Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/13287
Title: Analysis of co-authorship network Case study of political Sciences from Microsoft Academic Graph (MAG)
Authors: Usman, Muhammad
Keywords: Computer Sciences
Issue Date: 2018
Publisher: Quaid-i-Azam University Islamabad
Abstract: Withtheadvancementintechnology,networkshavegrownbiggerandevenbecom- ing moreandmorecomplex.Researchershavecontributedtheireffortsforidentifying differentstructuresofdifferentcomplexnetworks.Thereisaneedtodetectandiden- tify suchcomplexnetworkinordertoknowhowthesenetworksprovidecommunica- tion withinthem.Networkssuchassocialnetworks,neuronnetworks,emailnetworks and webhyperlinknetworksareknownascomplexnetworks.SocialNetworkAnalysis (SNA)fieldisfacilitatingandprovidingtechniquesandmethodstoexploreandanalyze such intricateorcomplexsystemsusingtechniquessuchasgraphtheories,network properties andcommunitydetectionalgorithms.Assortedcommunicationonsocial networksattractedresearchersattentioninrecenttime.Massivesharingofopinions, ideas, experiencesandexpertisehighlightcommunicationthroughsocialnetworks.So- cial networkshavebecomeaflourishingnetworkforsharingsuchinformation.Identi- fying andanalyzingthesecommunicationtrendshavegainedimportancefordetecting patterns amongpeopleinsocialnetworksusingcommunitydetectiontechniques. Co-authorship networkisalsobecomingcentralpointofattentiontomanyresearchers. Domain specificco-authorshipcommunitydetectionisevolvingareathatisemerging beside othercommunitydetectionidentificationpatterns.Inthisthesis,weperformed analysis onco-authorshipnetworkinthefieldofPublicRelationandPublicAdminis- tration usingcommoncentralitymeasures.TheauthorsbelongtothefieldofPublicAd- ministration andPublicRelationsrelatedtodifferentresearchandacademicinstitutes present fromallovertheworld.Wefoundcohesivegroupsofauthorsandweranked them onthebasisofcentralitymeasures.Wetookdifferentcentralitymeasuressuchas betweenness, degree,pagerank,andauthorityscore,closenessandeigenvector.Find- ings revealtheco-hesivenetworkofdomainspecificco-authorswhoarebestintheir knowledgesharingandcollaborationinthefieldofPublicRelationsandPublicAdmin- istration. Our case study analyze the patterns of collaboration in co-authorship network based onmodularityandcentralitymeasures.Inourproposedwork,wehaveusedmod- ularity andcentralitymeasuresfordetectingbestauthorsandco-authorswhobelongto variouscommunities.Wehaveproposedanauthor’scommunitydetectionframework that isbasedonmodularity.Ourproposedcommunitydetectionframeworkdetects author’scommunitywhichhavebestpublicationsandworksonnon-overlappingcom- munity structures.Theframeworkiscapableofidentifyingauthorcommunitiesthat havemanynumberofpublicationsandcitations.Wehavealsodevelopedstructured database corpustoevaluateourproposedcommunitydetectionapproach.Thisstruc- tured corpusisalsoavailableasastandardtest-bedtocomparedifferentcommunity detection approaches.
URI: http://hdl.handle.net/123456789/13287
Appears in Collections:M.Sc

Files in This Item:
File Description SizeFormat 
COM 2320.pdfCOM 23207.9 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.