢ = /(nuTy) / (Ngmw) and p, = ¢;/w,. Here-

after. we shall drop the superscript prime for simplicity of the notation. Thus equations

e
-



(4.47)-(4.50) takes the following form

S = (dorndy, — (L+a77) 8¢ — 6. (¥ + ar™'T). (4.63)
3 2 ) )
(@; - ga-KB,_@y)T - 38;@ -+ (g - T[{Tg)ay (O - \p) = O (4(}4:

8;(1 - \—'2_)0 T a[{,g,@yT — (1 - TKB-,)ay\D

—[l=(a+7)Kp:+alrVi]d,0 + 8.0 =0 (4.63)

and

ViU = a9, (4.66)

where ¢y = w5/w?, & = p. /Lo Kai= Lu/(tLp.), Ky, = (1+n,)/7, La(Lp,) represents
equilibriurn density {(magnetic field) inhomogeneity scale length. Here, we have assumed
§2 < 1and (¢/Bg)2 X Vo V| > ..0..

To obtain stationary solution of Egs. (4.63)-(4.66). we assume that v, 7" and ¢ are
functions of =z and & = y + nyz — wet, where 7, is a constant and ug is the translational
speed of the vortex. Transforming Egs. {4.63) to (4.66) in stationary frame and using

Eq. [4.66), we get

i \ . . 1
Jev = — [([1 ~f-&-7") #y — deVa) —V‘Z,_\IJ + g+ (N“:)DTJ , (4.67)
Up ar
(3 5""“;{5:@ T - J: VW ! (5 K0 (ViU +a;0) =0 (4.68)
= )L — —k - — — T ‘ ¥ = 4.6
A3 wy 3a, 0t G 3 TR Y L e V598

and

ugde(1 — Vi)Vi@ — oy Kpi0T + ol — 7Kg )d: U+

1l —{a+7)Kg+ aKrVa0: VU ~ cymyder = 0. (4.69)

where V2 = 3%/02% + J%/5¢°.



We may integrate Eq. {4.68) to obtain a trivial solution of the form

(2ug + 5 — 37Kr,) 5 3rKr) : |
ay(3ug — SaKg) = - o {3ug — baKp,) i

(9:T =

<

Eliminating T from Eq. {(4.67), we get

[ _ - 1] S -1 Y
Jev = :_((1 +arT ) g + asbiat T g = dovg) Fu'ucu; VU + o (g + bza7 ™ n,) O W
== Ihj_l':.llf Vi "D - h_ﬂ‘a‘g\[j. (471)

Inserting 9.7 and Jev from Eqgs. (4.70) and (4.71) inte Eq. (4.69) and integrating.
we get

VD 5 5V 4 el — brr = 0. (4.72)

where

by = [U.U - (]. — (G.‘ + T) [X'B-,) — ¥y (bla[\’f;,. T+ -.";JI.ICI / (GI\/T; - u‘o) ,
b()‘ =y H(l -7 1’\’57) — CJbgKBi — bq‘l]g] / (Q‘K‘Tl = ’Lf,Q) ,b? = f/ (CKK—T_. = Lf.-r_'.}
and f is an arbitrary constant. Eq. {4.72) is a well known fourth order differential equa-

tion which admits a spatially-bounded dipolar vortex solution [101] of the gravitational
potential. If we set f == ( then the solution of Eq. (4.72) in the outer region {r > R) can
be expressed as

WO = [ Iy (syr) + bo Ky (s21)] cos B,

——
N
-~
o

—

where 65 and bg are constants. A is the modified Bessel function of first crder. and

2, = | by & (82 — 4bs) ] /2 for bs < 0 and B2 > 4bg > 0. On the other hand. for

the inner region {r < R), we write the solution as

F fue,

\I."" == !45--;*,,}- !/ Ey +b1 lr 7'4-1" - E
102 {857) + buly (sar) Wi 1 — 1K) - abyKg, — byng]

I 7] cos b, (4.74)

where .J; (1) 1s the Bessel function of the first order having real {lmaginary) argiument.
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Figure 4-1: A typical tripolar vortex for the equipotential contour for the electrostatic

potential ¥ for 4 = 1.225.

Figure 4-2: A three-dimensional view of the potential for the tripolar vortex from Fig.

4-1.
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- 2 2 . N1/2 1 ) .

and b1p and 5 are constants. Heve. s3, = [(bg — 4hg) / = by /2 for by < 0. It is
d

worthwhile to mention here that even in the absence of all inhomogeneities, the dipolar

vortex strurture is completely localized in the outer region. If we set uy = Ky, and

=0, then equation (4.72) takes the following form

<
=
li
—
G,
]
e
)
e
RN
HH
o
NN
.y
Ut

where 3%/~% = o 1= (7 +ab) Kgi— bang) /11 + up — (o + 7+ asha) Kg —a bl

oV

t

f o

Using the standard procedure 196", Eq. (4.75) can be solved in cvlindrical coordinates,

indeperndentlv inside (¥') and outside (9} a circle with radius r = c.

! 2 2 [ 32 5 ) )
U (r ) = badp (§1) + (1 + jf_,) — b3 (%) + {&].;»]‘2 (&) — (1 + —;) r“} cos 20 (4.76)

and

U2 (r,8) = bis Ko (§3) + bie K2 (§;) cos 26, (4.77)

where & =er/o, & = fr/e, Koo and Jgo are the modified Bessel functions of the given
order, respectively. Here, r = 22 4+ y°, cos@ = x/r. and bys, bys. bus, bis and by are
arbitrarv constants which can be determined by matching the outer and inner solutions
at the boundary r = a.For a vortex of unit radius, the contour plot of the tripolar vortex
is presented in Fig. 4-1. The contours show a tripolar vortex. i.e., a vortex core betweer
the lobs of a dipale-like structure having positive values of the potential. Fig. 4-2 shows

a three-dimensional view of the potential for the tripolar vortex.

4.4 Summary

[ swmmary, we have described the ion-temperature-gradient driven electrostatic waves
with sheared ion flows mn an inhomogeneous e-p-1 magnetoplasma. By employing the icn
continuity, momentum and energy balance equations to describe the ion dynamics and

Boltzmann distributed electrons and positrons, we have derived a new set of norlinear
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mode coupling equaticns that contain scalar as well as vector nonlinearities. Neglecting
the nonlinear terms, we have carried out the normal mode analysis to derive a general
dispersion relation. It has been shown that non-zero equilibrium ion temperature (lLe.
771 £ 0) and the presence of positrons (l.e. a # 1) modify the previously known results
in the appropriate limits. For flat density profile, ITG drift wave destabilize on account
of free energv stored in the inhomogeneous ion temperature and magnetic fleld gradi-
ents. We also have derived a cubic dispersion relation for the coupled lon-acoustic and
electrostatic ion-temperature-gradient mode in the presence of sheared ion flow. One of
the roots of this cubic dispersion relation predicts an instability irrespective the direction
of velocity and lon-temperature gradients. On the other hand, in the nonlinear case,
it is shown that under certain conditions possible stationary solutions of the same set
of nonlinear equations are reduced in the form of monopolar. chain of vortices, dipolar.
tripolar and quadrupolar vortices. We have also shown that if we incorporate the self-
gravitational effect of ions then in the linear limit, the self-gravitation effect tends to
suppress the well known Rudakov-Sagdeev instability. On the other hand, in the nonlin-
ear limit, the possible stationary solutions of the nonlinear equations can be represented

11 the form of dipolar and tripolar vortices of gravitational potential.



Chapter 5

Nonlinear Dynamics of I'TG-driven

Electromagnetic Waves

5.1 Introduction

In the previous chapter, we have discussed in some detail the nonlinear dynamics of
low-frequency [TG-driven electrostatic waves in the presence of equilibrium density, tem-
perature, magnetic field, velocity and electrostatic potential gradients. Since in several
laboratories and space plasmas, the plasma beta {3 = 87nT /B2, where n (T) is the
plasma number density (temperatwre) and By is the strength of the ambient magnetic
field) could exceed the electron-to-ion 1mass ratio, necessitating to incorporate electro-
magnetic effects on [TG-driven modes of e-p-1 plasmas. Basically there are two different
branches of the ITG modes. One is called “slab type”, which is the drift wave coupled
with the lon acoustic wave that is destabilized by the local lon-temperature-gradient.
The other one is called “interchange type” or “toroidal branch™, which is destabilized by
bad curvature of the magnetic field lines in the presence of the finite ion-temperature-
gradientz [102). It has been suggested that the turbulence associated with these two
branches of [TG mode is likely to be the cause of the anomalous thermal transport ob-

served in tokamaks and stellarator device. When the effect of magnetic shear is stronger
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than the effect of magnetic field curvature, the slab type [TG-driven mnstability is excited
and become a dominant source of the experiimentally observed anomalous heat transport
[103. 104]. It may be added here that the electromagnetic efferts also become relevant
when the pressure gradient associated with shear Alfvén wave couples to the 1on sound
branch via {magnetic) curvature effects [105-107]. Here, in thiz chapter, we are using the
slab model, leaving out tlie consideration of the magnetic curvature effects and dealing
with the study of linear and nonlinear properties of low-frequency electromagnetic drift-
dissipative and drift-Alfvén type waves in an e-p-1 plasina containing equilibrium density
eradient. ion-temperature and magnetic-field gradients with parallel equilibriwun ion flow

velocity.

5.2 Electromagnetic ITG Modes

5.2.1 Nonlinear Equations

Consider the nonlinear propagation of low-{requency electromagnetic waves in a nonuni-
form magnetized e-p-1 plasma containing equilibrium density gradient d.n;q, equilibrium
lon-temperature gradient 8,7, equilibriuim magnetic field gradient d, By and equilibrium
velocity gradient @,v,p, where v, is the equilibriw plasma flow velocity of the particle
species j(j equals e for the electrons, p for positrons and ¢ for the ions) in the direction
along the equilibrinm magnetic field Bpz. In equilibrium, the e-p-1 plasina satisfies the
charge neutralitv condition (2.12), which is justified as long as the ion plasma frequency
(wpi) 1s much larger than the lon gyvrofrequency (w..). Eqs. {2.21)-(2.27) would be the
desired equations along with the quasineutrality condition and Ampere’s law to study the
electromagnetic ITG-driven drift-dissipative and drift-Alfvén waves in an inhomogenecus

e-p-1 magnetoplasma with sheared plasma flows [60).

[
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5.2.2 Linear Analysis

Inn the linear limit, we neglect the nonlinear terms in Eqgs. (2.21)-(2.27) and assume that
the perturbation wavelength is much smaller than the velocity, density, temperature,
and magnetic-field gradient scale-lengths. Furthermore, assuming that ¢, 4.. N,, V; and
T are proportional to exp|[—i{wt — k- 1)}, where k and v are the wavevector and the

frequency, respectively, Eaqs. (2.21)-(2.27) become
q Y, I 3 1 )

(O —wa: + zﬁAtiD;-) N; + _rT (twns — wai)} + b (Q — Wphy T Wy — '-’iﬂ-zki” @

r l-TE-'L:.-- _- J.-C
_:-‘-"B!T—Ctkz‘i/i - !n—wa_" (;B[})l A4 = (. (51)
, S,k ' 1
(2, +ivy —wpn) Vi = ¢k [<l — —%——) D — {— Qi —wpo) A, + 771 (N, =T .
L nex 'z |
) (5.2)
(D - aujg, + a-{%—ﬁ,i) T — ;;sz\f'i + T (q - %) wn,® =0, (3.3)
0 . .
. Tk, (e
(Q\: — W He T 31‘:2_ Dt) jve - (wm—_- - "-‘J_BEJ ¢ =+ I : JOI ( - )1 /-11;: e R I/e ={ (3 4}
) L o€ eBy
s Thk, oo\ |
O, +w B ik< D _'\-‘FF, =t f;'_u'«,m — W gy ) $ — (—Jar ( - ) A, — v k. V, =0, 3.9
( p Sp L p) [Sedcy P | 06 B | ! j {3.9)
, Sc. -k
(Qc + 2l — W:m;ﬂ] I/:': += _'1"55'1‘": |_(1 + —*I'J';_) ¢ — 'g' (Q o= \-’-/nc) _A._g — Ne (5 6°
L iz fuy
[ SP, -k .
(Q, + i, — Wopg) Vo = ek, : (1 - —%—) ¢ — :i (Qp — wop) A, + NP} : (5.7)

where {1; = w — k.0 is the Doppler shifted frequency of the jth species, w,, = k- v,.,
wgi =K v, wr =k vy, who = kv, wpy =k ve, wpy = kv, b = p?ki and

ko= kT LE

ot
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Electrostatic Cases

For the clectrostatic case in swhich A, = 0 and assuming electrons and positrons to be

inertialess. Eqs. (5.6) and {5.7) can be combined to vield

. 1 1 Ny .
N, = —(ng —np )y & — (NP +1,0P) = —P = ad, (5.8)
.0 ! o ' 0 '

et

where Ny = ng-Frp and a = Ng/ny. Using the above result in the equations (5.1)-(3.3

we get

i, —wg +ikED +alr {(wr —wa,) + pakt (Q —wpp +iv, — ?Z,u.,,_-kj)_) }I D

-t
—a wg T —a ek Vi =0, (5.9)
. [ S..-k
(0 +iv. —wpo)V, = k. L(l gt = ;1 ) P+ 'FlT‘] : (5.10)
5 2%, 2¢ 2 -
2, — =g, 2 ! ,'f‘- T = E-Zl — T\ — T )W . op )
(s o gwe :anmx;) T ( 3 (.-~ 3) )‘D (5.11)

Substituting the values of V, and 7 in Eq. {5.9), we obtain the following local disper-

sion relation for the electrostatic case

; 5 2y,
{"£2,+‘£y,a-1 O — swg L ik
[ 55 wp:0) ( T RWe T i KL

& [Q} Twa Tt ikfin + a7 (W —wpd) + Pffmi (9 — Wnpt We— z,likijl
| : 5 2 Ta o . 2 2
- Ih{ws (Q_: - %UJB{ +-i3?i:J-EC_“_) + a"l'a)ikf} (EQ ~ ey, - 3)%”:):'
|_ LR ) 5 2X' 5 _ Sr,_‘ . k —l )
AN . I ' - = = U, (3.12)
a1z T 3ws 723“& B + aT ) J 0, (o0.12)

where ¢¢ = n~'¢? is the sound velocity in e-p-i plasma and p, = c,/w,. Note that for
nondissipative plasma for which v, = x, =, = D; =0, Eq. (5.12) reduce to our earlier
result (see c.g.. g, (4.7)) [39]. Since we have already discussed possible electrostatic
niodes for collisionless plasma in Ref. [39) in some detail, therefore we shall discuss here

some other interesting modes.
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Parallel propagation (i. e., &, == 0): Equation (5.12) for parallel propagation {ie.

k. = 0) case, reduces to

[N ()

. " oy = h
Qi 4+w) = (l + (a-—i— ) T ) ok {3.13)
which clearly shows a dissipative ton-acoustic mode, For highly collisional plasma case.
for which « <2 v,. the above digpersion relation shows a damping of the lon-acoustic

e

mode.

Perpendicular propagation (i.e., &, = 0): For the waves propagating perpendicular

z

to the external magnetic field, equation (5.12} yvields the following result

2% 5
wpgp — ik,
Bi i?m;:o L (

Lol o
o]
p—
T

and

4 =4 ’ Py ] .k " 9 i P |
(w4 vy, ~wpio) [w— wa + a7 {wn —wai) + P2k (w —wpin +iv; +iD,/pl — 1,k )|

2 L2 . ]
—W g gw — L ] ("?i — g)wp-‘. = U (r_).

Assuming w — wpo € v, € 2wg. /3, equation (3.15) predicts an instability with a
growth rate

Y §;i "G_‘TLBZ —(1+a™'7)] (5.16)

B L Lui
[t is evident from Eq. {5.16) that the above mode would be unstable if a7 Lp, /L. >
(1 + a7 %), where Lg; and L, are the scale lengths of magnetic field and equilibrium ion

density gradients, respectively.

Oblique propagation: If we assume that the wave phase speed is mwch higher than

the ion-thermal speed so that Q, > o~ ik /wp, and ignore the finite Larmor radins

1
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effect, then Eq. (5.12) vields the following mode along-with the mode given by Eq. (5.14)

T

- . 2
(2 + v — wpao) S0 — ((L + ofl'r) wpg + Cc"rwm)_l - 5Lu‘37j (U — wy)

s .5k -y
—Ci ke (l*ar“— "; ):O. (5.17)

where wy. = o:_lr(%'r;z- — Dwyp,. Equation {3.17) predicts an oscillatory instability of the
ion drift waves for { —wp.p < v, Letting ; = wy. + 4~ in the Eq. (5.17). we cbtain

the growth rate of the instability

2
-
L v
Py
PN
¥
o
-
o
IL:
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—
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‘1
k
QA —
S
——
it
-
0
g

which for (1 + ar™ ") kow, < k0.0, predicts a dissipative instability and a coupling of
ion-acoustic and sheared flow-driven instability.
Electromagnetic Cases

Dissipative case: For flute type electromagnetic perturbations (k. = 0) and for uni-

form magnetic field case (wg; = 0}, Eqs. {5.1)-(5.7) yields the following liner dispersion

relation

T Oene o P 5 (7w + b(w — wpp + iv, — ‘{Lﬁtl.'!f.‘)i_”"
|+ ik2D.) | (w + 42D, (w + k2 D,) |
L eelw —wh) | ap (W — wap) me (W — wpag)
- g T R WY T + bep

{w+ Ve —wne)  (WHivy, —wnp) ™My (w+ v — wpio)

20 _ :
o ;"_:_.l nn—.ﬂal' Lel] ﬁj_,"]az"'lpﬁ ‘T?'-{o@z’!-‘m ]

Weiee | (W 4 1o = wne) (W ivp —wnp) (w4 iv; —wpig) |

B r EII‘: '-I-_'D ) a:: JT'::“I asr J—-O _i i ;
X (5.19)

] Tl P T o . 1
w4+ ik D) (w+ik?D,)  (w+ik2D,)]’
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: 2 21.2 T 2 B F I
where o, = M0/, Qe = g/ Mg and b, = ki/\cp = ¢k [(wy, +wi,) Inthe limit &, = 0

fel
and D, = D, = D,. Eq.{5.19) reduces to

it thn , T pDa:: el N0 Ven

(w + v — wpig) ‘ (w+tvp — wnp) B {w+ive — wae)

In the absence of the equilibrium density gradients and taking v. = v,, Eq. (5.20)

demonstrates a niode having real frequency w, and the growth rate v as

(Mep@eten + 11,00:V0) wrs
(”-éﬂﬁr?'tﬂ =k ﬂr:l')a.rr”eﬂ =+ n;ilaz'l"pO)
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Ea R —
| H

{Mmin@z s + NegOuticn + npf?a: Uany)

22)

[ ]

It follows from Eg. (5.22), the mode is damped. On the other hand. if we consider

density gradients, then equaticn (5.20) can be written as

A+ (B —iC)w+ (D+iE) =0,

——
(v ]
[N
[

-

where

A = ngdptio + g0zt — NepOrtieg.
B = n.g(wnp + wpin)0rteg — Npo (Wne +wpin) Ortpn — Mg (e = Wap ) Ortio.
C = neo(vp + 1) 0 ten — Npo(ve + Vi) Octpn — niglv, — v )0y,
D= nu’J(-V;ﬁi/e - L*”rt,.*:'-‘-)DzO)a.r'“e() - npD(VEVi - wmwng)@:z:pg — 1’110(1/"01/,__. — U—”rzewnp)ar to.

and

E = no(vewnin + Viwnp) Oty — Npo(Vetw pig + Vitdne }Oapn — Mg (Vptwne + Vewng) O 050,

Equation {5.23) predicts an oscillatory instability which is diiven by the combinad



effects of shear and dissipation. The real frequency and the growth/damping rate can be

written as

P |VEEFS+R

Py —e s II 240
We — 2 j: \{ E_“ ())‘2“}}
and _
Q_  [VRTF3II-R .
V== F , (5.25)
> Y S

where P = B/A, Q = C/A, R = (B*—C*+4AD) /A% S = (4AE - 2BC) /A% The
value of ~ is positive when one of the conditions is met ie., ) > Qor \/(\/ R?+ 5%~ R) /2
1| provided §° # 0.

In the limit &0,

o =D, =0 Eq (5.19) yields the following dispersion relations

Orpw — Wap) e (W — wWhe) L M (w — wpio)

: : : . : -+ b, =0
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—
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and

W= W + 2 (,U,rr\’z. B .!/;) .

[f we assume w <« r; and for inertialess electrons and positrons, equation (5.26)

describes a mode with real frequency w, given by

w, = w ¢ (Cownp = Cipwins) [(Cre + Ctp + bep) vy — beplelry)

= (e, +ap + bep) [(Cte + bup) Vpine — (G + bup) 1V etwi0] (5.2%)

with a growth rate =

-2 _ .
vo= m{Qel, = Cple) [(Be + Qp o) Winptwine — bepiiplig
=2 L ; o . . L N i S Ta R
~ 0 (Qownp + Giptne) [TWni — Dep (Vpwne + Vewyp)} (5.20
D] r oy 2 : ,
where @, = (Grewnp + Opwne)” + (Gelp — Gplie) } Thus depending upon the magnitudes

of drift-wave and collision frequencies. the mode can grow and become unstable.
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Non-dissipative case:  Consider a nondissipative plasma case for which v, = x, =
g, =D, =0and w » ko wgr = 0. Egs. (8.1). (3.4) and (5.5} vields the following

result

1 2 ]
(UJ — UJD,O) (D — E ]—R_qu - u;[:;! {SO ' k)i Az: (530}

where w, . = Jowe. So = =23 {V.Jo) [ (nioewee), Jo = e(niptizo + Npotpz0 —~ Nepliezn)
and VZ = B2/ (dmm nyg).
From Egs. (3.1)-(3.3), we get the following relation
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Combining Egs. {5.30)-(5.33) and using Ampere’s law ie., j, = — {¢/47) V2 A, and

for flute type perturbations (&, = 0), we get the following linear dispersion relation

14 b, + a0 :_M
ep m, (w — wpa) k2
o [T (Sl k) | 0 ($,0 k) o {s;;a-k)] | -
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If we consider electrons/positrons to be inertialess and assume flat density profiles,

I's

then Eq. (5.34) reduces to

,-2
(L“" - *’JT‘.)L‘) T (1 N b ILZ (SD k) [Ct’p (Sﬁ;o ' k) — (e (Sio ' k)] : [535;

Eq. (5.35) predicts an oscillatory instability provided that {Sq - k) {{a,S%, — a.S¢,) - k' <
0and |(Sg- k) (080, — ceSi,) - Kil* > (L +b,) Wikt fdwy

Alfvénic modes: On the other hand. for a uniform and homogeneous plasma case,
Eqs. (3.30) to (3.33} can be combined to obtain the following dispersion relation

((._."Jnrnﬂ_"'.l"i'l)l_‘-b (1_51—.‘1) '/8> L/Q-l i (‘UE—RSVEE)
T (F 5T kA3 T (Wl = ERE)

From Eq. (5.36), we can recover some fundamental dispersion relations. For example.
for the waves having phase velocity much larger than the thermal velocity (v,) of the
inertialess electrons and positrons, the dispersion relation {5.36) reduces to the modified

dispersion relation for the inertial Alfvén waves i.e.,

'Ei': Vt-l i

i ———————gi /5'_))?\
V1 bep L /

On the other hand. for the waves having phase velocity much smaller than v, and of
the order of \/5/37 */?¢,. the dispersion relation {5.363 reduces to the modified dispersion

relation for the kinetic Alfvén waves
L = Ilv'_.'zT/J:,q.[ 1 - 57“15'-‘/3. (53&)

Finally, for the waves propagating strictly parailel to external magnetic ficld {ie.
k. = 0) and in the limit w? < 212, Eq. (5.36) vield Alfvénic and modified acoustic

miodes Le.

l\J

w? =2V, w’= (1430771 /3) kil (5.39)
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where ¢? = o 7'c? is the modified ion-acoustic speed in e-p-1 plasma case.

5.2.3 Nonlinear Solutions

In the proceeding section, we have shown that how temperature, density, velocity and
magnetic field gradients causes an instability of electrostatic and electromagnetic drift
waves, Although it is very difficult and almost inipossible to find an exact analvtical
solution of equations (2.21) to {2.27), we shall discuss here some approximate solutions, A
possible stationary solution of a nondissipative (v, = x, = ¢, = D; = () inhomogeneous
magnetoplasma can be obtained by introducing a new frame £ = y + 5,z — upt, where
N, 15 a censtant and wug is the translational speed of the vortex, and by assuming that
P, A, ANV, and T are function of x and § only. Furthennore. assuming the vortex
speed ug B Vo Uny, 0y, 1o € and Veg - V| 3 v.d, in the stationary frame. Eqs,

(2.21)-(2.27) may be written as

) i i G 1
Lo [ugNy + 7 (Up; —vg:) & — u.Opri‘I) — vg;;T] N ( Jo ) O A,
- €T BBO

—naclaV; = —T'lau,.,-p?v- TN+ T 7, @0, (5.40)
[ O\ o g ) FE T
E(I’ I L".'lwr/ﬁ - ?70 + Wy (b a ?‘lii - ”C‘C’-I— E'é‘ “'.J\" T T:] = O’ {‘j-l:]-'
[ 2 2
.CrIr Ug T - 51\,) ~7T\|n - §> Ur?f(I)-! = O: {342}
- r : 1 TD Jeo EOPE
Lo [ugNe + (vge — Vne) O} — E%a (eBJ A, — gl aVe = 0, (5.43)
- 15 Jpa .y
Ls Lt p“ﬁ + \inp — T?BP) (M - E'-'?_,-_.ga (PB ) ac‘ll - ??IZIE"-'&*‘CAVP =0, (5.44)
r O vie ) 1
Lo |upVe + e {(-% + U) R } — Nyt L 4N, = 0, (5.45)
L :‘L"Cﬁ' C j
Ly luﬂ‘['; o e {(?l'.;:- a5 I?Iﬁ]) ¢ — 22 }] NoveeLaN, = 0, (5.46)
i (e c 1
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where Ecp = 85 - ((.‘T[J/U.(]GB[)) (f‘)ﬁ’[)a\c - ag(pal-), .C,,_l = 05— (TQ/I]‘-F,{‘.S@} (azAzéf = 85,‘5‘1:(;'_.:‘-

> E . - .
V3 = 8%/8z* + 62 /9€E".
Considering both electrons and positrons to be inertialess and using Lo (@ — ug A, /i0) =

L(® —upd./n,0), Eq. (5.43) and (5.46) can be combined to vield a typical solution

_-\:_I = O ((I) — ﬂlq:> , (54?>
ot

where a = Ny/n.g. Using (5.47) in (5.42) and assuming vortex speed ug > a™'7 (1 — 311./2) va,

it can easily shown that Eq. (5.42) is satisfied by

Substituting the values of N, and T in Eq. {5.41), we readily obtain

r =1 2
Ly tuovz gt (1 =+ OO; ) (‘D - :ifj&z) ‘ =0, (5-49)
- 0 L

which is satisfied by

o =l ,
v o= do% (1 - Oa; ) <<1> - ﬂfqz) . (5.50)

Under low-3 approximation. the contribution of the lon current density to . would

be negligibly small, therefore, from Eqs. {5.43), (5.44) and (5.47). we can write

()]
—
R—

Ly (cug® — vl A, — ngA2 v, ViA) =0, (5.

L
—

where naut = [uf — (nocTy/oen.y) 8, (Jop/eBo)]. It is easy to verify that cquation (5.3

is satisfied by

2]

N

(1+NV2) A, -5,d =0, (5.

5 5 o s 5 : . ) :
where A~ = n A 00 /ui and 3. = cug/ut. Inserting V.. T and V., respectively, from



{5.47). (5.48) and (5.50) into (3.40), we get

Ta o (Jo )\,
Ls {Cflig( - :—O( ;) — Uy p,Vz <I>j — £ : i (e:BCJ) A
"to,' -:""."._r_—a r

e

ot~ lwapd [ 2 K
= 20T Yeh | 7 (9.V20] - V. {EA.V;‘I‘N -

’ (5.53)
I]OC

It is somewhat difficuit to find the general solutions of Eqs. (5.52) and [3.53), specifically,
due to the nonlinearity caused by ion-pressure-gradient force (last term on right hand
side of the above equation). However. the system of nonlinear equations {3.52)-{3.53) can
be solved in the limiting case, A’V <« 1 that is the scale size of the vortex is assumed

to be much smaller than the effective skin depth (A). Therefore, Eq. (5.32) gives

Az — ;61(1) (

n
b1
e
N

Inserting [q. (3.54) into Eq. {5.33), we obtain

51T, 5T; Jep V| : -
U @e\.—/ O+ f C}-; (e‘j;? ) {)ccb — [: + 020 Q ( ]P )j' LL/'@,O?‘_Y [(D, Vi_(l):[ =10 (O.DD)
a

TLne 3'?'?.2'06‘ GBO

- __\

Equation {5.53) is satisfied by the ansitz

Vz_(b = Ch® + Cyu.

—
n
(1]

e

o

where the constants ¢y and Cy are related by ugp?C, — {3, Ty/nie)8: (Jo/e B +0Ch = 0
and o = {1+ 3T./371.0¢)0; (Jen/eBo).

Equation (5.56) 1s a second order inhomogeneous differential equation which admits
spatially bounded dipolar vortex solution [90, 108, 109]. However, in the ahsence of
equilibrium cwrrents, Eq. (5.35) takes the form of a stationary Navier-Stokes equation,

namely.

——
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—

5.V 0 = 27 [0, V2]

[739]

76



™
. - d_______& 9

A —— -
a0 ™ R aatiN
-08 -86 -04 -0.2 0 0.2 0.4 0.6
X
Figure 3-1: A typical vortex street profile obtained from Eq. (5.59) for & = 10 and

w=1.1x 107 cm/scc.
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Figure 5-2: Three-dimensional view of the vortex street profile obtained from Eq. {5.59).
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where p, = cT/2By. For p, > 0, Equation (3.37) is satisfied by

Vi =

-
e
o &
[ ] %]
o
[ EY
x
|
|
o 1
T
b=
|
= | &
— (o]
\-——/
[ Il
——
(W]
on
4
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where $g. K. and op are some arbitrary constants.

The solution of Eq. (3.38) is

. i 1
=04 $oln |2 cosh(Kpz) + 2 (1 - —2> CZOS(KO‘E:I“ : {5.39)
28 L 45

Here we note that for ag > 1 (¢q is the size of vortex) the vortex profile (5.39) resembles
the Kelvin-Stuart “cat’s eyes” that are chains of vortices [92] in an e-p-i plasma. Fig.
5-1 shows the vortex street profile ¢ against x and y for some typical parameters and

Fig. 5-2 presents its three-dimensional view.

5.3 Summary

[1n this chapter. we have described the nonlimear dynaraics of electromagnetic waves in
e-p-1 magnetoplasma with equilibrium density, temperature. magnetic field and velocity
gradients with dissipative effects. By employing the Braginskii’s transport equations
for the ions and continuity and momentum balance equations for electron and pesitron
plasma, we derive seven sets of nonlinear mode coupling equations. [n the linear case,
we have derived local dispersion relation and obtained new class of instabilities and
modes for e-p-i plasma. We found that in the presence of positrons, electromagnetic
and electrostatic disturbances respond in very different way and several new types of
modes and instabilities are found to exist. For instance, it has been shown that non-zero
equilibrium ion-tfemperature and the presence of positrons modify the previously known
results. It iz also found that sheared equilibrium flows can cause instability of the Alfvén
waves even i the absence of density inhomogeneity. On the other hand. in the nonlinear

case, the mode coupling equations admit dipolar and vortex chain tvpe of vortices.
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Chapter 6

Chaotic States in
Electron-Positron-Ion

Magnetoplasma

6.1 Introduction

6.1.1 Basic Concepts of Nonlinear Dynamics

The state space or phase space is defined as the combined space of momentum and po-
sition. State space plays an important role in visualizing numerical solutions by turning
numbers into pictures. Nonlinear svsten 1s a system whose time evolution equations are
nonlinear, that is, the dyuamical variables describing the properties of the system (for
example: position, velocity, acceleration. pressure etc.) appears in the equations in a

nonlinear form like 2%, z%,

cos(r). log{x). exp{x) etc. The study of nonlinear behavior
1s called Nenlinear Dynamics. Almost all real systems are nonlinear at least to some
extent. Some sudden and dramatic changes in nonlinear systems may give rise to the
complex behavior called choos. The noun chaos and adjective chaotic are used to de-

scribe the time behavior of a system when that behavior is aperiodic (it never exactly
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repeats) and apparently random or "noisy”. A system is sald to be deterministic if the
knowledge of the time evolution equations. the parameters that describe the system. and
the initial conditions, in principle completely determine the subsequent behavior of the
system. The term chaotic is assigned to that class of motion in deterministic physi-
cal and mathematical systems whose time history has a sensitive dependence on initial
conditions.

As time cvolves, the initial state point in state space follows a trajectory. The trajec-
tory closes on itself if the motion is periodic. Such a closed periodic trajectory is called a
cycle. The attractor is that set of points to which trajectories approach as the number of
iterations goes to infinity. Sink is one of it's examples as it is just a point in phase space
to which trajectories lead. The complicated systems mayv liave more than one attractor
for a given parametric value., The set of initial conditions giving rise to trajectories that
approach a given attractor is called the basins of attraction for that attractor. The stable
equilibrium (simplest attractor) is a point attractor for all trajectories in phase space. A
second type of attractor is the limit cycle, namely a steady closed cscillation that attracts
all adjacent motions. If the cycles of trajectory gradually move closer to the limit cvcle
then we call it the steble or aliracting mit cycle. If the cycles of the trajectory which
are gradually moving away from the limit cycle then we call it wnsteble or repelling limit
cycle. Another possibility is that the trajectories are attracted on one side and repelled
on the other known as a saddle cycle. A third type is the strange or chootic altractor
that captures the solution of a perfectly deterministic and well defined equation into a
state of steadv but perpetual chaos. These three types of attractors represent the most
commonly observable long-term motion in dissipative svstems. Thus we identifv all sta-
ble final motion with attracting sets in phase space. If more than one attractor exists for
a system with a given set of parameter values there will be some initial conditions form
what is called a seperairiz since thev separate different basins of attraction. Poincars
section s the sequence of points in the phase space produced by the penetration of a

continuous time cvolution trajectory through a generalized surface or a planar in the
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space. These sequence of points shouldn't be considered as a curve. If the points or dots
of the trajectories on the Poincaré surface lie at the same place then 1t 1s the indication
of the periodicity of the system or trajectory but if the points are at different places
then the system is aperiodic. The Poincaré section. freezes the motion of the dynamical
gystenl.

The state of zero acceleration and velocity is called fired point. In dynamical system,

o

a point in state space towards or awav from which a solution may move as transient
decay approaches to infinity is called “fixed point”. There are different types of fixed
points depending on the natwre of the characteristic values. The éndez of a fixed point is
defimed to be the number of characreristic values of that fixed point whose real parts are
positive. Fixed point furn into spiraling form if the characteristic values are of complex
nature.

1. Node: All the characteristic values are real and negative. All trajectories in the
neighborhood of the node are attracted toward the fixed point without looping around
the Axed poiut. For “spiral node” two of the characteristic values have nonzerc imaginary
parts.

2. Repellor: All the characteristic values are real and positive. All trajectories in the
neighborhood of the repellor diverge from the repellor. For “spiral repellor”™ two of the
characteristic values have nonzero imaginary parts.

3. Saddle point: indez 1. All characteristic values are real. One is positive and two
are negative. Trajectories approach the saddle point on a swrface aud diverge along a
curve. For spiral saddle point the two characteristic values with negative real parts form
a complex conjugate pair.

4. Saddle point: index 2: All characteristic values are real . Two are positive and one i3
negative. Trajectories approach the saddle point on a curve {the in set} and diverge from
the saddle point on a surface (the out set). For spiral saddle point the two characteristic
values with positive real parts form a complex conjugate pair.

The set of points that form the trajectories heading directly to or directly away from
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a saddle point are sometimes called the invariant manifolds associated with that saddle
point. More specifically, the trajectories heading divectly toward the saddle pomnt form
what is called the stable manifold (because the characteristic value 1s negative along these
trajectories), while the trajectories heading directly away from the saddle point form
what is called the unstable manifold. The tenn hyperbolic 1s applied to any fixed point
whose characteristic values are not egual to zero, and non-hyperbolic if the associated
characteristic value is zevo. Lyapunov erponent is the averaged rate of the exponential
divergence (positive exponent} or convergence (negative exponent) of nearby orbits in
phase space. It is a measure of the rate of attraction to or repulsion from the fixed point
in the state gpace. Its value can be found by using tollowing equation

df ()
= Lﬂ (6.1

A
dzx

I T=Tn

where A represents Lyapunov exponent and f{x) is function of = in the neighborhood of
the fixed point xp. The trajectory approaches the fixed point {a node) exponentially if A
is negative and is repelled from the fixed point (a repeller) exponentially if A is positive.
The Lyapunov exponent for a region of one-dimensional state space near a fixed point is
the characteristic value A of that fixed point. In two or higher dimensional state space.
we associate a local Lyapunov exponent with the rate of expansion or contraction of
trajectories for each of the directions in state space. We define a chaotic system to be a
system which has at least one positive average Lyapunov exponent.

Many svsterns are 1 a slowly evolving environment. so their coefficients and para-
meters undergo gradual change. Then if evolving svstem Is in steady state, periodic
oscillation or chaags, the prediction of any sudden change is of crucial importance. Such
Bifurcation of behavior will occur when one equilibrium state changes into two stable
equilibrium states. Bifurcation is defined as “Splitting of the system into two regions,
one above, the other below the particular parameter value at which the change occurs™

Bifurcation take place due to the change in parametric values, the number of parameters
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that must change to produce bifurcation is called the co-dirnension of the bifurcation.
If we want to find the co-dimension of any manifold geometrically, it is mathematically
written as (n — m), where m is the dimension of the manifold and r is the dimension
of the space around the manifold. The study of how the character of fixed points and
other types of state space attractors change as parameters of the system change is called
bifurcation theory. In the study of nonlinear dynamics, classification of understanding of
bifurcation plavs important role. Bifincation is a vast fleld and a lot of work has been
done but is still incomplete. To understand bifurcation in two dimensions. consider the

following example equations

2

= p-at =l = p =, =1y (6.2}

Iy = —Tpy=—>T9 =10 (63)

When g > 0. the fixed points are {(xy.23) = {p.0) and (—x. 0). The one at (1. 0) is
a node; the one at {—p, Q) is a saddle point. For g < 0. there is no fixed point. The
@o= 0 is a point of saddle-node bifurcation as system behavior splits into two states. A
fixed point in two-dimensional state space may also have complex-valued characteristic
values for which the trajectories have spiral type behavior. A bifurcation occurs when
the characteriztic values move from the left-hand side of the complex plane to the right-
hand side: that is. the bifurcation occurs when the real part of the characteristic value
goes to zero. The birth and death of a limit cycle are bifurcation events. The birth
of a stable limit cycle is called a Hopf bifurcation. In two dimensions Hopf bifurcation
15 a good example to understand the spiral nature of node and repellor. In tenms of
the characteristic multipliers, the Hopf bifurcation is marked by having the two complex
conjugate multipliers cross the unit circle simultaneously. Let us take the following

equations to model Hopf bifurcation:
Iy =~ 41 [p. — (a7 + J,%)J (6.4)
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By =y + @ [p— (2] + z3)| (6.3)

If we change these equations from (. x3) cartesian coordinates into polar coordinates
{r, 8), where

S Ta
r= /(e -2, tand = 2 (6.6)
£-

Therefore, Eqs. (6.4) and {6.3) become
t=r{p—r) = flr), 6=1. (6.7}

The sclution of above equation is #{t) = fy+¢ , which shows that the angle is gradually
increasing with time as the trajectory spirals around the crigin. For p < 0, v =015 an
only fixed point to find its nature. We get df (»}/dr],_, which gives characteristic value
= u. Thus for g < 0, we get a negative derivative value, so fixed point is stable which 15
a spiral node. For p > 0, there are two fixed points. one is an unstable, spiral repellor at
the origin, trajectory spiralling away from the fixed point. Other fixed point is at r = /i
having a limit cycle of period 27 . This limit cycle 1s born at ¢ = 0 (bifurcation point}.
This birth of a stable limit cycle is called a Hopf bifurcation. If some addition term is
added to the dynamical equations and bifurcation remains the same then we shall call it
stable bifurcaizon but on the other hand, if bifurcation changes then it will be structurally

unstable bifurcation.

6.1.2 Chaos in Lorenz model

The sensitive dependence on initial conditions of chaotic systems is more popularly known
as the butterfly effect. This phenonenon was first discovered by Edward Lorenz i71]
during his investigafion into a system of coupled ordinary differential equations used
as a simplified model of 2D thermal convection, known as Rayleigh-Benard convection.
These equations are now called the Lorenz equations, or Leorenz model. In Lorenz model,

a Rayleizh-Benard convection between two horizontal plates are considered. The bottom
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plate is at a temperature T which is greater than that of the top plate, 7). For smail
differences betwaen the two temiperatures, hieat is conducted through the stationary fluid
between the plates. However, when T, — T, becomes large enougly, buoyancy forces within
the heated fAuid overcome internal fluid viscosity and a pattern of counter-rotating, steady
recirculating vortices is set up between the plates. Lorenz noticed that, in his simplified
mathematical model of Rayleigh-Benard convection. very small variations in the initial
conditions blew up and quickly led to enormous differences in the final behavior. He
reasoned that if this type of behavior could occur in such a simple dynamic system, then
it may also be possible in a much more complex physical system involving convection
such as in the weather system. Thus a very small perturbation, caused for instance by a
butterfly flapping its wings, would lead rapidly to a complete chrange in future weather

patterns. The Lorenz equations are

X = oY - X)
Y o= (r=2)X-Y

Z = XY -bZ (6.8)

This system has two nonlinearities, the XZ term and the XY term, and exhibits both
periodic and chaoctic motion depending upon the values of the control parameters o. »
and 6. & is the Prandtl number which relates the energy loszes within the fluid due to
viscosity to those due to thermal conduction: » correspouds to the dimensionless measure
of the temperature difference between the plates known as the Rayleigh number; and &
is related to the ravio of the vertical height of the fluid laver to the horizontal extent
of the convective rolls within it. Note also that the variables X', YV and Z are not spa-
tial coordinates but rather represent the convective overturning. horizontal temperature
variation, and vertical temperature variation respectively.

Lorenz set ¢ = 10 and b = 2.67 and make r the adjustable control parameter. Varying

the value of r reveals a critical value at r. = 24.74 at which the behavior of the systein
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changes dramatically. Below . the system decays to a steady, non-oscillating state. Once
r increases bevond v, continues oscillatory behavior. A value of » = 28 produces apericdic
behavior which Lorenz called “deterministic non-periodic fiow” and which is veferred to

as chaos.

6.1.3 Bifurcation Characteristics in Lorenz and Lorenz-Stenflo
Equations

Lorenz enuations are well known in the study of deterministic chaos. Similar equations
are found in many branches of Physics and Chemistry even in atmosphere and are ob-
servable easily. The stationary points of the Lorenz equations are X, = £[—b+ hr
Yoo = £{-0+ br':'—-" and Zy = —1 +r. In original Lorenz equations there are three control
parameters b, v and . In the traditional studies of the Lorenz system, the bifurcation
behavior of the Lorenz system with the Rayleigh number » as the bifurcation parameter,
the regimes of chaotic and periodic solutions with respect to the parameter r is investi-
gated for fixed b and . Specially, the maxima of oscillating solutions are plotted against
a given control parameter ». Thus, for each value of the contrelled parameter (Rayleigh
mirnbear) v, a singly periodic solution would be represented by one point, a doubly pe-
riodic one by two points etc., and chaotic one by vertical lines. By varying the contiol
parameter in small increments, one can obtain so called the bifurcation diagram showing
the location of the fixed point {or points) as a function of control parameter.

Lorenz equations always give backward bifurcation structure in the Rayleieh number
space. The phenomenon of backward bifurcation is of special interest since the simplest
{(of periodic unity) periodic motion can occur at large amplitudes, This is in sharp
coutrast with the usual dynamical systems, where simple harmonic motion occurs only
as a linear limit. Such different behavior can be related to the self-organization and
stability of iarge-scale structures in certain physical systems. One should be careful to
use large amplitude limits while applving Lorenz- like equations which depends on the

validity of certain amplitude related truncations invoked in their derivation. In Lorenz
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equations. one can get both forward and backward bifurcations by varving @ as a control
parameter.

Contrary to Lorenz equations, the bifurcation space of Lerenz-Stenflo equations are
more complex and rich in details, it includes the phenomenon of overlapping for for-
ward and backward bifurcation regions. Stenfle [72) showed that low frequency. short
wavelensth acoustic gravity waves in a rotational system can be described by a sct of
four simple aonlinear ordinary differential equations with four constant nondimensional
parameters Prandtl number o, geometric factor b, Rayleigh number r and rotation factor

5. Lorenz-Stenflo equations are as under

X = —aX+cY +sV
Vo= (r—Z2)X =Y
= XY —bZ7
= —X -0V (6.9}

Lorenz equations are the subset of Lorenz-Stenflo {L-8) equations. The stationary
points of the L-S system are the origin O (0, 0,0, 0) and X = X o = £[62,/(1+s/02) %,
Y = Yoo = 202, /(1 +5/09))i, Z=Z,=r—1—s/o? and V = V,o = =X,. /o which
differ considerably from the corresponding stationary points of the Lorenz eguations.
Larenz equations were originally derived to describe atmospheric waves and is well known

in determinisiic chaos. Stenflo gave the idea that all stationary points can not exist for

arbitrary values of the parameters.

6.1.4 Routh-Hurwitz Stability Criterion

Consider a given dynamical system that 1s moving under the action of some forces de-
scribed by a set of differential equations. If any small disturbance is applied to the system.
it may deviate only slightly from the previous condition of motion or it may depart from

it further and further. If the deviation is slight. the system is said to be dynamically
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stable; otherwise, the systen is dynamically unstable, The system is dynamically stable,
if it is stable for all kinds of disturbances. The stability criteria are of great importance in
determining the stability of many practical dynamical svstems. The Routh-Hurwitz sia-
bilsty criterion [110} is one of the simple procedure to obtain the information concerning
the stabilitv of the system. Let us elaborate the use of Routh-Hurwitz stability criterion.

Consider a system: whese characteristic equation D{s) is of the form
D(s) =ags" + 18" + . + Gn_13+ Qg (6.10}

where all o, are constants of the dvnamical system. The stability and instability of the
dynamical system depends on the location of roots of the polvnomial D(s) in the complex
s plane. If real parts of all the roots of the polynomial D{s) are negative numbers, the
solution will be stable. If. however, one or more roots have a positive real part. the
svstem will be unstable. An lmaginary root represents a bporderline between stability
and instability. The Routh-Hurwitz stability criterion assures stability if

1. A necessary but not sufficient condition is that all the a; in the Eq. (6.10) have
the same sign.

2. A necessary and sufficient condition for stability is that the following test functions

T, are all positive when equation D(s) = 0 is put in such form that aq is positive:

| I
ay ay 0
Qo [#59] l i
1 = a iz = Ay =1 as a0y ’,
Gz a2 ,
s O4 03 }
¢35} On 0 0 |
as a2 a;  ag 'v
[
T = as ¥} as  G9 l (6 11}
.i oy Q2,7 e}

o
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where all the coefficients a, with v > »n or » < 0 are replaced by zeros. If any of these
determinants have negative values. the system 1s unstable. Now we present the derivation
of nonlinear equations to study the temporal behavior of electrostatic /eleciromagnetic

waves 1n €-p-1 magnetoplasma with equilibrium flows.

6.2 Chaotic Behavior of Electrostatic Waves in Cold
Ions Limit

In order to study the temporal behiavior of nonlinearly interacting finite amplitude two
dimensional electrostatic waves in collisional magnetoplasmas in cold ions limit [36), we
assumme |3 — vgg - V| = vpd.: v..0,. Here we have retained the leading order terms and
taken into account the small magnetic sheared effects such that d.v., = 0. f (z)d, v,

Consequently. Egs. (3.1) and (3.2) take the following form,

B +ven V4. = — [8,flx) -5 8,0=—Fdoé 6.12)
) y

M,

and

» - Tomods f ()
B FIE T Ve o Oy DO A :
P8+ ves Vv, Vio+ 80— u, 0,0 enoo(l 1 6) Oytri= = 0. (6.13)

Here, we follow Lorenz {71} and Stenflo [72], and derive a set of equations which
are appropriate for studying the temporal behavior of chaotic motion involving low-
frequency electrostatic waves in a dissipative magnetoplasma with sources. Accordingly,
we introduce the ansitz:

o= &, (t) sin(K.z)sin(K,y), (6.14)

e

v, = vy () sin (A a) cos(Kyy) — vg () sin (2K ,x) (6.15

where /X, and K, are constant parameters, and ¢,. 7, and v, are amplitudes which are

only functions of time. Substituting Egs. (6.14) and (6.13) into BEqgs.(6.12) and (6.13).
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we readily obtain

K2t K, Tyn, gﬁ }”{I“ (6.16
G = =V, =P T e L0
: (1+ K7 p?) P eng (L+ K2p2) (1 +6) ' '
LK, , .
o= —p,r + Loua — FK,0 (6.17}
By
and
; chi K L
Vg == ~—tlg — '—2__180_@1?.1' (blt‘f}

where K7 = K + K. The time derivative is defined by a dot on ¢, #; and v5. [t may be
noted here that we have dropped the terms proportional to sin(3K.x) in the derivation
of (6.16)-(6.13).

Equaticns (6.16)(6.13) can be appropriately normalized so that they can be put in
a form which ig similar to that of Lorenz-Stenflo and Mirza & Shukla |71, 72, 112}, We

have the following 3 x 3 matrix

d—rX —a o 0 X
&Y =] r—2Z2 =1 0 ¥ (6.19)
d. 7z Y 0 —i Z

which describes the nonlinear coupling between various amplitudes. Here, 0 = K73 p? /(1 ~
Kp%), r = —(neo + ?"Iw)f{;?i’?;,gdxf () / (VK2 pleng(1 + 8)), 7 = tu,.

The normalizations used hiere are

\/iBof/a

h, = _,Y = 4+ ‘Xp_ 6200
o =a KK, (6:20)
2BoK? plengp(l + &)
m:@y—?“—“‘m ﬂ (6.21)
cK [’\‘ZTQF"',UQ' f N
and

BUKz,o engo(l + &)v? _
Ty = Z = =) : - Z ".22\
A oK, K? s Toniod. f () (6.22)

90



The above-mentioned eguations are the generalized Lorenz-Stenflo equations with
equilibrium fixed points X, = Y, = £/|r| — 1, and Z, = ([r] = 1), For |r| > 1. the
equilibrium fixed points are unstable resulting in convective cell motions. Thus the linear
instability should saturate by attracting to one of these new fixed states. The stability of
the stationary states of Eq. {6.19) can be stucied by letting X = X, + X,. YV =Y, - V",

and Z = Z, + Z-, so that the system on linearization beconies

A, X -7 T § A
d"ryrl = r—= Zs -1 _/‘(5 Yl : (623)
d. 7, Y, X, -1 Z

where X; <« X, Y, « Y, and Z, « Z,. (X,. Y,, Z,) represents a stationary state, The

corresponding characteristic equation is
ML AN+ BA+C =0, (6.24)

whete A =240, B=(l—r)o+{l+a)+0Z.+ X2 C={1-rlo+cZ, +oX.Y,+ 0 X7
For simplicity, we choose the trivial stationary points X, =Y, = Z, =0 in Eq. {6.23} so
that the characteristic equation becomes

A=+ 0 +aN+{(1 -] =0 (6.23)

For r < 1, the eigenvalues are A = —1, —o, —1. Thus the trivial stationary points is
a hyperbolic sink and is thus stable. On the other hand, for » = 1, the eigen values are
A=0,-1,—{1 +¢), and thus the equilibrium becomes unstable.

Finally, for » > 1, the nontrivial stationary points are X* = Y* = £/r — 1 and

Z, = r — L. In this case, the eigenvalues of Eq. (6.23) ate A = —(¢ + 2) and = |

v/20(c + 1)(0 — 2). The stability of the system can be determined by using Routh-
Hurwitz criterion [96]. i.e., the coeflicients A, B, C of Eq. (6.24) should satisfv the in-

equality 45 — ' > 0. In our case, we found that the nontrivial points do not satisfy
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this criterion and therefore are unstable so that the stationary states (X°, Y*, Z,) are
sinks for r € (1, rz). where ry = o{e + 4)(¢ — 2). A Hopf bifurcation occurs at 7. the
nontrivial fixed points are saddles with two dimensional unstable manifolds. Thus for
r > ry, all the three fixed points are unstable but the attractor set still exists. For iarge

r values, further bifurcations mav occur leading to chaotic behavior.

6.3 Chaotic Behavior of ITG-driven Electrostatic Waves

For the temporal behavior of nonlinearly interacting finite amplitude two-dimensional
(0z = 0) ITG-driven electrostatic waves in collisional e-p-i magnetoplasmas, we assunie

Oy +verp V2 10, v.0,. Egs. (2.31)-(2.34) can be re-written as

(Dy— v +vp- ViV, =¢ (S";m- V)(I)., (6.26)

D > v 2x, vViT 2D N 2 Avis j
— o Vg - B - 5 "‘ [ 2 | I —i'Jv'. ) = ‘ _) 7

( N 31,0 *) 37 7 (”’- :3) A& o (6.27)

(D= vg V=DV (ad)+7(va ~ Vo) - VO = p} [D, 4 v, + vpio - V4, V2 V1

“vg VT iV [(vpy - V)V 8] =0, (6.28)

where D, = 0, + vgg - V. Here, we introduce the ansitz:

$ = (¢) sin( Kox) sin( K, y), (6.20)
T = Th(#)sin(K . z)cos{Ky) ~ TH(t) sin(2K ,x). {6.30;
V, = Vo(t) sin( K, x) cos(K,y) — Vo () sin{2K, x), 16.31;

where K, and K, are constant parameters, and ®,. A;, A,, V,,, Vi, 77 and T, are
some fime-dependent amplitudes. The choice of Vi{z, 4, t) and T{z.y.t) having second

harmonic term sin(2K,2) and cos(K,y) rather than sin{ K, y) in Eqgs. (4.27)-{4.29) is not

I
s
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purely arbitrary. Substituting Eqgs. (6.29)-{6.31) into Eqs.(6.26) and {6.28), respectively.

we readily obtain

D) = sl + 0 KT, (6.32)

Ty = = KT+ oK, &, + 250, K K, 8. T (6.33)
Ty = 430 2T — 30, KL K, 0, T, (6.34)

Viy = 20, KL K Vo, @y — vV o+ 25K, 00, (6.35)
Vi = =K V8 — v Vi, (6.36)

where z5 = (p%p, K2 —aD, — pPv) [ o+ piK3), 50, = vp,/ (0 + pP K2, 30 = 2x, /310,
sy = T (1, = 3) Ui, 24 = To/ (2eBy). 5 = ¢; (Orvin/we). The terms proportional to
sin(3/4, 1) have been dropped in the derivation of Eqs. (6.32)-(6.36) to avoid mathe-
maftical complexity as well as the spatial dependence more rapid than allowed by the
ansiitz. [t is clear from above set of equations that the parallel fluid velocity components
(Vi1 & Vi) of lons decouple from remaining set of equations i.e., the Eqgs. (6.32)-(6.34}
don't depend upon V,; and Vi, Therefore, we are left with three independent set of
equations ie.. {6.32)-(6.34) for Aute-like ITG-driven electrostatic waves in a non-uniform

dissipative e-p-i magnetoplasma. Eqs. {6.32)-6.34) are normalized to put in the matrix

form
dr X —a o 0 X
&Y [ =1{| r—2Z2 =1 0 Y o, (6.37)
d. 2 Y 0 =b Z

where ¢ = /5, r = x5 K [ ((0xKY), is the control parameter of the system.

b=d4KZ/K? K* =KX+ K d. represents d/dr and 7 is the normalized time variable

and is defined as 7 = t/t,1 t, = 1/:0K2.
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The normalizations used here are

- }:'21{2

¢, = (Ll.X = f—_———

\/ﬁ}'{qﬁxﬁﬁ;

e Y

T = a.g)"=i————~——fm[2hj" -Y

V2t ey K, T (j

> “-_f:.K-:l : .
Ty, = a3f = 020 o (6.33)

2,‘/_1 ) [\/_1; [(;

The fixed points of the flow are found by setting d. X = d.V; = d,Z, = 0 so that Eq.

(6.37) reduces to

— T 0] X
r-Z, -1 0 Y, | =0 (6.3
Y 0 —b 7z,

or

—oX;+0oY, = 0
(’:" - Z\) ./Y‘,- - }/b = O
XY, —bZ, = 0. (6.40)

Solving the above, we obtain the fixed points

(X, Y, Z,) = (i\/bg'r} ), /b =1, — 1) . (6.41)

It may be noted here that for 7} > 1. the equilibrium fixed points are unstable result-
ing in convective cell motions. Thus, the linear instability should saturate by attracting
to one of these new fixed states. Furthermore, it 1s worth mentioning that a detailed
behavior of chactic motion can be studied by numerically solving the newly derived
nonlinear set of equations.

The stability of the stationary state can be studied by letting X = X+ X,V = V,+ Y
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and 7 = 2, — 7, so that the system on linearization becomes

d. X - o3 0 X
4.V | =] r—2, -1 =X, vl (6.42)
d-Z Y, 0 —b Z

where X <« X, Y < Y, and Z « Z. and (X,, Y,, Z,.) represents a stationary state,
The stability of the fixed point at the origin mav be found by solving the following

eigenvalue problen:

(A+0) o 0
det | —r  (A+1) 0 = 0. (6.43)
0 0 (A+10)
Le.,
<G - ]') l ( 2 4 RN idan
A:-TIE[\J+1) - J(l“i)J‘ . (6 1)

As one increases », the following dynamical trajectories occur:

1) 0 < r < 1. In this range, there is only one stable fixed point which is at the origin.

2} 1 < r < 1.346. Two new stable nodes are formed ana the origin becomes a saddle
point with a one-dimensional, unstable manifold.

33 1.346 < r < 13.926. At the lower value the stable nodes become stable spirals.

4) 13.926 < r < 24.74. Unstable limit cvcles are formed near each of the spiral nodes,
and the basins of attraction of each of the two fixed points become interwired, The
steady-state miotion is sensitive to irutial conditions.

3) 24.74 < r. All three fixed points become unstable and consequently chaos sets in,

The characteristic equation of (6.43) is

A=) [P+ (l+o)h+(1—r)s)] =0,

—
[
e
(W]

o

which governs the linear stability of the stationary state. For example. if we take v+ < 1.

the origin is a hyperbolic siuk and s thus stable. For » = 1 however, the eigenvaiues are
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A = —band Ay = —(1 + )., if Ay or A < 0, then the motion can flip between positive

and negative eigen-directions while still moving closer to the fixed point. Finally, for

r > 1. the nontrivial stationary points are X, = Y, = *=/b(r — 1) and Z, = r — 1 as

by

obtained in Eq. (6.41). The stability of the fixed points off the origin is determined by

—{A+ ) T 0
det | r—Z, —(A+1 =X, = {. (6.40)
Y, X, —(\+b)

Choesing positive values from Eq. {6.42), the above relation becomes

N+ o) [N+ (I =DA+br] +olblr—1) = (A+b)] =0

or
Narlo+b+1)+br+a)A+20b(r—1)=0. (6.47)

We may re-write Eq. (6.46) as
M+ a A+ agh +ag =0, (6.45)
where o, = (6 +b+ 1), a; = b(r +0) and ay = 20b(r — 1). The corresponding eigenvalues

of Eq. (6.48) are A = —(0 + b+ 1), £i\/20(s + 1)/(c — b ~ 1), the & hinaginary values
correspond to stable or unstable spirals so that the stationary states (X, Y=, Z,) act as
sinks. As parameters are changed in a dynamical systeni, the stabilitv of the equilibrium
points can change as well as the number of equilibrium points.

The studdy of these changes in uonlinear problems as system paranieters are varied is
the subject of bifurcation theory. Values of these parameters at which the qualitative or
topological nature of motion changes are known as critical or bifurcation values. Az we

discussed earlier that when a control parameter is varied, a pair of complex conjugate

eigenvalues A = ~(o + b+ 1) and =i/20(c + 1}/{7 — b~ 1} cross from the left-hand
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plane (a stable spiral) into the right-hand plane {an unstable spiral) and a periodic mo-
tion emerges known as a limit cycle. This type of qualitative change in the dynamics
of system is known as a Hopf bifurcation. We can calculate from Eq. (6.47) a point at
which Hopf bifurcation occurs ry = o{o + b+ 3)/(¢ — b — 1). The critical condition for
Hopf bifurcation [111] is

f = (haz — a3y = 0. (b’-ﬁgj

From these condition we calculate 7 = ry, so Hopf bifurcation occurs at ry. If the
control parameter r exceeds ry. the system undergoes two more Hopf biturcations so
that three simultaneous coupled limit cvcles are present, that signals chactic motion.
According to Routh-Hurwitz criterion [110] a necessary and sufficient condition for the

stationary solutions to be stable is

DN =X +a ) +a)+a3 =0, (6.50)
aj 1 ,
= ayag — a3 > 0, (6.51)
3 (a

where a, > 0 and a3 > 0. Using this criterion we observed that r < ry thus the syvstem
is stable below rg. Thus. for » > rg, all the three fixed points are unstable but the
attractor set still exists. For larger r values, further bifurcations may occur leading to

chaotic behavior.

6.4 Chaotic Behavior of ITG-driven Electromagnetic
Waves

Here, we shall discuss temporal behavior of nonlinearly interacting finite amplitude two
dimensional {6z = 0) ITG-driven electromagnetic waves in a collisional e-p-i magneto-
plasma for the case of inertialess electrons/positrons. We assuime that |3, + vgg - V| =

iz a:

who0:. D, = Dy and equilibrium current gradients are negligibly small. Therefore.
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the relevant equations i.e., Eqs. (2.21)-{2.27) can be reduced using quasineutrality con-

dition and Ampere’'s law to the following set:

, : ToVe A, _
(Di~7vp - V=D, Vi) N: = 7v; - VO + D, (cy_, + %“—P) = 0. (8.52)
- LT Te”
(D~D)VIN, +7vp, VO + 02 [Di+ v, +vpg V4+p, V] VID
. . . i .
—vg VT + 02V (Vo - V) VLD + 4; 5 D: (V24:) =0, (6.53)
TTlnE”

_ i . ]
(Di+v. —vpo VIVi= e | = (D +von: V) A, -8, Vo —771D, (T = N .
c

: (6.54)
5 2%, —> 2 . e
Dy + C V_'g Vo T - éDrf\‘. — TVvro - VO =0, (6.33)
f ?'i'_:;'}
(Df - Cc'_lT (Vni ' V)) Az - G—;ICD::V’: = 0-. (656)

where D, = &, + vgp -V and D, = (To/Boe) V. A, x 2 - V. We follow the Lorenz
and Stenflo approach [72] in the derived set of coupled nonlinear equations which are

necessary to study chacs. Accordingly, we introduce the ansitz:

¢ =P, (1) sin( K x) sin(K,y). {6.57)
Ny = Ny () sin(Kexysin(K,y), (G.5%)
T =T (&) sin(K,a)cos(Kyy) — Tolt)sin[2K,2), (6.59)
Vo= Valt)sin( K z) cos(Ky) — Vo () sin(2K . z), {6.60)
A, = Ay () sin( K z) cos( K, y) — Ax(t)sin(2Kx), (6.61)
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where K, and i, are constant parameters, and N, A; and A; are some time-dependent

amplitudes. Substituting {6.37)-(6.61) into (6.52)-(6.56). we get

. ng K, (D~ D) .. waXNK. K, - y
O, = — (l/,: — ,'L[.{[\i) P+ 'Df}\’i- Ty ;.I_}r*—z\‘zl - —C—f—\%——i(h# - 411-‘&)./-1, (662}
- 2 2 o 2X o2 e
j]_ = =T 5 — 7 'Uﬂ,i[(y(l)l +Wc:ﬂ; I\I[XV,'(I)ITZ‘ - T—‘K’_J_Tlv (663,\’

' 30

e 8X7 -2 LU‘C-E',O? .o I <

Ty = —-"2RKT, — K. K971, (G.64)
3ng 2 .
Ny = ~DJCON, —wapf KK (K~ 43 A, (6.65)
o wep? Sa~tw.pt

A= L; - K, A + —~———fl—i[«:'I[(h,z\filf‘L, (6.66)

where 4 = 4,4, and A7 = ¢7 /w3, Notice that the terms proportional to sin{3/X,z) have
been dropped in the derivation of Egs. (6.62)-(6.66) and low-7 plasma approximaticn

decouple the time derivative equations for V,; and V. from the Eqs. (6.62)-(6.66). Thus

system reduces to the following 5 x 5 matrix

dr X - & 0 S9 —a X
4. r—2 =1 0 0 0 14
a.-Z = Y 0 —5 0 0 Z | (6.67)
d. U 0 0 0 -8 -1 U
4.V ssV 0 0 0 U 1%

where g == 3ng (v; — 1, K3) / (2% 1), v = 3rngunp? (v, — 1, K1) (g, — %) / (2x;va:), b=
AK2/K?, sy = (D, — D)) (fpas/ay) /p?. 5, = wm/\?z’\;':[(y(Kf — 4K2) (toas/ay) [ K2, 5 =
t0D K3 55 = wop? K I a1ta/2, with K2 = K2 + K7 v =t/ty, and tg = 2/w.p° N, K,
If we further take [(? = 4K? and D, = D;, then Eq. (6.67) reduces to Lorenz type

eqguations.
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The narmalizations used here are

[S%]

2K

: X
\/ SHIO_/");?wdpf Ir\/;[‘\/y

202K (v, — 1K)

\V3n ::’:/’Xiwczﬁ??'ﬂ‘- [{IK—S

v~ K1) KT
T

Py

Il

iy N ==

-

Tl = CI.’_;Y =+

T} = 3L = — ; s
- 3 ‘.";_;f!d,;,'f’(x[,.j
dory, K3
Ny = g0 =— E o]
: ¢ 9}’?:5;:,;»‘{-;,03[{11{‘9.
SaxiK?
A = 0.5‘;./’ = Xif L {66:)

—.2 2 ANTprapearred 3 |4
2w pi M KK (KE —4K7)

The equilibrium points of Eq. (6.67) can be cbtained by setting time derivative terms
equal to zero and solving the nonlinear set of coupled equations. To study the stability
of the stationary states, wemay let X = X, + X, YV =Y, + Y. 7 =4, +2,, U =U,+0)

and V = V. + V1, so that the lineanzed system becomes

d.X - T 0 S0 —9 \ X
Y] r—2s —=1 0 0 0 Yy
d- 21 = Y o =0 0 0 7 , (6.69)
drL 0 0 D ~s5; -1 Ui
d. W 53V 0 0 0 i, W1

where X, & X Y\ &« VY, 7, « Z,, Uy <« U; and V <« V, and (X,. Y,. Z,. U,.
V) represents a stationary state. Taking the fixed point at origin. the corresponding
characteristic equation which governs the linear stability of the stationary state is given
by

AA+ A+ M+ A+ +o(1=7)

-

=0 (6.70)

2

— H /’, 2 ,
The eigenvalues are A = 0, —b, — g, =D 5\/’\1 +a7) —4de(l—=r). For 0 <

r < 1, the eigenvalues become A = 0, —s0. =0, —1, —7¢. Thus the equilibrium poins
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is stable since all the eigenvalues are negative. At r = 1. we have A = 0, —s;, -0,
~ (1 + ) ie.. the fixed pomnt is marginally stable. It 1s stable for 1 < v < vy, where
ry 18 any arbitrary value known as Hopf bifurcation. Finally for + > 1 the nontrivial
stationary points are X, = Y, = =/(r—1) and Z, = r — L. At v < ryz wwo of
the eigenvalues become complex ie., two limit cycles result which are stable as long

as the real part of the complex eigenvalues is smaller than zero. For r = vy, where

ry = oo+ b0+ 3)/(0 —b— 1) these real parts become zere i.e. we have two eigenvalues

A= —log+Dh+1)and £ ﬁa(a +1)/{c —b—1). Above ry, the limit cycle becornes
unstable (the complex eigenvalues have positive real parts} and chaos sets in.

EFmally, we have numerically mvestigated the chaotic hehiavior of our nonlinear svstem
which is represented by g {(6.37). For this purpose, we have used » as the arbitrary
controlled parameter and fixed the parameters o = 11.4 and & = 1. Figure (6-1; shows
a chaotic behavior of electrostatic [TG-driven drift-dissipative mode in e-p-i magneto

plasma. Period doubling structures cam easily be seen from the figure (6-1).

Figure 6-1: Chaotic behaviour of electrostatic ITG-driven drift-dissipative waves,
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6.5 Summery

To summarize this chapter, we have studied the nonlinear dynamics of weakly interacting
low-frequency flute like electrostatic and electromagnetic ITG modes in a nonunifonu
e-p-i magnefoplasma. Furthermore. we reduced the governing equations to those of
Lorenz ones, that the temporal chaos can appear if dissipation is included. We hawve
also mwmerically investigated Eq. (6.37) for some typical parameters and plotted the
bifurcation diagram for some specific value of . By varying the control parameter +, we
observe the transition in the system from stable to unstable state. We calculate a critical
point at which a Hopf bifurcation occurs. By using Routh-Hurwitz criterion a necessary

and sufficient condition for the stahility of stationary solution is also calculated.
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Chapter 7

Summary and Conclusions

In this chapter, we summarize the work presented here and draw some conclusions. In this
thesis. first of all, the linear and nonlinear propagation of 1on acoustic and electrostatic
drift waves in an e-p-1 plasma have been investigated in the presence of ion sheared Aow
along the external magnetic field in cold ions limit {56]. It has been found that the {ree
energy available in the form of shear flow can give rise to electrostatic instabilities of
lon acoustic and drift waves in the lmear limit. It is important to note that the ion
acoustic wave can become unstable in both e-l and e-p-i plasmas due to ion shear flow
even in the absence of density gradient. In the presence of ion collisions a drift-dissipative
instability may also take place under suitable conditions. On the other hand, when the
finite amplitude disturbances weakly interact among themselves, the nonlinear coupling
of various mades may lead to the formation of monopelar vortex in a collisionless plasma,

The effect of finite 1on-termperature, which was not considered in the earlier investiga-
tion [38], may drastically modify the nonlinear dynamics. Therefore, we have generalizad
the sald work by considering a nonuniform strongly maguetized e-p plasma with ions at
nonrelativistic hot temperature in the presence of sheared ion flows. In the linear case.
we found that ion-acoustic and electrostatic drift-waves become unstable due to equilib-
rivun sheared ion flow. In the nonlinear case. for some specific profiles of the equilibrium

density and sheared plasma fows. the nonlinear equations admit guadrupelor vortices,
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Phyvsically, the ITG modes arise due to the linear coupling of the magnetic field aligned
ion-sound wave and a drift wave that propagates transverse to the ambient magnetic field.
Since in the presence of ion temperature gradient, the wave potential as well as the on-
temperature and density perturbations cannot keep in phase, therefore. the free energy
stored in the temperature gradient can be coupled te the [TG modes, driving them at a
nonthermal level, Ariong other instabilities, several experimental results are in favor of
ITG mode as a major candidate for explaining anomalous transport. Therefore. due to
the importance of ITG mode. we have extended owr earlier studies [56, 58] to the ITG-
driven electrostatic waves with sheared flows in an inhomogeneous e-p-1 magnetoplasma.
By emploving the ion continuity, momentum and energy balance equations for the on
and Boltzmann distribution for the electrons and positrons, we have derived a new set
of nonlinear mode coupling equations that contain scalar as well as vector nonlinearities.
Neglecting the nonlinear terms, we have carried out the normal mode analysis to derive
a general dispersion relation. It has been shown that non-zerc equilibrium ion temper-
ature (i.e. = ° % 0) and the presence of positrons {i.e. o # 1) modify the previously
known results in the approprate limits, For flat density profile, ITG-driven drift wave
15 destabilized on account of free energy stored in the inhomogenecus ion temperature
and magnetic field gradients. We have also derived a cubic dispersion relation for the
coupled lon-acoustic and electrostatic lon-temperature-gradient mode in the presence of
sheared ion fiow. One of the roots of this cubic dispersion relation predicts an insta-
bility lwrespective the direction of shear and lon-temperature gradient. On the other
hand, in the nonlinear case, it is shown that under certain conditions possible stationary
solutions of the same set of nonlinear equations are reduced in the form of monopolor,
dipolar, tripolar, guadrupelor and chein of vortices. We have also incorporated the self-
gravitation effect of lons in this work and shown that possible stationary solutions of the
nenlinear equations can also be represented in the form of dipolar and tripolar vortices
of gravitational potential.

Further. in most of the laboratorv and space plasmas, the plasma beta could exceed
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the electron to ian mass ratio, necessitating to incorporate electromagnetic effects on ITG
mode. We have also studied the linear and nonlinear properties of low-frequency electro-
magnetic [TG-driven waves in a nonuniform collisional e-p-1 magnetoplasma containing
the equilibrium density gradient, on-temperature gradient, magnetic field gradient, and
parallel velocity gradient. By emploving the Braginskii's transport eguations for the
jons and continuity and momentum balance equations for the electrons and positrons.
we derive seven sots of nonhnear mode coupling equations. In the linear case, we have
derived local dispersion relation and obtained new class of instabilities and modes for
e-p-1 plasma. We found that in the presence of positrons, electromagnetic and electro-
static disturbances respond in a very different way and scveral new types of modes and
instabilities are found to exist. For instance. it has been shown that non-zero equilibrium
ion-temperature and the presence of positrons modify the previously known results. It
is alzo found that sheared equilibrium flow can canse instability of Alfvén waves even in
the abscnce of density gradients. On the other hand. in the nonlinear case, the modc
coupling equations admit new class of dipolar and vorter chain type solutions.
Furthermore, lincarly excited finite amplitude electrostatic waves interact among
themselves and lead to a chaotic state due to mode coupling in a nonuniform dissi-
pative plasma. This has been demonstrated by looking for the time-dependent solution
of the nonlinear equations that govern the dynamics of finite amplitude dissipative elec-
trostatic waves. We find that the nonlinear dynamics of drift-dissipative waves in the
presence of sheared ion-fows can be expressed as a set of three mode coupled equations,
or simply the generalized Lorenz-Stenflo equations. Their linear stability analysis has
beer performed in various lmits 36, We have also made the study of chaotic behavior
to electrostatic/electromagnetic ITG modes. With that in view, we follow the Lorenz
and Stenflo approach and derive a new set of eight coupled nonlinear equations which we
call the generalized Lorenz-Stenflo equations. The stability of the system is determined
by the Routh-Hurwitz criterion. We found that the nontrivial stationary points do not

satisfy this criterion and therefore are unstable. We have numerically investizated rhe
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periodic and chaotic solutions of the generalized Lorenz-Stenflo type of nonlinear system

of equations and also plotted the bifurcation diagram.
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