Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/13287
Title: | Analysis of co-authorship network Case study of political Sciences from Microsoft Academic Graph (MAG) |
Authors: | Usman, Muhammad |
Keywords: | Computer Sciences |
Issue Date: | 2018 |
Publisher: | Quaid-i-Azam University Islamabad |
Abstract: | Withtheadvancementintechnology,networkshavegrownbiggerandevenbecom- ing moreandmorecomplex.Researchershavecontributedtheireffortsforidentifying differentstructuresofdifferentcomplexnetworks.Thereisaneedtodetectandiden- tify suchcomplexnetworkinordertoknowhowthesenetworksprovidecommunica- tion withinthem.Networkssuchassocialnetworks,neuronnetworks,emailnetworks and webhyperlinknetworksareknownascomplexnetworks.SocialNetworkAnalysis (SNA)fieldisfacilitatingandprovidingtechniquesandmethodstoexploreandanalyze such intricateorcomplexsystemsusingtechniquessuchasgraphtheories,network properties andcommunitydetectionalgorithms.Assortedcommunicationonsocial networksattractedresearchersattentioninrecenttime.Massivesharingofopinions, ideas, experiencesandexpertisehighlightcommunicationthroughsocialnetworks.So- cial networkshavebecomeaflourishingnetworkforsharingsuchinformation.Identi- fying andanalyzingthesecommunicationtrendshavegainedimportancefordetecting patterns amongpeopleinsocialnetworksusingcommunitydetectiontechniques. Co-authorship networkisalsobecomingcentralpointofattentiontomanyresearchers. Domain specificco-authorshipcommunitydetectionisevolvingareathatisemerging beside othercommunitydetectionidentificationpatterns.Inthisthesis,weperformed analysis onco-authorshipnetworkinthefieldofPublicRelationandPublicAdminis- tration usingcommoncentralitymeasures.TheauthorsbelongtothefieldofPublicAd- ministration andPublicRelationsrelatedtodifferentresearchandacademicinstitutes present fromallovertheworld.Wefoundcohesivegroupsofauthorsandweranked them onthebasisofcentralitymeasures.Wetookdifferentcentralitymeasuressuchas betweenness, degree,pagerank,andauthorityscore,closenessandeigenvector.Find- ings revealtheco-hesivenetworkofdomainspecificco-authorswhoarebestintheir knowledgesharingandcollaborationinthefieldofPublicRelationsandPublicAdmin- istration. Our case study analyze the patterns of collaboration in co-authorship network based onmodularityandcentralitymeasures.Inourproposedwork,wehaveusedmod- ularity andcentralitymeasuresfordetectingbestauthorsandco-authorswhobelongto variouscommunities.Wehaveproposedanauthor’scommunitydetectionframework that isbasedonmodularity.Ourproposedcommunitydetectionframeworkdetects author’scommunitywhichhavebestpublicationsandworksonnon-overlappingcom- munity structures.Theframeworkiscapableofidentifyingauthorcommunitiesthat havemanynumberofpublicationsandcitations.Wehavealsodevelopedstructured database corpustoevaluateourproposedcommunitydetectionapproach.Thisstruc- tured corpusisalsoavailableasastandardtest-bedtocomparedifferentcommunity detection approaches. |
URI: | http://hdl.handle.net/123456789/13287 |
Appears in Collections: | M.Sc |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
COM 2320.pdf | COM 2320 | 7.9 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.